TWI765440B - Burner control method - Google Patents

Burner control method Download PDF

Info

Publication number
TWI765440B
TWI765440B TW109142082A TW109142082A TWI765440B TW I765440 B TWI765440 B TW I765440B TW 109142082 A TW109142082 A TW 109142082A TW 109142082 A TW109142082 A TW 109142082A TW I765440 B TWI765440 B TW I765440B
Authority
TW
Taiwan
Prior art keywords
burner
energy consumption
parameter values
burners
comparable energy
Prior art date
Application number
TW109142082A
Other languages
Chinese (zh)
Other versions
TW202223300A (en
Inventor
陳鼎文
陳柏臣
徐愷呈
陳建成
蘇志強
林恒育
唐紹文
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW109142082A priority Critical patent/TWI765440B/en
Application granted granted Critical
Publication of TWI765440B publication Critical patent/TWI765440B/en
Publication of TW202223300A publication Critical patent/TW202223300A/en

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

本發明提供一種燃燒器之控制方法,其係先取得對應複數個燃燒器之參數值後,再取得對應參數值之燃料使用量,並依據取得之參數值計算一第一可比能耗,產生不同之複數個第一數量參數值,並對其進行一曲線擬合運算,計算出一第二可比能耗,計算該第一可比能耗與該第二可比能耗之複數個誤差值,取得一第二方程式,隨機產生複數個第二數量參數值,並以該第二方程式各別計算該些個第二數量參數值,並進行一疊代運算,產生複數個第三數量參數值,最後依據該些個第三數量參數值控制該些個燃燒器之運作。The present invention provides a burner control method, which firstly obtains the parameter values corresponding to a plurality of burners, then obtains the fuel consumption corresponding to the parameter values, and calculates a first comparable energy consumption according to the obtained parameter values, resulting in different and perform a curve fitting operation on them to calculate a second comparable energy consumption, calculate a plurality of error values between the first comparable energy consumption and the second comparable energy consumption, and obtain a The second equation is to randomly generate a plurality of parameter values of the second quantity, and respectively calculate the parameter values of the second quantity according to the second equation, and perform an iterative operation to generate a plurality of parameter values of the third quantity. The third quantity parameter values control the operation of the burners.

Description

燃燒器之控制方法Burner control method

本發明是關於一種燃燒器之控制方法,尤其係指一種用於蓄熱式燃燒爐之燃燒器之控制方法。 The present invention relates to a control method of a burner, especially a control method of a burner used in a regenerative combustion furnace.

工業爐是在工業生產中,利用燃料燃燒或電能轉化的熱量,將物料或工件加熱的熱工設備,其通常於爐體裝設多個燃燒器,而燃燒器係以燃料為熱源的工業爐內,用以實現燃料燃燒過程的裝置。 An industrial furnace is a thermal equipment that uses the heat of fuel combustion or electrical energy conversion to heat materials or workpieces in industrial production. It is usually equipped with multiple burners in the furnace body, and the burners are industrial furnaces that use fuel as a heat source. Inside, the device used to realize the fuel combustion process.

習知燃燒爐在快速加熱時,需要大量燃料供給燃燒器,以產生相對應之大量熱能,導致習知燃燒爐所產生高溫廢氣量快速增加,於此,習知燃燒爐需要快速的排出高溫廢氣量,才能維持傳統式之燃燒爐內的爐壓,習知之燃燒器設計會導致傳統式之燃燒爐內大量熱能,隨著高溫廢氣量排出,使得傳統式之燃燒爐中的熱能不斷流失,反而,需要更多的燃料供給量才能維持傳統式之燃燒爐的溫度,於此會造成能源的耗損,進而延緩傳統式之燃燒爐的加熱速度。 When the conventional combustion furnace is rapidly heated, a large amount of fuel is required to supply the burner to generate a corresponding large amount of heat energy, which leads to a rapid increase in the amount of high-temperature exhaust gas generated by the conventional combustion furnace. Therefore, the conventional combustion furnace needs to quickly discharge the high-temperature exhaust gas. In order to maintain the furnace pressure in the traditional combustion furnace, the conventional burner design will lead to a large amount of heat energy in the traditional combustion furnace. , more fuel supply is required to maintain the temperature of the conventional combustion furnace, which will cause energy consumption, thereby delaying the heating speed of the conventional combustion furnace.

燃燒爐所使用之燃料作為能源有以下特性,第一點,燃料資源是有限的,燃料總有一天會枯竭。 The fuel used by the burner as an energy source has the following characteristics. First, the fuel resource is limited, and the fuel will be exhausted one day.

第二點,燃料的使用具有不可重複性,燃料的使用是單方向,而具有不可逆的特性。 The second point is that the use of fuel is not repeatable, and the use of fuel is unidirectional and irreversible.

第三點,能源的使用效率較低,燃料在使用過程中常常會發生一定的損失,損失的程度根據使用的方式和控制模式會產生變化。 The third point is that the use efficiency of energy is relatively low, and fuel is often lost to a certain extent during the use process. The degree of loss will vary according to the way of use and the control mode.

第四點,燃料在使用過程中會對環境產生負面影響,燃料在使用過程中常會產生廢棄物,其會對環境造成不同程度的污染。 Fourth, the use of fuels will have a negative impact on the environment, and wastes will often be generated during the use of fuels, which will pollute the environment to varying degrees.

因此,於習知的燃燒器技術中,我們僅能盡量地將燃燒爐之燃料做到燃燒完全,以避免資源浪費,但隨著科技的進步環保意識得抬頭,如何提升燃燒爐之燃燒系統的效率,已成為相關產業開發與研究的重點領域。 Therefore, in the conventional burner technology, we can only burn the fuel of the burner as much as possible to avoid waste of resources. However, with the advancement of technology, the awareness of environmental protection is rising, how to improve the combustion system of the burner. Efficiency has become a key area of related industry development and research.

為提升燃燒爐之燃燒效率,產業界設計出使用蓄熱燃燒技術的燃燒爐,其係利用陶瓷材料作為熱交換之介質,透過吸取燃燒後的高溫廢氣熱能,並合併預熱燃燒所需之空氣,藉由陶瓷材料之高蓄熱能力優點,可將燃燒空氣預熱至廢氣溫度之80%以上,因而造成蓄熱式燃燒爐之火焰的穩定區域擴大,以改善蓄熱式燃燒爐之火焰穩定性。 In order to improve the combustion efficiency of the combustion furnace, the industry has designed a combustion furnace using regenerative combustion technology, which uses ceramic materials as a heat exchange medium, absorbs the heat energy of the high-temperature exhaust gas after combustion, and combines the air required for preheating combustion. With the advantages of high heat storage capacity of ceramic materials, the combustion air can be preheated to more than 80% of the exhaust gas temperature, thereby expanding the stable area of the flame of the regenerative combustion furnace to improve the flame stability of the regenerative combustion furnace.

