TWI764799B - temperature prediction method - Google Patents

temperature prediction method

Info

Publication number
TWI764799B
TWI764799B TW110128498A TW110128498A TWI764799B TW I764799 B TWI764799 B TW I764799B TW 110128498 A TW110128498 A TW 110128498A TW 110128498 A TW110128498 A TW 110128498A TW I764799 B TWI764799 B TW I764799B
Authority
TW
Taiwan
Prior art keywords
temperature prediction
prediction system
temperature
result
results
Prior art date
Application number
TW110128498A
Other languages
Chinese (zh)
Other versions
TW202307714A (en
Inventor
游德榮
李明訓
侯語涵
曾啟倫
Original Assignee
台灣松下電器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣松下電器股份有限公司 filed Critical 台灣松下電器股份有限公司
Priority to TW110128498A priority Critical patent/TWI764799B/en
Application granted granted Critical
Publication of TWI764799B publication Critical patent/TWI764799B/en
Publication of TW202307714A publication Critical patent/TW202307714A/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一種溫度預測方法,由一溫度預測系統執行,該溫度預測方法為該溫度預測系統根據N個不同時間點的環境參數組合預處理分別產生N個預處理結果,每一環境參數各自至少為溫度、濕度、懸浮微粒其中之一,該溫度預測系統對該N個預處理結果分別執行資料統計運算而得到N個資料篩選結果,並對該N個資料篩選結果分別執行非監督學習演算法而得到N個資料維度轉換結果,再對該等資料維度轉換結果執行一類神經網路轉換以得到一溫度預測模型,藉由將不同時間點的多種環境參數組進行機器學習相關的資訊處理,進而可更精準掌握溫度變化因素。A temperature prediction method, executed by a temperature prediction system, the temperature prediction method is that the temperature prediction system generates N preprocessing results respectively according to the combined preprocessing of environmental parameters at N different time points, and each environmental parameter is at least temperature, One of humidity and suspended particles, the temperature prediction system performs data statistical operations on the N preprocessing results to obtain N data screening results, and performs an unsupervised learning algorithm on the N data screening results to obtain N data dimension conversion results, and then perform a kind of neural network conversion on these data dimension conversion results to obtain a temperature prediction model. Master the factors of temperature change.

Description

溫度預測方法temperature prediction method

本發明是有關於一種預測技術,特別是指一種根據與溫度相關的環境變數進行溫度預測的溫度預測方法。The present invention relates to a prediction technology, in particular to a temperature prediction method for temperature prediction based on temperature-related environmental variables.

現有的溫度預測技術是藉由將先前收集到的多筆溫度記錄帶入人工智慧模型進行訓練,並搭配當下的即時溫度判斷模型是否準確,進而依據模型預測的溫度預先設定室內空調溫度,但溫度變化與多種環境參數有關,僅以溫度單一參數來進行預測將使模型預測準確度下降。The existing temperature prediction technology is to bring the previously collected multiple temperature records into the artificial intelligence model for training, and match the current real-time temperature to judge whether the model is accurate, and then pre-set the indoor air conditioner temperature according to the temperature predicted by the model, but the temperature The variation is related to a variety of environmental parameters, and making predictions with only a single parameter of temperature will reduce the prediction accuracy of the model.

因此,現有的溫度預測方法有改善的必要。Therefore, it is necessary to improve the existing temperature prediction methods.

因此,本發明的目的,即在提供一種結合多種環境參數進行人工智慧模型訓練以產生溫度預測模型的的溫度預測方法。Therefore, the purpose of the present invention is to provide a temperature prediction method that combines a variety of environmental parameters to perform artificial intelligence model training to generate a temperature prediction model.

於是,本發明溫度預測方法,由一溫度預測系統執行,該溫度預測方法包含一步驟(A)、一步驟(B)、一步驟(C)、一步驟(D)、一步驟(E),及一步驟(F)。Therefore, the temperature prediction method of the present invention is executed by a temperature prediction system, and the temperature prediction method includes a step (A), a step (B), a step (C), a step (D), and a step (E), and one step (F).

該步驟(A)為該溫度預測系統根據N個不同時間點的環境參數組合預處理分別產生N個預處理結果,每一環境參數組合包括M個環境參數,每一環境參數各自至少為溫度、濕度、懸浮微粒其中之一。In step (A), the temperature prediction system generates N preprocessing results according to the environmental parameter combination preprocessing at N different time points, each environmental parameter combination includes M environmental parameters, and each environmental parameter is at least temperature, One of humidity and suspended particles.

