TWI763573B - Transistor device with buried conductive layer and manufacturing method thereof - Google Patents

Transistor device with buried conductive layer and manufacturing method thereof Download PDF

Info

Publication number
TWI763573B
TWI763573B TW110128366A TW110128366A TWI763573B TW I763573 B TWI763573 B TW I763573B TW 110128366 A TW110128366 A TW 110128366A TW 110128366 A TW110128366 A TW 110128366A TW I763573 B TWI763573 B TW I763573B
Authority
TW
Taiwan
Prior art keywords
layer
buried conductive
dielectric
protective layer
protective
Prior art date
Application number
TW110128366A
Other languages
Chinese (zh)
Other versions
TW202308090A (en
Inventor
羅鴻
Original Assignee
羅鴻
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 羅鴻 filed Critical 羅鴻
Priority to TW110128366A priority Critical patent/TWI763573B/en
Application granted granted Critical
Publication of TWI763573B publication Critical patent/TWI763573B/en
Publication of TW202308090A publication Critical patent/TW202308090A/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

A transistor device with a buried conductive layer and a method of forming a buried conductive layer for transistor devices are provided. The method includes forming adjacent transistor devices on a substrate, wherein the adjacent transistor devices are separated by a gap which is filled by a fill layer. The transistor device includes a base layer protruding from the substrate, an intermediate layer disposed on top of base layer, and a semiconductor layer on the intermediate layer. The device structure further includes a first protective layer and a second protective layer made of a material different from the first protective layer. The intermediate layer includes a first dielectric layer on the base layer, a buried conductive layer disposed on the first dielectric layer and a second dielectric layer is on the top surface of the buried conductive layer. The method further includes removing a portion of the protective layers to form the transistor devices and to form an insulating layer covering the sidewalls of the buried conductive layers.

Description

具有埋入式導電層的電晶體元件及其製造方法Transistor element with buried conductive layer and method of manufacturing the same

本發明主要是關於電晶體元件用的埋入式導電層,特別是用於鰭式(Fin FET)、奈米線式(Nanowire FET)與奈米片式(Nanosheet FET)場效電晶體元件之埋入式導電層。The present invention mainly relates to a buried conductive layer for transistor elements, especially for fin type (Fin FET), nanowire type (Nanowire FET) and nanosheet type (Nanosheet FET) field effect transistor elements. Buried conductive layer.

追求高密度的計算元件一直以來是半導體產業共同的目標。一些電晶體元件例如鰭式場效電晶體(FinFET)、奈米線場效電晶體(Nanowire FET)與奈米片場效電晶體(Nanosheet FET)藉由改變單位電晶體元件之結構達到元件效能的改進。其中,奈米片場效電晶體可由閘極環繞包覆之奈米片式電流隧道達到更佳的閘極端對電流隧道的控制以及更小的漏電流。藉由奈米片式場效電晶體技術,半導體電路設計師可以減少電路整體的功率消耗或是加快數位邏輯積體電路之速度。奈米片式電晶體的優勢正帶領數位邏輯積體電路、半導體產業、乃至電腦產業走向更快、更複雜但也更省能源的領域。The pursuit of high-density computing components has always been a common goal of the semiconductor industry. Some transistor devices such as FinFET, Nanowire FET and Nanosheet FET can improve the device performance by changing the structure of the unit transistor device . Among them, the nano-chip field effect transistor can achieve better control of the current tunnel by the gate terminal and smaller leakage current through the nano-chip current tunnel covered by the gate electrode. With nanochip FET technology, semiconductor circuit designers can reduce overall circuit power consumption or speed up digital logic integrated circuits. The advantages of nanochip transistors are leading the digital logic integrated circuit, semiconductor industry, and even the computer industry to a faster, more complex, but also more energy-efficient field.

奈米片式場效電晶體技術輔以位於元件下方之埋入式導電層可以簡化電晶體上方之金屬線路層複雜性。此方法可以進一步縮減整體元件的面積,最終達到更緊密、單位面積計算效能更強的積體電路。Nanochip FET technology with a buried conductive layer below the device can simplify the complexity of the metal wiring layer above the transistor. This method can further reduce the area of the overall component, and finally achieve a more compact integrated circuit with higher computing performance per unit area.

一般而言,電晶體源極端會與電源線(Power rail)、地線(GND)、高電位 線(VDD)連接形成可運作之邏輯/陣列式積體電路,並且這些連接皆是藉由設置於場效電晶體上之金屬線完成。金屬線與場效電晶體源極端中間還有垂直金屬塊作為橋接物,但是電源線仍佔據在半導體結構金屬層中很大一部份的面積。 Generally speaking, the source terminal of the transistor is connected to the power rail, the ground wire (GND), the high potential The line (VDD) connections form an operational logic/array type integrated circuit, and these connections are made by metal lines disposed on the field effect transistors. There is also a vertical metal block between the metal line and the source terminal of the FET as a bridge, but the power line still occupies a large part of the area of the metal layer of the semiconductor structure.

美國專利案號20200411436 (U.S. Pat. No. 20200411436),公開於西元2020年12月31日,揭露一方法於電晶體元件「之間」形成埋入式的電源線512,如圖1所示。此方法包含形成一對相鄰之電晶體元件(由下而上包含由基板410延伸之元件底柱、隧道底部介電層530、奈米片犧牲層440與奈米片隧道層450)於一基板上,其中該對相鄰之電晶體元件之間由一溝槽479分開,且溝槽479填入一溝槽填入層470 (為介電材質的面板472之前身)。此方法進一步包含藉由除去部分溝槽填入層,於該對相鄰之電晶體元件之間形成一介電材質的面板472與形成一保護層495於每一個電晶體元件上。此方法進一步包含形成一側壁保護柱504 (詳情可參考美國專利案號20200411436專利原文與其圖6) 於保護層495之上,以及形成埋入式電源線512於側壁保護柱504以及保護層495之間。此方法進一步包含,形成電源線上蓋515於埋入式電源線512與側壁保護柱504之上,此電源線上蓋515可為與埋入式電源線512相同材料之金屬,並以以介電材料塊527覆蓋於電源線上蓋515上,作為阻絕漏電流的絕緣層。由此,埋入式電源線(512與515)四周可被介電材料(包含側壁保護柱504、保護層495及介電材料塊527)包裹住,而介電材料也因此提供電源線足夠的保護。其文中亦揭露另一實施例,並於文中提及半導體之源/汲極區(即奈米片犧牲層440與奈米片隧道層450所在之位置)與埋入式電源線(512與515),可藉由金屬垂直接觸柱 (Contact/Via) 連結(詳情可參考美國專利案號20200411436專利原文與其圖19),然後再被周圍之介電材料保護住,製程中不須額外微影圖形化製程。因此,埋入式電源線提供了簡化了電晶體元件上方複雜且緊密的金屬線結構,並提供了減少整體電晶體元件面積的機會。US Patent No. 20200411436 (U.S. Pat. No. 20200411436), published on December 31, 2020, discloses a method to form buried power lines 512 "between" transistor elements, as shown in FIG. 1 . The method includes forming a pair of adjacent transistor elements (from bottom to top, including the element bottom pillar extending from the substrate 410, the tunnel bottom dielectric layer 530, the nanochip sacrificial layer 440 and the nanochip tunnel layer 450) on a On the substrate, the pair of adjacent transistor elements are separated by a trench 479, and the trench 479 is filled with a trench filling layer 470 (which is the predecessor of the dielectric material panel 472). The method further includes forming a panel 472 of dielectric material between the pair of adjacent transistor elements and forming a protective layer 495 on each transistor element by removing portions of the trench fill layer. The method further includes forming a sidewall protection pillar 504 (for details, please refer to the original US Patent No. 20200411436 and FIG. 6 ) on the protection layer 495 , and forming a buried power line 512 between the sidewall protection pillar 504 and the protection layer 495 between. The method further includes forming a power line cover 515 over the buried power line 512 and the sidewall protection pillars 504 , the power line cover 515 may be a metal of the same material as the buried power line 512 , and a dielectric material is used for the power line cover 515 The block 527 covers the power line cover 515 as an insulating layer for blocking leakage current. Thus, the buried power lines ( 512 and 515 ) can be surrounded by dielectric materials (including the sidewall protection pillars 504 , the protective layer 495 and the dielectric material block 527 ), and the dielectric materials thus provide sufficient power for the power lines. Protect. Another embodiment is also disclosed in the text, and the source/drain regions of the semiconductor (that is, where the nanochip sacrificial layer 440 and the nanochip tunnel layer 450 are located) and the buried power lines (512 and 515) are mentioned in the text. ), which can be connected by metal vertical contact columns (Contact/Via) (for details, please refer to the original text of US Patent No. 20200411436 and Figure 19), and then protected by surrounding dielectric materials, no additional lithography patterns are required in the process. chemical process. Therefore, buried power lines provide the simplification of the complex and tight metal line structure over the transistor elements and the opportunity to reduce the overall transistor element area.

