TWI764444B - Constant current source generating circuit, LED display driver chip, LED display device, and information processing device - Google Patents

Constant current source generating circuit, LED display driver chip, LED display device, and information processing device

Info

Publication number
TWI764444B
TWI764444B TW109144792A TW109144792A TWI764444B TW I764444 B TWI764444 B TW I764444B TW 109144792 A TW109144792 A TW 109144792A TW 109144792 A TW109144792 A TW 109144792A TW I764444 B TWI764444 B TW I764444B
Authority
TW
Taiwan
Prior art keywords
current
terminal
coupled
output
unit
Prior art date
Application number
TW109144792A
Other languages
Chinese (zh)
Other versions
TW202226197A (en
Inventor
馬英杰
Original Assignee
大陸商北京集創北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商北京集創北方科技股份有限公司 filed Critical 大陸商北京集創北方科技股份有限公司
Priority to TW109144792A priority Critical patent/TWI764444B/en
Application granted granted Critical
Publication of TWI764444B publication Critical patent/TWI764444B/en
Publication of TW202226197A publication Critical patent/TW202226197A/en

Links

Images

Abstract

一種恒流源產生電路,應用於一LED顯示驅動晶片,其包括:一基準電流產生單元,耦接一第一參考電壓與一外設電阻,用以產生一基準電流;一電流鏡像單元,具有一電流鏡和一第一分組主動負載單元,其中該電流鏡用以依一第一電流鏡像比例對所述基準電流執行一第一電流鏡像處理以產生一第一電流,該第一分組主動負載單元具有依多個選擇信號之控制所組成之一第一等效電晶體,且係依一負回授機制產生一啟用電壓以驅動該第一等效電晶體,以使該第一等效電晶體之通道在一第二參考電壓之偏壓下所產生的電流等於該第一電流;以及一輸出電流產生單元,耦接該電流鏡像單元,且具有一第二分組主動負載單元,其中該第二分組主動負載單元具有依所述多個選擇信號之控制所組成之一第二等效電晶體,且係依該啟用電壓驅動該第二等效電晶體,以使該第二等效電晶體之通道在該第二參考電壓之偏壓下產生一輸出電流。簡單地說,本發明可依不同的輸出電流選擇不同的等效電晶體以提升輸出電流的精度。A constant current source generating circuit, applied to an LED display driving chip, comprises: a reference current generating unit coupled to a first reference voltage and a peripheral resistor for generating a reference current; a current mirroring unit having a current mirror and a first group of active load units, wherein the current mirror is used for performing a first current mirror process on the reference current according to a first current mirror ratio to generate a first current, the first group of active loads The unit has a first equivalent transistor formed according to the control of a plurality of selection signals, and generates an enabling voltage according to a negative feedback mechanism to drive the first equivalent transistor, so that the first equivalent transistor is The current generated by the channel of the crystal under the bias of a second reference voltage is equal to the first current; and an output current generating unit is coupled to the current mirror unit and has a second group of active load units, wherein the first Two groups of active load units have a second equivalent transistor formed according to the control of the plurality of selection signals, and drive the second equivalent transistor according to the enable voltage, so that the second equivalent transistor The channel generates an output current under the bias of the second reference voltage. In short, the present invention can select different equivalent transistors according to different output currents to improve the accuracy of the output current.

Description

恒流源產生電路、LED顯示驅動晶片、LED顯示裝置、及資訊處理裝置Constant current source generating circuit, LED display driver chip, LED display device, and information processing device

本發明係關於電子電路之技術領域,尤指應用於LED顯示驅動晶片之中的一種恒流源產生電路。 The present invention relates to the technical field of electronic circuits, in particular to a constant current source generating circuit applied in LED display driving chips.

圖1顯示習知的一種LED顯示裝置的架構圖。如圖1所示,習知的LED顯示裝置1a包括:包含X×Y個LED子畫素111a的一LED顯示面板11a、一列驅動單元12a、一行驅動單元13a、以及一顯示控制器14a。熟悉LED顯示驅動晶片之設計與製作的電子工程師都知道,該行驅動單元13a通常包含複數個行驅動晶片131a,且複數個所述行驅動晶片131a之使用數量係決定於該LED顯示面板11a的分辨率(解析度)和所述行驅動晶片131a的驅動通道數。 FIG. 1 shows a structure diagram of a conventional LED display device. As shown in FIG. 1, the conventional LED display device 1a includes: an LED display panel 11a including X×Y LED sub-pixels 111a, a column driving unit 12a, a row driving unit 13a, and a display controller 14a. Electronic engineers who are familiar with the design and manufacture of LED display driver chips know that the row driver unit 13a usually includes a plurality of row driver chips 131a, and the number of the plurality of row driver chips 131a used depends on the size of the LED display panel 11a. Resolution (resolution) and the number of drive channels of the row drive wafer 131a.

更詳細地說明,該行驅動晶片131a包含一恒流源產生電路,用以產生一恒驅動電流從而通過對應的驅動通道傳送至該LED顯示面板11a,進而驅動指定的LED子畫素111a發光。圖2顯示包含於行驅動晶片131a之一恒流源產生電路的方塊圖,且圖3顯示該恒流源產生電路的拓樸結構圖。如圖2與圖3所示,習知的恒流源產生電路2a包括一基準電流產生單元21a、一電流鏡像單元22a以及一輸出電流產生單元23a。 In more detail, the row driving chip 131a includes a constant current source generating circuit for generating a constant driving current to transmit to the LED display panel 11a through the corresponding driving channel, thereby driving the designated LED sub-pixel 111a to emit light. FIG. 2 shows a block diagram of a constant current source generating circuit included in the row driving chip 131a, and FIG. 3 shows a topological structure diagram of the constant current source generating circuit. As shown in FIG. 2 and FIG. 3 , the conventional constant current source generating circuit 2a includes a reference current generating unit 21a, a current mirroring unit 22a and an output current generating unit 23a.

如圖3所示,該基準電流產生單元21a包括一第一運算放大器OP0a以及一外設電阻REXT,且其用以生成一基準電流I0。其中,該第一運算放大器OP0a的負輸入端耦接一參考電壓VREF,且其正輸入端與輸出端耦接於一第一共接點CN1a。圖3還繪示該外設電阻REXT亦耦接至該第一共接點CN1a。依此設計,所述基準電流I0可利用下式(a)計算獲得:

Figure 109144792-A0305-02-0003-1
As shown in FIG. 3 , the reference current generating unit 21a includes a first operational amplifier OP0a and a peripheral resistor R EXT for generating a reference current I 0 . The negative input terminal of the first operational amplifier OP0a is coupled to a reference voltage V REF , and the positive input terminal and the output terminal of the first operational amplifier OP0a are coupled to a first common node CN1a. FIG. 3 also shows that the peripheral resistor R EXT is also coupled to the first common contact CN1a. According to this design, the reference current I 0 can be calculated and obtained by the following formula (a):
Figure 109144792-A0305-02-0003-1

另一方面,該電流鏡像單元22a用以將所述基準電流I0作一電流鏡像處理,且其包括:由一第一P型MOSFET元件PM0a和至少一個第二P型 MOSFET元件PM1a組成的一個電流鏡、一第二運算放大器OP1a以及一第一N型MOSFET元件NM0a。更詳細地說明,在第一P型MOSFET元件PM0a與第二P型MOSFET元件PM1a具有相同的元件參數的基礎下,此電流鏡之電流鏡像比例即由第二P型MOSFET元件PM1a和第一P型MOSFET元件PM0a之間的一元件個數比例所決定。如圖2與圖3所示,完成所述基準電流I0之電流鏡像處理後,該電流鏡像單元22a生成一第一電流I1,且該第一電流I1即第一N型MOSFET元件NM0a的汲極電流,其可利用下式(b)計算獲得:I 1=K.I 0……………………………(b) On the other hand, the current mirror unit 22a is used to perform a current mirror process on the reference current I 0 , and includes: a first P-type MOSFET element PM0a and at least one second P-type MOSFET element PM1a. A current mirror, a second operational amplifier OP1a and a first N-type MOSFET element NM0a. In more detail, on the basis that the first P-type MOSFET element PM0a and the second P-type MOSFET element PM1a have the same element parameters, the current mirror ratio of the current mirror is determined by the second P-type MOSFET element PM1a and the first P-type MOSFET element PM1a. It is determined by the ratio of the number of one element between the MOSFET elements PM0a. As shown in FIG. 2 and FIG. 3 , after the current mirroring process of the reference current I0 is completed, the current mirroring unit 22a generates a first current I1, and the first current I1 is the drain of the first N-type MOSFET element NM0a. pole current, which can be calculated by the following formula (b): I 1 =K. I 0 …………………………(b)

如圖3所示,該輸出電流產生單元23a包括:一第三運算放大器OP2a、一第二N型MOSFET元件NM1a以及至少一第三N型MOSFET元件NM2a。其中,第一N型MOSFET元件NM0a、第二N型MOSFET元件NM1a和第三N型MOSFET元件NM2a分別具有閘極電壓Vg0、Vg1與Vg2,且Vg1=Vg2。並且,第一N型MOSFET元件NM0a、第二N型MOSFET元件NM1a和第三N型MOSFET元件NM2a分別具有汲極電壓Vd0、Vd1與Vd2。 As shown in FIG. 3, the output current generating unit 23a includes: a third operational amplifier OP2a, a second N-type MOSFET element NM1a, and at least one third N-type MOSFET element NM2a. The first N-type MOSFET element NM0a, the second N-type MOSFET element NM1a and the third N-type MOSFET element NM2a have gate voltages Vg0, Vg1 and Vg2 respectively, and Vg1=Vg2. Also, the first N-type MOSFET element NM0a, the second N-type MOSFET element NM1a, and the third N-type MOSFET element NM2a have drain voltages Vd0, Vd1, and Vd2, respectively.

