TWI765608B - Vehicle steering testing platform control system and method thereof - Google Patents

Vehicle steering testing platform control system and method thereof Download PDF

Info

Publication number
TWI765608B
TWI765608B TW110109672A TW110109672A TWI765608B TW I765608 B TWI765608 B TW I765608B TW 110109672 A TW110109672 A TW 110109672A TW 110109672 A TW110109672 A TW 110109672A TW I765608 B TWI765608 B TW I765608B
Authority
TW
Taiwan
Prior art keywords
load
steering
signal information
load signal
actuator
Prior art date
Application number
TW110109672A
Other languages
Chinese (zh)
Other versions
TW202238098A (en
Inventor
鄭逸倫
蕭宇君
何政翰
王詠辰
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW110109672A priority Critical patent/TWI765608B/en
Application granted granted Critical
Publication of TWI765608B publication Critical patent/TWI765608B/en
Publication of TW202238098A publication Critical patent/TW202238098A/en

Links

Images

Abstract

A vehicle steering testing platform control system is provided. The vehicle steering testing platform control system includes a load coupling mechanism, a first actuator, a second actuator and a steering load control unit. The first actuator is coupled to a first transmission element of the load coupling mechanism. The second actuator is coupled to a second transmission element of the load coupling mechanism. The steering load control unit includes a load filtering device and a processor. The load filtering device receives the steering load signal information of the steering device and decomposes it into primary load signal information and secondary load signal information according to the cutoff frequency. The processor calculates the transmission ratio required by the primary load signal information and the secondary load signal information, and input respectively the transmission ratio required by the primary load signal information and the secondary load signal information to the first actuator and the second actuator. Beside, a vehicle steering testing platform control method is also provided.

Description

車輛轉向測台控制系統及其方法Vehicle steering test stand control system and method thereof

本發明是有關於一種車輛轉向測台控制系統及其方法。The present invention relates to a vehicle steering control system and a method thereof.

電動輔助轉向系統(Electric Power Steering,EPS)作為汽車主動安全性的關鍵組成,可在駕駛者有轉向需求時,透過控制電動馬達提供輔助力,輔助駕駛者轉向出力,可知電動輔助轉向系統能直接影響著車輛運行時的安全和操縱穩定性。Electric Power Steering (EPS) is a key component of active safety in a car. When the driver needs steering, it can provide assistance by controlling the electric motor to assist the driver's steering output. It can be seen that the electric power steering system can directly It affects the safety and handling stability of the vehicle when it is running.

為了提供電動輔助轉向系統,在測試階段會以車輛轉向測台來包含基本的低頻轉向負載模擬以及高頻的路況負載模擬,以期符合實車測試之轉向狀況。然而,習用車輛轉向測台的架構大致為左、右輪各自負載一油壓缸,其以油壓缸模擬轉向時來自輪胎的阻力(即轉向負載),各種不同狀況的負載需逐次設定與測試。為了要模擬各種不同或包含眾多路況的負載,若需同時兼顧頻率高與振幅大兩種不同狀態,現有技術是以單一致動器做為負載模擬,高頻率無法達到高的轉向負載,反之,高的轉向負載無法達成高頻率,難以同時滿足與提供廣域的負載頻率。當然有習知業者是將單一馬達的規格提升,欲更換成大型馬達才可能滿足提供高、低頻率負載的機制,但會增加成本或為了大型馬達而調整相關構件之配置,而不符合經濟效益。In order to provide the electric assisted steering system, the vehicle steering test bench will be used to include basic low-frequency steering load simulation and high-frequency road condition load simulation in the test phase, in order to meet the steering conditions of the actual vehicle test. However, the structure of the conventional vehicle steering test bench is roughly that the left and right wheels are each loaded with a hydraulic cylinder, which uses the hydraulic cylinder to simulate the resistance from the tires (ie the steering load) during steering. Various loads under different conditions need to be set and tested one by one. . In order to simulate various loads or loads including many road conditions, if two different states of high frequency and large amplitude need to be taken into account at the same time, the existing technology uses a single actuator as the load simulation, and high frequency cannot achieve high steering load. High steering load cannot achieve high frequency, and it is difficult to meet and provide wide-area load frequency at the same time. Of course, there are people in the industry who upgrade the specifications of a single motor and replace it with a large motor to meet the mechanism of providing high and low frequency loads, but it will increase the cost or adjust the configuration of related components for the large motor, which is not economical. .

因此,如何改善上述所遭遇到的問題,將是業界所要解決之課題之一。Therefore, how to improve the problems encountered above will be one of the issues to be solved by the industry.

本發明提供一種車輛轉向測台控制系統及其方法,能同時滿足低頻高負載與高頻低負載的負載頻率,以模擬轉向機承受路況負載之問題,符合實車測試的轉向工況。The present invention provides a vehicle steering test bench control system and method thereof, which can satisfy the load frequencies of low frequency high load and high frequency low load at the same time, so as to simulate the problem that the steering gear bears the road load and conform to the steering condition of the actual vehicle test.

本發明之一實施例提供一種車輛轉向測台控制系統,適於控制一轉向機。車輛轉向測台控制系統包括一負載耦合機構、一第一致動器、一第二致動器以及一轉向負載控制單元。負載耦合機構包括一第一傳動元件以及一第二傳動元件,其中第一傳動元件耦接於第二傳動元件。第一致動器耦接第一傳動元件。第二致動器耦接第二傳動元件。轉向負載控制單元用以控制轉向機。轉向負載控制單元連接第一致動器與第二致動器,轉向負載控制單元包括一負載濾波裝置以及一處理器。負載濾波裝置接收轉向機的一轉向負載訊號資訊,並依據一截止頻率拆解成一主要負載訊號資訊以及一次要負載訊號資訊,處理器接收主要負載訊號資訊與次要負載訊號資訊,以計算對應主要負載訊號資訊與次要負載訊號資訊所需之一傳動比,並將主要負載訊號資訊與次要負載訊號資訊所需之傳動比分別對應輸入到第一致動器與第二致動器,以控制負載耦合機構中的第一傳動元件與第二傳動元件。An embodiment of the present invention provides a vehicle steering test stand control system, which is suitable for controlling a steering machine. The vehicle steering test stand control system includes a load coupling mechanism, a first actuator, a second actuator and a steering load control unit. The load coupling mechanism includes a first transmission element and a second transmission element, wherein the first transmission element is coupled to the second transmission element. The first actuator is coupled to the first transmission element. The second actuator is coupled to the second transmission element. The steering load control unit is used to control the steering gear. The steering load control unit is connected with the first actuator and the second actuator, and the steering load control unit includes a load filtering device and a processor. The load filtering device receives a steering load signal information of the steering gear, and disassembles it into a main load signal information and a secondary load signal information according to a cut-off frequency. The processor receives the main load signal information and the secondary load signal information to calculate the corresponding main load signal information. A gear ratio required by the load signal information and the secondary load signal information is respectively input to the first actuator and the second actuator, so as to correspond to the gear ratios required by the primary load signal information and the secondary load signal information. The first transmission element and the second transmission element in the load coupling mechanism are controlled.

