TWI765420B - 心衰竭預測組件 - Google Patents

心衰竭預測組件 Download PDF

Info

Publication number
TWI765420B
TWI765420B TW109140781A TW109140781A TWI765420B TW I765420 B TWI765420 B TW I765420B TW 109140781 A TW109140781 A TW 109140781A TW 109140781 A TW109140781 A TW 109140781A TW I765420 B TWI765420 B TW I765420B
Authority
TW
Taiwan
Prior art keywords
circuit
heart failure
prediction
feature
feature extraction
Prior art date
Application number
TW109140781A
Other languages
English (en)
Other versions
TW202220618A (zh
Inventor
大衛 傅
陳佩君
Original Assignee
英業達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英業達股份有限公司 filed Critical 英業達股份有限公司
Priority to TW109140781A priority Critical patent/TWI765420B/zh
Application granted granted Critical
Publication of TWI765420B publication Critical patent/TWI765420B/zh
Publication of TW202220618A publication Critical patent/TW202220618A/zh

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一種心衰竭預測方法,包括:感測器取得原始心電圖訊號,前處理電路依據原始心電圖訊號產生乾淨心電圖訊號,特徵擷取電路依據乾淨心電圖訊號進行主成分分解及心率特徵分析以產生具有多個特徵值的特徵向量,以及預測模型電路依據特徵向量產生預測結果以指示未來一段期間內是否會發生心衰竭。