該專利案(美國專利案號20200411436)雖提供了在電晶體元件之間形成埋入式電源線之方法,但由於電源線僅能處於電晶體元件之間,因此 1)對於整體元件(包含電晶體元件所占面積與電晶體上方金屬線所占面 積)所占面積之縮減幫助有限。 2)電源線能埋入之區域有限制。 3)由於埋入式電源線設置於電晶體元件底部,而金屬線則設置於電晶體 元件上方,連結用之金屬垂直接觸柱 (Contact/Via)之長度需達到電晶體元件結構之總體高度,增加了金屬垂直接觸柱製造之難度與電阻值,也因此可能降低電晶體元件的效能。 Although this patent case (US patent case No. 20200411436) provides a method of forming buried power lines between transistor elements, since the power lines can only be located between the transistor elements, therefore 1) For the overall component (including the area occupied by the transistor component and the area occupied by the metal line above the transistor) The reduction in the area occupied by the product) is of limited help. 2) The area where the power cord can be buried is limited. 3) Since the buried power line is arranged at the bottom of the transistor element, and the metal wire is arranged at the transistor Above the device, the length of the metal vertical contact column (Contact/Via) used for connection needs to reach the overall height of the transistor element structure, which increases the difficulty and resistance value of the metal vertical contact column manufacturing, and thus may reduce the performance of the transistor device.

美國專利案號20170243957 (U.S. Pat. No. 20170243957),公開於 西元2017年8月24日,揭露一半導體元件包含具有鰭狀結構之鰭式場效電晶體(Fin FET),如圖2所示。該鰭狀結構包含一突出基板之基層(包含基板60、元件底柱611與711)、設置於基層之上的一中間層614、設置於中間層614之上的通道層(包含矽鍺層615與矽上層713)。此鰭式結構進一步包含一第一保護層640A及一與第一保護層640A不同材料製成的第二保護層650A。該中間層614包含一第一半導體層(包含612與712)與設置其上之矽上層(包含613及713)。該第一保護層640A覆蓋於該第一半導體層(包含612與712)之側壁,以及該第二保護層650A覆蓋於第一半導體層640A之上。該專利案(美國專利案號20170243957)進一步包含一方法,藉由沉積一犧牲層於保護層上(640A與650A)並填滿溝槽,蝕回部分犧牲層。蝕回犧牲層後暴露出部分的保護層(640A與650A),即為欲除去保護層之上半部。除去保護層的上半部後使暴露出保護層下之矽上層(包含613及713),並清除剩餘之犧牲層,即完成部分除去第一保護層640A與第二保護層650A,如圖2。由於此方法在完成後不會留下犧牲層,也因此未繪於圖2(詳情請參考美國專利案號20170243957原文以及文中之附圖7-10)。 U.S. Patent Case No. 20170243957 (U.S. Pat. No. 20170243957), published in On August 24, 2017, a semiconductor device including a fin field effect transistor (Fin FET) having a fin structure was disclosed, as shown in FIG. 2 . The fin structure includes a base layer protruding from the substrate (including the substrate 60 , device bottom pillars 611 and 711 ), an intermediate layer 614 disposed on the base layer, and a channel layer (including the silicon germanium layer 615 disposed on the intermediate layer 614 ) with the over-silicon layer 713). The fin structure further includes a first protective layer 640A and a second protective layer 650A made of different materials from the first protective layer 640A. The intermediate layer 614 includes a first semiconductor layer (including 612 and 712 ) and an upper silicon layer (including 613 and 713 ) disposed thereon. The first protective layer 640A covers the sidewalls of the first semiconductor layer (including 612 and 712 ), and the second protective layer 650A covers the first semiconductor layer 640A. The patent (US Patent No. 20170243957) further includes a method of etching back part of the sacrificial layer by depositing a sacrificial layer on the protective layer (640A and 650A) and filling the trenches. After etching back the sacrificial layer, the exposed part of the protective layer ( 640A and 650A ) is the upper half of the protective layer to be removed. After removing the upper half of the protective layer, the upper silicon layer (including 613 and 713) under the protective layer is exposed, and the remaining sacrificial layer is removed, that is, the partial removal of the first protective layer 640A and the second protective layer 650A is completed, as shown in FIG. 2 . Since this method does not leave a sacrificial layer after completion, it is not shown in FIG. 2 (for details, please refer to the original text of US Patent No. 20170243957 and FIGS. 7-10 in the text).

該專利案(美國專利案號20170243957)提供了一方法控制保護層 之層數與部分去除保護層,達到保護該保護層下方之電晶體元件結構,同時曝露出矽上層(包含613及713),以便進行接續之製程。不同於該專利案提出之方法除去保護層之上半段以裸露半導體層,本發明提出將除去保護層結構製程修改為除去下半段,藉以保留上半段之保護層保護電晶體結構上半段之半導體層(190/330)。此外,本發明將額外填入之下部分保護層結構作為保護埋入式導電層150之保護層,藉此達到埋入式導電層150之漏電防護。由此,本發明擴展了保護層結構僅能保護下方為單一材料之連續表面,達到能分段改變保護層結構之材質,藉以保護下方為多材料之連續表面。 This patent case (US Patent Case No. 20170243957) provides a method to control the protective layer The number of layers and part of the protective layer are removed to protect the transistor element structure under the protective layer, and at the same time, the upper silicon layer (including 613 and 713) is exposed for the subsequent process. Different from the method proposed in the patent case, the upper half of the protective layer is removed to expose the semiconductor layer, the present invention proposes to modify the process of removing the protective layer structure to remove the lower half, so as to retain the protective layer of the upper half to protect the upper half of the transistor structure Segment semiconductor layer (190/330). In addition, the present invention further fills the lower part of the protective layer structure as a protective layer for protecting the buried conductive layer 150 , thereby achieving leakage protection of the buried conductive layer 150 . Therefore, the present invention expands that the protective layer structure can only protect the continuous surface of a single material below, so that the material of the protective layer structure can be changed in sections, thereby protecting the continuous surface of multiple materials below.

對於先進結構的元件,例如鰭式、奈米線式與奈米片式場效電晶體而言,一個有效的建構埋入式導電層的機制可以簡化場效電晶體上方金屬線連結的複雜度、縮減元件之整體面積,已達到更密、單位面積計算效能更強的邏輯電路。For devices with advanced structures, such as fin, nanowire and nanochip FETs, an efficient mechanism for constructing buried conductive layers can simplify the complexity of metal wiring connections above the FETs, The overall area of the components has been reduced, resulting in denser logic circuits with higher computing performance per unit area.