本發明之另一實施例提供一種車輛轉向測台控制方法,包括以下步驟:依據一截止頻率將一轉向負載訊號資訊拆解成一主要負載訊號資訊以及一次要負載訊號資訊;計算主要負載訊號資訊與次要負載訊號資訊所需之一傳動比;將主要負載訊號資訊與次要負載訊號資訊所需之傳動比,分別對應輸入到第一致動器與第二致動器;以及藉由第一致動器與該第二致動器分別控制一負載耦合機構中的一第一傳動元件與一第二傳動元件。Another embodiment of the present invention provides a method for controlling a vehicle steering test bench, comprising the following steps: disassembling a steering load signal information into a main load signal information and a secondary load signal information according to a cutoff frequency; calculating the main load signal information and the A gear ratio required by the secondary load signal information; correspondingly input the gear ratios required by the primary load signal information and the secondary load signal information to the first actuator and the second actuator; The actuator and the second actuator respectively control a first transmission element and a second transmission element in a load coupling mechanism.

基於上述,在本發明的車輛轉向測台控制方法及其系統中,利用兩個致動器並配合負載耦合機構以及轉向負載控制單元之控制方法,能夠解決習用車輛轉向系統測台以單一致動器卻難以同時提供廣域的負載頻率及相對應負載扭力、推力以模擬轉向機承受路況負載之問題,本發明能模擬轉向時承受來自路面阻力的技術,達到省時又真實的模擬測試功效。Based on the above, in the vehicle steering test bench control method and system of the present invention, the control method of using two actuators and cooperating with the load coupling mechanism and the steering load control unit can solve the problem that the conventional vehicle steering system test bench can be actuated by a single action. However, it is difficult to provide a wide-area load frequency and corresponding load torque and thrust at the same time to simulate the problem that the steering gear bears the road load. The present invention can simulate the technology of bearing resistance from the road during steering, and achieves time-saving and realistic simulation test effect.

為讓本發明能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the present invention more obvious and easy to understand, the following specific embodiments are given and described in detail in conjunction with the accompanying drawings as follows.

以下結合附圖和實施例,對本發明的具體實施方式作進一步描述。以下實施例僅用於更加清楚地說明本發明的技術方案,而不能以此限制本發明的保護範圍。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings and embodiments. The following examples are only used to more clearly illustrate the technical solutions of the present invention, but not to limit the protection scope of the present invention.

需說明的是,在各個實施例的說明中,所謂的「第一」、「第二」係用以描述不同的元件,這些元件並不因為此類謂辭而受到限制。在各個實施例的說明中,所謂的「耦接」或「連接」,其可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,而「耦接」或「連接」還可指二或多個元件相互操作或動作。此外,為了說明上的便利和明確,圖式中各元件的厚度或尺寸,係以誇張或省略或概略的方式表示,以供熟悉此技藝之人士之瞭解與閱讀,且每個元件的尺寸並未完全為其實際的尺寸,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均仍應落在本發明所揭示之技術內容涵蓋之範圍內。在所有圖式中相同的標號將用於表示相同或相似的元件。It should be noted that, in the description of each embodiment, the so-called "first" and "second" are used to describe different elements, and these elements are not limited by such terms. In the description of each embodiment, the so-called "coupling" or "connection" may refer to two or more elements that are in physical or electrical contact with each other directly, or in physical or electrical contact with each other indirectly, and "coupled" "Connected" or "connected" may also refer to the interoperability or action of two or more elements. In addition, for the convenience and clarity of description, the thickness or size of each element in the drawings is shown in an exaggerated or omitted or rough manner for the understanding and reading of those skilled in the art, and the size of each element is not It is not completely its actual size, and is not used to limit the conditions for the implementation of the present invention, so it has no technical significance. The effect and the purpose that can be achieved should still fall within the scope covered by the technical content disclosed in the present invention. The same reference numbers will be used throughout the drawings to refer to the same or similar elements.

第1圖為本發明的車輛轉向測台控制系統連接一轉向機的示意圖。請參閱第1圖。在本實施例中,轉向機50包括一方向盤52、一轉向柱54、一左輪56A以及一右輪56B,方向盤52可轉動地連接轉向柱54,轉向柱54之兩側分別連接左輪56A與右輪56B。左輪56A與右輪56B分別連接一車輛轉向測台控制系統100,以模擬左輪56A與右輪56B轉向狀況。FIG. 1 is a schematic diagram of a steering gear connected to the vehicle steering test stand control system of the present invention. See Figure 1. In this embodiment, the steering gear 50 includes a steering wheel 52, a steering column 54, a left wheel 56A and a right wheel 56B. The steering wheel 52 is rotatably connected to the steering column 54, and two sides of the steering column 54 are respectively connected to the left wheel 56A and the right wheel 56B. Wheel 56B. The left wheel 56A and the right wheel 56B are respectively connected to a vehicle steering platform control system 100 to simulate the steering conditions of the left wheel 56A and the right wheel 56B.

在本實施例中,車輛轉向測台控制系統100適於控制前述轉向機50,車輛轉向測台控制系統100包括一負載耦合機構110、一第一致動器120、一第二致動器130以及一轉向負載控制單元140,其中轉向負載控制單元140用以控制左輪56A與右輪56B,第一致動器120連接於負載耦合機構110與轉向負載控制單元140之間,第二致動器130連接負載耦合機構110與轉向負載控制單元140之間,也就是本發明具有兩個致動器(第一致動器120與第二致動器130)分別連接於負載耦合機構110與轉向負載控制單元140,配合負載耦合機構110以及轉向負載控制單元140之控制方法,能夠解決習用車輛轉向系統測台以單一致動器難以同時提供廣域的負載頻率及相對應負載扭力、推力以模擬轉向機承受路況負載之問題。In this embodiment, the vehicle steering bench control system 100 is adapted to control the aforementioned steering gear 50 , and the vehicle steering bench control system 100 includes a load coupling mechanism 110 , a first actuator 120 , and a second actuator 130 and a steering load control unit 140, wherein the steering load control unit 140 is used to control the left wheel 56A and the right wheel 56B, the first actuator 120 is connected between the load coupling mechanism 110 and the steering load control unit 140, the second actuator 130 is connected between the load coupling mechanism 110 and the steering load control unit 140, that is, the present invention has two actuators (the first actuator 120 and the second actuator 130) respectively connected to the load coupling mechanism 110 and the steering load. The control unit 140, in conjunction with the load coupling mechanism 110 and the control method of the steering load control unit 140, can solve the problem that it is difficult for a conventional vehicle steering system test bench to provide a wide range of load frequencies and corresponding load torque and thrust simultaneously with a single actuator to simulate steering The problem that the machine can bear the load of road conditions.