蓄熱燃燒技術的燃燒爐,係設置多個蓄熱式燃燒器,蓄熱式燃燒器主要係由燃燒器、蓄熱體及切換閥等組合而成,蓄熱式燃燒器之內部包含蓄熱再生器系統,故一組蓄熱式燃燒器必須要有兩支燃燒器互相切換燃燒,也就是交替式之燃燒方式,且蓄熱式燃燒器本身具有排氣之通道。 The combustion furnace of regenerative combustion technology is equipped with multiple regenerative burners. The regenerative burner is mainly composed of a burner, a regenerative body and a switching valve. A group of regenerative burners must have two burners to switch and burn each other, that is, an alternate combustion method, and the regenerative burner itself has an exhaust channel.

蓄熱式燃燒器是採用交替之燃燒方式,此交替之燃燒方式,可促進蓄熱式燃燒器之爐內熱流場更加均勻化,也進而提高蓄熱式燃燒器之爐內平均熱通量,獲得高效率之熱傳目的。 The regenerative burner adopts an alternate combustion method. This alternate combustion method can promote a more uniform heat flow field in the furnace of the regenerative burner, and further improve the average heat flux in the furnace of the regenerative burner to achieve high efficiency. the purpose of heat transfer.

蓄熱式燃燒器作為交替之燃燒時,其運轉動作為:當第一支燃燒器燃燒時,第二支燃燒器便做為高溫廢氣的排放通道,並將高溫廢氣中的熱能積蓄在第二支燃燒器裡,而在下一個切換運轉,第二支燃燒器開始運轉燃燒時,利用空氣將第二支燃燒器中的熱能取出當作燃燒之 用,此時第一支燃燒器為高溫廢氣的排放通道,並將高溫廢氣中的熱能回收在第一支燃燒器裡。 When the regenerative burner is used as an alternate combustion, its operation is as follows: when the first burner burns, the second burner acts as a discharge channel for high-temperature exhaust gas, and stores the heat energy in the high-temperature exhaust gas in the second burner. In the burner, and in the next switching operation, when the second burner starts to operate and burn, the heat energy in the second burner is taken out by the air as a combustion part. At this time, the first burner is the discharge channel of the high-temperature exhaust gas, and the heat energy in the high-temperature exhaust gas is recovered in the first burner.

由於蓄熱式燃燒器可將燃燒空氣預熱至相當高的溫度,故在燃燒空氣的空燃率,使用上相較於習知燃燒爐來的低,如此一來,可有效降低排氣時所造成的熱能損失,也因為蓄熱式燃燒器預熱空氣溫度高的關係,可相對應使用低熱值之燃料,以減少燃燒時不穩定的現象。 Since the regenerative burner can preheat the combustion air to a relatively high temperature, the air-fuel ratio of the combustion air is lower than that of the conventional combustion furnace, which can effectively reduce the cost of exhaust gas. The heat loss caused by the regenerative burner is also due to the high temperature of the preheated air of the regenerative burner, so the fuel with low calorific value can be used correspondingly to reduce the unstable phenomenon during combustion.

蓄熱式燃燒器現今已運用在許多相關產業生產製程上,它的優點在於熱能回收效率高於習知燃燒爐,是一項具優勢的回收節能技術,此外,也因為蓄熱式燃燒器的燃燒方式不同於習知燃燒爐,其可進一步提升燃燒爐內之加熱性能及其產品的品質。 Regenerative burners have been used in many related industrial production processes. Its advantage is that the heat recovery efficiency is higher than that of conventional combustion furnaces. It is an advantageous recovery and energy-saving technology. Different from the conventional combustion furnace, it can further improve the heating performance in the combustion furnace and the quality of its products.

然而,現今蓄熱式燃燒器在控制溫度時,由於每一燃燒爐之燃燒器配置不同,其容積也不同,若使用同一種燃燒器控制模式、方法容易造成燃燒爐之燃燒效率下降,導致不必要的燃料耗費,產生更多的成本,因此,產業界逐漸朝燃燒器控制模式之方向,尋找一種能對應取得不同燃燒爐的燃燒器控制方法。 However, when the regenerative burner controls the temperature, due to the different configuration of the burner of each burner, its volume is also different. If the same burner control mode and method are used, the combustion efficiency of the burner will be reduced, resulting in unnecessary Therefore, the industry is gradually looking for a burner control method that can correspond to different burners in the direction of burner control mode.

有鑑於上述習知技術之問題,本發明提供一種燃燒器之控制方法,其係取得對應燃燒器之預設數量參數值,並對應計算可比能耗,再產生複數個數量參數值,並對其進行曲線擬合運算,計算出可比能耗,並計算二可比能耗之誤差值,取得最佳方程式,以最佳方程式計算另一數量參數值,並進行疊代運算,產生再一數量參數值,依據最後取得之數量參數值控制燃燒器之運作,以尋得最佳之燃燒器控制模式。 In view of the above-mentioned problems of the prior art, the present invention provides a control method of a burner, which obtains a preset quantity parameter value of a corresponding burner, calculates the comparable energy consumption correspondingly, generates a plurality of quantity parameter values, and calculates the corresponding quantity parameter values. Perform curve fitting operation, calculate the comparable energy consumption, and calculate the error value of the two comparable energy consumptions, obtain the best equation, calculate another parameter value with the best equation, and perform the iterative operation to generate another parameter value. , and control the operation of the burner according to the last obtained quantity parameter value, so as to find the best burner control mode.

本發明之一目的在於提供一種燃燒器之控制方法,其係取得對應燃燒器之預設參數值,並依據取得之預設參數值計算第一可比能耗,再產生複數個第一數量參數值,並對其進行曲線擬合運算,計算出第二可比能耗,以第一可比能耗與第二可比能耗之誤差值,取得第二方程式,以第二方程式計算第二數量參數值,並進行疊代運算,產生第三數量參數值,最後依據第三數量參數值控制燃燒器之運作,以取得最佳之燃燒器控制模式。 One object of the present invention is to provide a burner control method, which obtains a preset parameter value of a corresponding burner, calculates a first comparable energy consumption according to the obtained preset parameter value, and then generates a plurality of first quantitative parameter values , and perform a curve fitting operation on it to calculate the second comparable energy consumption, obtain the second equation with the error value between the first comparable energy consumption and the second comparable energy consumption, and use the second equation to calculate the second quantity parameter value, And iterative operation is performed to generate a third quantity parameter value, and finally the operation of the burner is controlled according to the third quantity parameter value, so as to obtain the best burner control mode.