該步驟(B)為該溫度預測系統對該N個預處理結果分別執行資料統計運算而得到N個資料篩選結果。In step (B), the temperature prediction system respectively performs data statistical operations on the N preprocessing results to obtain N data screening results.

該步驟(C)為該溫度預測系統對該N個資料篩選結果分別執行非監督學習演算法而得到N個資料維度轉換結果。In step (C), the temperature prediction system executes an unsupervised learning algorithm on the N data screening results to obtain N data dimension conversion results.

該步驟(D)為該溫度預測系統對該等資料維度轉換結果執行一類神經網路轉換以得到一溫度預測模型。The step (D) is for the temperature prediction system to perform a type of neural network transformation on the data dimension transformation results to obtain a temperature prediction model.

該步驟(E)為該溫度預測系統以該溫度預測模型對其中一資料維度轉換結果運算以產生一預測溫度。In the step (E), the temperature prediction system uses the temperature prediction model to perform an operation on one of the data dimension conversion results to generate a predicted temperature.

本發明的功效在於:藉由將不同時間點的多種環境參數組進行機器學習相關的資訊處理,進而可更精準掌握溫度變化因素。The effect of the present invention is: by performing machine learning-related information processing on various environmental parameter groups at different time points, the temperature change factors can be more accurately grasped.

參閱圖1,為本發明溫度預測方法的一實施例,由一溫度預測系統執行,該實施例包含一步驟(A)、一步驟(B)、一步驟(C)、一步驟(D)、一步驟(E),及一步驟(F),更詳細而言,該溫度預測系統執行該實施例時,可區分為三個階段:第一階段為資料分析(或稱特徵預處理),其主要內容包括擷取離散時間特徵、編碼、離群資料分析及歸一化;第二階段為考量空氣品質變數;第三階段為連續時間空氣品質預測,此外,第一階段是執行該步驟(A)與該步驟(B),第二階段是執行該步驟(C);第三階段是執行該步驟(D)、該步驟(E),及該步驟(F),以下接著詳細說明該實施例。Referring to FIG. 1, it is an embodiment of the temperature prediction method of the present invention, which is executed by a temperature prediction system. This embodiment includes a step (A), a step (B), a step (C), a step (D), a A step (E), and a step (F), in more detail, when the temperature prediction system executes this embodiment, it can be divided into three stages: the first stage is data analysis (or feature preprocessing), which The main contents include discrete-time feature extraction, coding, outlier data analysis and normalization; the second stage is to consider air quality variables; the third stage is continuous-time air quality prediction, and the first stage is to perform this step (A ) and the step (B), the second stage is to execute the step (C); the third stage is to execute the step (D), the step (E), and the step (F), the following will describe the embodiment in detail .

第一階段:資料分析(特徵預處理),詳述如以下步驟。The first stage: data analysis (feature preprocessing), detailed as the following steps.

該步驟(A)為擷取離散時間特徵、編碼,具體而言,為該溫度預測系統根據N個不同時間點的環境參數組合預處理分別產生N個預處理結果,每一環境參數組合包括M個環境參數,每一環境參數各自至少為溫度、濕度、懸浮微粒其中之一。The step (A) is to extract discrete-time features and codes. Specifically, the temperature prediction system generates N preprocessing results according to environmental parameter combinations at N different time points, and each environmental parameter combination includes M environmental parameters, each of which is at least one of temperature, humidity, and suspended particles.

參閱圖2,該步驟(A)進一步包括一子步驟(A1)及一子步驟(A2),該子步驟(A1)為該溫度預測系統分別於N個時間點收集室內空氣品質各項數據,也就是對一室內空間的溫度、濕度、懸浮微粒進行偵測以得到該N個環境參數組合。Referring to FIG. 2, the step (A) further includes a sub-step (A1) and a sub-step (A2), the sub-step (A1) is for the temperature prediction system to collect various data of indoor air quality at N time points respectively, That is, the temperature, humidity, and suspended particles of an indoor space are detected to obtain the N environmental parameter combinations.