第2圖為本發明車輛轉向測台控制系統一實施例的示意圖。請參閱第1圖與第2圖,負載耦合機構110包括一第一傳動元件112、一第二傳動元件114、一旋轉轉線性機構116以及二個軸118,本實施例的第一傳動元件112與第二傳動元件114分別是以一組行星齒輪組作為範例。第一傳動元件112包括一第一太陽齒輪112A、一第一外齒圈112B與一第一行星架112C;第二傳動元件114包括一第二太陽齒輪114A、一第二外齒圈114B與一第二行星架114C。第一傳動元件112耦接於第二傳動元件114,第二傳動元件114耦接於旋轉轉線性機構116,旋轉轉線性機構116的另一端可連接對應的動力傳輸構件(如第1圖的左輪56A與右輪56B),第一致動器120提供旋轉動力至第一傳動元件112,第一傳動元件112經旋轉後將動力傳輸至第二傳動元件114,第二傳動元件114經旋轉後將動力傳輸至旋轉轉線性機構116,旋轉轉線性機構116能將第二傳動元件114之旋轉運動轉換成以線性(直線)運動方式傳輸動力,進而將此動力傳輸至左輪56A與右輪56B、轉向柱54以及方向盤52,藉此回饋路感(steering feel)。FIG. 2 is a schematic diagram of an embodiment of a vehicle steering test stand control system according to the present invention. Please refer to FIG. 1 and FIG. 2 , the load coupling mechanism 110 includes a first transmission element 112 , a second transmission element 114 , a rotary rotary mechanism 116 and two shafts 118 . The first transmission element 112 in this embodiment The second transmission element 114 is respectively exemplified by a set of planetary gear sets. The first transmission element 112 includes a first sun gear 112A, a first outer ring gear 112B and a first planet carrier 112C; the second transmission element 114 includes a second sun gear 114A, a second outer ring gear 114B and a The second planet carrier 114C. The first transmission element 112 is coupled to the second transmission element 114, the second transmission element 114 is coupled to the rotary rotary mechanism 116, and the other end of the rotary rotary mechanism 116 can be connected to a corresponding power transmission member (such as the left wheel in FIG. 1). 56A and right wheel 56B), the first actuator 120 provides rotational power to the first transmission element 112, the first transmission element 112 rotates and transmits the power to the second transmission element 114, and the second transmission element 114 rotates to transmit the power to the second transmission element 114. The power is transmitted to the rotary-to-linear mechanism 116, and the rotary-to-linear mechanism 116 can convert the rotary motion of the second transmission element 114 into a linear (linear) motion to transmit power, and then transmit the power to the left wheel 56A and the right wheel 56B, steering Pillar 54 and steering wheel 52, thereby feeding back the steering feel.

在本實施例中,第一太陽齒輪112A耦接於第一致動器120,第一行星架112C設置於第一太陽齒輪112A之外,第一外齒圈112B耦接於第一行星架112C。第一行星架112C與第二行星架114C藉由軸118連接,使第一行星架112C與第二行星架114C固定,第二行星架114C設置於第二太陽齒輪114A之外,第二外齒圈114B耦接於第二行星架114C與第二致動器130。任一組行星齒輪組(第一傳動元件112或第二傳動元件114)另包含多個行星齒輪耦合第一行星架112C或第二行星架114C,行星齒輪未繪出於第2圖中。In this embodiment, the first sun gear 112A is coupled to the first actuator 120 , the first planet carrier 112C is disposed outside the first sun gear 112A, and the first outer ring gear 112B is coupled to the first planet carrier 112C . The first planet carrier 112C and the second planet carrier 114C are connected by a shaft 118 to fix the first planet carrier 112C and the second planet carrier 114C, the second planet carrier 114C is disposed outside the second sun gear 114A, and the second outer gear The ring 114B is coupled to the second planet carrier 114C and the second actuator 130 . Any planetary gear set (the first transmission element 112 or the second transmission element 114 ) further includes a plurality of planetary gears coupled to the first planetary carrier 112C or the second planetary carrier 114C, and the planetary gears are not shown in FIG. 2 .

在上述的配置之下,上述第一傳動元件112與第二傳動元件114可具有一耦合負載關係,如表一: 表一: 耦合情況 固定 輸入 輸出 方向 傳動比 作用 1 外齒圈 太陽齒輪 行星架 同向 1+

Figure 02_image004
減速增扭 2 外齒圈 行星架 太陽齒輪 同向 1/(1+
Figure 02_image004
)
增速減扭
3 太陽齒輪 外齒圈 行星架 同向 (1+
Figure 02_image004
)/
Figure 02_image006
減速增扭
4 太陽齒輪 行星架 外齒圈 同向
Figure 02_image004
/(1+
Figure 02_image004
)
增速減扭
5 行星架 太陽齒輪 外齒圈 反向 -
Figure 02_image004
減速增扭
6 行星架 外齒圈 太陽齒輪 反向 -1/
Figure 02_image004
增速減扭
Under the above configuration, the first transmission element 112 and the second transmission element 114 may have a coupled load relationship, as shown in Table 1: Table 1: Coupling situation fixed enter output direction gear ratio effect 1 outer ring gear sun gear planet carrier In the same direction 1+
Figure 02_image004
Deceleration and torque increase
2 outer ring gear planet carrier sun gear In the same direction 1/(1+
Figure 02_image004
)
Speed reduction and torque reduction
3 sun gear outer ring gear planet carrier In the same direction (1+
Figure 02_image004
)/
Figure 02_image006
Deceleration and torque increase
4 sun gear planet carrier outer ring gear In the same direction
Figure 02_image004
/(1+
Figure 02_image004
)
Speed reduction and torque reduction
5 planet carrier sun gear outer ring gear reverse -
Figure 02_image004
Deceleration and torque increase
6 planet carrier outer ring gear sun gear reverse -1/
Figure 02_image004
Speed reduction and torque reduction

上述

Figure 02_image008
為外齒輪之圈數/太陽齒輪之齒數。舉例而言,在第一傳動元件112中,固定第一外齒圈112B、第一致動器120由第一太陽齒輪112A作為輸入源、第一行星架112C為輸出源;在第二傳動元件114中,第二太陽齒輪114A為輸出源,第二外齒圈114B及第一傳動元件112中的第一行星架112C作為輸入源,並套用表一的耦合負載狀況(如耦合情況1、2、6),且第一行星架112C與第二行星架114C彼此固定而使得第一行星架112C與第二行星架114C兩者的轉速相同,可以得知第一致動器120與第二致動器130以及線性負載輸出來源的關係,如下述數學式(1)~(4):
Figure 02_image010
(1);
Figure 02_image012
(2);
Figure 02_image014
(3);
Figure 02_image016
(4)。 the above
Figure 02_image008
It is the number of turns of the external gear/the number of teeth of the sun gear. For example, in the first transmission element 112, the first outer ring gear 112B is fixed, the first actuator 120 uses the first sun gear 112A as the input source, and the first planet carrier 112C as the output source; in the second transmission element In 114, the second sun gear 114A is the output source, the second outer ring gear 114B and the first planet carrier 112C in the first transmission element 112 are the input sources, and the coupling load conditions in Table 1 (such as coupling conditions 1, 2) are applied. , 6), and the first planet carrier 112C and the second planet carrier 114C are fixed to each other so that the rotational speeds of the first planet carrier 112C and the second planet carrier 114C are the same, it can be known that the first actuator 120 and the second The relationship between the actuator 130 and the output source of the linear load is shown in the following mathematical formulas (1) to (4):
Figure 02_image010
(1);
Figure 02_image012
(2);
Figure 02_image014
(3);
Figure 02_image016
(4).

上述數學式(1)中,Planet代表行星架(如本實施例的第一行星架112C)作為輸出源,Sun input代表太陽齒輪(如本實施例的第一太陽齒輪112A)作為輸入源,即表一中的耦合情況1,固定第一外齒圈112B,第一致動器120的旋轉動力由第一太陽齒輪112A輸入,並由第一行星架112C輸出,得到傳動比1+

Figure 02_image008
的關係,而具有減速增扭的效果。 In the above mathematical formula (1), Planet represents a planetary carrier (such as the first planetary carrier 112C in this embodiment) as an output source, and Sun input represents a sun gear (such as the first sun gear 112A in this embodiment) as an input source, that is, In the coupling case 1 in Table 1, the first outer ring gear 112B is fixed, and the rotational power of the first actuator 120 is input by the first sun gear 112A and output by the first planet carrier 112C to obtain a transmission ratio of 1+
Figure 02_image008
relationship, and has the effect of deceleration and torque increase.