Description

心衰竭預測組件
本發明涉及心血管疾病的預測,特別是一種心衰竭預測組件及心衰竭預測方法。
鬱血性心衰竭(Congestive Heart Failure,CHF)是一種高度致命的綜合症,其症狀和體徵是由心臟功能障礙引起的。在發展中國家,鬱血性心衰竭的醫療保健支出佔總醫療保健預算的一定比例。因此,提升對鬱血性心衰竭的理解可能會產生強烈的社會和管理影響。
眾所周知,心電圖(electrocardiogram,ECG)測試能被用來提取可預測的特徵以評估個人患鬱血性心衰竭的風險。
ECG信號是量化心臟的電活動的循環信號。每個心搏週期(heart cycle)可以分解為五個波的總和,即P、Q、R、S及T波。除了每個心搏週期的形狀,心電圖的另一個重要特徵是心搏週期的持續時間,這些基於RR間隔的長度(即連續R峰之間的距離)進行測量,並且通常通過量化個體的心率(Heart Rate,HR)和心率變異性(Heart Rate Variability,HRV)的變數進行匯總。
計算機科學領域的機器學習(Machine Learning)已被證明在建模一組可預測的變數和各種結果之間的複雜非線性關係方面非常成功。機器學習 已被用於預測鬱血性心衰竭的發展和其他結果,例如基於ECG信號的死亡。然而,因為機器學習方法是估計高維度特徵之間的複雜非線性關係,因此通常很難解釋這些高維度特徵。
此外,現今預測鬱血性心衰竭的方法需要長時間的資料,尚不存在僅使用少量心電圖資料便可建立適用於預測鬱血性心衰竭的機器學習模型。
有鑑於此,本發明提供一個高量測效率且具有可解釋性的心衰竭預測組件及心衰竭預測方法。
依據本發明一實施例的一種心衰竭預測組件,包括:一前處理電路,用於電性連接一外部感測器以接收心電圖的一原始輸入訊號,該前處理電路用於過濾該原始輸入訊號的一雜訊以產生一乾淨心電圖訊號;一特徵擷取電路,電性連接該前處理電路,該特徵擷取電路依據該乾淨心電圖訊號計算多個心率特徵值,依據多個主成分波形及該乾淨心電圖訊號產生多個形狀特徵值,並整合該些心率特徵值及該些形狀特徵值以輸出一特徵向量;以及一預測模型電路,電性連接該特徵擷取電路,該預測模型依據該特徵向量產生一預測結果;其中該預測結果用於指示在一指定期間內是否發生心衰竭。
依據本發明一實施例的一種心衰竭預測方法,包括:以一感測器取得一原始心電圖訊號;以一前處理電路依據該原始心電圖訊號產生一乾淨心電圖訊號;以一特徵擷取電路依據該乾淨心電圖訊號進行主成分分解及心率特徵分析以產生具有多個特徵值的一特徵向量;以及以一預測模型電路依據特徵向量產生預測結果。
綜上所述,本發明提出的心衰竭預測組件及心衰竭預測方法,提出以新的特徵:形狀,其擷取自時間序列資料,配合心率及心率變異性進行鬱血性心衰竭預測。本發明可產生具有可解釋性的特徵向量,藉此讓醫生得以依據此特徵向量所對應的臨床症狀向病患說明心衰竭成因。由於本發明的特徵擷取電路中應用了主成分分析的技術,因此特徵向量中包含心電圖波形的形狀特徵。應用主成分分析同時也提高了本發明預測心衰竭的準確度,而且只需要收集短時間(例如30秒)的心電圖訊號即可產生未來長時間(數個月到數年)內的預測結果。
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。
100:心衰竭預測組件
1:前處理電路
12:帶通濾波器
14:正規化電路
16:品質檢測電路
3:特徵擷取電路
32:心率特徵擷取電路
34:形狀特徵擷取電路
36:特徵整合電路
5:預測模型電路
30:外部感測器
50:顯示裝置
S1~S4、S31~S33:步驟
圖1繪示本發明一實施例的心衰竭預測組件的方塊圖;圖2繪示前處理電路的系統方塊圖;圖3A及圖3B呈現以前處理電路中的帶通濾波器修正前後的心電圖訊號對比圖;圖4繪示特徵擷取電路的方塊圖;圖5是本發明一實施例的心衰竭預測方法的流程圖;以及圖6是圖5的步驟S3中關於「主成分分解」的細部流程圖。
以下在實施方式中詳細敘述本發明之詳細特徵以及特點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之構想及特點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。
請參考圖1,其繪示本發明一實施例的心衰竭預測組件100的方塊圖。所述的心衰竭預測組件100包括前處理電路1、特徵擷取電路3以及預測模型電路5。
前處理電路1用於電性連接一外部感測器30,例如霍特感測器(Holter monitor),以接收外部感測器30產生的心電圖的原始輸入訊號。值得注意的是,有別於傳統的預測方式需要長時間(例如約24小時)收集使用者的的心電圖量測訊號,本發明的前處理電路1收集使用者的心電圖量測訊號的時間長度較短時間(例如約30秒)。
請參考圖2,其繪示前處理電路1的系統方塊圖。在一實施例中,前處理電路1包括帶通濾波器(band-pass filter)12、正規化電路14以及品質檢測電路16。
帶通濾波器12用於電性連接圖1的外部感測器30。在一實施例中,帶通濾波器12用於過濾心電圖原始訊號的雜訊,並且修正心電圖原始訊號的基線飄移(baseline wander)。修正前的心電圖訊號如圖3A所示,修正後的心電圖訊號如圖3B所示。修正後的心電圖訊號被發送至正規化電路14。
正規化電路14電性連接帶通濾波器12。在一實施例中,正 規化電路14用於將修正後的心電圖訊號中的每個週期的最小值定義為0,最大值定義為1。換言之,正規化電路14將訊號按比例縮放於[0,1]區間中,且不改變訊號的原本分佈。
品質檢測電路16電性連接正規化電路14。品質檢測電路16用於評估經上述處理後的心電圖訊號的品質。具體來說,品質檢測電路16計算心電圖訊號的訊號品質指數(signal quality index,SQI)。SQI值高於指定閾值的訊號片段被保留且作為特徵擷取電路3的輸入。SQI值低於指定閾值的訊號片段被捨棄。