該子步驟(A2)為該溫度預測系統分別對N個環境參數組合各自的M個環境參數執行一預處理運算,而得到該N個預處理結果,該預處理運算為根據每一環境參數組合當下對應的時間點進行週期性弦波函數轉換,以下進一步說明該預處理運算的詳細運算過程。In the sub-step (A2), the temperature prediction system performs a preprocessing operation on the M environmental parameters of the N environmental parameter combinations, respectively, to obtain the N preprocessing results. The preprocessing operation is performed according to each environmental parameter combination. Periodic sine wave function conversion is performed at the current corresponding time point, and the detailed operation process of the preprocessing operation is further described below.

配合參閱圖3,該子步驟(A2)進一步包括一次要步驟(A2-1),及一次要步驟(A2-2)。Referring to FIG. 3 , the sub-step (A2) further includes a sub-step (A2-1) and a sub-step (A2-2).

該次要步驟(A2-1)為該溫度預測系統在執行該預處理運算時,是先記錄每一環境參數組合當下對應的一時間參數,該時間參數包括年、月、週、日、小時、分鐘、秒。The secondary step (A2-1) is that when the temperature prediction system performs the preprocessing operation, it first records a time parameter corresponding to each combination of environmental parameters, and the time parameter includes year, month, week, day, hour , minutes, seconds.

該次要步驟(A2-2)為該溫度預測系統將每一時間參數進行週期性三角函數轉換,其中,週期性三角函數轉換的公式為:The secondary step (A2-2) is to perform periodic trigonometric function conversion for each time parameter for the temperature prediction system, wherein the formula for periodic trigonometric function conversion is:

Figure 02_image001
Figure 02_image001
.

Figure 02_image003
Figure 02_image003
.

Figure 02_image005
Figure 02_image005
.

Figure 02_image007
Figure 02_image007
.

Figure 02_image009
為年的週期性參數、
Figure 02_image011
為月的週期性參數、
Figure 02_image013
為週的週期性參數、
Figure 02_image015
為日的週期性參數、month為月、week為週、day為日、hour為小時、min為分鐘、sec為秒。
Figure 02_image009
is the annual periodic parameter,
Figure 02_image011
is the monthly periodic parameter,
Figure 02_image013
is the periodic parameter of the week,
Figure 02_image015
is the periodic parameter of the day, month is the month, week is the week, day is the day, hour is the hour, min is the minute, and sec is the second.

該次要步驟(A2-3)為該溫度預測系統根據該次要步驟(A2-2)的轉換結果連同該N個環境參數組合產生該N個預處理結果。The secondary step (A2-3) is for the temperature prediction system to generate the N preprocessing results according to the conversion result of the secondary step (A2-2) together with the N environmental parameter combinations.

再參閱圖1,該步驟(B)為離群資料分析及歸一化,具體而言,為該溫度預測系統對該N個預處理結果分別執行資料統計運算而得到N個資料篩選結果。Referring to FIG. 1 again, the step (B) is outlier data analysis and normalization. Specifically, the temperature prediction system performs data statistical operations on the N preprocessing results to obtain N data screening results.

配合參閱圖4,該步驟(B)包括以一子步驟(B1),及一子步驟(B2)。Referring to FIG. 4 , the step (B) includes a sub-step (B1) and a sub-step (B2).

(B1)該溫度預測系統對該N個預處理結果執行離群值分析。(B1) The temperature prediction system performs outlier analysis on the N preprocessing results.

(B2)該溫度預測系統對該子步驟(B1)的結果進行歸一化運算得到該N個資料篩選結果,該等資料篩選結果分別可表示為X t、X t-1、X t-2、X t-3、X t-4…。 (B2) The temperature prediction system normalizes the result of the sub-step (B1) to obtain the N data screening results, and the data screening results can be expressed as X t , X t-1 , X t-2 respectively , X t-3 , X t-4 . . .

在該子步驟(B2)中,歸一化運算公式為feature=

Figure 02_image017
,feature為對執行離群分析後的預處理結果中的室內溫度、室外溫度、溼度、PM2.5…等特徵值、max(feature)為該特徵值中的最大值、min(feature)為該特徵值中的最小值。 In this sub-step (B2), the normalization formula is feature=
Figure 02_image017
, feature is the feature value of indoor temperature, outdoor temperature, humidity, PM2.5, etc. in the preprocessing result after performing outlier analysis, max(feature) is the maximum value of the feature values, min(feature) is the The smallest value among the eigenvalues.

第二階段:考量空氣品質變數,詳述如以下步驟。Stage 2: Consider air quality variables, as detailed in the following steps.