為達到上述所指稱之各目的與功效,本發明提供一種燃燒器之控制方法,其步驟包含,取得複數個燃燒器之數量,取得一工件重量值及對應該些個燃燒器之一預設數量參數值;取得對應該預設數量參數值之一燃料使用量,並依據該工件重量值及該燃料使用量計算該預設數量參數值之一第一可比能耗;產生對應該些個燃燒器之複數個第一數量參數值,依據該工件重量值對該些個第一數量參數值進行一曲線擬合運算,產生複數個第一方程式,並計算該些個第一方程式各別之一第二可比能耗;計算該第一可比能耗與該些個第一方程式各別之該第二可比能耗之複數個誤差值,並取得最小之該些個誤差值對應之一第二方程式;隨機產生對應該些個燃燒器之複數個第二數量參數值,並依據該工件重量以該第二方程式各別計算該些個第二數量參數值,並進行一疊代運算,產生複數個第三數量參數值;以及依據該些個第三數量參數值控制該些個燃燒器之運作,其中,該些個第三數量參數值各別包含一第三燃燒器切換模式及一第三蓄熱時間,且該第三燃燒器切換模式係對應該些個燃燒器之開關;利用此方法控制燃燒爐之複數個燃燒器之加熱模式,使其適應不同燃燒爐之燃燒器配置。 In order to achieve the above-mentioned objects and effects, the present invention provides a burner control method, the steps of which include: obtaining the quantity of a plurality of burners, obtaining a workpiece weight value and a preset quantity corresponding to the burners parameter value; obtain a fuel usage amount corresponding to the preset number of parameter values, and calculate a first comparable energy consumption of the preset number of parameter values according to the workpiece weight value and the fuel usage amount; generate the corresponding burners The plurality of first quantity parameter values are subjected to a curve fitting operation on the plurality of first quantity parameter values according to the workpiece weight value to generate a plurality of first equations, and calculate one of the first equations respectively. Two comparable energy consumptions; calculating a plurality of error values between the first comparable energy consumption and the second comparable energy consumptions of the first equations, and obtaining the smallest error values corresponding to a second equation; Randomly generate a plurality of parameter values of the second quantity corresponding to the burners, and calculate the parameter values of the second quantity according to the weight of the workpiece with the second equation, and perform an iterative operation to generate a plurality of parameter values of the second quantity three quantity parameter values; and controlling the operation of the burners according to the third quantity parameter values, wherein the third quantity parameter values respectively include a third burner switching mode and a third heat storage time , and the third burner switching mode corresponds to the switches of these burners; this method is used to control the heating modes of a plurality of burners of the burner, so as to adapt to the burner configuration of different burners.

本發明之一實施例中,其中取得一工件重量值及取得對應複數個燃燒器之一預設數量參數值之步驟中,該第一可比能耗係該燃料使用量及該工件重量之比值。 In an embodiment of the present invention, in the steps of obtaining a workpiece weight value and obtaining a preset quantity parameter value corresponding to a plurality of burners, the first comparable energy consumption is the ratio of the fuel consumption and the workpiece weight.

本發明之一實施例中,其中該些個燃燒器設置於一燃燒爐之一爐體。 In an embodiment of the present invention, the burners are arranged in a furnace body of a combustion furnace.

本發明之一實施例中,其中該預設數量參數值包含一預設燃燒器切換模式及一預設蓄熱時間,該預設燃燒器切換模式係對應該些個燃燒器之開關。 In an embodiment of the present invention, the preset number parameter value includes a preset burner switching mode and a preset heat storage time, and the preset burner switching mode is corresponding to the switches of the burners.

本發明之一實施例中,其中該些個第一數量參數值各別包含一第一燃燒器切換模式及一第一蓄熱時間,該第一燃燒器切換模式係對應該些個燃燒器之開關。 In an embodiment of the present invention, the first quantity parameter values respectively include a first burner switching mode and a first heat storage time, and the first burner switching mode is corresponding to the switches of the burners .

本發明之一實施例中,其中該些個第二數量參數值各別包含一第二燃燒器切換模式及一第二蓄熱時間,該第二燃燒器切換模式係對應該些個燃燒器之開關。 In an embodiment of the present invention, the second quantity parameter values respectively include a second burner switching mode and a second heat storage time, and the second burner switching mode is corresponding to the switches of the burners .

本發明之一實施例中,其中隨機產生對應該些個燃燒器之複數個數量第一數量參數值,依據該工件重量值對該些個第一數量參數值進行一曲線擬合運算,產生複數個第一方程式,並計算該些個第一方程式各別之一第二可比能耗之步驟中,該曲線擬合運算包含n階之該些個第一方程式,其中n大於1。 In an embodiment of the present invention, a plurality of first quantity parameter values corresponding to the burners are randomly generated, and a curve fitting operation is performed on the first quantity parameter values according to the workpiece weight value to generate a plurality of first quantity parameter values. In the step of calculating a second comparable energy consumption of each of the first equations, the curve fitting operation includes the first equations of order n, wherein n is greater than 1.

本發明之一實施例中,其中計算該第一可比能耗與該些個第一方程式各別之該第二可比能耗之複數個誤差值,並取得最小之該些個誤差值對應之一第二方程式之步驟中,該誤差值係以一均方根誤差(RSME)計算。 In an embodiment of the present invention, a plurality of error values of the first comparable energy consumption and the second comparable energy consumption of the first equations are calculated, and one corresponding to the minimum error values is obtained. In the step of the second equation, the error value is calculated as a root mean square error (RSME).

本發明之一實施例中,隨機產生對應該些個燃燒器之複數個第二數量參數值,並依據該工件重量以該第二方程式各別計算該些個第二數量參數值,並進行一疊代運算,產生複數個第三數量參數值之步驟中,該疊代運算係包含步驟:將該些個第二數量參數值各別代入該第二方程式,並產生複數個第三可比能耗;取得最大之該些個第三可比能耗及最小之該些個第三可比能耗,並依據最大之該些個第三可比能耗及最小之該些個第三可比能耗,產生一可比能耗範圍;以及依據該可比能耗範圍取得一第四數量參數值,並將最大之該些個第三可比能耗對應之該些個第二數量參數值替換,產生該些個第三數量參數值。 In an embodiment of the present invention, a plurality of second quantity parameter values corresponding to the burners are randomly generated, and the second quantity parameter values are respectively calculated according to the workpiece weight with the second equation, and a In the iterative operation, in the step of generating a plurality of third-quantity parameter values, the iterative operation includes the step of: substituting the second-quantity parameter values into the second equation respectively, and generating a plurality of third comparable energy consumptions ; Obtain the largest number of third comparable energy consumption and the smallest number of third comparable energy consumption, and generate a Comparable energy consumption range; and obtaining a fourth quantity parameter value according to the comparable energy consumption range, and replacing the second quantity parameter values corresponding to the largest third comparable energy consumptions to generate the third quantity parameter values Quantity parameter value.

本發明之一實施例中,其中該疊代運算之一疊代次數係於5至100次。 In an embodiment of the present invention, an iteration number of the iterative operation is 5 to 100 times.