依據該輸出電流產生單元23a之電路設計,只要Vg1=Vg2且Vd1=Vd2,則第二N型MOSFET元件NM1a的汲極電流(即,第一電流I1)即等於第三N型MOSFET元件NM2a的汲極電流(即,第二電流I2)。換句話說,第二N型MOSFET元件NM1a和第一N型MOSFET元件NM0a係跨單元組成另一個電流鏡,其中電流鏡像比例由第二N型MOSFET元件NM1a和第一N型MOSFET元件NM0a之間的一元件個數比例所決定。最終,通過第三N型MOSFET元件NM2a的汲極端輸出的一輸出電流Iout可利用下式(c)、(d)計算獲得:

Figure 109144792-A0305-02-0004-3
According to the circuit design of the output current generating unit 23a, as long as Vg1=Vg2 and Vd1=Vd2, the drain current of the second N-type MOSFET element NM1a (ie, the first current I1) is equal to that of the third N-type MOSFET element NM2a. Drain current (ie, second current I2). In other words, the second N-type MOSFET element NM1a and the first N-type MOSFET element NM0a form another current mirror across the cell, wherein the current mirror ratio is determined by the difference between the second N-type MOSFET element NM1a and the first N-type MOSFET element NM0a It is determined by the proportion of the number of a component. Finally, an output current Iout outputted through the drain terminal of the third N-type MOSFET element NM2a can be calculated and obtained by using the following equations (c) and (d):
Figure 109144792-A0305-02-0004-3

Figure 109144792-A0305-02-0004-4
Figure 109144792-A0305-02-0004-4

對照圖3可知,第一N型MOSFET元件NM0a和第二N型MOSFET元件NM1a的元件個數比例為M:N。應可理解,透過調整外設電阻REXT電阻值及/或電流鏡像比例可以調控輸出電流Iout的值。因此,熟悉行驅動晶片131a 之設計與製造的電子工程師都知道,習知的恒流源產生電路2a具有以下特點: Referring to FIG. 3 , it can be seen that the ratio of the number of elements of the first N-type MOSFET element NM0a and the second N-type MOSFET element NM1a is M:N. It should be understood that the value of the output current Iout can be regulated by adjusting the resistance value of the peripheral resistor R EXT and/or the current mirror ratio. Therefore, electronic engineers who are familiar with the design and manufacture of the row driver chip 131a know that the conventional constant current source generating circuit 2a has the following characteristics:

(1)在設計恒流源產生電路2a之時,必須將第一N型MOSFET元件NM0a與第二N型MOSFET元件NM1的元件個數比例(即電流鏡像比例)設定在一個較佳值,如此才能在滿足輸出電流Iout的調控精度的情況下降低第一N型MOSFET元件NM0a的支路電流(即,I1),以合理的降低系統電路的靜態功耗。 (1) When designing the constant current source generating circuit 2a, the ratio of the number of elements (ie, the current mirror ratio) of the first N-type MOSFET element NM0a and the second N-type MOSFET element NM1 must be set to an optimal value, so that The branch current (ie, I1 ) of the first N-type MOSFET element NM0a can be reduced under the condition of satisfying the regulation accuracy of the output current Iout, so as to reasonably reduce the static power consumption of the system circuit.

(2)當恒流源產生電路2a應用在行驅動晶片131a之中時,其會依據顯示需求而多路輸出恒驅動電流至LED顯示面板11a。應知道,所述恒驅動電流為PWM形式以利於控制每個LED子畫素111a的顯示灰度。因此,如圖3所示,在電流鏡像單元22a引入了控制信號VCRES用以控制第一電流I1以PWM形式輸出至下一級的輸出電流產生單元23a。然而,不停開關切換第一N型MOSFET元件NM0a會在其閘極端衍生噪音信號,造成第一電流I1的輸出不穩定,同時也對第一N型MOSFET元件NM0a和第一運算放大器OP1a之間的負回授環路造成穩定性問題。 (2) When the constant current source generating circuit 2a is applied in the row driving chip 131a, it will multiplex output constant driving current to the LED display panel 11a according to the display requirements. It should be known that the constant driving current is in the form of PWM to facilitate controlling the display gray scale of each LED sub-pixel 111a. Therefore, as shown in FIG. 3 , a control signal V CRES is introduced into the current mirroring unit 22 a to control the first current I1 to be output to the output current generating unit 23 a of the next stage in the form of PWM. However, the continuous switching of the first N-type MOSFET element NM0a will generate a noise signal at the gate terminal thereof, which will cause the output of the first current I1 to be unstable, and also affect the connection between the first N-type MOSFET element NM0a and the first operational amplifier OP1a. The negative feedback loop caused stability problems.

(3)對應於LED子畫素111a的顯示灰度,輸出電流Iout的範圍介於幾毫安(mA)至幾十毫安,這麼大的電流變化範圍有很大的機會造成元件尺寸固定的第一N型MOSFET元件NM0a和第二N型MOSFET元件NM1a的元件操作區域發生改變,如從飽和區改變至線性區,導致多驅動通道的輸出電流Iout缺乏一致性,導致LED顯示面板11a在進行影像顯示時出現色塊現象。 (3) Corresponding to the display grayscale of the LED sub-pixel 111a, the output current Iout ranges from a few milliamps (mA) to several tens of milliamps. Such a large current variation range has a great chance of causing the component size to be fixed. The element operating regions of the first N-type MOSFET element NM0a and the second N-type MOSFET element NM1a are changed, such as changing from the saturation region to the linear region, resulting in a lack of consistency in the output current Iout of the multiple drive channels, resulting in the LED display panel 11a . Color blocks appear when the image is displayed.

由上述說明可知,本領域亟需一種新式的恒流源產生電路。 It can be seen from the above description that a novel constant current source generating circuit is urgently needed in the art.

本發明之主要目的在於提供一種恒流源產生電路,其應用於一LED顯示驅動晶片,且包括一基準電流產生單元、一電流鏡像單元以及一輸出電流產生單元,其中該電流鏡像單元包括一電流鏡和一第一分組主動負載單元,且該輸出電流產生單元包括一電流輸出單元以及一第二分組主動負載單元。正常工作時,該基準電流產生單元產生一基準電流;該電流鏡依一第一電流鏡像比例將該基準電流鏡像轉換為一第一電流;以及依一選擇信號之控制, 該第一分組主動負載單元組成一第一等效電晶體,該第二分組主動負載單元組成一第二等效電晶體,且該第二等效電晶體和該第一等效電晶體之通道長寬比的比例係用以使該輸出電流產生單元的輸出電流和該第一電流成一第二電流鏡像比例。簡單地說,本發明可依不同的輸出電流選擇不同的等效電晶體以提升輸出電流的精度。 The main purpose of the present invention is to provide a constant current source generating circuit, which is applied to an LED display driver chip, and includes a reference current generating unit, a current mirroring unit and an output current generating unit, wherein the current mirroring unit includes a current A mirror and a first grouped active load unit, and the output current generating unit includes a current output unit and a second grouped active load unit. During normal operation, the reference current generating unit generates a reference current; the current mirror converts the reference current mirror into a first current according to a first current mirror ratio; and according to the control of a selection signal, The first group of active load units constitutes a first equivalent transistor, the second group of active load units constitutes a second equivalent transistor, and the channel between the second equivalent transistor and the first equivalent transistor The ratio of the aspect ratio is used to make the output current of the output current generating unit and the first current form a second current mirror ratio. In short, the present invention can select different equivalent transistors according to different output currents to improve the accuracy of the output current.

承上述說明,由於本發明利用所述選擇信號精準設置、調變的輸出電流之大小,因此LED顯示驅動晶片之驅動通道所傳送的輸出電流可以在保持電流精度的情況下依據顯示需求而在幾毫安(mA)至幾十毫安的範圍內進行調整。 According to the above description, since the present invention uses the selection signal to precisely set and modulate the magnitude of the output current, the output current transmitted by the driving channel of the LED display driver chip can be adjusted in several times according to the display requirements while maintaining the current accuracy. Adjustable from milliamps (mA) to tens of milliamps.

為達成上述目的,本發明提出所述恒流源產生電路的一實施例,其包括:一基準電流產生單元,耦接一第一參考電壓與一外設電阻,用以產生一基準電流;一電流鏡像單元,具有一電流鏡和一第一分組主動負載單元,其中該電流鏡用以依一第一電流鏡像比例對所述基準電流執行一第一電流鏡像處理以產生一第一電流,該第一分組主動負載單元具有依X個選擇信號之控制所組成之一第一等效電晶體,X為正整數,且係依一負回授機制產生一啟用電壓以驅動該第一等效電晶體,以使該第一等效電晶體之通道在一第二參考電壓之偏壓下所產生的電流等於該第一電流;以及一輸出電流產生單元,耦接該電流鏡像單元,且具有一電流輸出單元以及一第二分組主動負載單元,其中該第二分組主動負載單元具有依所述X個選擇信號之控制所組成之一第二等效電晶體,且係依該啟用電壓驅動該第二等效電晶體,以使該第二等效電晶體之通道在該第二參考電壓之偏壓下產生一輸出電流,且該電流輸出單元輸出該輸出電流。 In order to achieve the above object, the present invention proposes an embodiment of the constant current source generating circuit, which includes: a reference current generating unit coupled to a first reference voltage and a peripheral resistor for generating a reference current; a The current mirror unit has a current mirror and a first group of active load units, wherein the current mirror is used for performing a first current mirror process on the reference current according to a first current mirror ratio to generate a first current, the The first group of active load units has a first equivalent transistor formed according to the control of X selection signals, X is a positive integer, and generates an enabling voltage according to a negative feedback mechanism to drive the first equivalent transistor a crystal, so that the current generated by the channel of the first equivalent transistor under the bias of a second reference voltage is equal to the first current; and an output current generating unit coupled to the current mirroring unit and having an A current output unit and a second group of active load units, wherein the second group of active load units has a second equivalent transistor formed according to the control of the X selection signals, and drives the first transistor according to the enable voltage Two equivalent transistors, so that the channel of the second equivalent transistor generates an output current under the bias of the second reference voltage, and the current output unit outputs the output current.

在一實施例中,該基準電流產生單元包括:一第一運算放大器,其具有一負輸入端、一正輸入端以及一輸出端,其中該負輸入端耦接所述第一參考電壓,且該正輸入端和該外設電阻耦接於一第一共接點。 In one embodiment, the reference current generating unit includes: a first operational amplifier having a negative input terminal, a positive input terminal and an output terminal, wherein the negative input terminal is coupled to the first reference voltage, and The positive input terminal and the peripheral resistor are coupled to a first common contact.