上述數學式(2)中,

Figure 02_image018
代表太陽齒輪(如本實施例的第二太陽齒輪114A)作為輸出源,Ring代表外齒圈(如本實施例的第一外齒圈112B),第一外齒圈112B與第二太陽齒輪114A具有上述數學式(2)之關係式,即表一中的耦合情況2,固定第一外齒圈112B,第一致動器120的旋轉動力由第一行星架112C輸入,並由第一太陽齒輪112A輸出,得到傳動比1/(1+
Figure 02_image008
)的關係,而具有增速減扭的效果。此外,將數學式(1)的Planet的關係式代入至數學式(2)後,可得到下述數學式(5):
Figure 02_image020
(5)。 In the above formula (2),
Figure 02_image018
represents the sun gear (such as the second sun gear 114A in this embodiment) as the output source, Ring represents the outer ring gear (such as the first outer ring gear 112B in this embodiment), the first outer ring gear 112B and the second sun gear 114A The relational expression of the above-mentioned mathematical formula (2), that is, the coupling case 2 in Table 1, the first outer ring gear 112B is fixed, and the rotational power of the first actuator 120 is input from the first planet carrier 112C, and is driven by the first sun gear 112C. Gear 112A output, get the gear ratio 1/(1+
Figure 02_image008
) relationship, and has the effect of speeding up and reducing torque. In addition, after substituting the Planet relational expression of the mathematical formula (1) into the mathematical formula (2), the following mathematical formula (5) can be obtained:
Figure 02_image020
(5).

Figure 02_image018
代表太陽齒輪(如本實施例的第二太陽齒輪114A)作為輸出源,Sun input代表太陽齒輪(如本實施例的第一太陽齒輪112A)作為輸入源,因第二外齒圈114B(在此等同Ring)之功能為微調主要大負載(指第一致動器120)的輸入-輸出,數學式(5)之物理意義可解釋成,先挑選目標傳動負載需求,依照現有大負載來源(第一傳動元件112)與其對應行星齒輪組之參數,對目標傳動負載需求進行規格範圍調整。
Figure 02_image018
represents the sun gear (such as the second sun gear 114A in this embodiment) as the output source, and Sun input represents the sun gear (such as the first sun gear 112A in this embodiment) as the input source, because the second outer ring gear 114B (here The function equivalent to Ring) is to fine-tune the input-output of the main large load (referring to the first actuator 120). The physical meaning of the mathematical formula (5) can be interpreted as: first select the target transmission load requirement, according to the existing large load source (section 5). A transmission element 112) and the parameters of the corresponding planetary gear set are adjusted within the specification range for the target transmission load demand.

此外,再將數學式(4)中的Ring代入至數學式(5)後,可得到下述數學式(6):

Figure 02_image022
(6)。 In addition, after substituting Ring in mathematical formula (4) into mathematical formula (5), the following mathematical formula (6) can be obtained:
Figure 02_image022
(6).

上述數學式(6)中,上述數學式(6)可以得知,第一太陽齒輪112A作為輸入源,其與第二太陽齒輪114A作為輸出源具有上述數學式(6)的關係式,其中所述Ratio為第二太陽齒輪114A與第一太陽齒輪112A的比值/齒數比值,如數學式(3)。數學式(6)為針對主要輸入源的第一太陽齒輪112A與唯一輸出的第二太陽齒輪114A的關係式,意思與數學式(5)本質上相同,差異在於設計上已知的條件為目標傳動比。In the above mathematical formula (6), it can be known from the above mathematical formula (6) that the first sun gear 112A as the input source and the second sun gear 114A as the output source have the relational expression of the above mathematical formula (6), wherein the The Ratio is the ratio/gear ratio of the second sun gear 114A and the first sun gear 112A, as shown in the mathematical formula (3). Mathematical formula (6) is a relational formula for the first sun gear 112A of the main input source and the second sun gear 114A of the only output. gear ratio.

上述數學式(4)中,可以知道固定第一行星架112C、第一致動器120由第一外齒圈112B作為輸入源(此處對等數學式(4)的Ring)、第一太陽齒輪112A為輸出源(此處對等數學式(4)的Sun input),而具有數學式(4)的關係,即表一中的耦合情況6,固定第一行星架112C,第一致動器120的旋轉動力由第一外齒圈112B輸入,並由第一太陽齒輪112A輸出,得到傳動比1-

Figure 02_image008
的關係,而具有增速減扭的效果。 In the above formula (4), it can be known that the first planet carrier 112C is fixed, the first actuator 120 uses the first outer ring gear 112B as the input source (here is equivalent to the Ring of formula (4)), the first sun The gear 112A is an output source (here equivalent to the Sun input of the mathematical formula (4)), and has the relationship of the mathematical formula (4), that is, the coupling case 6 in Table 1, the fixed first planet carrier 112C, the first actuation The rotational power of the gear 120 is input by the first outer ring gear 112B and output by the first sun gear 112A to obtain a transmission ratio of 1-
Figure 02_image008
relationship, and has the effect of speeding up and reducing torque.

第3圖為本發明車輛轉向測台控制系統之訊號傳遞的方塊圖。請參閱第1圖至第3圖。本實施例的轉向負載控制單元140用以控制轉向機50。轉向負載控制單元140包括一轉換裝置142、一負載濾波裝置144以及一處理器146。負載濾波裝置144連接於轉換裝置142與處理器146之間,處理器146連接第一致動器120與第二致動器130。第一致動器120與第二致動器130分別連接到負載耦合機構110中對應的第一傳動元件112與第二傳動元件114。負載耦合機構110再連接到轉向機50。Fig. 3 is a block diagram of the signal transmission of the vehicle steering control system of the present invention. See Figures 1 to 3. The steering load control unit 140 of this embodiment is used to control the steering gear 50 . The steering load control unit 140 includes a conversion device 142 , a load filter device 144 and a processor 146 . The load filtering device 144 is connected between the converting device 142 and the processor 146 , and the processor 146 is connected to the first actuator 120 and the second actuator 130 . The first actuator 120 and the second actuator 130 are respectively connected to the corresponding first transmission element 112 and the second transmission element 114 in the load coupling mechanism 110 . The load coupling mechanism 110 is in turn connected to the steering gear 50 .

在本實施例中,轉換裝置142用以接收轉向機50的一負載波形資訊40並轉換成轉向負載訊號資訊41。負載濾波裝置144接收轉向負載訊號資訊41,並依據截止頻率(cut-off frequency)拆解成主要負載訊號資訊42A以及次要負載訊號資訊42B。具體而言,負載濾波裝置144包括一高通濾波器144A以及一低通濾波器144B,高通濾波器144A擷取轉向負載訊號資訊41大於截止頻率的訊號,作為主要負載訊號資訊42A;低通濾波器144B擷取轉向負載訊號資訊41小於截止頻率的訊號,作為次要負載訊號資訊42B。In this embodiment, the converting device 142 is used for receiving a load waveform information 40 of the steering gear 50 and converting it into the steering load signal information 41 . The load filtering device 144 receives the steering load signal information 41 and decomposes it into primary load signal information 42A and secondary load signal information 42B according to a cut-off frequency. Specifically, the load filtering device 144 includes a high-pass filter 144A and a low-pass filter 144B. The high-pass filter 144A captures the signal whose steering load signal information 41 is greater than the cutoff frequency as the main load signal information 42A; the low-pass filter 144B captures the signal with the steering load signal information 41 less than the cutoff frequency as the secondary load signal information 42B.