本發明並不特別限制品質檢測電路16的實施方式。在一實施例中,心衰竭感測組件10連接的外部感測器30更包含環境感測器,如加速度計或光感測器。環境感測器用於感測使用者的周邊狀態以產生一修正參考訊號,且帶通濾波器12依據修正參考訊號修正心電圖原始訊號。品質檢測電路16依據修正後的心電圖訊號計算每個週期中的多個生理數值的標準值域,並判斷每一個週期訊號對應的生理數值與該標準值域之間的一差異量,然後依據該些差異量計算出SQI。所述的標準值域例如可採用所述生理數值的平均值,或是採用這些生理數值建立一個分布模型,再取此分佈模型的信賴區間作為標準值域。依據差異量計算訊號品質指數的一實施方式係:品質檢測電路16計算該些差異量中小於一門檻值的數量佔所有的該些差異量的總數的一比例,並以該比例作為該訊號品質指數。
依據差異量計算訊號品質指數的另一實施方式係:品質檢測電路16依據每一差異量計算一相關性,並依據該相關性與該些週期訊號的總數計算該訊號品質指數。
特徵擷取電路3電性連接前處理電路1以接收前處理電路1處理後的乾淨的心電圖訊號。圖4是特徵擷取電路3的方塊圖。特徵擷取電路3包括心率特徵擷取電路32、形狀特徵擷取電路34以及特徵整合電路36。乾淨的心電圖訊號分別被輸入至心率特徵擷取電路32及形狀特徵擷取電路34。該二特徵電路32及34各自進行特徵擷取之後,將各自的輸出交由特徵整合電路36串接(concatenate)後輸出至預測模型電路5。
整體而言,特徵擷取電路3用於從心電圖訊號取出多個重要的特徵並輸出一特徵向量。此特徵向量具有多個維度。在一實施例中,特徵向量具有14維,其中10維的資料由心率特徵擷取電路32對乾淨ECG訊號進行運算後輸出,另外4維的資料由形狀特徵擷取電路34對乾淨ECG訊號進行運算後輸出。上述維度數值僅為舉例而非用以限制本發明。
心率特徵電路32所需輸出的10維資料及其類型如下表所示,其中HR為心率(Heart Rate,HR),HRV為心率變異性(Heart Rate Variability,HRV),R-R間隔(R-R interval)為心電圖訊號中相鄰兩個R波波峰(peak)之間的距離,此距離可轉換為心跳速率。
Figure 109140781-A0305-02-0007-1
Figure 109140781-A0305-02-0008-2
上表中的特徵的計算方式如下方式1至式9所示。
Figure 109140781-A0305-02-0008-6
Figure 109140781-A0305-02-0008-4
Figure 109140781-A0305-02-0008-5
Figure 109140781-A0305-02-0008-8
Figure 109140781-A0305-02-0008-9
Figure 109140781-A0305-02-0008-10
其中,RR diff[i]=RR interval[i+1]-RR interval[i]
另外,
Figure 109140781-A0305-02-0008-12
Figure 109140781-A0305-02-0008-13
Figure 109140781-A0305-02-0008-14
Figure 109140781-A0305-02-0009-15
其中a[i]是x[i]在x=-y上的投影,b[i]是x[i]在x=y上的投影,而且x[i]=[RR interval[i],RR interval[i+1]] T
在一實施例中,依據乾淨的心電圖訊號、給定的參考心搏週期μ(t)以及一組給定的主成分(Principal Component)波形,形狀特徵擷取電路34可按照式10的計算得出特徵向量中其餘4維的資料,即式10中的s j 。在本實施例中,該組主成分波形有4個,故j=1,2,3,4。
Figure 109140781-A0305-02-0009-16
詳言之,形狀特徵擷取電路34從乾淨的心電圖訊號中計算平均心搏週期(average heart cycle)C(t)。並將此平均心搏週期C(t)減去給定的參考心搏週期μ(t)的結果投影至4個主成分波形PC j (t)以獲得各自維度的投影量s j 。式10中的K為主成分波形的數量。上述流程即所謂的主成分分析(Principle Component Analysis,PCA)。給定一組函數資料(functional data)和基本函數,PCA分解根據基本函數和相應的係數找到資料投影,以最小表示方式讓可解釋的變異性最大化。
每一個主成分波形相當於該筆心電圖訊號的一種「形狀的描述」。因此,這些主成分波形具有可解釋性。實務上,醫生可採用這些主成分波形對應的臨床症狀向病患清楚地展示心衰竭疾病的原因。此外每個主成分波形對應的係數s j 更可作為醫生判斷此主成分波形重要程度的依據。
實務上,形狀特徵擷取電路34預先收集大量的心電圖資料並依據這些資料進行特徵分析(eigenanalysis),藉此得到前述的多個主成分波形。
特徵整合電路36電性連接心率特徵擷取電路32及形狀特徵擷取電路34。特徵整合電路36將來自心率特徵擷取電路32的多維度特徵資料(在本實施例為10維)以及來自形狀特徵擷取電路34的多維度特徵資料(在本實施例為4維)整合串接並進行資料範圍的縮放調整(scaling)之後,輸出多維度的特徵向量(在本實施例為14維)至預測模型電路5。
預測模型電路5電性連接特徵擷取電路3以接收多維度的特徵資料。預測模型電路5更用以電性連接顯示裝置50以呈現其輸出的預測結果。預測模型電路5使用將多維度的特徵資料輸入至預測模型以產生一個預測結果。所述的預測模型基本上為線性的模型,其根據多維度的特徵向量產生預測結果