再參閱圖1,該步驟(C)為該溫度預測系統對該N個資料篩選結果分別執行非監督學習演算法而得到N個資料維度轉換結果,每一資料維度轉換結果分別可表示為X’ t、X’ t-1、X’ t-2、X’ t-3、X’ t-4…。 Referring to FIG. 1 again, in step (C), the temperature prediction system executes an unsupervised learning algorithm on the N data screening results respectively to obtain N data dimension conversion results, and each data dimension conversion result can be represented as X' t , X' t-1 , X' t-2 , X' t-3 , X' t-4 . . .

配合參閱圖5,該步驟(C)進一步包括一子步驟(C1)、一子步驟(C2)、一子步驟(C3)、一子步驟(C4),及一子步驟(C5)。Referring to FIG. 5 , the step (C) further includes a sub-step ( C1 ), a sub-step ( C2 ), a sub-step ( C3 ), a sub-step ( C4 ), and a sub-step ( C5 ).

該子步驟(C1)為該溫度預測系統對每一資料篩選結果執行維度下降轉換(例如Encoder轉換)而各自得到一對應的編碼結果。The sub-step ( C1 ) is for the temperature prediction system to perform dimension down transformation (eg, Encoder transformation) on each data screening result to obtain a corresponding encoding result.

該子步驟(C2)為該溫度預測系統對每一編碼結果執行維度提升轉換(例如Decoder轉換)而各自得到一對應的解碼結果。The sub-step (C2) is for the temperature prediction system to perform dimension-lifting transformation (eg, Decoder transformation) on each encoding result to obtain a corresponding decoding result.

該子步驟(C3)為該溫度預測系統根據每一編碼結果與對應的解碼結果各自生成一對應的損失函數,每一損失函數相關於對應的解碼結果與資料篩選結果的歐氏幾何距離,其中,該損失函數的運算式為L=||DE(X’ t)−X t||=||DE(EN(X t))−X t||),L為該損失函數,X t為資料篩選結果,X ’t為資料維度轉換結果,EN(X t)為該編碼結果,DE(EN(X t))為該解碼結果,DE(X’ t)為將該編碼結果執行維度提升轉換,神經網路進行優化的過程中則利用該損失函數進行梯度下降法,逐步修正優化。 In this sub-step (C3), the temperature prediction system generates a corresponding loss function according to each encoding result and the corresponding decoding result, and each loss function is related to the Euclidean geometric distance between the corresponding decoding result and the data screening result, wherein , the operation formula of the loss function is L=||DE(X' t )−X t ||=||DE(EN(X t ))−X t ||), L is the loss function, X t is The data screening result, X 't is the data dimension conversion result, EN(X t ) is the encoding result, DE(EN(X t )) is the decoding result, and DE(X' t ) is the dimension promotion of the encoding result In the process of optimizing the neural network, the loss function is used to carry out the gradient descent method, and the optimization is gradually corrected.

該子步驟(C4)為該溫度預測系統預設一第一臨界值,並分別判斷每一損失函數對應的值是否小於該第一臨界值。The sub-step (C4) presets a first threshold value for the temperature prediction system, and determines whether the value corresponding to each loss function is smaller than the first threshold value.

該子步驟(C5)為若該子步驟(C4)的判斷結果為是,則將對應的編碼結果指示為該資料維度轉換結果。In the sub-step (C5), if the judgment result of the sub-step (C4) is yes, indicating the corresponding encoding result as the data dimension conversion result.

第三階段:連續時間空氣品質預測,詳述如以下步驟。The third stage: continuous time air quality prediction, detailed as the following steps.

再參閱圖1,該步驟(D)為該溫度預測系統對該等資料維度轉換結果執行一類神經網路轉換以得到一溫度預測模型,須再補充的是,該類神經網路轉換的演算法為自我注意機制。Referring to FIG. 1 again, the step (D) is for the temperature prediction system to perform a type of neural network transformation on the data dimension transformation results to obtain a temperature prediction model. It should be added that the algorithm for this type of neural network transformation is for the self-attention mechanism.