在本實施例中,可利用下述數學式(7)、(8)作為截止頻率的一具體態樣:

Figure 02_image024
(7);
Figure 02_image026
(8)。 In this embodiment, the following mathematical formulas (7) and (8) can be used as a specific aspect of the cutoff frequency:
Figure 02_image024
(7);
Figure 02_image026
(8).

上述數學式(7)、(8)中,S1代表用於低通濾波器144B的一數學式,S2代表用於高通濾波器144A的一數學式,f為截止頻率(cut-off frequency),s為s域(s domain),又稱複頻域。本實施例採用的截止頻率f例如為13Hz,低於13Hz的次要負載訊號資訊42B代表用於一般路況的低頻之轉向負載且高負載扭力(以下簡稱低頻高負載),高於13Hz的主要負載訊號資訊42A代表用於路面阻力之高頻率且轉向低負載扭力(以下簡稱高頻低負載),此路面阻力係由路面障礙所造成。而前述高負載、低負載扭力之截止負載為6.6kN。In the above-mentioned mathematical formulas (7) and (8), S1 represents a mathematical formula for the low-pass filter 144B, S2 represents a mathematical formula for the high-pass filter 144A, and f is the cut-off frequency (cut-off frequency), s is the s domain (s domain), also known as the complex frequency domain. The cut-off frequency f used in this embodiment is, for example, 13 Hz. The secondary load signal information 42B below 13 Hz represents the low-frequency steering load and high-load torque (hereinafter referred to as low-frequency high load) for general road conditions, and the main load higher than 13 Hz. The signal information 42A represents the high frequency and steering low load torque (hereinafter referred to as high frequency and low load) for road resistance caused by road obstacles. The cut-off load of the aforementioned high-load and low-load torque is 6.6kN.

在本實施例中,處理器146接收主要負載訊號資訊42A與次要負載訊號資訊42B,以計算對應主要負載訊號資訊42A與次要負載訊號資訊42B所需之一傳動比(可等同於減速比),並將主要負載訊號資訊42A與次要負載訊號資訊42B所需之傳動比耦合,也就是讓負責低頻高負載之主要負載訊號資訊42A所需調整的傳動比、以及負責高頻低負載之次要負載訊號資訊42B所需調整的傳動比。In this embodiment, the processor 146 receives the primary load signal information 42A and the secondary load signal information 42B to calculate a required gear ratio corresponding to the primary load signal information 42A and the secondary load signal information 42B (which can be equivalent to the reduction ratio ), and couple the transmission ratio required by the main load signal information 42A and the secondary load signal information 42B, that is, the transmission ratio required to be adjusted by the main load signal information 42A responsible for the low frequency and high load, and the gear ratio responsible for the high frequency and low load The gear ratio to be adjusted by the secondary load signal information 42B.

詳細而言,請參閱第4圖,其為本發明於一模擬軟體內的電路圖,模擬傳動輸入輸出情況,即於特定軟體之內必須先定義可調整的參數,依照上述推導的數學式(1)~(6),為防止軟體計算出現數學式無法運算的情況,需針對目標傳動比與圖內兩個參數(輸入訊號ST與低通訊號SL)進行可計算範圍的保護與限縮,確定模擬軟體可順利運行。在一實施例中,數學式(1)~(6)相應於第4圖、第5圖、第6圖,並且數學式(1)~(6)與第4圖、第5圖、第6圖建立於第3圖的處理器146中。首先,將上述經由低通濾波器144B擷取之次要負載訊號資訊42B所得的一低通訊號SL以及輸入訊號ST分別輸入至第一運算器OP1,其中輸入訊號ST可為前述轉向負載訊號資訊41內的訊號。第一運算器OP1中的乘法器M1對應至輸入訊號ST,除法器M2對應至低通訊號SL並進行運算得到一比值R,接著,將此比值R置入至第二運算器OP2中運算,其中第二運算器OP2中的加法器M3對應至比值R,而數字1對應至減法器M4,即形成R-1之函式。接著,再將此R-1之函式透過第三運算器OP3而可獲得一行星架減速比RP,即對應到數學式(3)的Ratio(第二太陽齒輪114A與第一太陽齒輪112A的比值/齒數比值)。需說明的是,此處第三運算器OP3例如為一個避免資料處理中出現分母為0之狀況,所設定的一個函式,此可防止軟體計算出現數學式無法運算的情況。In detail, please refer to FIG. 4, which is a circuit diagram of the present invention in a simulation software, which simulates the input and output of the transmission, that is, the adjustable parameters must be defined in a specific software, according to the mathematical formula (1) derived above. )~(6), in order to prevent the mathematical formula from being inoperable in the software calculation, it is necessary to protect and limit the calculable range for the target transmission ratio and the two parameters in the figure (input signal ST and low communication signal SL). The simulation software runs smoothly. In one embodiment, the mathematical formulae (1) to (6) correspond to Fig. 4, Fig. 5, and Fig. 6, and the mathematical formulae (1) to (6) are related to Fig. 4, Fig. 5, and Fig. 6 The map is built in processor 146 of FIG. 3 . First, a low-pass signal SL and an input signal ST obtained from the secondary load signal information 42B captured by the low-pass filter 144B are respectively input to the first arithmetic unit OP1, wherein the input signal ST can be the aforementioned steering load signal information Signal in 41. The multiplier M1 in the first operator OP1 corresponds to the input signal ST, and the divider M2 corresponds to the low-pass signal SL and performs an operation to obtain a ratio R, and then the ratio R is put into the second operator OP2 for operation, The adder M3 in the second operator OP2 corresponds to the ratio R, and the number 1 corresponds to the subtractor M4, that is, the function of R-1 is formed. Then, the function of R-1 is passed through the third operator OP3 to obtain a planetary carrier reduction ratio RP, which corresponds to the Ratio of the mathematical formula (3) (the difference between the second sun gear 114A and the first sun gear 112A). ratio/gear ratio). It should be noted that, the third arithmetic unit OP3 is, for example, a function set to avoid a situation where the denominator is 0 in data processing, which can prevent the mathematical formula from being inoperable in software calculation.

接著,請續參第5圖,其為前述數學式(4)於一模擬軟體內的運算方塊圖,其中RP代表前述第4圖所得到的行星架比值,而太陽齒輪輸入源SGI為如數學式(4)中的Sun input,即第一太陽齒輪112A作為輸入源。太陽齒輪輸入源SGI置入至第四運算器OP4中運算,藉由第四運算器OP4中的加法器M3,得到SGI+1的函式。接著,再將行星架比值RP與前述SGI+1的函式置入至第五運算器OP5中運算,藉由第五運算器OP5內的乘法器M1,得到

Figure 02_image028
的函式。接著,再將此
Figure 02_image028
的函式與
Figure 02_image008
置入至第六運算器OP6中運算,其中
Figure 02_image028
對應至乘法器M1,
Figure 02_image008
對應至除法器M2,得到的比值
Figure 02_image030
,再與第七運算器OP7進行運算後得到一外齒圈輸入RGI(對等數學式(4)的Ring),其對應至實際數學式(4)與表一中的耦合情況6。 Next, please continue to refer to Figure 5, which is a block diagram of the mathematical formula (4) in a simulation software, where RP represents the planet carrier ratio obtained in Figure 4, and the sun gear input source SGI is mathematical Sun input in formula (4), that is, the first sun gear 112A is used as the input source. The sun gear input source SGI is put into the fourth operator OP4 for operation, and the function of SGI+1 is obtained by the adder M3 in the fourth operator OP4. Next, the function of the planet carrier ratio RP and the aforementioned SGI+1 is put into the fifth operator OP5 for operation, and the multiplier M1 in the fifth operator OP5 is used to obtain
Figure 02_image028
's function. Then, this
Figure 02_image028
function with
Figure 02_image008
Put into the sixth operator OP6 for operation, where
Figure 02_image028
Corresponding to the multiplier M1,
Figure 02_image008
Corresponding to the divider M2, the obtained ratio
Figure 02_image030
, and then operate with the seventh operator OP7 to obtain an external ring gear input RGI (equivalent to the Ring of the mathematical formula (4)), which corresponds to the actual mathematical formula (4) and the coupling case 6 in Table 1.