本發明提供了一種具有埋入式導電層的電晶體元件以及在電晶 體元件結構中形成埋入式導電層的方法。該方法包含形成埋入式導電層與上下介電材料形成的三明治結構,其中上下介電材料進一步將元件上方的半導體層與下方的元件底柱分開。此方法進一步包含形成多層的保護層結構於相鄰元件單體之間。此方法進一步包含部分去除一保護層,填入不同材料之另一保護層,達到分段改變保護層結構之材質,保護下方埋入式導電電線以及半導體元件電流隧道免於暴露於製程過程中。 The invention provides a transistor element with a buried conductive layer and a transistor A method of forming a buried conductive layer in a bulk element structure. The method includes forming a sandwich structure of a buried conductive layer and an upper and lower dielectric material, wherein the upper and lower dielectric materials further separate the semiconductor layer above the element from the bottom pillar of the element below. The method further includes forming a multi-layered protective layer structure between adjacent device monomers. The method further includes partially removing a protective layer and filling in another protective layer of different materials, so as to change the material of the protective layer structure in sections to protect the buried conductive wires and the current tunnel of the semiconductor device from being exposed in the process.

三明治結構中的介電層與絕緣層(包含131、132、141與142)以及外加的保護層(包含210及220)成功將埋入式導電層150與上方的半導體層190與下方的元件底柱110分開,可以 1)保護埋入式導電層150,避免其與其他元件部分於元件製程中產生非必要之交互污染(cross-contamination)。 2)可以避免由閘極280至埋入式導電層150的漏電流。 3)藉由介電與絕緣層材料本身選擇低介電常數材料,可以本質上降低埋入式導電層150與其他元件部位形成之寄生電容。 The dielectric layers and insulating layers (including 131, 132, 141 and 142) and the additional protective layers (including 210 and 220) in the sandwich structure successfully connect the buried conductive layer 150 with the semiconductor layer 190 above and the bottom of the device. Column 110 is separated and can be 1) The buried conductive layer 150 is protected to avoid unnecessary cross-contamination between the buried conductive layer 150 and other components in the component manufacturing process. 2) The leakage current from the gate electrode 280 to the buried conductive layer 150 can be avoided. 3) The parasitic capacitance formed by the buried conductive layer 150 and other components can be substantially reduced by selecting materials with low dielectric constants for the dielectric and insulating layer materials themselves.

本發明的實施例中,使埋入式導電層150位於元件底柱110與奈米片隧道層180之間,可以 1)簡化元件上方金屬線的複雜度。 2)減少整體元件總面積,包含元件結構與元件上方金屬線之所佔之總面積。 3)藉由減少傳統埋入式導電層與奈米片隧道層180的距離,得以降低金屬垂直接觸柱(Contact/Via)的製造困難度與其電阻值。 In the embodiment of the present invention, the buried conductive layer 150 is located between the device bottom pillar 110 and the nanochip tunnel layer 180, which can 1) Simplify the complexity of the metal lines above the components. 2) Reduce the total area of the overall device, including the total area occupied by the device structure and the metal lines above the device. 3) By reducing the distance between the traditional buried conductive layer and the nanochip tunnel layer 180, the manufacturing difficulty and resistance value of the metal vertical contact column (Contact/Via) can be reduced.

圖3是根據一些實施例繪示出相鄰元件之奈米片隧道層、埋入式 導電層與閘極之剖面圖。在一些實施例中,複數元件單體會相鄰的並列於基板上,其中元件單體包含了電晶體元件。這些電晶體元件可以是水平式鰭式場效電晶體,水平式奈米線/奈米片場效電晶體,或其他類型之電晶體元件。 FIG. 3 is a diagram illustrating a nanochip tunnel layer of adjacent elements, buried, according to some embodiments. Cross-sectional view of the conductive layer and gate. In some embodiments, a plurality of element cells are adjacently juxtaposed on the substrate, wherein the element cells include transistor elements. These transistor elements may be horizontal finFETs, horizontal nanowire/nanochip field effect transistors, or other types of transistor elements.

這些水平的鰭結構、奈米線/奈米片結構或其他元件的區塊在相 鄰的元件單體中可以藉由溝槽與其內之溝槽填入層250分開。 These horizontal blocks of fin structures, nanowire/nanosheet structures or other components are in phase The adjacent element cells can be separated from the trench filling layer 250 by trenches.

在一些實施例中,中間層160設置於元件底柱110上,且在中間層160上設置了奈米片堆疊層190。奈米片堆疊層190包含交錯堆疊的奈米片犧牲層170與奈米片隧道層180。In some embodiments, the intermediate layer 160 is disposed on the device base pillars 110 , and the nanosheet stack layer 190 is disposed on the intermediate layer 160 . The nanosheet stack layer 190 includes a nanosheet sacrificial layer 170 and a nanosheet tunnel layer 180 which are alternately stacked.

用於定義元件結構的曝光圖形轉印可以,但不限於,主要兩種不同的方式:其一為直接寫入(direct-write process),直接寫入包含了極紫外光(EUV)或電子束(E-beam)或兩者結合的使用。另一為自對準單圖形(self-aligned single patterning, SASP), 或自對準多圖形(self-aligned multiple patterning)或其組合。The exposure pattern transfer used to define the structure of the element can be, but is not limited to, mainly in two different ways: one is the direct-write process, which includes extreme ultraviolet (EUV) or electron beam (E-beam) or a combination of both. The other is self-aligned single patterning (SASP), or self-aligned multiple patterning (self-aligned multiple patterning) or a combination thereof.

在本實施例中,基板100為矽基板。In this embodiment, the substrate 100 is a silicon substrate.

在一些實施例中,基板可能由不同的材料構成,例如單元素半導體,包含單晶、多晶、非晶Si, Ge或其元素,III-V族化合物半導體,包含GaAs、 GaP、InP、InAs、InSb、GaAsP、AlGaN、AlInAs、AlGaAs、GaInAs、GaInP、GaInAsP或其他材料,IV-IV化合物半導體,包含SiC、SiGe或其他材料,不同種類的基板結構,例如絕緣層上矽電晶體(Silicon-on-Insulator (SOI)),或是組合上述材料之應用。許多在基板100上的區塊也許會摻雜不同的n 、p或中性的雜質已達到更好的導電度。In some embodiments, the substrate may be composed of different materials, such as single element semiconductors including single crystal, polycrystalline, amorphous Si, Ge or elements thereof, III-V compound semiconductors including GaAs, GaP, InP, InAs , InSb, GaAsP, AlGaN, AlInAs, AlGaAs, GaInAs, GaInP, GaInAsP or other materials, IV-IV compound semiconductors, including SiC, SiGe or other materials, different kinds of substrate structures, such as silicon-on-insulator (Silicon- on-Insulator (SOI)), or a combination of the above materials. Many of the blocks on the substrate 100 may be doped with different n, p or neutral impurities to achieve better conductivity.

基層120包含基板100與元件底柱110。元件底柱110也許與基板 100以相同的材料製造而成,或是基板100的延伸。 The base layer 120 includes the substrate 100 and the device pillars 110 . Component pillars 110 may be connected to the substrate 100 is fabricated from the same material, or is an extension of substrate 100 .

中間層160為三明治結構,包含埋入式導電層150位於中間,第一介電材料層130與第二介電材料層140分別位於埋入式導電層150的下方與上方。在一些實施例中,第一介電材料層130包含第一介電層131與第一絕緣層132,第二介電材料層140包含第二介電層141與第二絕緣層142。但是,中間層160可以加入額外層數或減少層數已保護埋入式導電層150以避免漏電流。在本實施例中, 中間層160的三明治結構由下而上排列分別為,第一介電層131、第一絕緣層132、埋入式導電層150、第二絕緣層142以及第二介電層141。此三明治結構的中間層160中的第一介電層131與第二介電層141進一步將埋入式導電層150與下方的元件底柱110與上方的半導體層190隔開。The intermediate layer 160 is a sandwich structure, including the buried conductive layer 150 in the middle, and the first dielectric material layer 130 and the second dielectric material layer 140 are respectively located below and above the buried conductive layer 150 . In some embodiments, the first dielectric material layer 130 includes a first dielectric layer 131 and a first insulating layer 132 , and the second dielectric material layer 140 includes a second dielectric layer 141 and a second insulating layer 142 . However, the interlayer 160 may add additional layers or reduce the number of layers to protect the buried conductive layer 150 from leakage current. In this embodiment, the sandwich structure of the intermediate layer 160 is arranged from bottom to top, respectively, the first dielectric layer 131 , the first insulating layer 132 , the buried conductive layer 150 , the second insulating layer 142 and the second dielectric layer Layer 141. The first dielectric layer 131 and the second dielectric layer 141 in the intermediate layer 160 of the sandwich structure further separate the buried conductive layer 150 from the underlying element pillar 110 and the upper semiconductor layer 190 .