該步驟(E)為向量轉換、計算輸入向量分數,及結合類神經網路結構,具體而言,為該溫度預測系統先以該溫度預測模型對其中一資料維度轉換結果運算以產生一預測溫度,具體而言,該溫度預測模型先將該資料維度轉換結果轉換為自我注意機制演算法中的三個Key、Query、Value向量而產生三個對應的類神經網路模型,接著對三個類神經網路模型執行softmax運算而得到一對應的向量結果a t-1,需再說明的是,在該步驟(E)中,亦可對每一資料維度轉換結果轉換為對應的Key、Query、Value向量而產生對應的類神經網路模型,並將該等資料維度轉換結果定的類神經網路模型執行softmax運算而得到該向量結果。根據每一個不同時間點 T,我們都可以藉此獲得各自的向量結果a T,利用 T=t-2、T=t-1以及T=t 所生成的a t-2、a t- 1及a t配合真實資料的X t-2、X t-1及X t,結合Encoder 架構進行數個時間點Y’ t、Y’ t+1及Y’ t+2的預測。 The step (E) is vector conversion, calculation of the input vector score, and combination of a neural network structure. Specifically, the temperature prediction system first uses the temperature prediction model to perform an operation on one of the data dimension conversion results to generate a predicted temperature , specifically, the temperature prediction model first converts the data dimension conversion result into three Key, Query, and Value vectors in the self-attention mechanism algorithm to generate three corresponding neural network models, and then analyzes the three types of neural network models. The neural network model performs the softmax operation to obtain a corresponding vector result a t-1 . It should be noted that in this step (E), the conversion result of each data dimension can also be converted into the corresponding Key, Query, Value vector to generate a corresponding neural network model, and perform the softmax operation on the neural network model determined by the dimension conversion result of the data to obtain the vector result. According to each different time point T, we can obtain the respective vector results a T , using the at-2, at-11 generated by T=t- 2 , T= t - 1 and T=t and at with the X t-2 , X t -1 and X t of the real data, combined with the Encoder architecture to predict several time points Y' t , Y' t+1 and Y' t+2 .

該步驟(F)為該溫度預測系統預設一門檻值,該溫度預測系統將該後面數個時間點的預測溫度與同一時間所對應的實際溫度進行比較而得到一比較結果,若該比較結果高於該門檻值,也就是預測溫度將高於門檻值,則可提醒使用者進行空調的調整或是進行自動空調制御(控制)。In step (F), a threshold value is preset for the temperature prediction system, and the temperature prediction system compares the predicted temperature at the following several time points with the actual temperature corresponding to the same time to obtain a comparison result, if the comparison result If it is higher than the threshold value, that is, the predicted temperature will be higher than the threshold value, the user can be reminded to adjust the air conditioner or perform automatic air conditioner control (control).

綜上所述,考量多時間點的多種環境參數作為輸入特徵進行溫度預測,其中輸入特徵為溫度、濕度、二氧化碳濃度..等組合,並利用深度學習模型進行特徵萃取及特徵編碼,以建立自適應機制,並可根據溫度變化自動重新訓練模型,進而取代舊模型達成優化效果,故確實達成本發明的創作目的。In summary, a variety of environmental parameters at multiple time points are considered as input features for temperature prediction, where the input features are a combination of temperature, humidity, carbon dioxide concentration, etc., and a deep learning model is used for feature extraction and feature encoding to establish a self- The adaptive mechanism can automatically retrain the model according to the temperature change, and then replace the old model to achieve the optimization effect, so the creative purpose of the present invention is indeed achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and should not limit the scope of implementation of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the patent specification are still included in the scope of the present invention. within the scope of the invention patent.

A:步驟 B:步驟 C:步驟 D:步驟 E:步驟 F:步驟 A1:子步驟 A2:子步驟 B1:子步驟 B2:子步驟 C1:子步驟 C2:子步驟 C3:子步驟 C4:子步驟 C5:子步驟 A2-1:次要步驟 A2-2:次要步驟 A2-3:次要步驟A: Step B: Step C: step D: step E: step F: Step A1: Substep A2: Substep B1: Substep B2: Substep C1: Substep C2: Substep C3: Substep C4: Substep C5: Substeps A2-1: Secondary steps A2-2: Secondary steps A2-3: Secondary steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1為一流程圖,說明本發明溫度預測方法的一實施例; 圖2為一流程圖,說明該實施例的一步驟(A); 圖3為一流程圖,說明該實施例的一子步驟(A2); 圖4為一流程圖,說明該實施例的一步驟(B);及 圖5為一流程圖,說明該實施例的一步驟(C)。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: FIG. 1 is a flow chart illustrating an embodiment of the temperature prediction method of the present invention; Figure 2 is a flow chart illustrating a step (A) of this embodiment; FIG. 3 is a flowchart illustrating a sub-step (A2) of this embodiment; Figure 4 is a flow chart illustrating a step (B) of this embodiment; and FIG. 5 is a flowchart illustrating a step (C) of this embodiment.