在一實施例中,該電流鏡包括:一第一P型MOSFET元件,具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一運算放大器之所述輸出端,該汲極端耦接至該第一共接點,且該源極端耦接一工作電壓;以及至少一第二P型MOSFET元件,具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一運算放大器之所述輸出端,且該源極端耦接所述工作電壓。 In one embodiment, the current mirror includes: a first P-type MOSFET element having a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the output terminal of the first operational amplifier, the The drain terminal is coupled to the first common contact, and the source terminal is coupled to a working voltage; and at least one second P-type MOSFET element has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled The output terminal of the first operational amplifier is connected, and the source terminal is coupled to the working voltage.

在一實施例中,該第一分組主動負載單元包括:一第二運算放大器,具有一負輸入端、一正輸入端以及一輸出端,其中該負輸入端耦接所述第二參考電壓S,該正輸入端耦接於一第二共接點,且該輸出端耦接於一第三共接點;以及X個第一主動負載單元,其中各個所述第一主動負載單元包括:一第一開關元件,具有一第一端、一第二端以及一控制端,其中該第一端耦接至該第三共接點,且該控制端耦接一個所述選擇信號;及至少一第一N型MOSFET元件,具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一開關元件之所述第二端,該汲極端耦接至該第二共接點,且該源極端耦接一接地端;其中,該電流鏡將所述第一電流傳送至該第二共接點,且該第二運算放大器在接收所述第二參考電壓之後輸出所述啟用電壓至該第三共接點。 In one embodiment, the first grouped active load unit includes: a second operational amplifier having a negative input terminal, a positive input terminal and an output terminal, wherein the negative input terminal is coupled to the second reference voltage S , the positive input terminal is coupled to a second common contact point, and the output terminal is coupled to a third common contact point; and X first active load units, wherein each of the first active load units includes: a a first switch element, having a first end, a second end and a control end, wherein the first end is coupled to the third common contact, and the control end is coupled to one of the selection signals; and at least one The first N-type MOSFET element has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the second terminal of the first switching element, and the drain terminal is coupled to the second common contact , and the source terminal is coupled to a ground terminal; wherein, the current mirror transmits the first current to the second common node, and the second operational amplifier outputs the enable after receiving the second reference voltage voltage to the third common contact.

在一實施例中,該電流輸出單元包括:一第三運算放大器,具有一負輸入端、一正輸入端以及一輸出端,其中該正輸入端耦接至該第二共接點以接收所述第二參考電壓,且該負輸入端耦接於一第四共接點;以及一電流輸出元件,其為一N型MOSFET元件,且具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第三運算放大器之所述輸出端,該源極端耦接至該第四共接點,且該汲極端作為一電流輸出端。 In one embodiment, the current output unit includes: a third operational amplifier having a negative input terminal, a positive input terminal and an output terminal, wherein the positive input terminal is coupled to the second common contact to receive the the second reference voltage, and the negative input terminal is coupled to a fourth common point; and a current output element, which is an N-type MOSFET element and has a gate terminal, a drain terminal and a source terminal, wherein The gate terminal is coupled to the output terminal of the third operational amplifier, the source terminal is coupled to the fourth common node, and the drain terminal is used as a current output terminal.

在一實施例中,該第二分組主動負載單元包括X個第二主動負 載單元,且各個所述第二主動負載單元包括:一第二開關元件,具有一第一端、一第二端以及一控制端,其中該第一端耦接至一第五共接點,且該控制端耦接一個所述選擇信號;及至少一第二N型MOSFET元件,具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第二開關元件之所述第二端,該汲極端耦接至該第四共接點,且該源極端耦接一接地端;其中,一緩衝器耦接於該第三共接點和該第五共接點之間,用以對所述啟用電壓執行一緩衝處理後,將其輸出至該第五共接點;其中,依據該啟用電壓和至少一個所述選擇信號的控制,至少一個所述第一電流調整單元和至少一個第一電流調整單元被選擇啟用,從而對該第一電流執行所述第二電流鏡像處理以產生所述第二電流。 In one embodiment, the second group of active load cells includes X second active load cells A load unit, and each of the second active load units includes: a second switch element having a first end, a second end and a control end, wherein the first end is coupled to a fifth common contact, and the control terminal is coupled to one of the selection signals; and at least one second N-type MOSFET element has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the first switching element of the second switching element Two terminals, the drain terminal is coupled to the fourth common contact, and the source terminal is coupled to a ground terminal; wherein a buffer is coupled between the third common contact and the fifth common contact, After performing a buffering process on the enable voltage, output it to the fifth common contact; wherein, according to the enable voltage and the control of at least one of the selection signals, at least one of the first current adjustment unit and the At least one first current adjustment unit is selectively enabled to perform the second current mirroring process on the first current to generate the second current.

本發明同時提供一種LED顯示驅動晶片,其特徵在於,所述LED顯示驅動晶片利用如前所述本發明之恒流源產生電路產生至少一通道驅動電流。 The present invention also provides an LED display driver chip, which is characterized in that the LED display driver chip utilizes the constant current source generating circuit of the present invention as described above to generate at least one channel of driving current.

本發明同時提供一種LED顯示裝置,其包括一LED顯示面板、一列驅動單元、包括至少一LED顯示驅動晶片的一行驅動單元、以及一顯示控制器;其特徵在於,所述LED顯示驅動晶片利用如前所述本發明之恒流源產生電路產生至少一通道驅動電流。 The present invention also provides an LED display device, which includes an LED display panel, a column driving unit, a row driving unit including at least one LED display driving chip, and a display controller; characterized in that, the LED display driving chip uses a The aforementioned constant current source generating circuit of the present invention generates at least one channel of driving current.

本發明同時提供一種資訊處理裝置,其包含如前所述本發明之LED顯示裝置。 The present invention also provides an information processing device comprising the LED display device of the present invention as described above.

在一實施例中,該資訊處理裝置是選自於由智慧型手機、智慧手錶、智慧手環、平板電腦、筆記型電腦、一體式電腦、門禁裝置、桌上型電腦、和工業電腦所組成群組之中的一種電子裝置。 In one embodiment, the information processing device is selected from the group consisting of smart phones, smart watches, smart bracelets, tablet computers, notebook computers, all-in-one computers, access control devices, desktop computers, and industrial computers. An electronic device in a group.

1a:LED顯示裝置 1a: LED display device

11a:LED顯示面板 11a: LED display panel

111a:LED子畫素 111a: LED sub-pixel

12a:列驅動模組 12a: Column driver module

13a:行驅動模組 13a: Row driver module

131a:行驅動晶片 131a: row driver chip

14a:顯示控制器 14a: Display Controller

2a:恒流源產生電路 2a: constant current source generation circuit

21a:基準電流產生單元 21a: Reference current generation unit

22a:電流鏡像單元 22a: Current mirror unit

23a:輸出電流產生單元 23a: output current generation unit

OP0a:第一運算放大器 OP0a: first operational amplifier

OP1a:第二運算放大器 OP1a: second op amp

OP2a:第三運算放大器 OP2a: third op amp

PM0a:第一P型MOSFET元件 PM0a: The first P-type MOSFET element

PM1a:第二P型MOSFET元件 PM1a: Second P-type MOSFET element

CN1a:第一共接點 CN1a: First common contact

NM0a:第一N型MOSFET元件 NM0a: first N-type MOSFET element

NM1a:第二N型MOSFET元件 NM1a: Second N-type MOSFET element

NM2a:第三N型MOSFET元件 NM2a: third N-type MOSFET element

REXT:外設電阻 REXT: peripheral resistance

2:恒流源產生電路 2: constant current source generation circuit

21:基準電流產生單元 21: Reference current generation unit

22:電流鏡像單元 22: Current mirror unit

221:電流鏡 221: Current Mirror

222:第一分組主動負載單元 222: The first group of active load units

23:輸出電流產生單元 23: Output current generation unit

231:電流輸出單元 231: Current output unit

232:第二分組主動負載單元 232: Active load unit of the second group

24:緩衝器 24: Buffer

OP0:第一運算放大器 OP0: first operational amplifier

OP1:第二運算放大器 OP1: Second Op-Amp

OP2:第三運算放大器 OP2: Third Op Amp

PM0:第一P型MOSFET元件 PM0: The first P-type MOSFET element

PM1:第二P型MOSFET元件 PM1: Second P-type MOSFET element

CN1:第一共接點 CN1: The first common contact

CN2:第二共接點 CN2: The second common contact

CN3:第三共接點 CN3: The third common contact

CN4:第四共接點 CN4: Fourth common contact

CN5:第五共接點 CN5: Fifth common contact

NM01~NM04:第一N型MOSFET元件 NM01~NM04: The first N-type MOSFET element

NM11~NM14:第二N型MOSFET元件 NM11~NM14: The second N-type MOSFET element

NM1e:第二等效電晶體 NM1e: Second Equivalent Transistor

S01~S04:第一開關元件 S01~S04: The first switching element

S11~S14:第二開關元件 S11~S14: The second switching element

NM2:電流輸出元件 NM2: Current output element

111:LED子畫素 111: LED sub-pixel

圖1為習知的一種LED顯示裝置的架構圖; 圖2為包含於習知的LED顯示裝置之一行驅動晶片的一恒流源產生電路的方塊圖;圖3為習知的恒流源產生電路的拓樸結構圖;圖4為本發明之一種恒流源產生電路的方塊圖;圖5為本發明之恒流源產生電路的拓樸結構圖;以及圖6為本發明之恒流源產生電路的一輸出電流產生單元之一等校電路的拓樸結構圖。 FIG. 1 is a schematic diagram of a conventional LED display device; 2 is a block diagram of a constant current source generating circuit included in a row driving chip of a conventional LED display device; FIG. 3 is a topological structure diagram of a conventional constant current source generating circuit; FIG. 4 is one of the present invention The block diagram of the constant current source generating circuit; Fig. 5 is the topology structure diagram of the constant current source generating circuit of the present invention; topology diagram.

為使 貴審查委員能進一步瞭解本發明之結構、特徵、目的、與其優點,茲附以圖式及較佳具體實施例之詳細說明如後。 In order to enable your examiners to further understand the structure, features, objectives, and advantages of the present invention, drawings and detailed descriptions of preferred embodiments are attached as follows.