在一實施例中,預測模型電路5包含至少一個預測模型。舉例來說,預測模型包含Cox比例風險(Cox Proportional Hazard)模型、邏輯迴歸(Logistic Regressio,LR)模型以及神經添加模型(Neural Additive Model,NAM)。Cox比例風險模型可輸出事件發生時間(time-to-event),例如「在本日量測ECG訊號後的未來六個月內將不會罹患鬱血性心衰竭」。LR模型及NAM模型則屬於分類模型,僅告知在未來的指定期間內(例如一年內)是否會罹患鬱血性心衰竭。上述三個模型的實施細節可參考如下文獻:D. R. Cox, “Partial likelihood,” Biometrika, vol. 62, no. 2, pp.269-276, 1975.
R. E. Wright, “Logistic regression.,” Reading and understanding multivariate statistics, pp. 217-244, 1995.
R. Agarwal, N. Frosst, X. Zhang, R. Caruana, and G. E. Hinton, “Neural additive models: Interpretable machine learning with neural nets,” arXiv preprint arXiv:2004. 13912, 2020.
在一實施例中,本發明的預測模型電路更電性連接一環境感測器以感測心衰竭預測組件100週邊的環境資訊。環境感測器例如為加速度計或光感測器。環境感測器感測到的環境資訊將作為預測模型電路50選擇多個預測模型中的一者的依據。
在事件發生時間的設定中,感興趣的數值(quantity of interest)為ECG訊號量測及心衰竭發生的時間間隔,例如使用者第一次配戴具有本發明一實施例的心衰竭感測組件的感測器的時間點。如果使用者在觀察期間發生心衰竭事件,本發明將標註此狀況的事件發生期間,並且將此使用者的資料標註為未設限(uncensored)資料。如果使用者在觀察期間皆沒有發生心衰竭事件,本發明將標註整個觀察期間,並且將此使用者的資料標註為設限(censored)資料。在分類的設定中,感興趣的數值被設定為例如一年內的心衰竭預測結果。若使用者在此期間內發生心衰竭則標註為1,否則標註為0。
在本發明另一實施例中,特徵擷取電路3及預測模型電路5可被整合,並以多層感知器(Multilayer Perceptron,MLP)或是卷積神經網路(Convolution Neural Network,CNN)實現。舉例來說,多層感知器從前處理電路1接收乾淨的ECG訊號後,可直接輸出未來一年內是否會發生心衰竭的預測結果。然而此實施例相較於前一實施例則缺少可解釋性的特徵向量。
預測模型電路5中所使用的預測模型係事先以大量資料訓練而產生。本發明收集大量使用者的ECG訊號及這些使用者發生心衰竭的 事件發生時間,並將這些資料分為三組進行預測模型的訓練、驗證和測試。這三組資料不共享相同使用者的資料。本發明在訓練集上訓練預測模型,並使用驗證集選擇預測模型中的超參數(hyperparameter)以及離散二元預測時所採用的閾值。本發明使用三個指標來評估預測模型在測試集上的表現,包括使用事件發生時間標籤的一致性指數(C-index,index of concordance)、曲線下面積(Area Under Curve,AUC)以及使用二元標籤的平衡精確度(Balanced accuracy),其包含平均敏感性(average sensitivity)及特異性(specificity)。無論訓練階段的標籤類型如何設置,AUC和平衡精確度皆適用於處理不平衡的分類範例。
下方表格展示本發明一實施例的心衰竭預測方法在上述三種指標的表現。
Figure 109140781-A0305-02-0012-17
由上方表格可看出,當在特徵擷取電路30中應用PCA且預測模型使用Cox時,相較於未使用PCA的預測模型,其一致性指數增加0.065,曲線下面積增加0.762,平衡精確度增加0.030。由上方表格亦可看出,使用NAM預測模型具有最好的表現。
上方表格列出了使用NAM預測模型且收集使用者24小時的ECG訊號,相較於使NAM預測模型且收即使用者30秒的ECG訊號, 其表現在一致性指數減少0.012,在曲線下面積減少0.013,在平衡精確度減少0.011。由上述可知,本發明在較短的30秒訊號量測中,其準確度相較於24小時長時間的量測僅微幅降低。換言之,本發明提出的心衰竭預測組件及方法極具量測效率。
圖5是本發明一實施例的心衰竭預測方法的流程圖。步驟S1是「取得原始心電圖訊號」。步驟S2是「前處理電路依據該原始心電圖訊號產生一乾淨心電圖訊號」。步驟S3是「特徵擷取電路依據乾淨心電圖訊號進行主成分分解及心率特徵分析以產生多維度的特徵向量」。步驟S4是「預測模型電路依據特徵向量產生預測結果」。各步驟的細節如前文所述,此處不再重複。
圖6是圖5的步驟S3中關於「主成分分解」的細部流程圖。步驟S31是「計算乾淨心電圖訊號的平均心搏週期」。步驟S32是「取得多個主成分波形及參考心搏週期」。需注意的是,步驟S31及步驟S32並不特別限制執行先後順序。步驟S33是「將平均心搏週期減去參考心搏週期的結果投影至該些主成分波形以獲得多個作為特徵值的投影量」。各步驟的細節如前文所述,此處不再重複。
綜上所述,本發明提出的心衰竭預測組件及心衰竭預測方法,提出以新的特徵:形狀,其擷取自時間序列資料,配合心率及心率變異性進行鬱血性心衰竭預測。本發明可產生具有可解釋性的特徵向量,藉此讓醫生得以依據此特徵向量所對應的臨床症狀向病患說明心衰竭成因。由於本發明的特徵擷取電路中應用了主成分分析的技術,因此特徵向量中包含心電圖波形的形狀特徵。應用主成分分析同時也提高了本發明預測心衰竭 的準確度,而且只需要收集短時間(例如30秒)的心電圖訊號即可產生未來長時間(例如數個月到數年)內的預測結果。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。
S1~S4:步驟