本發明之一實施例中,其中依據該些個第三數量參數值控制該些個燃燒器之運作之步驟後,更包含步驟:取得該些個第三數量參數值其中之一,並回授於該預設數量參數值。 In an embodiment of the present invention, after the step of controlling the operation of the burners according to the parameter values of the third quantity, the step further includes the step of: obtaining one of the parameter values of the third quantity, and feeding back at the preset quantity parameter value.

10:燃燒爐 10: Burner

12:爐體 12: Furnace body

14:燃燒器 14: Burner

16:處理器 16: Processor

S01:步驟 S01: Steps

S02:步驟 S02: Steps

S04:步驟 S04: Steps

S06:步驟 S06: Steps

S08:步驟 S08: Steps

S10:步驟 S10: Steps

S12:步驟 S12: Steps

S14:步驟 S14: Steps

S22:步驟 S22: Step

S24:步驟 S24: Step

S26:步驟 S26: Step

第1圖:其為本發明之實施例之步驟流程示意圖;第2圖:其為本發明之實施例之燃燒爐結構示意圖;第3圖:其為本發明之實施例之疊代運算步驟示意圖;以及第4圖:其為本發明之實施例之另一步驟流程示意圖。 Figure 1: It is a schematic diagram of the steps of the embodiment of the present invention; Figure 2: It is a schematic diagram of the structure of a combustion furnace according to an embodiment of the present invention; Figure 3: It is a schematic diagram of the iterative operation steps of an embodiment of the present invention ; And Figure 4: It is a schematic flow chart of another step of an embodiment of the present invention.

為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合說明,說明如後:有鑑於上述習知技術之問題,本發明提供一種燃燒器之控制方法,其係取得對應複數個燃燒器之預設數量參數值,並對應計算預設數量參數值之第一可比能耗,再產生複數個第一數量參數值,並對其進行曲線擬合運算,計算出第二可比能耗,比較並計算第一、二可比能耗之誤差值,取得對應曲線擬合之第一方程式,以第一方程式計算隨機取得之第二數量參數值,並對其進行疊代運算,產生第三數量參數值,依據最後取得之第三數量參數值控制該些個燃燒器之運作,以取得之最佳參數值控制燃燒器,解決習知燃燒器控制方法,無法應用於不同燃燒爐之問題。 In order to make your examiners have a further understanding and understanding of the features of the present invention and the effects achieved, the present invention provides a burner in view of the above-mentioned problems of the prior art. The control method, which is to obtain a preset number of parameter values corresponding to a plurality of burners, and calculate the first comparable energy consumption corresponding to the preset number of parameter values, then generate a plurality of first number of parameter values, and perform curve fitting on them. Combine operation, calculate the second comparable energy consumption, compare and calculate the error value of the first and second comparable energy consumption, obtain the first equation corresponding to the curve fitting, use the first equation to calculate the randomly obtained second quantity parameter value, and Iterative operation is performed on it to generate a third parameter value, and the operation of the burners is controlled according to the third parameter value finally obtained, and the burner is controlled with the best parameter value obtained, so as to solve the conventional burner control method , cannot be applied to the problem of different combustion furnaces.

請參閱第1圖,其為本發明之實施例之步驟流程示意圖,如圖所示,本實施例中,一種燃燒器之控制方法,其步驟包含:步驟S01:取得複數個燃燒器之數量;步驟S02:取得工件重量值及對應該些個燃燒器之預設數量參數值;步驟S04:取得對應預設數量參數值之燃料使用量,並依據工件重量值及燃料使用量計算預設數量參數值之第一可比能耗;步驟S06:產生對應該些個燃燒器之複數個第一數量參數值,依據工件重量值對該些個第一數量參數值進行曲線擬合運算,產生複數個第一方程式,並計算該些個第一方程式各別之第二可比能耗;步驟S08:計算該第一可比能耗與該些個第一方程式各別之該第二可比能耗之複數個誤差值,並取得最小之該些個誤差值對應之一第二方程式; 步驟S10:隨機產生對應該些個燃燒器之複數個第二數量參數值,並依據該工件重量以該第二方程式各別計算該些個第二數量參數值,並進行一疊代運算,產生複數個第三數量參數值;以及步驟S12:依據該些個第三數量參數值控制該些個燃燒器之運作。 Please refer to FIG. 1 , which is a schematic diagram of a step flow of an embodiment of the present invention. As shown in the figure, in this embodiment, a control method of a burner includes the following steps: Step S01 : obtaining the number of a plurality of burners; Step S02: Obtain the workpiece weight value and the preset quantity parameter value corresponding to the burners; Step S04: Obtain the fuel consumption corresponding to the preset quantity parameter value, and calculate the preset quantity parameter according to the workpiece weight value and the fuel consumption The first comparable energy consumption of the value; Step S06: generate a plurality of first quantity parameter values corresponding to the burners, perform a curve fitting operation on the first quantity parameter values according to the workpiece weight value, and generate a plurality of first quantity parameter values. one equation, and calculate the respective second comparable energy consumption of the first equations; step S08 : calculate a plurality of errors between the first comparable energy consumption and the second comparable energy consumption respectively of the first equations value, and obtain the minimum error values corresponding to a second equation; Step S10: Randomly generate a plurality of second quantity parameter values corresponding to the burners, and calculate the second quantity parameter values according to the workpiece weight using the second equation, and perform an iterative operation to generate a plurality of third-quantity parameter values; and step S12 : controlling the operation of the burners according to the third-quantity parameter values.

再次參閱第1圖及參閱第2圖,第2圖為本發明之實施例之燃燒爐結構示意圖,如圖所示,本實施例係使用於一燃燒爐10,該燃燒爐10之一爐體12設置複數個燃燒器14,該爐體12更設置一處理器16,其用於控制該些個燃燒器14之運作,於步驟S01中,該處理器16取得或使用者輸入該些個燃燒器14之數量,例如四個燃燒器14,以確定該燃燒爐10之燃燒器數量,防止參數值設定錯誤。 Referring again to Figure 1 and Figure 2, Figure 2 is a schematic diagram of the structure of a combustion furnace according to an embodiment of the present invention. As shown in the figure, this embodiment is used in a combustion furnace 10, and a furnace body of the combustion furnace 10 is used. 12 is provided with a plurality of burners 14, the furnace body 12 is further provided with a processor 16, which is used to control the operation of the burners 14, in step S01, the processor 16 obtains or the user inputs the burners The number of burners 14 , such as four burners 14 , is used to determine the number of burners of the combustion furnace 10 to prevent incorrect parameter values from being set.