熟悉LED顯示裝置之設計與製造的電子工程師必然知道,現有的LED顯示裝置包括:一LED顯示面板、一列驅動單元、一行驅動單元、以及一顯示控制器,其中該行驅動單元常包含複數個行驅動晶片,且複數個所述行驅動晶片之使用數量決定於該LED顯示面板的分辨率(解析度)和所述行驅動晶片的驅動通道數。本發明提出一種恒流源產生電路,其應用在具有多驅動通道的行驅動晶片之中,用以產生一恒驅動電流且通過對應的驅動通道傳送至該LED顯示面板,從而驅動指定的LED子畫素發光。 Electronic engineers who are familiar with the design and manufacture of LED display devices must know that existing LED display devices include: an LED display panel, a column driver unit, a row driver unit, and a display controller, wherein the row driver unit often includes a plurality of rows Driving chips, and the number of the row driving chips used depends on the resolution (resolution) of the LED display panel and the number of driving channels of the row driving chips. The present invention provides a constant current source generating circuit, which is applied in a row driving chip with multiple driving channels to generate a constant driving current and transmit it to the LED display panel through the corresponding driving channel, so as to drive a specified LED sub-section. Pixels glow.

補充說明的是,在一可行實施例中,該顯示控制器(即,時序控制器)、該列驅動單元和該行驅動單元可被整合成單一LED顯示驅動晶片。並且,在另一可行實施例中,該行驅動單元可被單獨製成一行驅動晶片以做為不包含列驅動功能和時序控制功能之LED顯示驅動晶片。 It is added that, in a feasible embodiment, the display controller (ie, the timing controller), the column driving unit and the row driving unit can be integrated into a single LED display driving chip. In addition, in another feasible embodiment, the row driving unit can be separately made into a row driving chip as an LED display driving chip that does not include the column driving function and the timing control function.

圖4顯示本發明之一種恒流源產生電路的方塊圖,且圖5顯示本發明之恒流源產生電路的拓樸結構圖。如圖4所示,本發明之恒流源產生電路2包括:一基準電流產生單元21、一電流鏡像單元22以及一輸出電流產生單元23,其中該基準電流產生單元21耦接一第一參考電壓VREF與一外設電阻REXT,用以產生一基準電流I0。並且,該電流鏡像單元22耦接該基準電流產生單元21以接收所述基準電流I0,且具有一電流鏡221和一第一分組主動負載單元 222。依據本發明之設計,該電流鏡221用以依一第一電流鏡像比例(K)對所述基準電流I0執行一第一電流鏡像處理以產生一第一電流I1,且該第一分組主動負載單元222耦接該電流鏡221、一第二參考電壓VCRES和X個選擇信號S1~S4,X為正整數,用以依第一電流I1和第二參考電壓VCRES設定一第一等效MOS電晶體之一汲極電流和一汲-源電壓(即,VDS)以產生一對應的閘-源電壓(即,VGS),從而依該閘-源電壓提供一啟用電壓VGate。如圖4和圖5所示,依據本發明之設計,所述第一等效MOS電晶體係由X個選擇信號S1~S4對該第一分組主動負載單元222所包含之多個第一MOS電晶體(NM01,NM02,NM03,NM04)進行一併接操作而成。 FIG. 4 shows a block diagram of a constant current source generating circuit of the present invention, and FIG. 5 shows a topological structure diagram of the constant current source generating circuit of the present invention. As shown in FIG. 4 , the constant current source generating circuit 2 of the present invention includes: a reference current generating unit 21 , a current mirroring unit 22 and an output current generating unit 23 , wherein the reference current generating unit 21 is coupled to a first reference The voltage V REF and a peripheral resistor R EXT are used to generate a reference current I 0 . In addition, the current mirror unit 22 is coupled to the reference current generation unit 21 to receive the reference current I 0 , and has a current mirror 221 and a first grouped active load unit 222 . According to the design of the present invention, the current mirror 221 is used for performing a first current mirror process on the reference current I 0 according to a first current mirror ratio (K) to generate a first current I 1 , and the first grouping The active load unit 222 is coupled to the current mirror 221 , a second reference voltage V CRES and X selection signals S1 ˜ S4 , where X is a positive integer, for setting a first current I 1 and the second reference voltage V CRES A drain current and a drain-source voltage (ie, V DS ) of an equivalent MOS transistor to generate a corresponding gate-source voltage (ie, V GS ), thereby providing an enable voltage according to the gate-source voltage V Gate . As shown in FIG. 4 and FIG. 5 , according to the design of the present invention, the first equivalent MOS transistor system is composed of X selection signals S1 to S4 for a plurality of first MOSs included in the first group of active load units 222 The transistors (NM01, NM02, NM03, NM04) are connected in parallel.

如圖4所示,該輸出電流產生單元23耦接該電流鏡像單元22,且具有一電流輸出單元231以及一第二分組主動負載單元232,其中該第二分組主動負載單元232耦接該電流輸出單元231和X個所述選擇信號S1~S4。依此設計,如圖4所示,在接收所述第二參考電壓VCRES和由該第一分組主動負載單元222所傳送的啟用電壓VGate之後,該第二分組主動負載單元232依第二參考電壓VCRES和啟用電壓VGate設定一第二等效MOS電晶體之一汲-源電壓(即,VDS)和一閘-源電壓(即,VGS)以產生一對應的汲極電流,並依該汲極電流提供一第二電流I2。其中,該第二等效MOS電晶體係由X個選擇信號S1~S4對該第二分組主動負載單元232所包含之多個第二MOS電晶體(NM11,NM12,NM13,NM14)進行一併接操作而形成。如圖4和圖5所示,依據本發明之設計,所述多個第二MOS電晶體的長寬比(W/L)和所述多個第一MOS電晶體的長寬比(W/L)的比值等於N/M,N、M為正整數,以使I2=(N/M)*I1。接著,該電流輸出單元231將該第二電流I2輸出為一輸出電流IoutAs shown in FIG. 4 , the output current generation unit 23 is coupled to the current mirror unit 22 and has a current output unit 231 and a second group of active load units 232 , wherein the second group of active load units 232 is coupled to the current The output unit 231 and the X selection signals S1 to S4. According to this design, as shown in FIG. 4 , after receiving the second reference voltage V CRES and the enabling voltage V Gate transmitted by the first grouped active load unit 222 , the second grouped active load unit 232 follows the second The reference voltage V CRES and the enable voltage V Gate set a drain-source voltage (ie, V DS ) and a gate-source voltage (ie, V GS ) of a second equivalent MOS transistor to generate a corresponding drain current , and provide a second current I 2 according to the drain current. Wherein, the second equivalent MOS transistor system is combined by the X selection signals S1 - S4 of the plurality of second MOS transistors ( NM11 , NM12 , NM13 , NM14 ) included in the second group of active load units 232 formed by operation. As shown in FIG. 4 and FIG. 5 , according to the design of the present invention, the aspect ratio (W/L) of the plurality of second MOS transistors and the aspect ratio (W/L) of the plurality of first MOS transistors The ratio of L) is equal to N/M, where N and M are positive integers, so that I 2 =(N/M)*I 1 . Next, the current output unit 231 outputs the second current I 2 as an output current I out .

如圖4與圖5所示,該基準電流產生單元21包括一第一運算放大器OP0,其具有一負輸入端、一正輸入端以及一輸出端,其中該負輸入端耦接所述第一參考電壓VREF,且該正輸入端和該外設電阻REXT耦接於一第一共接點CN1。更詳細地說明,該第一參考電壓VREF由所述行驅動晶片(即,LED驅動晶片)內部的一帶隙參考電壓產生單元所提供。 As shown in FIG. 4 and FIG. 5 , the reference current generating unit 21 includes a first operational amplifier OP0 having a negative input terminal, a positive input terminal and an output terminal, wherein the negative input terminal is coupled to the first operational amplifier OP0 The reference voltage V REF , and the positive input terminal and the peripheral resistor R EXT are coupled to a first common node CN1. In more detail, the first reference voltage V REF is provided by a bandgap reference voltage generating unit inside the row driving chip (ie, the LED driving chip).

進一步地,依據圖5可知,該電流鏡221由一第一P型MOSFET元件PM0和至少一第二P型MOSFET元件PM1組成。如圖5所示,該第一P型MOSFET元件PM0具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一運算放大器OP0之所述輸出端,該汲極端耦接至該第一共接點CN1,且該源極端耦接一工作電壓。並且,所述第二P型MOSFET元件PM1具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一運算放大器OP0之所述輸出端,且該源極端耦接所述工作電壓。值得說明的是,在第一P型MOSFET元件PM0和第二P型MOSFET元件PM1具有相同的元件尺寸和參數的情況下,該電流鏡221之第一電流鏡像比例即由第二P型MOSFET元件PM1和第一P型MOSFET元件PM0之間的一元件個數比例所決定。舉例而言,圖5中標示所述元件個數比例為1:K,則表示第一電流鏡像比例的值為K。 Further, according to FIG. 5 , the current mirror 221 is composed of a first P-type MOSFET element PM0 and at least one second P-type MOSFET element PM1 . As shown in FIG. 5 , the first P-type MOSFET element PM0 has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the output terminal of the first operational amplifier OP0, and the drain terminal is coupled to to the first common contact CN1, and the source terminal is coupled to a working voltage. And, the second P-type MOSFET element PM1 has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the output terminal of the first operational amplifier OP0, and the source terminal is coupled to the Operating Voltage. It should be noted that, in the case that the first P-type MOSFET element PM0 and the second P-type MOSFET element PM1 have the same element size and parameters, the first current mirror ratio of the current mirror 221 is determined by the second P-type MOSFET element. It is determined by the ratio of the number of elements between PM1 and the first P-type MOSFET element PM0. For example, FIG. 5 indicates that the ratio of the number of components is 1:K, which means that the value of the first current mirror ratio is K.