Claims (3)

  1. 一種心衰竭預測組件,包括:一前處理電路,用於電性連接一外部感測器以接收心電圖的一原始輸入訊號,該前處理電路用於過濾該原始輸入訊號的一雜訊以產生一乾淨心電圖訊號;一特徵擷取電路,電性連接該前處理電路,該特徵擷取電路依據該乾淨心電圖訊號計算多個心率特徵值,計算該乾淨心電圖訊號的一平均心搏週期,將該平均心搏週期減去一給定參考心搏週期的結果投影至多個主成分波形,以獲得多個投影量作為多個形狀特徵值,並整合該些心率特徵值及該些形狀特徵值以輸出一特徵向量;以及一預測模型電路,電性連接該特徵擷取電路,該預測模型電路依據該特徵向量產生一預測結果;其中該預測結果用於指示在一指定期間內是否發生心衰竭。
  2. 如請求項1的心衰竭預測組件,其中該些主成分波形係以一處理器依據多個歷史心電圖訊號執行主成分分析而計算得出。
  3. 如請求項1的心衰竭預測組件,其中該預測模型電路包括多個預測模型,該些預測模型包含Cox比例風險模型、邏輯迴歸模型以及神經添加模型。
TW109140781A 2020-11-20 2020-11-20 心衰竭預測組件 TWI765420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109140781A TWI765420B (zh) 2020-11-20 2020-11-20 心衰竭預測組件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109140781A TWI765420B (zh) 2020-11-20 2020-11-20 心衰竭預測組件