在一些實施例中,埋入式導電層150可以埋在元件底柱110與元件半導體層190中間。埋入式導電層150可以均勻沉積製程,例如原子層沉積(ALD)、 電漿輔助原子層沉積(PEALD)或是化學沈積製程,例如化學氣相沈積(CVD),電漿輔助化學氣相沈積(PECVD),有機金屬化學氣相沈積(MOCVD),或其他製程形成。In some embodiments, the buried conductive layer 150 may be buried between the device base pillar 110 and the device semiconductor layer 190 . The buried conductive layer 150 can be deposited by a uniform deposition process, such as atomic layer deposition (ALD), plasma assisted atomic layer deposition (PEALD), or a chemical deposition process, such as chemical vapor deposition (CVD), plasma assisted chemical vapor deposition (PECVD), metal-organic chemical vapor deposition (MOCVD), or other processes.

在一些實施例中,埋入式導電層150可由,但不限於,不同導 電材料組成。例如半導體材料,包含摻雜過的單晶Si、多晶Si、非晶Si、Ge、SiGe等,金屬材料,包含鎢W、Ti、Ta、Ru、Hf、Zr、Co、Ni、Cu、Al、Pt、Sn、Ag、Au或其他單元素金屬,金屬化合物,包含GeSn、TaN、TiN、WN、RuO2等,金屬矽化合物,包含CoSi、NiSi、ZrSi、RuSi、WSi,過度金屬鋁化合物,包含Ti3Al、ZrAl,導電碳基材料,例如TaC、TiC、TiAlC、TaMgC、奈米碳管、石墨烯或任何這些材料的組合。摻雜製程可以外加在埋入式導電層150的沈積過程中或之後進行。 In some embodiments, the buried conductive layer 150 may be made of, but not limited to, different conductive composition of electrical materials. For example, semiconductor materials, including doped single crystal Si, polycrystalline Si, amorphous Si, Ge, SiGe, etc., metal materials, including tungsten W, Ti, Ta, Ru, Hf, Zr, Co, Ni, Cu, Al , Pt, Sn, Ag, Au or other single element metals, metal compounds, including GeSn, TaN, TiN, WN, RuO2, etc., metal silicon compounds, including CoSi, NiSi, ZrSi, RuSi, WSi, transition metal aluminum compounds, including Ti3Al, ZrAl, conductive carbon based materials such as TaC, TiC, TiAlC, TaMgC, carbon nanotubes, graphene or any combination of these materials. The doping process may be additionally performed during or after the deposition of the buried conductive layer 150 .

第一介電層131與第二介電層141可以類似或相同的介電層材料 組成。介電層可以包含一或多層不同的介電材料,例如磷矽酸鹽玻璃(phosphosilicate glass (PSG))、SiON、SiCN、SiOCN、SiC或其他介電材料。適用於製造前段製程的導體網路的介電材料可與後段製程的導體網路層類似。換言之,低介電值(k-value)材料可以用於第一介電層131與第二介電層141。低介電值材料,包含摻雜氟的氧化矽(SiO:F)、摻雜碳的氧化矽(SiO:C)、 甲基倍半矽氧烷(methyl silsequioxane(MSQ))、氫倍半矽氧烷(hydrogen silsequioxane(HSQ))、正矽酸乙酯(tetraethyl orthosilicate(TEOS))或上述材料的組合。 The first dielectric layer 131 and the second dielectric layer 141 may be composed of similar or the same dielectric layer materials. The dielectric layer may comprise one or more layers of different dielectric materials, such as phosphosilicate glass (PSG), SiON, SiCN, SiOCN, SiC, or other dielectric materials. Dielectric materials suitable for making the conductor network of the front-end process can be similar to the conductor network layers of the back-end process. In other words, a low dielectric value (k-value) material may be used for the first dielectric layer 131 and the second dielectric layer 141 . Low-k materials, including fluorine-doped silicon oxide (SiO:F), carbon-doped silicon oxide (SiO:C), methyl silsequioxane (MSQ), hydrogen silsesquioxane Hydrogen silsequioxane (HSQ), tetraethyl orthosilicate (TEOS), or a combination of the above materials.

第一絕緣層132與第二絕緣層142可以包含一或多層不同的絕緣 材料,包含SiON、SiCN、SiOCN、SiC等或是上述材料的組合。 The first insulating layer 132 and the second insulating layer 142 may comprise one or more different insulating layers Materials, including SiON, SiCN, SiOCN, SiC, etc. or a combination of the above materials.

在一些實施例中,奈米片堆疊層190包含交錯堆疊的奈米片犧牲 層170與奈米片隧道層180。在許多實施例中,奈米片犧牲層170可以是半導體材料,包含但不限於Si、Ge、GeSn、SiGe、SiC、Si:C或上述材料之組合,奈米片隧道層180可以是不同於奈米片犧牲層170與第二介電層141的半導體材料,以便提供奈米片隧道層180不同於奈米片犧牲層170與第二介電層141蝕刻選擇比,方便後續製程實施。 In some embodiments, the nanosheet stack layer 190 comprises staggered stacked nanosheet sacrificial layer 170 and nanosheet tunnel layer 180 . In many embodiments, the nanosheet sacrificial layer 170 may be a semiconductor material including, but not limited to, Si, Ge, GeSn, SiGe, SiC, Si:C, or a combination thereof, and the nanosheet tunnel layer 180 may be different from The semiconductor material of the nanochip sacrificial layer 170 and the second dielectric layer 141 can provide the nanochip tunnel layer 180 with an etching selectivity ratio different from that of the nanochip sacrificial layer 170 and the second dielectric layer 141, which is convenient for subsequent process implementation.

在一些實施例中,第一保護層210與第二保護層220用於包住下方的元件結構避免暴露於環境而氧化。保護層可以是一或多層不同的介電材料。介電材料可以是氧化矽介電材料,例如磷矽酸鹽玻璃(Phosphosilicate glass (PSG))、SiON或是氮化矽介電材料,例如SiN、SiCN、SiOCN、SiC或上述材料之組合。由於保護層下方可能為不同之材料,保護層的材料也可能不同。在本實施例中,第一保護層210可以是氧化矽介電材料SiO 2,而第二保護層可以是氮化矽介電材料SiN。 In some embodiments, the first protective layer 210 and the second protective layer 220 are used to encapsulate the underlying device structure to avoid oxidation due to exposure to the environment. The protective layer can be one or more layers of different dielectric materials. The dielectric material may be a silicon oxide dielectric material, such as Phosphosilicate glass (PSG), SiON, or a silicon nitride dielectric material, such as SiN, SiCN, SiOCN, SiC, or a combination thereof. The material of the protective layer may also be different as the material under the protective layer may be different. In this embodiment, the first protective layer 210 may be a silicon oxide dielectric material SiO 2 , and the second protective layer may be a silicon nitride dielectric material SiN.