再次參閱第1圖及參閱第2圖,如圖所示,本實施例中,於步驟S02中,該處理器16首先取得欲加工之工件之一工件重量值,以及對應該些個燃燒器14之一預設數量參數值,其中該預設數量參數值包含,一預設燃燒器切換模式及一預設蓄熱時間,該預設燃燒器切換模式係對應該些個燃燒器14之開關模式,而該預設蓄熱時間係該些個燃燒器14之總運作時間,例如第一、二燃燒器先開啟10秒,第三、四燃燒器關閉10秒後,第一、二燃燒器先關閉10秒,第三、四燃燒器對應開啟10秒,因此燃燒器之總運作時間為20秒。 Referring to FIG. 1 and FIG. 2 again, as shown in the figures, in this embodiment, in step S02 , the processor 16 first obtains a workpiece weight value of the workpiece to be processed, and the corresponding burners 14 a preset quantity parameter value, wherein the preset quantity parameter value includes a preset burner switching mode and a preset heat storage time, the preset burner switching mode is corresponding to the switching modes of the burners 14 , The preset heat storage time is the total operation time of the burners 14 . For example, the first and second burners are turned on for 10 seconds, the third and fourth burners are turned off for 10 seconds, and the first and second burners are turned off for 10 seconds. Second, the third and fourth burners are turned on for 10 seconds, so the total operating time of the burners is 20 seconds.

再次參閱第1圖及參閱第2圖,如圖所示,本實施例中,於步驟S04中,該處理器16取得對應該預設數量參數值之一燃料使用量,即該些個燃燒器14於一加工時程所使用之燃料總量,該處理器16再依據該工件重量值及該燃料使用量計算該預設數量參數值之一第一可比能耗,其中該第一可比能耗係該燃料使用量及該工件重量之比值;於本實 施例中,該燃料使用量可利用該些個燃燒器14實際依該預設數量參數值運作燃燒取得,或以該處理器16內建之預設數學模型取得。 Referring to FIG. 1 and FIG. 2 again, as shown in the figures, in this embodiment, in step S04, the processor 16 obtains a fuel usage amount corresponding to the preset number parameter value, that is, the burners 14. The total amount of fuel used in a processing time course, the processor 16 then calculates a first comparable energy consumption of the preset quantity parameter value according to the workpiece weight value and the fuel consumption, wherein the first comparable energy consumption It is the ratio of the amount of fuel used and the weight of the workpiece; in this case In an embodiment, the fuel usage can be obtained by using the burners 14 to actually operate and burn according to the preset quantity parameter value, or obtained through a preset mathematical model built in the processor 16 .

再次參閱第1圖及參閱第2圖,如圖所示,本實施例中,於步驟S06中,該處理器16產生對應該些個燃燒器14之複數個第一數量參數值,該處理器16依據該工件重量值對該些個第一數量參數值進行一曲線擬合運算,產生複數個第一方程式,並計算該些個第一方程式各別之一第二可比能耗,其中該些個第一數量參數值包含,一第一燃燒器切換模式及一第一蓄熱時間,該第一燃燒器切換模式係對應該些個燃燒器14之開關模式,而該第一蓄熱時間係該些個燃燒器14之總運作時間;於本實施例中,該曲線擬合運算係通過諸如採樣、實驗等方法獲得若干離散的數據,根據這些數據得到一個連續的函數,該曲線擬合運包含n階之該些個第一方程式,其中n大於1,以產生該些個第一方程式。 Referring to FIG. 1 and FIG. 2 again, as shown in the figures, in this embodiment, in step S06, the processor 16 generates a plurality of first quantity parameter values corresponding to the burners 14, and the processor 16 performing a curve fitting operation on the first quantity parameter values according to the workpiece weight value, generating a plurality of first equations, and calculating a second comparable energy consumption of each of the first equations, wherein the A first quantity parameter value includes a first burner switching mode and a first heat storage time, the first burner switching mode corresponds to the switching modes of the burners 14 , and the first heat storage time is the The total operating time of each burner 14; in this embodiment, the curve fitting operation obtains a number of discrete data through methods such as sampling and experiments, and obtains a continuous function according to these data, and the curve fitting includes n the first equations of order, where n is greater than 1, to generate the first equations.

再次參閱第1圖及參閱第2圖,如圖所示,本實施例中,於步驟S08中,該處理器16計算該第一可比能耗與該些個第一方程式各別之該第二可比能耗之複數個誤差值,並取得最小之該些個誤差值對應之一第二方程式,其中該誤差值係以一均方根誤差(RSME)計算,該均方根誤差(RSME)係如式(一);

Figure 109142082-A0305-02-0010-2
其中,該均方根誤差(RSME)之均方根差的預測值y i 係對時間i的迴歸應變項(自變數和應變數),y i 係以m個不同的預測來做為其均方差的平方根。 Referring to FIG. 1 and FIG. 2 again, as shown in the figures, in this embodiment, in step S08 , the processor 16 calculates the first comparable energy consumption and the second one of the first equations respectively. A plurality of error values of comparable energy consumption are obtained, and the minimum error values are corresponding to a second equation, wherein the error value is calculated by a root mean square error (RSME), and the root mean square error (RSME) is As formula (1);
Figure 109142082-A0305-02-0010-2
Among them, the predicted value y i of the root mean square error (RSME) of the root mean square error is the regression strain term (independent variable and strain number) for time i , and y i is the average of m different predictions. Square root of variance.

再次參閱第1圖及參閱第2圖,如圖所示,本實施例中,於步驟S10中,該處理器16再隨機產生對應該些個燃燒器14之複數個第二 數量參數值,並依據該工件重量利用該第二方程式各別計算該些個第二數量參數值,並進行一疊代運算後,產生複數個第三數量參數值,其中該些個第二數量參數值包含,一第二燃燒器切換模式及一第二蓄熱時間,該第二燃燒器切換模式係對應該些個燃燒器14之開關模式,而該第二蓄熱時間係該些個燃燒器14之總運作時間,而該些個第三數量參數值包含,一第三燃燒器切換模式及一第三蓄熱時間,該第三燃燒器切換模式係對應該些個燃燒器14之開關模式,而該第三蓄熱時間係該些個燃燒器14之總運作時間;於本實施例中,該疊代運算之一疊代次數係於5至100次。 Referring to FIG. 1 and FIG. 2 again, as shown in the figures, in this embodiment, in step S10 , the processor 16 randomly generates a plurality of second ones corresponding to the burners 14 Quantity parameter values, and use the second equation to calculate the second quantity parameter values according to the workpiece weight, and perform an iterative operation to generate a plurality of third quantity parameter values, wherein the second quantity The parameter values include a second burner switching mode and a second heat storage time, the second burner switching mode is corresponding to the switching modes of the burners 14 , and the second heat storage time is the burners 14 the total operating time, and the third parameter values include a third burner switching mode and a third heat storage time, the third burner switching mode is corresponding to the switching modes of the burners 14, and The third heat storage time is the total operation time of the burners 14 ; in this embodiment, an iteration number of the iterative operation is 5 to 100 times.