Publications (2)

Publication Number Publication Date
TWI765420B true TWI765420B (zh) 2022-05-21
TW202220618A TW202220618A (zh) 2022-06-01

Family

ID=82594222

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109140781A TWI765420B (zh) 2020-11-20 2020-11-20 心衰竭預測組件

Country Status (1)

Country Link
TW (1) TWI765420B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985558B2 (en) * 2000-11-09 2011-07-26 The Brigham And Women's Hospital, Inc. Methods for diagnosis of cardiovascular disease
WO2013121431A1 (en) * 2012-02-16 2013-08-22 D.H.S Medical Ltd. Systems and methods for monitoring heart performance
WO2014172671A1 (en) * 2013-04-18 2014-10-23 Digimarc Corporation Physiologic data acquisition and analysis
CN106132286A (zh) * 2014-03-07 2016-11-16 心脏起搏器股份公司 多级心力衰竭事件检测

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985558B2 (en) * 2000-11-09 2011-07-26 The Brigham And Women's Hospital, Inc. Methods for diagnosis of cardiovascular disease
WO2013121431A1 (en) * 2012-02-16 2013-08-22 D.H.S Medical Ltd. Systems and methods for monitoring heart performance
WO2014172671A1 (en) * 2013-04-18 2014-10-23 Digimarc Corporation Physiologic data acquisition and analysis
CN106132286A (zh) * 2014-03-07 2016-11-16 心脏起搏器股份公司 多级心力衰竭事件检测

Also Published As

Publication number Publication date
TW202220618A (zh) 2022-06-01

Similar Documents

Publication Publication Date Title
US20200335217A1 (en) Methods and systems using mathematical analysis and machine learning to diagnose disease
US20190365332A1 (en) Determining wellness using activity data
Boursalie et al. M4CVD: Mobile machine learning model for monitoring cardiovascular disease
JP7337788B2 (ja) 機械学習法において使用するゲノムの発見
US20040199482A1 (en) Systems and methods for automatic and incremental learning of patient states from biomedical signals
Soliński et al. Automatic cough detection based on airflow signals for portable spirometry system
JP2021532914A (ja) 組織評価のためのシステム及び方法
US10368792B2 (en) Method for detecting deception and predicting interviewer accuracy in investigative interviewing using interviewer, interviewee and dyadic physiological and behavioral measurements
Nishadi Predicting heart diseases in logistic regression of machine learning algorithms by Python Jupyterlab
Hadadi et al. Prediction of cybersickness in virtual environments using topological data analysis and machine learning
Delay et al. Non invasive wearable device for fetal movement detection
Singh et al. Detection of Parkinson's Disease using Machine Learning Algorithm
TWI765420B (zh) 心衰竭預測組件
JP7173482B2 (ja) ヘルスケアデータ分析システム、ヘルスケアデータ分析方法およびヘルスケアデータ分析プログラム
Zhong et al. A robust frequency-domain-based graph adaptive network for Parkinson's disease detection from gait data
US11955245B2 (en) Method and system for mental index prediction
Raja et al. Existing Methodologies, Evaluation Metrics, Research Gaps, and Future Research Trends: A Sleep Stage Classification Framework
EP3925520A1 (en) Method for selecting features from electroencephalogram signals
Rajagopalan Computational behaviour modelling for autism diagnosis
Mansourian et al. Fetal QRS extraction from single-channel abdominal ECG using adaptive improved permutation entropy
CN114520054A (zh) 心衰竭预测组件及心衰竭预测方法
WO2022157872A1 (ja) 情報処理装置、特徴量選択方法、教師データ生成方法、推定モデル生成方法、ストレス度の推定方法、およびプログラム
Pordoy et al. The open seizure database facilitating research into non-eeg seizure detection
Hock et al. Automated detection of premature ventricular contraction using recurrence quantification analysis on heart rate signals
CN111481173B (zh) 身体体征信号的检测方法、介质、设备及系统