在許多實施例中,溝槽填入層250可以一或多層絕緣材料,例如 二氧化矽組成。形成二氧化矽所使用的製程可以是(但不限於)原子層沉積(ALD)、化學沈積機制,包含化學氣相沈積(CVD)、可流動化學氣相沈積(Flowable-CVD)、電漿輔助化學氣相沈積(PECVD)、大氣化學氣相沈積(APCVD)、低壓化學氣相沈積(LPCVD)、高密度電漿化學氣相沈積(HDPCVD)與其組合。在一些實施例中,化學氣相沈積的前驅物包含矽酸鹽(silicate)、矽氧烷(siloxane)、矽基高分子材料,例如甲基倍半矽氧烷(methyl silsequioxane(MSQ))、氫倍半矽氧烷(hydrogen silsequioxane(HSQ))、甲基倍半矽氧烷與氫倍半矽氧烷合成材料MSQ/HSQ、全氫化矽氮烷(perhydrosilanzane(TCPS))、全氫聚矽氮烷(perhydro-polysilazane(PHPS))、正矽酸乙酯(tetraethyl orthosilicate(TEOS))、或三甲矽烷基胺(trisilylamine(TSA))。CVD製程結束後,薄膜會再經過固化(curing)與退火(annealing)以去除不必要的雜質,形成縮小且變密的二氧化矽薄膜。在一些實施例中,退火次數大於一。CVD薄膜可以摻雜硼(B)或是磷(P)原子。溝槽填入層250可以一或多層不同的材料絕緣材料組成,包含旋塗式玻璃SOG、SiO、SiON、SiOCN或氟矽玻璃FSG。溝槽填入層250形成後仍可以加入退火製程改善內部絕緣層的品質。 In many embodiments, trench fill layer 250 may be one or more layers of insulating material, such as Composition of silica. The process used to form silicon dioxide can be (but not limited to) atomic layer deposition (ALD), chemical deposition mechanisms, including chemical vapor deposition (CVD), flowable chemical vapor deposition (Flowable-CVD), plasma assisted Chemical Vapor Deposition (PECVD), Atmospheric Chemical Vapor Deposition (APCVD), Low Pressure Chemical Vapor Deposition (LPCVD), High Density Plasma Chemical Vapor Deposition (HDPCVD) and combinations thereof. In some embodiments, chemical vapor deposition precursors include silicate, siloxane, silicon-based polymer materials, such as methyl silsequioxane (MSQ), Hydrogen silsequioxane (HSQ), methyl silsequioxane and hydrogen silsesquioxane synthetic materials MSQ/HSQ, perhydrosilanzane (TCPS), perhydropolysilicon Azane (perhydro-polysilazane (PHPS)), tetraethyl orthosilicate (TEOS), or trisilylamine (TSA). After the CVD process, the film will be cured and annealed to remove unnecessary impurities and form a reduced and dense silicon dioxide film. In some embodiments, the number of anneals is greater than one. CVD films can be doped with boron (B) or phosphorus (P) atoms. The trench filling layer 250 can be composed of one or more layers of different insulating materials, including spin-on glass SOG, SiO, SiON, SiOCN or fluorosilicate glass FSG. After the trench filling layer 250 is formed, an annealing process can still be added to improve the quality of the inner insulating layer.

在許多實施例中,閘極層280包含閘極介電層、功函數調整層與 閘極電極(未於附圖中分層詳示,詳情可參考美國專利案號20170243957)。 In many embodiments, gate layer 280 includes a gate dielectric layer, a work function adjustment layer, and Gate electrode (not shown in detail in layers in the drawings, please refer to US Patent No. 20170243957 for details).

圖4至12是根據一些實施例,繪示出形成相鄰元件之奈米片隧 道層180、埋入式導電層150與閘極層280之中間階段剖面圖。此外,外加操作可以在製程之前、過程中、之後加入,且一些下方說明的操作在其他的實施例中可以被替換、去除。操作與製程的順序可以交換。 FIGS. 4-12 are diagrams illustrating nanosheet tunnels forming adjacent elements, according to some embodiments. A cross-sectional view of the middle stage of the channel layer 180 , the buried conductive layer 150 and the gate layer 280 . Additionally, additional operations may be added before, during, or after the process, and some of the operations described below may be replaced or eliminated in other embodiments. The sequence of operations and processes can be interchanged.

圖4顯示基層310、中間層320、半導體層330與硬式罩幕層340。 在一些實施例中,基層310是矽基板或氧化層上矽基板之矽層(Silicon layer of SOI)。中間層320為三明治結構,由下至上包含第一介電層131、第一絕緣層132、埋入式導電層150、第二絕緣層142與第二介電層141。半導體層330(即奈米片堆疊層190)設置於中間層320上。半導體層通常包含奈米片犧牲層170與奈米片隧道層180。硬式罩幕層340進一步設置於半導體層330上。 FIG. 4 shows the base layer 310 , the intermediate layer 320 , the semiconductor layer 330 and the hard mask layer 340 . In some embodiments, the base layer 310 is a silicon substrate or a silicon layer of SOI. The intermediate layer 320 has a sandwich structure, and includes the first dielectric layer 131 , the first insulating layer 132 , the buried conductive layer 150 , the second insulating layer 142 and the second dielectric layer 141 from bottom to top. The semiconductor layer 330 (ie, the nanosheet stack layer 190 ) is disposed on the intermediate layer 320 . The semiconductor layer generally includes a nanosheet sacrificial layer 170 and a nanosheet tunnel layer 180 . The hard mask layer 340 is further disposed on the semiconductor layer 330 .

在一些實施例中,硬式罩幕層340可以複數層不同材料組成,並 可用硬式罩幕層340保護以及定義元件區域。在本實施例中,硬式罩幕層340是由兩不同材料層組成,分別是墊氧化層341與墊氮化層342。然而,一或多層不同材料也可以加入以求精細地定義元件區域與溝槽區域。通常墊氧化層341的厚度範圍約為2奈米到15奈米,墊氮化層342的厚度範圍約為10奈米到50奈米。 In some embodiments, the rigid mask layer 340 may be composed of multiple layers of different materials, and A hard mask layer 340 may be used to protect and define the device area. In this embodiment, the hard mask layer 340 is composed of two different material layers, which are a pad oxide layer 341 and a pad nitride layer 342 respectively. However, one or more layers of different materials may also be added to finely define the device area and trench area. Generally, the thickness of the pad oxide layer 341 ranges from about 2 nm to 15 nm, and the thickness of the pad nitride layer 342 ranges from about 10 nm to 50 nm.

在一些實施例中,埋入式導電層150的厚度T1範圍約為5奈米至 50奈米。第一介電層131與第二介電層141的厚度範圍約為10奈米至50奈米。第一絕緣層132與第二絕緣層142的厚度範圍約為1奈米到20奈米。 In some embodiments, the thickness T1 of the buried conductive layer 150 ranges from about 5 nm to 50 nm. The thickness of the first dielectric layer 131 and the second dielectric layer 141 ranges from about 10 nm to 50 nm. The thickness of the first insulating layer 132 and the second insulating layer 142 ranges from about 1 nm to 20 nm.

如圖5繪示,完成第一次硬式罩幕層340圖形製程(first hard mask patterning)後,元件結構的硬式罩幕圖形345,包含墊氧化層341與墊氮化層342形成。第一次完成第一次硬式罩幕層340圖形製程定義硬式罩幕層340下溝槽的寬度與奈米片隧道層180的寬度。藉由第二絕緣層142與第二介電層141兩者間的蝕刻選擇比,第二絕緣層142可以是第一次硬式罩幕層340圖形製程的蝕刻停止層,因此埋入式導電層150與其下方的元件結構得以在第一次硬式罩幕層340圖形製程中獲得保護。 As shown in FIG. 5 , the first hard mask layer 340 patterning process is completed. After patterning), a hard mask pattern 345 of the device structure including the pad oxide layer 341 and the pad nitride layer 342 is formed. The first patterning process of the hard mask layer 340 is completed for the first time to define the width of the trench under the hard mask layer 340 and the width of the nanochip tunnel layer 180 . With the etching selectivity ratio between the second insulating layer 142 and the second dielectric layer 141, the second insulating layer 142 can be the etch stop layer of the first patterning process of the hard mask layer 340, so the buried conductive layer 150 and its underlying device structures are protected during the first hard mask layer 340 patterning process.