再次參閱第1圖及參閱第2圖,如圖所示,本實施例中,於步驟S12中,該處理器16依據該些個第三數量參數值控制該些個燃燒器14之運作,即係該處理器16依據該些個第三數量參數值所包含之該第三燃燒器切換模式控制該些個燃燒器14,並持續該第三蓄熱時間。 Referring to FIG. 1 and FIG. 2 again, as shown in the figures, in this embodiment, in step S12, the processor 16 controls the operation of the burners 14 according to the third parameter values, that is, The processor 16 controls the burners 14 according to the third burner switching modes included in the third quantity parameter values for the third heat storage time.

請參閱第3圖,其為本發明之實施例之疊代運算步驟示意圖,如圖所示,於本實施例中,該疊代運算係包含步驟:步驟S22:將該些個第二數量參數值各別代入該第二方程式,並產生複數個第三可比能耗;步驟S24:取得最大之該些個第三可比能耗及最小之該些個第三可比能耗,並依據最大之該些個第三可比能耗及最小之該些個第三可比能耗,產生可比能耗範圍;以及步驟S26:依據可比能耗範圍取得第四數量參數值,並將最大之該些個第三可比能耗對應之該些個第二數量參數值替換,產生該些個第三數量參數值。 Please refer to FIG. 3 , which is a schematic diagram of the iterative operation steps according to the embodiment of the present invention. As shown in the figure, in this embodiment, the iterative operation includes the steps: Step S22 : set these second quantity parameters The values are respectively substituted into the second equation, and a plurality of third comparable energy consumptions are generated; Step S24 : Obtain the largest third comparable energy consumptions and the smallest third comparable energy consumptions, and obtain the largest third comparable energy consumption according to the largest third comparable energy consumption. some third comparable energy consumptions and the smallest ones of the third comparable energy consumptions to generate a comparable energy consumption range; and step S26 : obtaining a fourth parameter value according to the comparable energy consumption range, and set the largest of these third The comparable energy consumption corresponding to the second quantity parameter values is replaced to generate the third quantity parameter values.

再次參閱第2圖及第3圖,如圖所示,本實施例中,於步驟S22中,該處理器16將該些個第二數量參數值各別代入該第二方程式,以計算產生出複數個第三可比能耗。 Referring to FIG. 2 and FIG. 3 again, as shown in the figures, in this embodiment, in step S22, the processor 16 respectively substitutes the parameter values of the second quantity into the second equation to calculate and generate A plurality of third comparable energy consumptions.

再次參閱第2圖及第3圖,如圖所示,本實施例中,於步驟S24中,該處理器16取得具有最佳可比能耗及具有最差可比能耗之該些個第二數量參數值,即係取得最大之該些個第三可比能耗及最小之該些個第三可比能耗,並依據最大之該些個第三可比能耗及最小之該些個第三可比能耗,產生一可比能耗範圍,該可比能耗範圍係數量參數值之範圍,例如設定該些個燃燒器14之蓄熱時間為10秒至80秒之範圍。 Referring to FIG. 2 and FIG. 3 again, as shown in the figures, in this embodiment, in step S24, the processor 16 obtains the second quantities with the best comparable energy consumption and the worst comparable energy consumption The parameter value is to obtain the largest third comparable energy consumption and the smallest third comparable energy consumption, and based on the largest third comparable energy consumption and the smallest third comparable energy consumption energy consumption to generate a comparable energy consumption range, the comparable energy consumption range is a range of quantitative parameter values, for example, the heat storage time of the burners 14 is set to be in the range of 10 seconds to 80 seconds.

再次參閱第2圖及第3圖,如圖所示,本實施例中,於步驟S26中,依據該可比能耗範圍取得一第四數量參數值,並將最大之該些個第三可比能耗對應之該些個第二數量參數值替換,產生該些個第三數量參數值,其中該第四數量參數值包含一第四燃燒器切換模式及一第四蓄熱時間,該第四燃燒器切換模式係對應該些個燃燒器之開關,而該第四蓄熱時間係該些個燃燒器14之總運作時間。 Referring to FIG. 2 and FIG. 3 again, as shown in the figures, in this embodiment, in step S26, a fourth parameter value is obtained according to the comparable energy consumption range, and the largest third possible energy The consumption corresponding to the second quantity parameter values is replaced to generate the third quantity parameter values, wherein the fourth quantity parameter value includes a fourth burner switching mode and a fourth heat storage time, the fourth burner The switching mode corresponds to the on/off of the burners, and the fourth heat storage time is the total operation time of the burners 14 .

請參閱第4圖,其為本發明之實施例之另一步驟流程示意圖,如圖所示,本實施例於步驟S12,依據該些個第三數量參數值控制該些個燃燒器之運作之步驟後,更包含步驟:步驟S14:取得該些個第三數量參數值其中之一,並回授於預設數量參數值。 Please refer to FIG. 4 , which is a schematic diagram of another step flow of the embodiment of the present invention. As shown in the figure, in step S12 of the present embodiment, the operation of the burners is controlled according to the parameter values of the third quantity. After the step, it further includes the step of: Step S14: Obtaining one of the third quantity parameter values, and feeding back the preset quantity parameter value.

於步驟S14中,該處理器16取得該些個第三數量參數值其中之一後,將該些個第三數量參數值其中之一回授於該預設數量參數值,以該第三燃燒器切換模式及該第三蓄熱時間,對應更新該預設燃燒器切換模式及該預設蓄熱時間。 In step S14, after obtaining one of the third quantity parameter values, the processor 16 feeds back one of the third quantity parameter values to the preset quantity parameter value, and uses the third combustion The burner switching mode and the third heat storage time are correspondingly updated, and the preset burner switching mode and the preset heat storage time are updated accordingly.

本實施例係一種燃燒器之控制方法,其係先取得該燃燒爐10之該些個燃燒器14之該預設數量參數值,並於處例器模擬或實際運行燃燒,並依該些個燃燒器14之該燃料使用量,計算該預設數量參數值之於該燃燒爐之該第一可比能耗,再而外產生該些個第一數量參數值,並依據該第一可比能耗對該些個第一數量參數值進行曲線擬合運算,計算出複數個第二可比能耗,比較並計算該第一、二可比能耗之誤差值後,取得誤差值最小之該第一方程式,再以該第一方程式計算隨機取得之該些個第二數量參數值,並對其進行疊代運算,產生最佳之第三數量參數值,依據最後取得之第三數量參數值控制該些個燃燒器14之運作,本實施例利用取得之最佳參數值控制燃燒器,應用於不同之燃燒爐,且可不斷改進該些個燃燒器14之燃燒效率,減少於加熱時,燃燒爐之燃料消耗。 The present embodiment is a burner control method, which firstly obtains the preset parameter values of the burners 14 of the burner 10, and simulates or actually runs combustion in the processor, and according to the burners 14 The fuel consumption of the burner 14, calculate the first comparable energy consumption of the preset quantity parameter value to the combustion furnace, and then generate the first quantity parameter values, and according to the first comparable energy consumption Perform a curve fitting operation on the parameter values of the first quantity, calculate a plurality of second comparable energy consumptions, compare and calculate the error values of the first and second comparable energy consumptions, and obtain the first equation with the smallest error value , and then use the first equation to calculate the randomly obtained second quantity parameter values, and perform an iterative operation on them to generate the best third quantity parameter value, and control these according to the last obtained third quantity parameter value For the operation of the individual burners 14, the present embodiment utilizes the obtained optimal parameter values to control the burners, which are applied to different combustion furnaces, and can continuously improve the combustion efficiency of the individual burners 14, thereby reducing the time spent in the combustion furnace during heating. fuel consumption.