A:步驟 A: Step

B:步驟 B: Step

C:步驟 C: step

D:步驟 D: step

E:步驟 E: step

F:步驟 F: Step

Claims (10)

一種溫度預測方法,由一溫度預測系統執行,該溫度預測方法包含:(A)該溫度預測系統根據N個不同時間點的環境參數組合預處理分別產生N個預處理結果,每一環境參數組合包括M個環境參數,每一環境參數各自至少為溫度、濕度、懸浮微粒其中之一;(B)該溫度預測系統對該N個預處理結果分別執行資料統計運算而得到N個資料篩選結果;(C)該溫度預測系統對該N個資料篩選結果分別執行非監督學習演算法而得到N個資料維度轉換結果;(D)該溫度預測系統對該等資料維度轉換結果執行一類神經網路轉換以得到一溫度預測模型;及(E)該溫度預測系統以該溫度預測模型對其中一資料維度轉換結果運算以產生一預測溫度。 A temperature prediction method, executed by a temperature prediction system, the temperature prediction method comprising: (A) the temperature prediction system generates N preprocessing results respectively according to the combination of environmental parameters at N different time points, and each combination of environmental parameters Including M environmental parameters, each of which is at least one of temperature, humidity, and suspended particles; (B) the temperature prediction system respectively performs data statistical operations on the N preprocessing results to obtain N data screening results; (C) The temperature prediction system performs an unsupervised learning algorithm on the N data screening results to obtain N data dimension conversion results; (D) The temperature prediction system performs a type of neural network conversion on the data dimension conversion results. to obtain a temperature prediction model; and (E) the temperature prediction system uses the temperature prediction model to operate on a data dimension conversion result to generate a predicted temperature. 如請求項1所述的溫度預測方法,更包括一步驟(F),該溫度預測系統預設一門檻值,該溫度預測系統將該預測溫度與同一時間所對應的實際溫度進行比較而得到一比較結果,若該比較結果不低於該門檻值,則回到該步驟(A)。 The temperature prediction method according to claim 1, further comprising a step (F), wherein the temperature prediction system presets a threshold value, and the temperature prediction system compares the predicted temperature with the actual temperature corresponding to the same time to obtain a The comparison result, if the comparison result is not lower than the threshold value, go back to the step (A). 如請求項1所述的溫度預測方法,該步驟(A)包括以下子步驟,(A1)該溫度預測系統分別於N個時間點對一室內空間的溫度、濕度、懸浮微粒進行偵測以得到該N個環境 參數組合,及(A2)該溫度預測系統分別對N個環境參數組合各自的M個環境參數執行一預處理運算,而得到該N個預處理結果,該預處理運算為根據每一環境參數組合當下對應的時間點進行週期性弦波函數轉換。 The temperature prediction method according to claim 1, the step (A) includes the following sub-steps: (A1) The temperature prediction system detects the temperature, humidity and suspended particles of an indoor space at N time points respectively to obtain the N environments parameter combination, and (A2) the temperature prediction system respectively performs a preprocessing operation on the respective M environmental parameters of the N environmental parameter combinations, and obtains the N preprocessing results, the preprocessing operation is based on each environmental parameter combination The periodic sine wave function conversion is performed at the corresponding time point at the moment. 如請求項3所述的溫度預測方法,其中,該子步驟(A2)包括以下次要步驟,(A2-1)該溫度預測系統記錄每一環境參數組合當下對應的一時間參數,該時間參數包括年、月、週、日、小時、分鐘、秒,(A2-2)該溫度預測系統將每一時間參數進行週期性三角函數轉換,及(A2-3)該溫度預測系統根據該次要步驟(A2-2)的轉換結果連同該N個環境參數組合產生該N個預處理結果。 The temperature prediction method according to claim 3, wherein the sub-step (A2) includes the following secondary steps: (A2-1) The temperature prediction system records a time parameter corresponding to each combination of environmental parameters, the time parameter Including year, month, week, day, hour, minute, second, (A2-2) the temperature prediction system performs periodic trigonometric function conversion for each time parameter, and (A2-3) the temperature prediction system according to the secondary The conversion result of step (A2-2) is combined with the N environmental parameters to generate the N preprocessing results. 如請求項4所述的溫度預測方法,其中,該次要步驟(A2-2)進行週期性三角函數轉換的公式為,
Figure 110128498-A0305-02-0012-2
Figure 110128498-A0305-02-0012-1
為年的週期性參數、
Figure 110128498-A0305-02-0012-4
為月的週期性 參數、
Figure 110128498-A0305-02-0012-3
為週的週期性參數、
Figure 110128498-A0305-02-0012-5