完成第一次硬式罩幕層340圖形製程後的溝槽深度D1的深度範 圍約為50奈米至150奈米。 The depth range of the trench depth D1 after the first hard mask layer 340 patterning process is completed The circumference is about 50 nm to 150 nm.

圖6繪示第一保護層210形成並覆蓋下方所有元件結構。第一保護層210可以包含一或多層介電材料,用以防止保護層下方元件結構因接下來的製程而氧化。FIG. 6 shows that the first protective layer 210 is formed and covers all the underlying device structures. The first protective layer 210 may include one or more layers of dielectric materials to prevent the element structures under the protective layer from being oxidized due to subsequent processes.

有些實施例中,第一保護層210可以是氧化化合物。在此實施例 中,第一保護層210是SiO 2。SiO 2沉積製程可以包含(但不限於)原子層沉積ALD、化學沈積機制,包含化學氣相沈積CVD、可流動化學氣相沈積Flowable-CVD、電漿輔助化學氣相沈積PECVD、大氣化學氣相沈積(APCVD)、低壓化學氣相沈積(LPCVD)、高密度電漿化學氣相沈積(HDPCVD)與其組合。 In some embodiments, the first protective layer 210 may be an oxide compound. In this embodiment, the first protective layer 210 is SiO 2 . The SiO deposition process may include (but is not limited to) atomic layer deposition (ALD), chemical deposition mechanisms, including chemical vapor deposition CVD, flowable chemical vapor deposition Flowable-CVD, plasma assisted chemical vapor deposition PECVD, atmospheric chemical vapor deposition Deposition (APCVD), Low Pressure Chemical Vapor Deposition (LPCVD), High Density Plasma Chemical Vapor Deposition (HDPCVD) and combinations thereof.

在有些實施例中,第一保護層210的厚度範圍由約1奈米到20奈 米。 In some embodiments, the thickness of the first protective layer 210 ranges from about 1 nm to 20 nm Meter.

在一些實施例中,第一保護層210是用來保護第一次圖形化後的 半導體層190與第一次圖形化後部分曝露出來的第二介電層141,防止下方的元件圖形被接下來的製程傷害。但是,只要奈米片犧牲層170與奈米片隧道層180的側壁有被第一保護層210覆蓋住,第一保護層210並不一定需要覆蓋第二介電層所有的側壁。換言之,第一次硬式罩幕層340圖形製程,並不一定要蝕刻掉溝槽底部所有的第二介電層141並且暴露出底下的第二絕緣層142。第一保護層210的沉積,也因此不見得會碰觸到下方第二絕緣層142,因為中間隔著僅部分被蝕刻的第二介電層141。 In some embodiments, the first protective layer 210 is used to protect the first patterned The semiconductor layer 190 and the partially exposed second dielectric layer 141 after the first patterning prevent the underlying device pattern from being damaged by the subsequent process. However, as long as the sidewalls of the nanochip sacrificial layer 170 and the nanochip tunnel layer 180 are covered by the first protective layer 210 , the first protective layer 210 does not necessarily need to cover all the sidewalls of the second dielectric layer. In other words, in the first patterning process of the hard mask layer 340 , it is not necessary to etch away all the second dielectric layer 141 at the bottom of the trench and expose the second insulating layer 142 thereunder. The deposition of the first protective layer 210 therefore does not necessarily touch the lower second insulating layer 142 because the second dielectric layer 141 which is only partially etched is interposed therebetween.

接下來,經過第二次硬式罩幕層圖形製程循環(second hard mask patterning cycle),包含第二次硬式罩幕層沉積、第二次圖形化、第二次溝槽蝕刻與剩餘硬式罩幕層去除後,溝槽區域擴張至基層120,如圖7繪示。換言之,形成了更深的溝槽區域。第二次溝槽蝕刻可以蝕刻掉溝槽區域內的中間層160,形成元件底柱110與部分曝露的基板100。Next, go through the second hard mask patterning cycle, including the second hard mask deposition, the second patterning, the second trench etching and the remaining hard mask After removal, the trench area expands to the base layer 120 , as shown in FIG. 7 . In other words, deeper trench regions are formed. The second trench etching may etch away the intermediate layer 160 in the trench region to form the device base pillars 110 and the partially exposed substrate 100 .

文中所提的第二次硬式罩幕層圖形製程也可稱為溝槽圖形製程 循環(trench patterning cycle),可以多次實施,以求達到設定目標。此循環通常包含硬式罩幕層沉積、圖形化、溝槽蝕刻與剩餘硬式罩幕層去除,可以重複圖4至5的做法或外加其他操作於此循環之前、過程中或之後,且循環中部分步驟可以省略、替換以及交換。此處為避免重複圖4至5所示之概念,故省略過程之附圖,僅附上完成後之圖7。 The second hard mask layer patterning process mentioned in the text can also be called the trench patterning process Trench patterning cycle, which can be performed multiple times to achieve a set goal. This cycle typically includes hardmask deposition, patterning, trench etching, and removal of the remaining hardmask, and the practices of Figures 4-5 may be repeated or additional operations performed before, during, or after the cycle, and part of the cycle. Steps can be omitted, replaced and exchanged. In order to avoid repeating the concepts shown in FIGS. 4 to 5 , the drawings of the process are omitted here, and only the completed FIG. 7 is attached.

完成溝槽圖形製程循環(trench patterning cycle)後,溝槽深度 D2範圍從約75奈米到約300奈米。 After completing the trench patterning cycle, the trench depth D2 ranges from about 75 nm to about 300 nm.

埋入式導電層於相鄰元件之間距W1範圍從約3奈米到約50奈米。The distance W1 of the buried conductive layer between adjacent elements ranges from about 3 nm to about 50 nm.

埋入式導電層寬度W2範圍從約20奈米到約80奈米。The buried conductive layer width W2 ranges from about 20 nm to about 80 nm.

溝槽中間深寬比(Aspect ratio)等於溝槽深度D2除以埋入式導電 層於相鄰元件之間距W1,是決定溝槽形狀的關鍵尺寸之一。 The aspect ratio between the trenches is equal to the trench depth D2 divided by the buried conduction The distance W1 between layers and adjacent elements is one of the key dimensions that determines the shape of the trench.

溝槽圖形製程循環的穩定度可以藉由觀察指標W2/W1的變化進 行了解。 The stability of the groove pattern process cycle can be improved by observing the change of the index W2/W1. understand.

在元件底柱110成形後,如圖8繪示,第二保護層220覆蓋於所有 元件結構上。第二保護層的材料可以跟第一絕緣層142與第二絕緣層152相同,或其他具備優異溝槽填入能力的材料也可被使用。 After the device base 110 is formed, as shown in FIG. 8 , the second protective layer 220 covers all the component structure. The material of the second protective layer can be the same as that of the first insulating layer 142 and the second insulating layer 152, or other materials with excellent trench filling capability can also be used.

埋入式導電層於相鄰元件之間距W1在第二保護層220沉積後標 示為W3,因此W3 等於 W1減去兩倍第二保護層的厚度。 The buried conductive layer is marked with a distance W1 between adjacent elements after the second protective layer 220 is deposited. Shown as W3, so W3 is equal to W1 minus twice the thickness of the second protective layer.