接著,請參酌第6圖,由上述第5圖太陽齒輪輸入源SGI,置入至第八運算器OP8(乘法器)中與函式(1/1+

Figure 02_image006
)運算後得到
Figure 02_image032
對等於數學式(1),此處太陽齒輪輸入源SGI對等數學式(1)的Sun input,再與外齒圈輸入RGI一同至第九運算器OP9中,透過第九運算器OP9中的加法器M3與減法器M4得到的數學式(2),再與第十運算器OP10運算後得到一太陽齒輪輸出SGO,即對應至第2圖的第二太陽齒輪114A作為輸出源,亦對等數學式(2)中的
Figure 02_image018
。 Next, please refer to Fig. 6, from the above-mentioned Fig. 5 sun gear input source SGI, put it into the eighth operator OP8 (multiplier) and the function (1/1+
Figure 02_image006
) after operation to get
Figure 02_image032
Equivalent to mathematical formula (1), where the sun gear input source SGI is equivalent to the Sun input of mathematical formula (1), and then together with the external ring gear input RGI to the ninth calculator OP9, through the ninth calculator OP9 Mathematical formula (2) obtained by the adder M3 and the subtractor M4 is then operated with the tenth operator OP10 to obtain a sun gear output SGO, which corresponds to the second sun gear 114A in Fig. 2 as the output source, which is also equivalent In formula (2)
Figure 02_image018
.

第7圖為本發明車輛轉向測台控制方法的流程圖。請參閱第4圖,本實施例的車輛轉向測台控制方法S100包括以下步驟S110至步驟S160。首先,進行步驟S110,如第3圖,接收一轉向機50的一負載波形資訊40。接著,進行步驟S120,轉換裝置142用以接收轉向機50的負載波形資訊40,負載波形資訊40為一時域(time domain)波形之訊號,藉由傅立葉轉換(Fourier transform),將具有時域波形訊號的負載波形資訊40轉換成為頻域(frequency domain)之訊號的轉向負載訊號資訊41。Fig. 7 is a flow chart of the control method of the vehicle steering test bench according to the present invention. Referring to FIG. 4 , the vehicle steering test stand control method S100 of this embodiment includes the following steps S110 to S160 . First, step S110 is performed, as shown in FIG. 3 , a load waveform information 40 of a steering gear 50 is received. Next, in step S120 , the converting device 142 is used for receiving the load waveform information 40 of the steering gear 50 . The load waveform information 40 is a signal of a time domain waveform, which will have a time domain waveform through Fourier transform. The load waveform information 40 of the signal is converted into the steering load signal information 41 of the frequency domain signal.

接著,進行步驟S130,依據一截止頻率將轉向負載訊號資訊41拆解成一主要負載訊號資訊42A以及一次要負載訊號資訊42B。具體而言,如第3圖所示,採用的截止頻率例如為13Hz,低於13Hz的次要負載訊號資訊42B代表用於一般路況的低頻之轉向負載且高負載扭力,高於13Hz的主要負載訊號資訊42A代表用於路面阻力之高頻率且轉向低負載扭力。Next, step S130 is performed to disassemble the steering load signal information 41 into a main load signal information 42A and a secondary load signal information 42B according to a cutoff frequency. Specifically, as shown in FIG. 3, the cut-off frequency used is, for example, 13 Hz, and the secondary load signal information 42B below 13 Hz represents the low-frequency steering load and high-load torque for general road conditions, and the main load higher than 13 Hz Signal information 42A represents high frequency and steering low load torque for road resistance.

接著,進行步驟S140,參酌第3圖,處理器146計算主要負載訊號資訊42A與次要負載訊號資訊42B所需之傳動比。此處傳動比可參考前述數學式(1)~(4)與表一的耦合負載狀況(如耦合情況1、2、6)來得知。進一步,進行步驟S150,同時參酌第4圖、第5圖、第6圖,處理器146將主要負載訊號資訊42A與次要負載訊號資訊42B所需之傳動比,分別對應輸入到一第一致動器120與一第二致動器130。接著,進行步驟S160,藉由第一致動器120與第二致動器130分別控制負載耦合機構110中的第一傳動元件112與一第二傳動元件114。舉例而言,如前述表一的耦合情況2,算出的傳動比為1/(1+

Figure 02_image008
),固定第一外齒圈112B,且第一太陽齒輪112A乘上1/(1+
Figure 02_image008
),並以第一行星架112B作為輸入源,第二太陽齒輪114A作為輸出源,並對應輸入到第一致動器120與第二致動器130,以控制負載耦合機構110中的第一傳動元件112與第二傳動元件114,並可透過如第2圖旋轉轉線性機構116傳遞並控制轉向機50。 Next, in step S140, referring to FIG. 3, the processor 146 calculates the gear ratio required by the primary load signal information 42A and the secondary load signal information 42B. Here, the transmission ratio can be known by referring to the aforementioned mathematical formulas (1)~(4) and the coupled load conditions in Table 1 (such as coupling conditions 1, 2, and 6). Further, in step S150, referring to FIG. 4, FIG. 5, and FIG. 6, the processor 146 respectively inputs the gear ratios required by the primary load signal information 42A and the secondary load signal information 42B into a first consistent actuator 120 and a second actuator 130 . Next, step S160 is performed, and the first transmission element 112 and a second transmission element 114 in the load coupling mechanism 110 are controlled by the first actuator 120 and the second actuator 130 respectively. For example, as shown in the coupling case 2 of Table 1 above, the calculated transmission ratio is 1/(1+
Figure 02_image008
), the first outer ring gear 112B is fixed, and the first sun gear 112A is multiplied by 1/(1+
Figure 02_image008
), and the first planet carrier 112B is used as the input source, the second sun gear 114A is used as the output source, and correspondingly input to the first actuator 120 and the second actuator 130 to control the first actuator in the load coupling mechanism 110 The transmission element 112 and the second transmission element 114 can transmit and control the steering gear 50 through the rotary rotary mechanism 116 as shown in FIG. 2 .