為日的週期 性參數、month為月、week為週、day為日、hour為小 時、min為分鐘、sec為秒。
The temperature prediction method according to claim 4, wherein the formula for performing periodic trigonometric function conversion in the secondary step (A2-2) is,
Figure 110128498-A0305-02-0012-2
Figure 110128498-A0305-02-0012-1
is the annual periodic parameter,
Figure 110128498-A0305-02-0012-4
is the monthly periodic parameter,
Figure 110128498-A0305-02-0012-3
is the periodic parameter of the week,
Figure 110128498-A0305-02-0012-5
is the periodic parameter of the day, month is the month, week is the week, day is the day, hour is the hour, min is the minute, and sec is the second.
如請求項1所述的溫度預測方法,其中,該步驟(B)包括以下子步驟,(B1)該溫度預測系統對該N個預處理結果執行離群值分析,及(B2)該溫度預測系統對該子步驟(B1)的結果進行歸一化運算得到該N個資料篩選結果。 The temperature prediction method of claim 1, wherein the step (B) includes the following sub-steps, (B1) the temperature prediction system performs outlier analysis on the N preprocessing results, and (B2) the temperature prediction The system performs a normalization operation on the results of the sub-step (B1) to obtain the N data screening results. 如請求項6所述的溫度預測方法,其中,在該子步驟(B2) 中,歸一化運算公式為
Figure 110128498-A0305-02-0013-6
, feature為對執行離群分析後的預處理結果中的…、max(feature)為特徵值中的最大值、min(feature)為特徵值中的最小值。
The temperature prediction method according to claim 6, wherein, in the sub-step (B2), the normalization formula is:
Figure 110128498-A0305-02-0013-6
, feature is ... in the preprocessing result after performing outlier analysis, max(feature) is the maximum value among the feature values, and min(feature) is the minimum value among the feature values.
如請求項1所述的溫度預測方法,其中,該步驟(C)包括以下子步驟,(C1)該溫度預測系統對每一資料篩選結果執行維度下降轉換而各自得到一對應的編碼結果,(C2)該溫度預測系統對每一編碼結果執行維度提升轉換而各自得到一對應的解碼結果,(C3)該溫度預測系統根據每一編碼結果與對應的解碼結果各自生成一對應的損失函數,每一損失函數相關於對應的解碼結果與資料篩選結果的歐氏幾何距離,(C4)該溫度預測系統預設一第一臨界值,並分別判斷每一損失函數對應的值是否小於該第一臨界值,及 (C5)若是,則該溫度預測系統將對應的編碼結果指示為該資料維度轉換結果。 The temperature prediction method according to claim 1, wherein the step (C) includes the following sub-steps, (C1) the temperature prediction system performs dimension down conversion on each data screening result to obtain a corresponding encoding result, ( C2) The temperature prediction system performs dimension lifting transformation on each encoding result to obtain a corresponding decoding result, (C3) The temperature prediction system generates a corresponding loss function according to each encoding result and the corresponding decoding result, and each A loss function is related to the Euclidean geometric distance between the corresponding decoding result and the data screening result. (C4) The temperature prediction system presets a first critical value, and respectively determines whether the value corresponding to each loss function is smaller than the first critical value value, and (C5) If yes, the temperature prediction system indicates the corresponding coding result as the data dimension conversion result. 如請求項8所述的溫度預測方法,其中,該損失函數的運算式為L=∥DE(X’t)-Xt∥=∥DE(EN(Xt))-Xt∥),L為該損失函數,Xt為資料篩選結果,X’t為資料維度轉換結果,EN(Xt)為編碼結果,DE(EN(Xt))為解碼結果,DE(X’t)為將該編碼結果執行維度提升轉換。 The temperature prediction method according to claim 8, wherein the loss function has an operation formula L=∥DE(X' t )-X t ∥=∥DE(EN(X t ))-X t ∥), L is the loss function, X t is the data screening result, X 't is the data dimension conversion result, EN(X t ) is the encoding result, DE(EN(X t )) is the decoding result, DE(X' t ) is the The encoded result performs a dimension lifting transformation. 如請求項1所述的溫度預測方法,其中,在該步驟(D)中,該類神經網路轉換的演算法為自我注意機制。 The temperature prediction method according to claim 1, wherein, in the step (D), the algorithm converted by the neural network is a self-attention mechanism.
TW110128498A 2021-08-03 2021-08-03 temperature prediction method TWI764799B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110128498A TWI764799B (en) 2021-08-03 2021-08-03 temperature prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110128498A TWI764799B (en) 2021-08-03 2021-08-03 temperature prediction method