另一方面,在固定第一P型MOSFET元件PM0的個數和第二P型MOSFET元件PM1的個數皆為1的情況下,該電流鏡221之第一電流鏡像比例即由第二P型MOSFET元件PM1和第一P型MOSFET元件PM0之間的一元件寬度(W)比例所決定。舉例而言,第一P型MOSFET元件PM0和第二P型MOSFET元件PM1分別具有第一元件寬度W1和第二元件寬度W2,則W2/W1=K。 On the other hand, when the number of the first P-type MOSFET element PM0 and the number of the second P-type MOSFET element PM1 are both fixed at 1, the first current mirror ratio of the current mirror 221 is determined from the second P-type MOSFET element PM1. It is determined by a device width (W) ratio between the MOSFET element PM1 and the first P-type MOSFET element PM0. For example, the first P-type MOSFET element PM0 and the second P-type MOSFET element PM1 have the first element width W1 and the second element width W2 respectively, then W2/W1=K.

如圖5所示,該第一分組主動負載單元222包括一第二運算放大器OP1以及X個第一主動負載單元。其中,該第二運算放大器OP1具有一負輸入端、一正輸入端以及一輸出端,其中該負輸入端耦接所述第二參考電壓VCRES,該正輸入端耦接於一第二共接點CN2,且該輸出端耦接於一第三共接點CN3。值得說明的是,各個所述第一主動負載單元包括一第一開關元件以及至少一個第一N型MOSFET元件。舉例而言,圖5繪示該第一分組主動負載單元222含有四個第一主動負載單元,因此在該第一分組主動負載單元222之中共有四個所述第一開關元件S01~S04以及四組的至少一個所述第一N型MOSFET元件NM01~NM04。 As shown in FIG. 5 , the first grouped active load unit 222 includes a second operational amplifier OP1 and X first active load units. The second operational amplifier OP1 has a negative input terminal, a positive input terminal and an output terminal, wherein the negative input terminal is coupled to the second reference voltage V CRES , and the positive input terminal is coupled to a second common The contact CN2, and the output end is coupled to a third common contact CN3. It should be noted that each of the first active load units includes a first switch element and at least one first N-type MOSFET element. For example, FIG. 5 shows that the first group of active load units 222 includes four first active load units, so there are four of the first switching elements S01 to S04 in the first group of active load units 222 and At least one of the first N-type MOSFET elements NM01 to NM04 of the four groups.

承上述說明,各個所述第一開關元件(如S01)皆具有一第一端、 一第二端以及一控制端,其中該第一端耦接至該第三共接點CN3,且該控制端耦接一個所述選擇信號S1。另一方面,在所述第一主動負載單元的電路組成中,所述第一N型MOSFET元件(如NM01)具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一開關元件之所述第二端,該汲極端耦接至該第二共接點CN2,且該源極端耦接一接地端。依本發明之設計,每一組所述第一主動負載單元的電路組成包含M個第一N型MOSFET元件(如NM01)。 According to the above description, each of the first switching elements (eg S01 ) has a first terminal, A second terminal and a control terminal, wherein the first terminal is coupled to the third common contact CN3, and the control terminal is coupled to a selection signal S1. On the other hand, in the circuit composition of the first active load unit, the first N-type MOSFET element (eg NM01 ) has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the first The second terminal of a switching element, the drain terminal is coupled to the second common node CN2, and the source terminal is coupled to a ground terminal. According to the design of the present invention, the circuit composition of each group of the first active load units includes M first N-type MOSFET elements (eg, NM01 ).

由前述說明可知,利用X個選擇信號S1~S4可控制第一N型MOSFET元件NM01~NM04之啟/閉,從而使第一N型MOSFET元件NM01~NM04併接成為第一等效MOS電晶體。同時,由圖5的電路圖可知,在該電流鏡221所傳送第一電流I1以及外部輸入的一第二參考電壓VCRES輸入該第一分組主動負載單元222之後,該第二運算放大器OP1依一負回授機制產生一啟用電壓VGate以設定該第一等效電晶體之閘-源電壓(即,VGS),同時利用該第二運算放大器OP1之虛短路(Virtual ground)特性而以所述第二參考電壓VCRES設定該第一等效電晶體之汲-源電壓(即,VDS)。 It can be seen from the foregoing description that the X selection signals S1 to S4 can be used to control the on/off of the first N-type MOSFET elements NM01 to NM04, so that the first N-type MOSFET elements NM01 to NM04 are connected in parallel to form a first equivalent MOS transistor. . Meanwhile, as can be seen from the circuit diagram of FIG. 5 , after the first current I 1 transmitted by the current mirror 221 and a second reference voltage V CRES input from the outside are input into the first grouped active load unit 222 , the second operational amplifier OP1 follows the A negative feedback mechanism generates an enable voltage VGAate to set the gate-source voltage (ie, V GS ) of the first equivalent transistor, and at the same time utilizes the virtual ground characteristic of the second operational amplifier OP1 to achieve so The second reference voltage V CRES sets the drain-source voltage (ie, V DS ) of the first equivalent transistor.

如圖5所示,該電流輸出單元231包括一第三運算放大器OP2和一電流輸出元件NM2。其中,該第三運算放大器OP2具有一負輸入端、一正輸入端以及一輸出端,該正輸入端耦接至該第二共接點CN2以接收所述第二參考電壓VCRES,且該負輸入端耦接於一第四共接點CN4。並且,該電流輸出元件NM2為一N型MOSFET元件,且具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第三運算放大器OP2之所述輸出端,該源極端耦接至該第四共接點CN4,且該汲極端作為一電流輸出端。 As shown in FIG. 5 , the current output unit 231 includes a third operational amplifier OP2 and a current output element NM2. The third operational amplifier OP2 has a negative input terminal, a positive input terminal and an output terminal, the positive input terminal is coupled to the second common node CN2 to receive the second reference voltage V CRES , and the The negative input terminal is coupled to a fourth common contact CN4. And, the current output element NM2 is an N-type MOSFET element, and has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the output terminal of the third operational amplifier OP2, and the source terminal is coupled to Connected to the fourth common contact CN4, and the drain terminal is used as a current output terminal.

進一步地說明,圖5顯示該第二分組主動負載單元232包括X個第二主動負載單元,且各個所述第二主動負載單元包括:一第二開關元件以及至少一第二N型MOSFET元件。舉例而言,圖5繪示該第二分組主動負載單元232含有四個第二主動負載單元,因此在該第二分組主動負載單元232之中共有四個所述第二開關元件S11~S14以及四組至少一所述第二N型MOSFET元件NM11~NM14。 5 shows that the second group of active load units 232 includes X second active load units, and each of the second active load units includes: a second switch element and at least one second N-type MOSFET element. For example, FIG. 5 shows that the second group of active load units 232 includes four second active load units, so there are four of the second switch elements S11 to S14 in the second group of active load units 232 and Four groups of at least one of the second N-type MOSFET elements NM11 ˜ NM14 .

承上述說明,各個所述第二開關元件(如S12)皆具有一第一端、一第二端以及一控制端,其中該第一端耦接至一第五共接點CN3,且該控制端耦接一個所述選擇信號S1。另一方面,在所述第二主動負載單元的電路組成中,所述第二N型MOSFET元件(如NM11)具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第二開關元件之所述第二端,該汲極端耦接至該第四共接點CN4,且該源極端耦接一接地端。依本發明之設計,每一組所述第二主動負載單元的電路組成包含N個第二N型MOSFET元件(如NM11)。 According to the above description, each of the second switching elements (eg S12 ) has a first end, a second end and a control end, wherein the first end is coupled to a fifth common contact CN3, and the control end The terminal is coupled to one of the selection signals S1. On the other hand, in the circuit composition of the second active load unit, the second N-type MOSFET element (eg NM11 ) has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the first For the second ends of the two switching elements, the drain terminal is coupled to the fourth common node CN4, and the source terminal is coupled to a ground terminal. According to the design of the present invention, the circuit composition of each group of the second active load units includes N second N-type MOSFET elements (eg, NM11).

補充說明的是,一緩衝器24耦接於該第三共接點CN3和該第五共接點CN5之間,用以對所述啟用電壓VGate執行一緩衝處理後,將其輸出至該第五共接點CN5。如圖5所示,利用X個選擇信號S1~S4可控制第二N型MOSFET元件NM11~NM14之啟/閉,從而使第二N型MOSFET元件NM11~NM14併接成為第二等效MOS電晶體。更詳細地說明,在該第一分組主動負載單元222傳送該第二參考電壓VCRES和該啟動電壓VGate至該電流輸出單元231和該第二分組主動負載單元232之後,即可利用該第三運算放大器OP2之虛短路(Virtual ground)特性而以所述第二參考電壓VCRES設定該第二等效電晶體之汲-源電壓(即,VDS)。同時,該啟動電壓VGate用以設定該第二等效電晶體之閘-源電壓(即,VGS)。完成第二等效電晶體之閘-源電壓以及汲-源電壓的設定後,即使該第二等效電晶體之通道在該第二參考電壓VCRES之偏壓下產生一輸出電流Iout,且該電流輸出單元231輸出該輸出電流Iout。 It is added that a buffer 24 is coupled between the third common contact CN3 and the fifth common contact CN5 for performing a buffering process on the enable voltage VGAate and then outputting it to the first Five total contacts CN5. As shown in FIG. 5 , the on/off of the second N-type MOSFET elements NM11 to NM14 can be controlled by using the X selection signals S1 to S4 , so that the second N-type MOSFET elements NM11 to NM14 are connected in parallel to form a second equivalent MOS circuit. crystal. In more detail, after the first group of active load units 222 transmits the second reference voltage V CRES and the start-up voltage VGate to the current output unit 231 and the second group of active load units 232 , the third group of active load units 232 can be utilized. The virtual ground characteristic of the operational amplifier OP2 sets the drain-source voltage (ie, V DS ) of the second equivalent transistor with the second reference voltage V CRES . At the same time, the startup voltage VGate is used to set the gate-source voltage (ie, V GS ) of the second equivalent transistor. After completing the setting of the gate-source voltage and the sink-source voltage of the second equivalent transistor, even if the channel of the second equivalent transistor generates an output current Iout under the bias of the second reference voltage VCRES, and the The current output unit 231 outputs the output current Iout.