W3是關鍵尺寸其中之一,可以用於了解STI (shallow trench isolation 即溝槽填入層250) 氧化矽對於溝槽填入的能力。對於越來越限縮的尺寸,可以不同沈積機制階段式填入,例如先進行原子層沉積(ALD)填入溝槽底部狹窄的部位後,而後改以化學氣相沈積(CVD)填入上方較寬的溝槽部位,以降低溝槽底部填入失敗的機會。 W3 is one of the key dimensions that can be used to understand STI (shallow trench The isolation refers to the ability of the trench filling layer 250) to be filled with silicon oxide. For increasingly limited size, different deposition mechanisms can be used to fill in stages, for example, atomic layer deposition (ALD) is used to fill the narrow part of the bottom of the trench, and then chemical vapor deposition (CVD) is used to fill the upper part. Wider trench sections to reduce the chance of trench bottom fill failures.

如圖9繪示,溝槽定義後會填入溝槽填入層250覆蓋住第二保護層220,並且在之後的製程中,例如於STI蝕回與保護層去除製程中保護第二保護層220的下半段。As shown in FIG. 9 , after the trenches are defined, a trench filling layer 250 is filled to cover the second protective layer 220 , and the second protective layer is protected in subsequent processes, such as STI etching back and protective layer removal processes The second half of the 220.

由於半導體層190的側壁與第一保護層210的上半段被第二保護 層220覆蓋著,元件結構上段的半導體層190與元件結構下段的元件底柱110不會因為形成溝槽填入層250 (即STI 氧化矽)而被環境中氧原子氧化。 Since the sidewall of the semiconductor layer 190 and the upper half of the first protective layer 210 are protected by the second The layer 220 covers the semiconductor layer 190 in the upper part of the device structure and the device bottom pillar 110 in the lower part of the device structure without being oxidized by oxygen atoms in the environment due to the formation of the trench filling layer 250 (ie, STI silicon oxide).

如圖10繪示,部分的STI氧化矽及第一與第二保護層210、220皆 被除去,並暴露出底下元件結構的半導體層190。在此實施例中,元件結構包含奈米片隧道層180、奈米片犧牲層170與第二介電層141。 As shown in FIG. 10, part of the STI silicon oxide and the first and second protective layers 210, 220 are is removed and exposes the semiconductor layer 190 of the underlying device structure. In this embodiment, the device structure includes a nanosheet tunnel layer 180 , a nanosheet sacrificial layer 170 and a second dielectric layer 141 .

如同之前段落42所述,第二介電層141藉由不同的製程條件, 在經過如圖8繪示除去部分的STI氧化矽及第一與第二保護層210、220後,可以是埋在STI氧化矽下、部分暴露或是完全暴露。如果第二介電層141是埋在STI氧化矽下,部分的第一保護層210可以留在第二介電層的側壁,並且提供給下方埋入式導電層150較好的保護,達到較低的閘極對埋入式導電層的漏電流。 As described in the previous paragraph 42, the second dielectric layer 141 is subjected to different process conditions. After removing part of the STI silicon oxide and the first and second protective layers 210 and 220 as shown in FIG. 8 , they may be buried under the STI silicon oxide, partially exposed, or fully exposed. If the second dielectric layer 141 is buried under the STI silicon oxide, part of the first protective layer 210 can remain on the sidewall of the second dielectric layer and provide better protection for the buried conductive layer 150 below, so as to achieve a higher level of protection. Low gate-to-buried leakage current.

埋入式導電層150與之後的閘極層280的垂直距離為T2。此關鍵 尺寸T2尤其重要,由於T2必須足夠大,以避免閘極到埋入式導電層150的漏電流,但也不能過大,以免影響之後閘極層280成型。 The vertical distance between the buried conductive layer 150 and the subsequent gate layer 280 is T2. this key The dimension T2 is particularly important because T2 must be large enough to avoid leakage current from the gate to the buried conductive layer 150 , but not so large as to affect the subsequent formation of the gate layer 280 .

完成STI氧化矽的蝕回與上半部保護層去除的製程後,溝槽底部 與元件側壁形成之邊角的角度表示為R1。R1不僅可作為製程穩定度的指標,也可作為閘極層280至埋入式導電層150漏電流計算的重要參數。上半部保護層的去除直接影響關鍵尺寸R1。如同之前段落42所述,藉由控制上半部保護層去除的製程條件,剩餘的保護層(210與220)可以覆蓋部分的第二介電層141,並且增大R1以及T2達到最佳化漏電流的控制。 After the etching back of the STI silicon oxide and the removal of the upper half of the protective layer are completed, the bottom of the trench is The angle of the corner formed with the side wall of the element is denoted as R1. R1 can be used not only as an indicator of process stability, but also as an important parameter for calculating the leakage current from the gate layer 280 to the buried conductive layer 150 . The removal of the upper protective layer directly affects the critical dimension R1. As described in the previous paragraph 42, by controlling the process conditions for removing the top half of the protective layer, the remaining protective layers (210 and 220) can cover part of the second dielectric layer 141, and increase R1 and T2 to achieve optimization control of leakage current.

如圖11繪示,藉由不同的蝕刻選擇比,奈米片犧牲層170可以被 除去,並且留下元件結構所需要的奈米片隧道層180,成為元件結構的電流隧道。 As shown in FIG. 11, with different etching selectivity ratios, the nanochip sacrificial layer 170 can be The nanosheet tunnel layer 180 required by the element structure is removed and left, which becomes the current tunnel of the element structure.

在一些實施例中,奈米堆疊層190包含交錯的奈米片犧牲層170 與奈米片隧道層180。在不同的實施例中,奈米片犧牲層170可以是半導體材料,包含(但不限於)Si、 Ge、GeSn、SiGe、SiC、Si:C或其組合,其中奈米片犧牲層170可以是不同於第二介電層141與奈米片隧道層180的材料,以提供足夠好的蝕刻選擇比。奈米片犧牲層170可以是SiGe,並且Ge濃度在,但不限於,約20至40原子百分濃度的範圍。 In some embodiments, nanostack layer 190 includes staggered nanosheet sacrificial layers 170 with the nanosheet tunnel layer 180 . In various embodiments, the sacrificial nanosheet layer 170 may be a semiconductor material including, but not limited to, Si, Ge, GeSn, SiGe, SiC, Si:C, or a combination thereof, wherein the sacrificial nanosheet layer 170 may be The materials of the second dielectric layer 141 and the nanosheet tunnel layer 180 are different to provide a sufficiently good etching selectivity ratio. The nanosheet sacrificial layer 170 may be SiGe, and the Ge concentration is in the range of, but not limited to, about 20 to 40 atomic percent concentration.

在許多實施例中,奈米片隧道層180可以是半導體材料,包含, 但不限於,Si、Ge、GeSn、SiGe、SiC、Si:C或其組合。其中奈米片隧道層180可以是不同於第二介電層141與奈米片犧牲層170的材料,以提供足夠好的蝕刻選擇比。 In many embodiments, the nanosheet tunnel layer 180 may be a semiconductor material including, Without limitation, Si, Ge, GeSn, SiGe, SiC, Si:C, or combinations thereof. The nanosheet tunnel layer 180 can be made of different materials from the second dielectric layer 141 and the nanosheet sacrificial layer 170 to provide a sufficiently good etching selectivity ratio.

在此實施例中,奈米片隧道層180可以是單晶Si或不同於奈米片 犧牲層170 Ge 原子百分濃度的SiGe。 In this embodiment, the nanosheet tunnel layer 180 may be single crystal Si or different from nanosheets Sacrificial layer 170 Ge atomic percent concentration of SiGe.

關鍵尺寸R1、T2也許會隨奈米片隧道成形的製程中受影響而改 變,例如選擇比損失(Selectivity loss),即為進行選擇性蝕刻所造成對元件意外的損傷。藉由觀察R1、T2這類指標隨製程的變化,可以確保元件製造者對於元件的漏電流的控制。 The critical dimensions R1 and T2 may be affected by the nanochip tunneling process. Variations, such as selectivity loss, are unexpected damage to components caused by selective etching. By observing the changes of indicators such as R1 and T2 with the process, the device manufacturer can ensure the control of the leakage current of the device.