綜上所述,本發明提供一種燃燒器之控制方法,本發明提供一種燃燒器之控制方法,其係取得對應燃燒器之預設數量參數值,並對應計算可比能耗,再產生複數個數量參數值,並對其進行曲線擬合運算,計算出可比能耗,並計算二可比能耗之誤差值,取得最佳方程式,以最佳方程式計算另一數量參數值,並進行疊代運算,產生再一數量參數值,依據最後取得之數量參數值控制燃燒器之運作,以尋得最佳之燃燒器控制模式,解決習知技術中,於不同燃燒爐使用同一種燃燒器控制模式、方法,造成燃燒爐之燃燒效率不一,導致燃料消耗無法穩定控制,產生更多的成本之問題。 To sum up, the present invention provides a burner control method, the present invention provides a burner control method, which obtains the preset quantity parameter value corresponding to the burner, calculates the comparable energy consumption correspondingly, and then generates a plurality of quantities parameter value, and perform curve fitting operation on it, calculate the comparable energy consumption, and calculate the error value of the two comparable energy consumption, obtain the best equation, calculate another parameter value with the best equation, and perform iterative operation, Generate another quantity parameter value, and control the operation of the burner according to the last obtained quantity parameter value, so as to find the best burner control mode, and solve the problem of using the same burner control mode and method in different burners in the prior art , resulting in different combustion efficiency of the combustion furnace, resulting in the unsteady control of fuel consumption, resulting in more cost problems.

故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。 Therefore, the present invention is indeed novel, progressive and available for industrial use, and it should meet the requirements for patent application in my country's patent law.

惟以上所述者,僅為本發明一實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。 However, the above is only an embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, all the equivalent changes and modifications made in accordance with the shape, structure, feature and spirit described in the scope of the patent application of the present invention, All should be included in the scope of the patent application of the present invention.

S01:步驟 S01: Steps

S02:步驟 S02: Steps

S04:步驟 S04: Steps

S06:步驟 S06: Steps

S08:步驟 S08: Steps

S10:步驟 S10: Steps

S12:步驟 S12: Steps

Claims (11)

一種燃燒器之控制方法,其步驟包含: 取得複數個燃燒器之數量; 取得一工件重量值及對應該些個燃燒器之一預設數量參數值; 取得對應該預設數量參數值之一燃料使用量,並依據該工件重量值及該燃料使用量計算該預設數量參數值之一第一可比能耗; 產生對應該些個燃燒器之複數個第一數量參數值,依據該工件重量值對該些個第一數量參數值進行一曲線擬合運算,產生複數個第一方程式,並計算該些個第一方程式各別之一第二可比能耗; 計算該第一可比能耗與該些個第一方程式各別之該第二可比能耗之複數個誤差值,並取得最小之該些個誤差值對應之一第二方程式; 隨機產生對應該些個燃燒器之複數個第二數量參數值,並依據該工件重量以該第二方程式各別計算該些個第二數量參數值,並進行一疊代運算,產生複數個第三數量參數值;以及 依據該些個第三數量參數值控制該些個燃燒器之運作; 其中,該些個第三數量參數值各別包含一第三燃燒器切換模式及一第三蓄熱時間,且該第三燃燒器切換模式係對應該些個燃燒器之開關。 A control method for a burner, the steps comprising: Get the number of burners; Obtain a workpiece weight value and a preset quantity parameter value corresponding to these burners; Obtaining a fuel usage amount corresponding to the preset number parameter value, and calculating a first comparable energy consumption of the preset number parameter value according to the workpiece weight value and the fuel usage amount; generating a plurality of first quantity parameter values corresponding to the burners, performing a curve fitting operation on the first quantity parameter values according to the workpiece weight value, generating a plurality of first equations, and calculating the plurality of first quantities A second comparable energy consumption of a respective one of the equations; calculating a plurality of error values between the first comparable energy consumption and the second comparable energy consumption respectively of the first equations, and obtaining a second equation corresponding to the smallest error values; Randomly generate a plurality of parameter values of the second quantity corresponding to the burners, and calculate the parameter values of the second quantity according to the weight of the workpiece with the second equation, and perform an iterative operation to generate a plurality of parameter values of the second quantity three-quantity parameter value; and controlling the operation of the burners according to the values of the third quantity parameters; Wherein, the third quantity parameter values respectively include a third burner switching mode and a third heat storage time, and the third burner switching mode corresponds to the switches of the burners. 如請求項1所述之燃燒器之控制方法,其中取得一工件重量值及取得對應複數個燃燒器之一預設數量參數值之步驟中,該第一可比能耗係該燃料使用量及該工件重量之比值。The burner control method according to claim 1, wherein in the steps of obtaining a workpiece weight value and obtaining a preset number parameter value corresponding to a plurality of burners, the first comparable energy consumption is the fuel usage amount and the Workpiece weight ratio. 如請求項1所述之燃燒器之控制方法,其中該些個燃燒器設置於一燃燒爐之一爐體。The burner control method according to claim 1, wherein the burners are arranged in a furnace body of a combustion furnace. 如請求項1所述之燃燒器之控制方法,其中該預設數量參數值包含一預設燃燒器切換模式及一預設蓄熱時間,該預設燃燒器切換模式係對應該些個燃燒器之開關。The burner control method as claimed in claim 1, wherein the preset quantity parameter value includes a preset burner switching mode and a preset heat storage time, and the preset burner switching mode is corresponding to the number of burners. switch. 如請求項1所述之燃燒器之控制方法,其中該些個第一數量參數值各別包含一第一燃燒器切換模式及一第一蓄熱時間,該第一燃燒器切換模式係對應該些個燃燒器之開關。The burner control method according to claim 1, wherein the first quantity parameter values respectively comprise a first burner switching mode and a first heat storage time, and the first burner switching mode corresponds to the A burner switch. 如請求項1所述之燃燒器之控制方法,其中該些個第二數量參數值各別包含一第二燃燒器切換模式及一第二蓄熱時間,該第二燃燒器切換模式係對應該些個燃燒器之開關。The control method of a burner according to claim 1, wherein the second quantity parameter values respectively comprise a second burner switching mode and a second heat storage time, and the second burner switching mode corresponds to the A burner switch. 如請求項1所述之燃燒器之控制方法,其中隨機產生對應該些個燃燒器之複數個數量第一數量參數值,依據該工件重量值對該些個第一數量參數值進行一曲線擬合運算,產生複數個第一方程式,並計算該些個第一方程式各別之一第二可比能耗之步驟中,該曲線擬合運算包含n階之該些個第一方程式,其中n大於1。The burner control method according to claim 1, wherein a plurality of first quantity parameter values corresponding to the burners are randomly generated, and a curve fitting is performed on the first quantity parameter values according to the workpiece weight value In the step of combining operation, generating a plurality of first equations, and calculating a second comparable energy consumption of each of the first equations, the curve fitting operation includes the first equations of order n, wherein n is greater than 1. 如請求項1所述之燃燒器之控制方法,其中計算該第一可比能耗與該些個第一方程式各別之該第二可比能耗之複數個誤差值,並取得最小之該些個誤差值對應之一第二方程式之步驟中,該誤差值係以一均方根誤差(RSME)計算。The burner control method as claimed in claim 1, wherein a plurality of error values between the first comparable energy consumption and the second comparable energy consumption of the first equations are calculated, and the minimum ones are obtained In the step where the error value corresponds to a second equation, the error value is calculated as a root mean square error (RSME). 如請求項1所述之燃燒器之控制方法,隨機產生對應該些個燃燒器之複數個第二數量參數值,並依據該工件重量以該第二方程式各別計算該些個第二數量參數值,並進行一疊代運算,產生複數個第三數量參數值之步驟中,該疊代運算係包含步驟: 將該些個第二數量參數值各別代入該第二方程式,並產生複數個第三可比能耗; 取得最大之該些個第三可比能耗及最小之該些個第三可比能耗,並依據最大之該些個第三可比能耗及最小之該些個第三可比能耗,產生一可比能耗範圍;以及 依據該可比能耗範圍取得一第四數量參數值,並將最大之該些個第三可比能耗對應之該些個第二數量參數值替換,產生該些個第三數量參數值。 According to the control method of the burner according to claim 1, a plurality of second quantity parameter values corresponding to the burners are randomly generated, and the second quantity parameters are respectively calculated by the second equation according to the workpiece weight. value, and perform an iterative operation to generate a plurality of third-quantity parameter values, the iterative operation includes the steps: Substitute the parameter values of the second quantities into the second equation respectively, and generate a plurality of third comparable energy consumptions; Obtain the largest third comparable energy consumption and the smallest third comparable energy consumption, and generate a comparable energy consumption according to the largest third comparable energy consumption and the smallest third comparable energy consumption energy consumption range; and Obtaining a fourth quantity parameter value according to the comparable energy consumption range, and replacing the second quantity parameter values corresponding to the maximum third comparable energy consumption values to generate the third quantity parameter values. 如請求項1所述之燃燒器之控制方法,其中該疊代運算之一疊代次數係於5至100次。The control method for a burner as claimed in claim 1, wherein an iteration number of the iterative operation is 5 to 100 times. 如請求項1所述之燃燒器之控制方法,其中依據該些個第三數量參數值控制該些個燃燒器之運作之步驟後,更包含步驟: 取得該些個第三數量參數值其中之一,並回授於該預設數量參數值。 The control method for a burner according to claim 1, further comprising the steps of: One of the third quantity parameter values is obtained and fed back to the preset quantity parameter value.
TW109142082A 2020-11-30 2020-11-30 Burner control method TWI765440B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109142082A TWI765440B (en) 2020-11-30 2020-11-30 Burner control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109142082A TWI765440B (en) 2020-11-30 2020-11-30 Burner control method