依據本發明之設計,I2=(N/M)*I1,且該電流輸出單元231將I2輸出為輸出電流Iout。於此,N指的是每一組所述第二電流調整單元包含之「N個」第二N型MOSFET元件(如NM11),且M指的是每一組所述第一電流調整單元包含之「M個」第一N型MOSFET元件(如NM01)。值得說明的是,在第一N型MOSFET元件(如NM01)和第二N型MOSFET元件(如NM11)具有相同的元件尺寸和參數的情況下,所述第二電流鏡像比例即由第二N型MOSFET元件NM11和第一N型MOSFET元件NM01之間的一元件個數比例所決定。舉例而言,所述元件個數比例為M:N,則表示第二電流鏡像比例的值為N/M。 According to the design of the present invention, I 2 =(N/M)*I 1 , and the current output unit 231 outputs I 2 as the output current I out . Here, N refers to "N" second N-type MOSFET elements (eg, NM11 ) included in each group of the second current adjustment units, and M refers to that each group of the first current adjustment units includes The "M" first N-type MOSFET elements (such as NM01). It is worth noting that, in the case where the first N-type MOSFET element (such as NM01) and the second N-type MOSFET element (such as NM11) have the same component size and parameters, the second current mirror ratio is determined by the second N-type MOSFET. It is determined by the ratio of the number of one element between the first N-type MOSFET element NM11 and the first N-type MOSFET element NM01. For example, the ratio of the number of elements is M:N, which means that the value of the second current mirror ratio is N/M.

另一方面,在固定第一N型MOSFET元件(如NM01)和第二N型MOSFET元件(如NM11)的個數皆為1的情況下,所述第二電流鏡像比例即由第二N型MOSFET元件NM11和第一N型MOSFET元件NM01之間的一元件寬度(W)比例所決定。舉例而言,第一N型MOSFET元件NM01和第二N型MOSFET元件NM11分別具有第一元件寬度W1和第二元件寬度W2,則W2/W1=N/M。並且,N/M的值係較佳地為4~8。 On the other hand, in the case where the number of the first N-type MOSFET element (such as NM01) and the number of the second N-type MOSFET element (such as NM11) are both 1, the second current mirror ratio is determined by the second N-type MOSFET. It is determined by the ratio of an element width (W) between the MOSFET element NM11 and the first N-type MOSFET element NM01. For example, the first N-type MOSFET element NM01 and the second N-type MOSFET element NM11 have the first element width W1 and the second element width W2 respectively, then W2/W1=N/M. In addition, the value of N/M is preferably 4 to 8.

圖6顯示該輸出電流產生單元之一等校電路的拓樸結構圖。熟悉LED顯示驅動晶片之設計與製作的電子工程師必然知道,在LED顯示裝置的顯示驅動控制中,PWM信號產生器依據灰度時鐘信號而產生一PWM信號至通道驅動器以產生一驅動電流(即,輸出電流Iout),該通道驅動器即包含如圖6所示之電流輸出單元231和由第二N型MOSFET元件NM11~NM14併接而成的第二等效電晶體NM1e。因此,LED面板之LED子畫素111的顯示灰度之精度與驅動電流的精度直接相關。更詳細地說明,因製程誤差所導致的第二等效電晶體NM1e(即,第二N型MOSFET元件NM11~NM14)的第一失調值Voff1以及第三運算放大器OP2的第二失調值Voff2會造成系統電路對於驅動電流(即,輸出電流Iout)的控制精度的下降。 FIG. 6 shows a topological structure diagram of an iso-calibration circuit of the output current generating unit. Electronic engineers who are familiar with the design and manufacture of LED display driver chips must know that in the display driving control of LED display devices, the PWM signal generator generates a PWM signal to the channel driver according to the grayscale clock signal to generate a driving current (ie, output current Iout), the channel driver includes a current output unit 231 as shown in FIG. 6 and a second equivalent transistor NM1e formed by parallel connection of second N-type MOSFET elements NM11-NM14. Therefore, the precision of the display gray scale of the LED sub-pixels 111 of the LED panel is directly related to the precision of the driving current. In more detail, the first offset value Voff1 of the second equivalent transistor NM1e (ie, the second N-type MOSFET elements NM11 ˜ NM14 ) and the second offset value Voff2 of the third operational amplifier OP2 caused by the process error will be This results in a decrease in the control accuracy of the drive current (ie, the output current Iout) by the system circuit.

如圖6所示,所述第一失調值Voff1引入為一第一誤差源,其耦接在等效電路的第二等效電晶體NM1e的閘極端。另一方面,所述第二失調值Voff1引入為一第二誤差源,其耦接在等效電路的第二等效電晶體NM1e的汲極端。其中,前述之汲-源電流可利用下式(1)計算獲得:

Figure 109144792-A0305-02-0014-6
As shown in FIG. 6 , the first offset value Voff1 is introduced as a first error source, which is coupled to the gate terminal of the second equivalent transistor NM1e of the equivalent circuit. On the other hand, the second offset value Voff1 is introduced as a second error source, which is coupled to the drain terminal of the second equivalent transistor NM1e of the equivalent circuit. Among them, the aforesaid sink-source current can be calculated by the following formula (1):
Figure 109144792-A0305-02-0014-6

上式(1)所使用的各種參數已為電子工程師所熟知,故而於此不再重複說明。應可理解,第一誤差源和第二誤差源必然會造成汲-源電流變化,包括第一電流變化量和第二電流變化量。因此,可令第一電流變化量和汲-源電流的比值為△I 1/I DS ,而第二電流變化量和汲-源電流的比值為△I 2/I DS 。並且,△I 1/I DS 和△I 2/I DS 可利用下式(2)和式(3)計算獲得:

Figure 109144792-A0305-02-0014-7
Various parameters used in the above formula (1) are well known to electronic engineers, so the description will not be repeated here. It should be understood that the first error source and the second error source will inevitably cause the sink-source current variation, including the first current variation and the second current variation. Therefore, the ratio of the first current variation to the sink-source current can be ΔI 1 / I DS , and the ratio of the second current variation to the sink-source current can be Δ I 2 /I DS . And, Δ I 1 / I DS and Δ I 2 / I DS can be obtained by using the following formulas (2) and (3):
Figure 109144792-A0305-02-0014-7

Figure 109144792-A0305-02-0015-9
Figure 109144792-A0305-02-0015-9

觀察上式(2)和式(3)之後可以發現,第二N型MOSFET元件NM11~NM14的閘極-源極電壓(即,VGS)越大,則第一誤差源和第二誤差源對於輸出電流Iout的影響便會越小。換句話說,如圖6所示,在第二參考電壓VCRES固定的情況下,隨著啟用電壓VGate的值的提升,便可以大幅消除第一誤差源和第二誤差源對於輸出電流Iout的影響。 After observing the above equations (2) and (3), it can be found that the greater the gate-source voltage (ie, V GS ) of the second N-type MOSFET elements NM11~NM14, the greater the first error source and the second error source. The influence on the output current Iout will be smaller. In other words, as shown in FIG. 6 , when the second reference voltage V CRES is fixed, as the value of the enable voltage VGate increases, the effects of the first error source and the second error source on the output current Iout can be largely eliminated. influences.

值得加以強調的是,如圖5所示,利用第一個所述選擇信號S1啟用第一個所述第一開關S01以及第一個所述第二開關S11之後,電流鏡像單元22所包含之第一主動負載單元的第一個所述第一N型MOSFET元件NM01即導通,同時輸出電流產生單元23所包含之第二主動負載單元的第一個所述第二N型MOSFET元件NM11亦導通,此時輸出電流Iout的值較小。當顯示需求要求提升LED子畫素的亮度時,可以進一步利用第二個所述選擇信號S2啟用第二個所述第一開關S02以及第二個所述第二開關S12,使電流鏡像單元22所包含之第一主動負載單元的第二個所述第一N型MOSFET元件NM02導通,同時使輸出電流產生單元23所包含之第二主動負載單元的第二個所述第二N型MOSFET元件NM12亦導通,達到提高輸出電流值的效果。可想而知,隨著顯示需求要求更進一步地提升LED子畫素的亮度,可逐一啟用第一開關S01~S04和第二開關S11~S14。簡單地說,本發明利用所述選擇信號(S1~S4)以設置合理的輸出電流大小,不僅能夠達成分段調控輸出電流Iout之大小的功效,還可以在低輸出電流Iout的情況下有效地降低LED顯示驅動晶片的靜態功耗。 It is worth emphasizing that, as shown in FIG. 5 , after the first said first switch S01 and the first said second switch S11 are enabled by the first said selection signal S1 , the current mirror unit 22 includes The first said first N-type MOSFET element NM01 of the first active load unit is turned on, and at the same time, the first said second N-type MOSFET element NM11 of the second active load unit included in the output current generating unit 23 is also turned on , the value of the output current Iout is small at this time. When the display requirement requires to increase the brightness of the LED sub-pixels, the second one of the first switches S02 and the second one of the second switches S12 can be further activated by using the second selection signal S2, so that the current mirror unit 22 The second N-type MOSFET element NM02 of the first active load unit included in the first active load unit is turned on, and at the same time, the second N-type MOSFET element NM02 of the second active load unit included in the output current generating unit 23 is turned on. NM12 is also turned on to achieve the effect of increasing the output current value. It is conceivable that the first switches S01 to S04 and the second switches S11 to S14 can be enabled one by one as the display requirements require to further increase the brightness of the LED sub-pixels. To put it simply, the present invention utilizes the selection signals (S1-S4) to set a reasonable output current size, which can not only achieve the effect of segmentally regulating the size of the output current Iout, but also effectively reduce the output current Iout under the condition of low output current. Reduce the static power consumption of the LED display driver chip.