綜上所述,在本發明的車輛轉向測台控制系統及其方法中,利用兩個致動器並配合負載耦合機構以及轉向負載控制單元之控制方法,能夠解決習用車輛轉向系統測台以單一致動器卻難以同時提供廣域的負載頻率及相對應負載扭力、推力以模擬轉向機承受路況負載之問題,本發明能模擬轉向時承受來自路面阻力的技術,達到省時又真實的模擬測試功效。To sum up, in the vehicle steering test bench control system and method of the present invention, the control method of using two actuators and cooperating with the load coupling mechanism and the steering load control unit can solve the problem of the conventional vehicle steering system test bench with a single control method. However, it is difficult to provide a wide-area load frequency and corresponding load torque and thrust at the same time to simulate the problem of the steering gear bearing the road load. The present invention can simulate the technology of bearing resistance from the road during steering, and achieve time-saving and realistic simulation testing. effect.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

40:負載波形資訊 41:轉向負載訊號資訊 42A:主要負載訊號資訊 42B:次要負載訊號資訊 50:轉向機 52:方向盤 54:轉向柱 56A:左輪 56B:右輪 100:車輛轉向測台控制系統 110:負載耦合機構 112:第一傳動元件 112A:第一太陽齒輪 112B:第一外齒圈 112C:第一行星架 114:第二傳動元件 114A:第二太陽齒輪 114B:第二外齒圈 114C:第二行星架 116:旋轉轉線性機構 118:軸 120:第一致動器 130:第二致動器 140:轉向負載控制單元 142:轉換裝置 144:負載濾波裝置 144A:高通濾波器 144B:低通濾波器 146:處理器 M1:乘法器 M2:除法器 M3:加法器 M4:減法器 ST:輸入訊號 SL:低通訊號 SGO:太陽齒輪輸出 S100:車輛轉向測台控制方法 S110~S160:步驟 SGI:太陽齒輪輸入源 OP1:第一運算器 OP2:第二運算器 OP3:第三運算器 OP4:第四運算器 OP5:第五運算器 OP6:第六運算器 OP7:第七運算器 OP8:第八運算器 OP9:第九運算器 OP10:第十運算器 R:比值 RP:行星架減速比 RGI:外齒圈輸入 40: Load waveform information 41: Steering load signal information 42A: Main load signal information 42B: Secondary load signal information 50: Steering machine 52: Steering wheel 54: Steering column 56A: Revolver 56B: Right Wheel 100: Vehicle steering bench control system 110: Load coupling mechanism 112: The first transmission element 112A: First sun gear 112B: The first outer ring gear 112C: First planet carrier 114: Second transmission element 114A: Second sun gear 114B: Second outer ring gear 114C: Second planet carrier 116: Rotary to linear mechanism 118: Shaft 120: First Actuator 130: Second Actuator 140: Steering load control unit 142: Conversion device 144: Load filter device 144A: High Pass Filter 144B: Low Pass Filter 146: Processor M1: Multiplier M2: divider M3: Adder M4: Subtractor ST: input signal SL: low communication signal SGO: sun gear output S100: Vehicle Steering Test Platform Control Method S110~S160: Steps SGI: Sun Gear Input Source OP1: first operator OP2: Second operator OP3: The third operator OP4: Fourth Operator OP5: Fifth Operator OP6: Sixth Operator OP7: Seventh Operator OP8: Eighth Operator OP9: Ninth Operator OP10: Tenth Operator R: ratio RP: Planet carrier reduction ratio RGI: External ring gear input

第1圖為本發明的車輛轉向測台控制系統連接一轉向機的示意圖。 第2圖為本發明車輛轉向測台控制系統一實施例的示意圖。 第3圖為本發明車輛轉向測台控制系統之訊號傳遞的方塊圖。 第4圖為本發明於一模擬軟體內的電路圖。 第5圖為本發明於一模擬軟體內的演算方塊圖。 第6圖為本發明的拆解之負載波形資訊之耦合輸出的方塊示意圖。 第7圖為本發明車輛轉向測台控制方法的流程圖。 FIG. 1 is a schematic diagram of a steering gear connected to the vehicle steering test stand control system of the present invention. FIG. 2 is a schematic diagram of an embodiment of a vehicle steering test stand control system according to the present invention. Fig. 3 is a block diagram of the signal transmission of the vehicle steering control system of the present invention. FIG. 4 is a circuit diagram of the present invention in a simulation software. FIG. 5 is a block diagram of the algorithm of the present invention in a simulation software. FIG. 6 is a block diagram of the coupled output of the disassembled load waveform information according to the present invention. Fig. 7 is a flow chart of the control method of the vehicle steering test bench according to the present invention.

40:負載波形資訊 40: Load waveform information

41:轉向負載訊號資訊 41: Steering load signal information

42A:主要負載訊號資訊 42A: Main load signal information

42B:次要負載訊號資訊 42B: Secondary load signal information

50:轉向機 50: Steering machine

100:車輛轉向測台控制系統 100: Vehicle steering bench control system

110:負載耦合機構 110: Load coupling mechanism

120:第一致動器 120: First Actuator

130:第二致動器 130: Second Actuator

140:轉向負載控制單元 140: Steering load control unit

142:轉換裝置 142: Conversion device

144:負載濾波裝置 144: Load filter device

144A:高通濾波器 144A: High Pass Filter

144B:低通濾波器 144B: Low Pass Filter

146:處理器 146: Processor

Claims (9)