Publications (2)

Publication Number Publication Date
TWI765440B true TWI765440B (en) 2022-05-21
TW202223300A TW202223300A (en) 2022-06-16

Family

ID=82594503

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109142082A TWI765440B (en) 2020-11-30 2020-11-30 Burner control method

Country Status (1)

Country Link
TW (1) TWI765440B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038482A1 (en) * 2010-09-21 2012-03-29 Software & Technologie Glas Gmbh (Stg) Method for the controlled operation of an industrial oven which is heated in a regenerative manner, control device, and industrial oven
CN103256625A (en) * 2012-02-16 2013-08-21 宝山钢铁股份有限公司 Combustion control method for regenerative pulse heating furnace
CN110030842A (en) * 2019-03-27 2019-07-19 福建三钢闽光股份有限公司 A kind of recuperative heater interval delay reverse control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038482A1 (en) * 2010-09-21 2012-03-29 Software & Technologie Glas Gmbh (Stg) Method for the controlled operation of an industrial oven which is heated in a regenerative manner, control device, and industrial oven
CN103256625A (en) * 2012-02-16 2013-08-21 宝山钢铁股份有限公司 Combustion control method for regenerative pulse heating furnace
CN110030842A (en) * 2019-03-27 2019-07-19 福建三钢闽光股份有限公司 A kind of recuperative heater interval delay reverse control method

Also Published As

Publication number Publication date
TW202223300A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
CN101871654B (en) Intelligent control system of automatic optimizing combustion of hot-blast stove
CN103952529B (en) A kind of walking beam furnace is based on thermally equilibrated optimum furnace method
CN106556014B (en) A kind of incinerator method for controlling combustion based on temperature field measuring technique
TWI765440B (en) Burner control method
CN114675543B (en) Hot blast stove intelligent combustion control method based on optimized learning algorithm
CN101749731A (en) Automatic optimal combustion intelligent control system for hot blast stove
Tajik et al. Multi-objective optimization of aluminum anode baking process employing a response surface methodology
JP2009103357A (en) Operating method of rotary kiln
CN116499272B (en) Intelligent kiln control method for tracking multi-energy combustion carbon emission
CN105404143B (en) Gas furnace kiln furnace pressure computer intelligence fuzzy control power-economizing method
CN205313585U (en) Accurate burning control system of blast funnace hot blast stove
CN101220956B (en) Temperature control system and method for heat accumulation type incineration and deodorization stove
CN209820183U (en) Tempering furnace oxygen boosting flue gas recirculation combustion system
CN204555721U (en) A kind of tunnel cave two pressure cogeneration and the pre-apparatus for cooling of material
Wang et al. Performance analysis and parametric optimum criteria of a regeneration Bose–Otto engine
CN205560723U (en) A novel supplementary heat is evenly installed for firing burning furnace
Zhang et al. Simulating the heat transfer process of horizontal anode baking furnace
CN205642018U (en) Energy -saving ceramic machining equipment
Markovic et al. Downward and Upward Combustion of Biomass on a Grate: A case study
Grover et al. Control of wafer temperature using a vortex water-wall argon arc
CN212537940U (en) Heat insulation device of electric heating furnace
TWI730525B (en) Gas-electric mixing furnace
CN218864803U (en) Temperature gradient controlled nitrogen heat-conducting medium atmosphere kiln
CN202770245U (en) Carbon roasting furnace control system with auxiliary combustion function
DeBellis Effect of refractory emittance in industrial furnaces