更詳細地說明,當本發明之恒流源產生電路2應用在一行驅動晶片之中時,其會依據顯示需求而多路輸出恒驅動電流至LED顯示面板。其中,所述恒驅動電流(即,輸出電流Iout)為PWM形式以利於控制每個LED子畫素的顯示灰度。因此,如圖5所示,第二參考電壓VCRES即為一PWM信號,使得第二運算放大器OP1輸出的啟用電壓VGate亦為PWM形式,從而控制第一N型MOSFET元件NM01~NM04和第二N型MOSFET元件NM11~NM14週期性地 導通/關閉,從而使該輸出電流Iout以PWM形式傳送至對應的LED子畫素。特別地,如圖4和圖5所示,本發明令一緩衝器24耦接於該第三共接點CN3和該第五共接點CN5之間,用以對所述啟用電壓VGate執行一緩衝處理後,將其輸出至該第五共接點CN5。如此設置,不僅可以保證第二運算放大器OP1所輸出的啟用電壓VGate足以同時驅動第一N型MOSFET元件NM01~NM04和第二N型MOSFET元件NM11~NM14導通,同時也保證了第一N型MOSFET元件NM01~NM04和第二運算放大器OP1之間的負回授環路的穩定性,從而維持輸出電流Iout的精度。 To describe in more detail, when the constant current source generating circuit 2 of the present invention is applied to a row of driving chips, it will multiplex output constant driving currents to the LED display panel according to the display requirements. Wherein, the constant driving current (ie, the output current Iout) is in the form of PWM to facilitate controlling the display gray scale of each LED sub-pixel. Therefore, as shown in FIG. 5 , the second reference voltage V CRES is a PWM signal, so that the enable voltage VGate output by the second operational amplifier OP1 is also in a PWM form, thereby controlling the first N-type MOSFET elements NM01 to NM04 and the second The N-type MOSFET elements NM11 to NM14 are periodically turned on/off, so that the output current Iout is transmitted to the corresponding LED sub-pixels in the form of PWM. In particular, as shown in FIG. 4 and FIG. 5 , the present invention enables a buffer 24 to be coupled between the third common contact CN3 and the fifth common contact CN5 for performing a After buffering, it is output to the fifth common contact CN5. This setting can not only ensure that the enable voltage VGate output by the second operational amplifier OP1 is sufficient to simultaneously drive the first N-type MOSFET elements NM01 to NM04 and the second N-type MOSFET elements NM11 to NM14 to turn on, but also ensures that the first N-type MOSFET is turned on. The stability of the negative feedback loop between the elements NM01-NM04 and the second operational amplifier OP1, thereby maintaining the accuracy of the output current Iout.

如此,上述已完整且清楚地說明本發明之一種恒流源產生電路;並且,經由上述可得知本發明具有下列優點: In this way, the above has completely and clearly described a constant current source generating circuit of the present invention; and, through the above, it can be known that the present invention has the following advantages:

(1)本發明揭示一種恒流源產生電路,其應用於一LED顯示驅動晶片,且其包括:一基準電流產生單元,耦接一第一參考電壓與一外設電阻,用以產生一基準電流;一電流鏡像單元,具有一電流鏡和一第一分組主動負載單元,其中該電流鏡用以依一第一電流鏡像比例對所述基準電流執行一第一電流鏡像處理以產生一第一電流,該第一分組主動負載單元具有依多個選擇信號之控制所組成之一第一等效電晶體,且係依一負回授機制產生一啟用電壓以驅動該第一等效電晶體,以使該第一等效電晶體之通道在一第二參考電壓之偏壓下所產生的電流等於該第一電流;以及一輸出電流產生單元,耦接該電流鏡像單元,且具有一第二分組主動負載單元,其中該第二分組主動負載單元具有依所述多個選擇信號之控制所組成之一第二等效電晶體,且係依該啟用電壓驅動該第二等效電晶體,以使該第二等效電晶體之通道在該第二參考電壓之偏壓下產生一輸出電流。簡單地說,本發明可依不同的輸出電流選擇不同的等效電晶體以提升輸出電流的精度。。 (1) The present invention discloses a constant current source generating circuit, which is applied to an LED display driver chip, and includes: a reference current generating unit coupled to a first reference voltage and a peripheral resistor for generating a reference current; a current mirror unit having a current mirror and a first group of active load units, wherein the current mirror is used to perform a first current mirror process on the reference current according to a first current mirror ratio to generate a first current, the first group of active load units has a first equivalent transistor formed according to the control of a plurality of selection signals, and generates an enable voltage to drive the first equivalent transistor according to a negative feedback mechanism, so that the current generated by the channel of the first equivalent transistor under the bias of a second reference voltage is equal to the first current; and an output current generating unit is coupled to the current mirror unit and has a second grouped active load units, wherein the second group of active load units has a second equivalent transistor formed according to the control of the plurality of selection signals, and drives the second equivalent transistor according to the enable voltage, so as to The channel of the second equivalent transistor generates an output current under the bias of the second reference voltage. In short, the present invention can select different equivalent transistors according to different output currents to improve the accuracy of the output current. .

(2)承上述說明,由於本發明利用所述選擇信號設置合理的輸出電流大小,因此LED顯示驅動晶片之驅動通道傳送的輸出電流可以在保持電流精度的情況下依據顯示需求而在幾毫安(mA)至幾十毫安的範圍內進行調整。 (2) According to the above description, since the present invention uses the selection signal to set a reasonable output current size, the output current transmitted by the driving channel of the LED display driver chip can be adjusted to a few mA according to the display requirements while maintaining the current accuracy. (mA) to several tens of mA range.

(3)本發明同時提供一種LED顯示驅動晶片,其特徵在於,所述 LED顯示驅動晶片利用如前所述本發明之恒流源產生電路產生至少一通道驅動電流。 (3) The present invention also provides an LED display driver chip, characterized in that the The LED display driving chip utilizes the constant current source generating circuit of the present invention as described above to generate at least one channel of driving current.

(4)本發明同時提供一種LED顯示裝置,其包括一LED顯示面板、一列驅動單元、包括至少一LED顯示驅動晶片的一行驅動單元、以及一顯示控制器;其特徵在於,所述LED顯示驅動晶片利用如前所述本發明之恒流源產生電路產生至少一通道驅動電流。 (4) The present invention also provides an LED display device, which includes an LED display panel, a column of drive units, a row of drive units including at least one LED display drive chip, and a display controller; it is characterized in that the LED display driver The chip uses the constant current source generating circuit of the present invention as described above to generate at least one channel of driving current.

(5)本發明同時提供一種資訊處理裝置,其包含如前所述本發明之LED顯示裝置。其中,該資訊處理裝置是選自於由智慧型手機、智慧手錶、智慧手環、平板電腦、筆記型電腦、一體式電腦、門禁裝置、桌上型電腦、和工業電腦所組成群組之中的一種電子裝置。 (5) The present invention also provides an information processing device including the LED display device of the present invention as described above. Wherein, the information processing device is selected from the group consisting of smart phones, smart watches, smart bracelets, tablet computers, notebook computers, all-in-one computers, access control devices, desktop computers, and industrial computers of an electronic device.

必須加以強調的是,前述本案所揭示者乃為較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。 It must be emphasized that the above-mentioned disclosure in this case is a preferred embodiment, and any partial changes or modifications originating from the technical ideas of this case and easily inferred by those who are familiar with the art are within the scope of the patent of this case. category of rights.

綜上所陳,本案無論目的、手段與功效,皆顯示其迥異於習知技術,且其首先發明合於實用,確實符合發明之專利要件,懇請 貴審查委員明察,並早日賜予專利俾嘉惠社會,是為至禱。 To sum up, regardless of the purpose, means and effect of this case, it shows that it is completely different from the conventional technology, and its first invention is suitable for practical use, and indeed meets the patent requirements of the invention. Society is to pray for the best.

2:恒流源產生電路 2: constant current source generation circuit

21:基準電流產生單 21: The reference current generates a single

22:電流鏡像單元 22: Current mirror unit

221:電流鏡 221: Current Mirror

222:第一分組主動負載單元 222: The first group of active load units

23:輸出電流產生單元 23: Output current generation unit

231:電流輸出單元 231: Current output unit

232:第二分組主動負載單元 232: Active load unit of the second group

24:緩衝器 24: Buffer

REXT:外設電阻 R EXT : Peripheral resistance

Claims (10)