一種車輛轉向測台控制系統,適於控制一轉向機,所述車輛轉向測台控制系統包括:一負載耦合機構,包括一第一傳動元件以及一第二傳動元件,其中該第一傳動元件耦接於該第二傳動元件;一第一致動器,耦接該第一傳動元件;一第二致動器,耦接該第二傳動元件;以及一轉向負載控制單元,用以控制該轉向機,該轉向負載控制單元連接該第一致動器與該第二致動器,該轉向負載控制單元包括一負載濾波裝置以及一處理器,該負載濾波裝置接收該轉向機的一轉向負載訊號資訊,並依據一截止頻率拆解成一主要負載訊號資訊以及一次要負載訊號資訊,該處理器接收該主要負載訊號資訊與該次要負載訊號資訊,以計算對應該主要負載訊號資訊與該次要負載訊號資訊所需之一傳動比,並將該主要負載訊號資訊與該次要負載訊號資訊所需之該傳動比分別對應輸入到該第一致動器與該第二致動器,以控制該負載耦合機構中的該第一傳動元件與該第二傳動元件。 A vehicle steering test stand control system, suitable for controlling a steering machine, the vehicle steering test stand control system includes: a load coupling mechanism, including a first transmission element and a second transmission element, wherein the first transmission element couples connected to the second transmission element; a first actuator coupled to the first transmission element; a second actuator coupled to the second transmission element; and a steering load control unit for controlling the steering The steering load control unit is connected to the first actuator and the second actuator, the steering load control unit includes a load filter device and a processor, and the load filter device receives a steering load signal of the steering gear The information is disassembled into a main load signal information and a secondary load signal information according to a cut-off frequency. The processor receives the main load signal information and the secondary load signal information to calculate the corresponding main load signal information and the secondary load signal information. A gear ratio required by the load signal information, and the gear ratio required by the primary load signal information and the secondary load signal information are respectively correspondingly input to the first actuator and the second actuator to control The first transmission element and the second transmission element in the load coupling mechanism. 如請求項1所述的車輛轉向測台控制系統,其中該負載濾波裝置包括一高通濾波器以及一低通濾波器,該高通濾波器擷取該轉向負載訊號資訊大於該截止頻率的訊號,作為該主要負載訊號資訊,該低通濾波器擷取該轉向負載訊號資訊小於該截止頻率的訊號,作為該次要負載訊號資訊。 The vehicle steering test bench control system as claimed in claim 1, wherein the load filtering device comprises a high-pass filter and a low-pass filter, the high-pass filter extracts the signal whose steering load signal information is greater than the cut-off frequency, as For the primary load signal information, the low-pass filter extracts the signal whose steering load signal information is less than the cutoff frequency as the secondary load signal information. 如請求項1所述的車輛轉向測台控制系統,其中該第一傳動元件與該第二傳動元件各為一組行星齒輪組。 The vehicle steering platform control system as claimed in claim 1, wherein each of the first transmission element and the second transmission element is a set of planetary gear sets. 如請求項1所述的車輛轉向測台控制系統,其中該第一傳動元件包括一第一外齒圈、一第一太陽齒輪與一第一行星架,該第一太陽齒輪耦接於該第一致動器,該第一行星架設置於該第一太陽齒輪之外,該第一外齒圈耦接於該第一行星架;該第二傳動元件包括一第二外齒圈、一第二太陽齒輪與一第二行星架,該第二行星架設置於該第二太陽齒輪之外,該第二外齒圈耦接於該第二行星架與該第二致動器。 The vehicle steering platform control system as claimed in claim 1, wherein the first transmission element comprises a first outer ring gear, a first sun gear and a first planet carrier, the first sun gear is coupled to the first an actuator, the first planet carrier is disposed outside the first sun gear, the first outer gear is coupled to the first planet carrier; the second transmission element includes a second outer ring gear, a first Two sun gears and a second planet carrier, the second planet carrier is disposed outside the second sun gear, and the second outer ring gear is coupled to the second planet carrier and the second actuator. 如請求項1所述的車輛轉向測台控制系統,其中該負載耦合機構包括一旋轉轉線性機構,該旋轉轉線性機構耦接於該第二傳動元件。 The vehicle steering platform control system as claimed in claim 1, wherein the load coupling mechanism includes a rotary-to-linear mechanism, and the rotary-to-linear mechanism is coupled to the second transmission element. 如請求項1所述的車輛轉向測台控制系統,其中該轉向負載控制單元包括一轉換裝置,該轉換裝置用以接收該轉向機的一負載波形資訊並轉換成該轉向負載訊號資訊。 The vehicle steering test bench control system as claimed in claim 1, wherein the steering load control unit includes a conversion device for receiving a load waveform information of the steering gear and converting it into the steering load signal information. 一種如請求項1的車輛轉向測台控制系統之車輛轉向測台控制方法,包括以下步驟:依據一截止頻率將一轉向負載訊號資訊拆解成一主要負載訊號資訊以及一次要負載訊號資訊;計算該主要負載訊號資訊與該次要負載訊號資訊所需之一傳動比;將該主要負載訊號資訊與該次要負載訊號資訊所需之該傳動比,分別對應輸入到一第一致動器與一第二致動器;以及藉由該第一致動器與該第二致動器分別控制一負載耦合機構中的一第一傳動元件與一第二傳動元件。 A vehicle steering bench control method for a vehicle steering bench control system as claimed in claim 1, comprising the steps of: disassembling a steering load signal information into a main load signal information and a secondary load signal information according to a cutoff frequency; calculating the A gear ratio required by the primary load signal information and the secondary load signal information; the gear ratio required by the primary load signal information and the secondary load signal information are respectively input to a first actuator and a a second actuator; and respectively controlling a first transmission element and a second transmission element in a load coupling mechanism by the first actuator and the second actuator. 如請求項7所述的車輛轉向測台控制方法,包括以下步驟:接收一轉向機的一負載波形資訊。 The control method for a vehicle steering test bench according to claim 7, comprising the following steps: receiving a load waveform information of a steering gear. 如請求項8所述的車輛轉向測台控制方法,所述接收該轉向機的該負載波形資訊的步驟之後,包括以下步驟: 將該負載波形資訊轉換成該轉向負載訊號資訊。 According to the control method for a vehicle steering test bench according to claim 8, after the step of receiving the load waveform information of the steering gear, the following steps are included: Convert the load waveform information into the steering load signal information.
TW110109672A 2021-03-18 2021-03-18 Vehicle steering testing platform control system and method thereof TWI765608B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110109672A TWI765608B (en) 2021-03-18 2021-03-18 Vehicle steering testing platform control system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110109672A TWI765608B (en) 2021-03-18 2021-03-18 Vehicle steering testing platform control system and method thereof

Publications (2)

Publication Number Publication Date
TWI765608B true TWI765608B (en) 2022-05-21
TW202238098A TW202238098A (en) 2022-10-01

Family

ID=82594369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110109672A TWI765608B (en) 2021-03-18 2021-03-18 Vehicle steering testing platform control system and method thereof

Country Status (1)

Country Link
TW (1) TWI765608B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589906A (en) * 2011-01-05 2012-07-18 通用汽车环球科技运作有限责任公司 Methods and systems for evaluating vehicle steering systems
CN108733024A (en) * 2017-04-25 2018-11-02 通用汽车环球科技运作有限责任公司 Simulator hardware in loop framework and control logic for vehicle line traffic control slew test system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589906A (en) * 2011-01-05 2012-07-18 通用汽车环球科技运作有限责任公司 Methods and systems for evaluating vehicle steering systems
CN108733024A (en) * 2017-04-25 2018-11-02 通用汽车环球科技运作有限责任公司 Simulator hardware in loop framework and control logic for vehicle line traffic control slew test system

Also Published As

Publication number Publication date
TW202238098A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
Mundo Geometric design of a planetary gear train with non-circular gears
CN104081178B (en) The pilot system of kinematic train
CN104838583B (en) The control device of AC rotary motor, possess AC rotary motor control device AC rotary motor drive system and electric boosting steering system
US11400816B2 (en) Brake assistance system and brake method
WO2007081545A3 (en) Hybrid vehicle and method of assembling same
WO2007072196A3 (en) Engine supercharging system
CN103754209A (en) Electronic hydraulic braking system
WO2005048436A3 (en) Compact drive unit, axially displaced angular gear, and method for the production of a drive unit
TWI765608B (en) Vehicle steering testing platform control system and method thereof
CN203116978U (en) Electrical power steering (EPS) system hardware-in-the-loop test experiment table
CN103134677A (en) Fatigue testing machine used for small module wheel gear symmetry fatigue test
EP0239264A2 (en) Test apparatus and torque applier therefor
CN201931993U (en) Crane and mechanism drive device
JP5212518B2 (en) Vehicle operating state display device
CN103939457B (en) Worm gear and worm driving type 360 DEG double-shaft synchronous damping rotating shaft
CN106441875A (en) Dual input power branching gear transfer device closed test system assembling method
CN103558759B (en) Interventional surgery catheter robot system controls device and method
JP4106990B2 (en) Vehicle steering system
Dong et al. Modeling and control of ball-ramp electromechanical clutch actuator for in-wheel AMT of electric vehicles
CN207930695U (en) Modularization direct moment of torsion control healing robot joint
CN111855053A (en) Vehicle chassis dynamometer system and working method thereof
JP2004175249A (en) Integrated design system for electric power steering device
US11072364B2 (en) Steering device
DE502005001721D1 (en) DEVICE FOR OVERLOADING STEERING MOVEMENTS FOR A STEERING AID, AND METHOD FOR OPERATING THE DEVICE
US11262274B2 (en) Method for designing shaft torque controller and feedback controller of test system, and shaft torque controller designed on basis of same design method