Publications (2)

Publication Number Publication Date
TWI764799B true TWI764799B (en) 2022-05-11
TW202307714A TW202307714A (en) 2023-02-16

Family

ID=82594410

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110128498A TWI764799B (en) 2021-08-03 2021-08-03 temperature prediction method

Country Status (1)

Country Link
TW (1) TWI764799B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110008575A (en) * 2019-03-29 2019-07-12 重庆大学 Recirculating cooling water system processing medium multi-temperature target set point switches multi-parameter prediction control algolithm
CN110175386A (en) * 2019-05-21 2019-08-27 陕西科技大学 Substation Electric Equipment temperature predicting method
CN112307410A (en) * 2020-09-18 2021-02-02 天津大学 Seawater temperature and salinity information time sequence prediction method based on shipborne CTD measurement data
US20210073066A1 (en) * 2019-09-05 2021-03-11 Micron Technology, Inc. Temperature based Optimization of Data Storage Operations
TWI729627B (en) * 2019-12-17 2021-06-01 財團法人金屬工業研究發展中心 On-line size prediction method for fastener and on-line size prediction system for fastener

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110008575A (en) * 2019-03-29 2019-07-12 重庆大学 Recirculating cooling water system processing medium multi-temperature target set point switches multi-parameter prediction control algolithm
CN110175386A (en) * 2019-05-21 2019-08-27 陕西科技大学 Substation Electric Equipment temperature predicting method
US20210073066A1 (en) * 2019-09-05 2021-03-11 Micron Technology, Inc. Temperature based Optimization of Data Storage Operations
TWI729627B (en) * 2019-12-17 2021-06-01 財團法人金屬工業研究發展中心 On-line size prediction method for fastener and on-line size prediction system for fastener
CN112307410A (en) * 2020-09-18 2021-02-02 天津大学 Seawater temperature and salinity information time sequence prediction method based on shipborne CTD measurement data

Also Published As

Publication number Publication date
TW202307714A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
Liang et al. An unsupervised user behavior prediction algorithm based on machine learning and neural network for smart home
US20220282884A1 (en) Machine learning device, demand control system and air-conditioner control system
CN109492748B (en) Method for establishing medium-and-long-term load prediction model of power system based on convolutional neural network
CN112631139B (en) Intelligent household instruction reasonability real-time detection system and method
CN116832588B (en) Acid regeneration flue gas purifying device and method thereof
CN115115284B (en) Energy consumption analysis method based on neural network
US20220309292A1 (en) Growing labels from semi-supervised learning
CN111950195A (en) Engineering progress prediction method based on portrait system and depth regression model
CN111271829B (en) Air conditioner intelligent refrigeration comfort control method based on deep learning and air conditioner
CN116432697A (en) Time sequence prediction method integrating long-term memory network and attention mechanism
CN116503118A (en) Waste household appliance value evaluation system based on classification selection reinforcement prediction model
CN115424615A (en) Intelligent equipment voice control method, device, equipment and storage medium
TWI764799B (en) temperature prediction method
CN113177355B (en) Power load prediction method
CN112651534A (en) Method, device and storage medium for predicting resource supply chain demand
CN112839104A (en) Feedback processing method applied to big data push service and machine learning server
CN117032363A (en) Energy-saving type building energy efficiency tracking control management system and method
CN109635008B (en) Equipment fault detection method based on machine learning
Zhai et al. Combining PSO-SVR and Random Forest Based Feature Selection for Day-ahead Peak Load Forecasting.
WO2023173596A1 (en) Statement text intention recognition method and apparatus, storage medium, and electronic apparatus
CN116976461A (en) Federal learning method, apparatus, device and medium
Kanan et al. Reduction of neural network training time using an adaptive fuzzy approach in real time applications
CN115358473A (en) Power load prediction method and prediction system based on deep learning
CN116050579A (en) Building energy consumption prediction method and system based on depth feature fusion network
JPH08202388A (en) Voice recognition device and voice recognition method