一種恒流源產生電路,包括:一基準電流產生單元,耦接一第一參考電壓與一外設電阻,用以產生一基準電流;一電流鏡像單元,具有一電流鏡和一第一分組主動負載單元,其中該電流鏡用以依一第一電流鏡像比例對所述基準電流執行一第一電流鏡像處理以產生一第一電流,該第一分組主動負載單元具有依X個選擇信號之控制所組成之一第一等效電晶體,X為正整數,且係依一負回授機制產生一啟用電壓以驅動該第一等效電晶體,以使該第一等效電晶體之通道在一第二參考電壓之偏壓下所產生的電流等於該第一電流;以及一輸出電流產生單元,耦接該電流鏡像單元,且具有一電流輸出單元以及一第二分組主動負載單元,其中該第二分組主動負載單元具有依所述X個選擇信號之控制所組成之一第二等效電晶體,且係依該啟用電壓驅動該第二等效電晶體,以使該第二等效電晶體之通道在該第二參考電壓之偏壓下產生一輸出電流,且該電流輸出單元輸出該輸出電流。 A constant current source generating circuit, comprising: a reference current generating unit coupled to a first reference voltage and a peripheral resistor for generating a reference current; a current mirroring unit having a current mirror and a first grouping active A load unit, wherein the current mirror is used for performing a first current mirror process on the reference current according to a first current mirror ratio to generate a first current, and the first group of active load units is controlled according to X selection signals A first equivalent transistor is formed, X is a positive integer, and an enabling voltage is generated to drive the first equivalent transistor according to a negative feedback mechanism, so that the channel of the first equivalent transistor is in the The current generated under the bias of a second reference voltage is equal to the first current; and an output current generating unit, coupled to the current mirror unit, has a current output unit and a second group of active load units, wherein the The second group of active load units has a second equivalent transistor formed according to the control of the X selection signals, and drives the second equivalent transistor according to the enable voltage, so that the second equivalent transistor is The channel of the crystal generates an output current under the bias of the second reference voltage, and the current output unit outputs the output current. 如請求項1所述之恒流源產生電路,其中,該基準電流產生單元包括:一第一運算放大器,具有一負輸入端、一正輸入端以及一輸出端,其中該負輸入端耦接所述第一參考電壓,且該正輸入端和該外設電阻耦接於一第一共接點。 The constant current source generating circuit of claim 1, wherein the reference current generating unit comprises: a first operational amplifier having a negative input terminal, a positive input terminal and an output terminal, wherein the negative input terminal is coupled to the first reference voltage, and the positive input terminal and the peripheral resistor are coupled to a first common contact. 如請求項2所述之恒流源產生電路,其中,該電流鏡包括:一第一P型MOSFET元件,具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一運算放大器之所述輸出端,該汲極端耦接至該第一共接點,且該源極端耦接一工作電壓;以及至少一第二P型MOSFET元件,具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一運算放大器之所述輸出端,且該源極端耦接所述工作電壓。 The constant current source generating circuit of claim 2, wherein the current mirror comprises: a first P-type MOSFET element having a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the first the output terminal of the operational amplifier, the drain terminal is coupled to the first common node, and the source terminal is coupled to a working voltage; and at least one second P-type MOSFET element has a gate terminal, a drain terminal, and A source terminal, wherein the gate terminal is coupled to the output terminal of the first operational amplifier, and the source terminal is coupled to the operating voltage. 如請求項3所述之恒流源產生電路,其中,該第一分組主動負載單元包括:一第二運算放大器,具有一負輸入端、一正輸入端以及一輸出端,其中該負輸入端耦接所述第二參考電壓,該正輸入端耦接於一第二共接點,且該輸出端耦接於一第三共接點;以及X個第一主動負載單元,其中各個所述第一主動負載元包括:一第一開關元件,具有一第一端、一第二端以及一控制端,其中該第一端耦接至該第三共接點,且該控制端耦接一個所述選擇信號;及至少一第一N型MOSFET元件,具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第一開關元件之所述第二端,該汲極端耦接至該第二共接點,且該源極端耦接一接地端;其中,該電流鏡將所述第一電流傳送至該第二共接點,且該第二運算放大器在接收所述第二參考電壓之後輸出所述啟用電壓至該第三共接點。 The constant current source generating circuit of claim 3, wherein the first grouped active load unit comprises: a second operational amplifier having a negative input terminal, a positive input terminal and an output terminal, wherein the negative input terminal coupled to the second reference voltage, the positive input terminal is coupled to a second common point, and the output terminal is coupled to a third common point; and X first active load units, wherein each of the The first active load element includes: a first switch element with a first end, a second end and a control end, wherein the first end is coupled to the third common contact, and the control end is coupled to a the selection signal; and at least one first N-type MOSFET element, having a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the second terminal of the first switching element, and the drain terminal is coupled to connected to the second common point, and the source terminal is coupled to a ground terminal; wherein the current mirror transmits the first current to the second common point, and the second operational amplifier receives the first current After the two reference voltages, the enabling voltage is outputted to the third common contact. 如請求項4所述之恒流源產生電路,其中,該電流輸出單元包括:一第三運算放大器,具有一負輸入端、一正輸入端以及一輸出端,其中該正輸入端耦接至該第二共接點以接收所述第二參考電壓,且該負輸入端耦接於一第四共接點;以及一電流輸出元件,其為一N型MOSFET元件,且具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第三運算放大器之所述輸出端,該源極端耦接至該第四共接點,且該汲極端作為一電流輸出端。 The constant current source generating circuit of claim 4, wherein the current output unit comprises: a third operational amplifier having a negative input terminal, a positive input terminal and an output terminal, wherein the positive input terminal is coupled to The second common contact is for receiving the second reference voltage, and the negative input terminal is coupled to a fourth common contact; and a current output element is an N-type MOSFET element and has a gate terminal, A drain terminal and a source terminal, wherein the gate terminal is coupled to the output terminal of the third operational amplifier, the source terminal is coupled to the fourth common node, and the drain terminal is used as a current output terminal. 如請求項5所述之恒流源產生電路,其中,該第二分組主動負載單元包括X個第二主動負載單元,且各個所述第二主動負載單元包括:一第二開關元件,具有一第一端、一第二端以及一控制端,其中該第一端耦接至一第五共接點,且該控制端耦接一個所述選擇信號;及 至少一第二N型MOSFET元件,具有一閘極端、一汲極端以及一源極端,其中該閘極端耦接該第二開關元件之所述第二端,該汲極端耦接至該第四共接點,且該源極端耦接一接地端;其中,一緩衝器耦接於該第三共接點和該第五共接點之間,用以對所述啟用電壓執行一緩衝處理後,將其輸出至該第五共接點;其中,依據該啟用電壓和至少一個所述選擇信號的控制,至少一個所述第一電流調整單元和至少一個第一電流調整單元被選擇啟用,從而對該第一電流執行一第二電流鏡像處理以產生一第二電流。 The constant current source generating circuit according to claim 5, wherein the second group of active load units includes X second active load units, and each of the second active load units includes: a second switch element having a a first end, a second end and a control end, wherein the first end is coupled to a fifth common contact, and the control end is coupled to one of the selection signals; and At least one second N-type MOSFET element has a gate terminal, a drain terminal and a source terminal, wherein the gate terminal is coupled to the second terminal of the second switching element, and the drain terminal is coupled to the fourth common terminal a contact, and the source terminal is coupled to a ground terminal; wherein a buffer is coupled between the third common contact and the fifth common contact for performing a buffering process on the enabling voltage, outputting it to the fifth common contact; wherein, according to the control of the enable voltage and at least one of the selection signals, at least one of the first current adjustment units and at least one of the first current adjustment units are selected and enabled, so as to A second current mirroring process is performed on the first current to generate a second current. 一種LED顯示驅動晶片,其特徵在於,所述LED顯示驅動晶片利用如請求項1至請求項6之中任一項所述之恒流源產生電路產生至少一通道驅動電流。 An LED display driver chip, characterized in that, the LED display driver chip uses the constant current source generating circuit according to any one of claim 1 to claim 6 to generate at least one channel of drive current. 一種LED顯示裝置,包括一LED顯示面板、一列驅動單元、包括至少一LED顯示驅動晶片的一行驅動單元、以及一顯示控制器,其特徵在於,所述LED顯示驅動晶片利用如請求項1至請求項6之中任一項所述之恒流源產生電路產生至少一通道驅動電流。 An LED display device includes an LED display panel, a column driving unit, a row driving unit including at least one LED display driving chip, and a display controller, characterized in that the LED display driving chip utilizes the requirements of item 1 to request The constant current source generating circuit described in any one of item 6 generates at least one channel driving current. 一種資訊處理裝置,其包含如請求項8所述之LED顯示裝置。 An information processing device comprising the LED display device as described in claim 8. 如請求項9所述之資訊處理裝置,其中,該資訊處理裝置為選自於由智慧型手機、智慧手錶、智慧手環、平板電腦、筆記型電腦、一體式電腦、門禁裝置、桌上型電腦、和工業電腦所組成群組之中的一種電子裝置。 The information processing device according to claim 9, wherein the information processing device is selected from the group consisting of smart phones, smart watches, smart bracelets, tablet computers, notebook computers, all-in-one computers, access control devices, desktop An electronic device in the group consisting of computers, and industrial computers.
TW109144792A 2020-12-17 2020-12-17 Constant current source generating circuit, LED display driver chip, LED display device, and information processing device TWI764444B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109144792A TWI764444B (en) 2020-12-17 2020-12-17 Constant current source generating circuit, LED display driver chip, LED display device, and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109144792A TWI764444B (en) 2020-12-17 2020-12-17 Constant current source generating circuit, LED display driver chip, LED display device, and information processing device

Publications (2)

Publication Number Publication Date
TWI764444B true TWI764444B (en) 2022-05-11
TW202226197A TW202226197A (en) 2022-07-01

Family

ID=82594070

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109144792A TWI764444B (en) 2020-12-17 2020-12-17 Constant current source generating circuit, LED display driver chip, LED display device, and information processing device

Country Status (1)

Country Link
TW (1) TWI764444B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990300B2 (en) * 2008-12-08 2011-08-02 Renesas Electronics Corporation D/A conversion circuit
US20120139524A1 (en) * 2010-12-01 2012-06-07 Kabushiki Kaisha Toshiba Constant current circuit
CN105163431A (en) * 2015-08-21 2015-12-16 上海艾为电子技术股份有限公司 Drive circuit, light-emitting diode and mobile terminal
CN111601429A (en) * 2020-06-03 2020-08-28 西安中颖电子有限公司 Constant current driving circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990300B2 (en) * 2008-12-08 2011-08-02 Renesas Electronics Corporation D/A conversion circuit
US20120139524A1 (en) * 2010-12-01 2012-06-07 Kabushiki Kaisha Toshiba Constant current circuit
CN105163431A (en) * 2015-08-21 2015-12-16 上海艾为电子技术股份有限公司 Drive circuit, light-emitting diode and mobile terminal
CN111601429A (en) * 2020-06-03 2020-08-28 西安中颖电子有限公司 Constant current driving circuit

Also Published As

Publication number Publication date
TW202226197A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
EP1282103B1 (en) Circuit for supplying the pixel in a luminescent display device with a prescribed current
US7061481B2 (en) Power supply circuit, operational amplifier circuit, liquid crystal device and electronic instrument
JP3315652B2 (en) Current output circuit
KR20080102726A (en) Source driver and display device having the same
CN102332241B (en) display device and method for driving display devcie
US5532718A (en) Semiconductor integrated circuit device
EP2065781A2 (en) Dynamic matching of current sources
JP2007286526A (en) Display device and drive circuit of the display device
KR100475844B1 (en) Organic EL Driver Circuit and Organic EL Display Device Using the Same
US20200127564A1 (en) Current Regulator
JPH05224621A (en) Semiconductor device for power source for driving liquid crystal panel
US10964287B1 (en) Level voltage generation circuit, data driver, and display apparatus
KR100514626B1 (en) Organic el element drive circuit and organic el display device using the same
US7541844B2 (en) Current weighted voltage interpolation buffer
JP2012252337A (en) Driving apparatus, oled panel and method for driving oled panel
TW200423003A (en) Current-drive circuit and apparatus for display panel
US7420529B2 (en) Organic EL panel drive circuit and organic EL display device
US20240127756A1 (en) Pixel Driving Circuit, Pixel Driving Method, Display Panel and Display Device
JP4009077B2 (en) Current drive
US20100085344A1 (en) Operational amplifier circuit and display apparatus
US20090179783A1 (en) D/a conversion circuit, organic el drive circuit and organic el display device
TWI764444B (en) Constant current source generating circuit, LED display driver chip, LED display device, and information processing device
JP4116003B2 (en) Current drive circuit
KR100614479B1 (en) Electronic apparatus, electrooptical apparatus, and electronic instrument
US8169382B2 (en) Electro-optical device, driving circuit thereof, and electronic apparatus