如圖12繪示,閘極層280沉積且環繞地包覆住奈米片隧道層180。閘極層280通常包含,但不限於,閘極介電層、功函數調整層與閘極電極(未分層於附圖中)。As shown in FIG. 12 , the gate layer 280 is deposited and wraps around the nanochip tunnel layer 180 . The gate layer 280 generally includes, but is not limited to, a gate dielectric layer, a work function adjustment layer, and a gate electrode (not layered in the drawings).

閘極介電層通常包含一或多層不同的介電材料,例如氧化矽、氮化矽或高介電常數材料或其他適當的介電材料與其組合。高介電常數材料,包含HfO 2、HfSiON、HfTaO、HfSiO、HfZrO、ZrO、Al 2O 3、TiO 2、HfO 2-Al 2O 3、其他適合的高介電常數材料或其組合。 The gate dielectric layer typically includes one or more layers of different dielectric materials, such as silicon oxide, silicon nitride, or high-k materials or other suitable dielectric materials in combination therewith. High dielectric constant materials, including HfO 2 , HfSiON, HfTaO, HfSiO, HfZrO, ZrO, Al 2 O 3 , TiO 2 , HfO 2 -Al 2 O 3 , other suitable high dielectric constant materials or combinations thereof.

閘極電極也許包含一或多層不同導電材料,例如高導電的半導體材料,包含摻雜單晶Si、摻雜多晶Si或摻雜非晶Si、Ge、SiGe或其組合,金屬,包含W、Ti、Ta、Ru、Hf、Zr、Co、Ni、Cu、Al、Pt、Sn、Ag、Au或其他金屬元素,金屬化合物,包含GeSn、TaN、TiN、WN、RuO2或其他金屬化合物,金屬矽化物,包含CoSi、NiSi、ZrSi、RuSi、WSi與其他金屬矽化物,過渡金屬鋁合金,包含Ti3Al或ZrAl,導電碳基材料,包含TaC、TiC、TiAlC、TaMgC、奈米碳管、石墨烯或其組合。摻雜製程也可以於導電材料的沉積製程中或之後加入。The gate electrode may comprise one or more layers of different conductive materials, such as highly conductive semiconductor materials, including doped monocrystalline Si, doped polycrystalline Si or doped amorphous Si, Ge, SiGe or combinations thereof, metals, including W, Ti, Ta, Ru, Hf, Zr, Co, Ni, Cu, Al, Pt, Sn, Ag, Au or other metal elements, metal compounds, including GeSn, TaN, TiN, WN, RuO2 or other metal compounds, metal silicide materials, including CoSi, NiSi, ZrSi, RuSi, WSi and other metal silicides, transition metal aluminum alloys, including Ti3Al or ZrAl, conductive carbon-based materials, including TaC, TiC, TiAlC, TaMgC, carbon nanotubes, graphene or its combination. The doping process can also be added during or after the deposition process of the conductive material.

在一些實施例中,功函數調整層可以加在閘極介電層與閘極電極之間。功函數調整層可以由導電材料組成,例如金屬化合物,包含氮化物TiN、TaN、WN或其他氮化物,碳化物TaAlC、TiC、TaC、TiAlC與其他碳化物,鋁合金TiAl、ZrAl、TiAlC與其他鋁合金,矽化物HfTi、TiSi、TaSi、RuSi與其它矽化物,或多層結構。對於n型隧道而言,一或多層的TaN、TaAlC、TiC、Co、TiAl、HfTi、TiSi、TaS被用作功函數調整層。對於p型隧道而言,一或多層的TaN、TaAlC、TiAl、Co、TiAl、Al、TiC、TiN被用作功函數調整層。In some embodiments, a work function adjustment layer may be added between the gate dielectric layer and the gate electrode. The work function adjustment layer can be composed of conductive materials, such as metal compounds, including nitrides TiN, TaN, WN or other nitrides, carbides TaAlC, TiC, TaC, TiAlC and other carbides, aluminum alloys TiAl, ZrAl, TiAlC and others Aluminum alloys, silicides HfTi, TiSi, TaSi, RuSi and other silicides, or multi-layer structures. For n-type tunneling, one or more layers of TaN, TaAlC, TiC, Co, TiAl, HfTi, TiSi, TaS are used as work function adjustment layers. For p-type tunneling, one or more layers of TaN, TaAlC, TiAl, Co, TiAl, Al, TiC, TiN are used as work function adjustment layers.

埋入式導電層150與第二介電層141之頂部的垂直距離為T3。此 關鍵尺寸可用於量化埋入式導電層150與奈米片隧道層180之間的寄生電容。藉由減少其間的第二介電層141與第二絕緣層142的介電常數,可以本質上的減小產生之寄生電容。 The vertical distance between the buried conductive layer 150 and the top of the second dielectric layer 141 is T3. this The critical dimensions can be used to quantify the parasitic capacitance between the buried conductive layer 150 and the nanochip tunnel layer 180 . By reducing the dielectric constant of the second dielectric layer 141 and the second insulating layer 142 therebetween, the resulting parasitic capacitance can be substantially reduced.

埋入式導電層150與第一介電層131之底部的垂直距離為T4。此 關鍵尺寸可用於量化埋入式導電層150與元件底柱110之間的寄生電容。藉由減少其間的第一介電層131與第一絕緣層132的介電常數,可以本質上的減小產生之寄生電容。 The vertical distance between the buried conductive layer 150 and the bottom of the first dielectric layer 131 is T4. this The critical dimension can be used to quantify the parasitic capacitance between the buried conductive layer 150 and the device bottom pillar 110 . By reducing the dielectric constant of the first dielectric layer 131 and the first insulating layer 132 therebetween, the resulting parasitic capacitance can be substantially reduced.

本發明實施例提供了電晶體元件形成埋入式導電層150的方法。 此方法包含形成埋入式導電層150與上下介電材料形成的三明治結構,其中上下介電材料進一步將元件上方的半導體層190與下方的元件底柱110分開。此方法進一步包含形成多層結構的保護層於相鄰元件單體之間。此方法進一步包含部分去除保護層,使保護層可應用於不同的材料表面上,保護埋入式導電電線以及半導體元件電流隧道免於暴露於製程過程中。 The embodiment of the present invention provides a method for forming the buried conductive layer 150 in a transistor element. The method includes forming a sandwich structure of buried conductive layer 150 and upper and lower dielectric materials, wherein the upper and lower dielectric materials further separate the semiconductor layer 190 above the device from the bottom pillar 110 of the device below. The method further includes forming a protective layer of the multilayer structure between adjacent device monomers. The method further includes partially removing the protective layer so that the protective layer can be applied to different material surfaces to protect the buried conductive wires and the semiconductor device current tunnels from being exposed to the manufacturing process.

三明治結構中的介電層(包含131、132、141與142)以及外加的保護層(包含210與220)成功將埋入式導電層150與上方的半導體層190與下方的元件底柱110分開,可以 1)保護埋入式導電層150,避免其與其他元件部分產生交互污染(cross-contamination)。 2)避免由閘極280至埋入式導電層150的漏電流。 3)藉由介電材料本身選擇低介電常數材料,可以本質上降低寄生電容。 The dielectric layer (including 131, 132, 141 and 142) and the additional protective layer (including 210 and 220) in the sandwich structure successfully separate the buried conductive layer 150 from the semiconductor layer 190 above and the bottom pillar 110 of the device below ,Can 1) Protect the buried conductive layer 150 from cross-contamination with other components. 2) Avoid leakage current from the gate 280 to the buried conductive layer 150 . 3) The parasitic capacitance can be substantially reduced by selecting a low dielectric constant material by the dielectric material itself.

本發明的實施例中,使埋入式導電層150位於元件底柱110與奈米片隧道層180之間,可以1)簡化元件上方金屬線的複雜度,2)減少元件含金屬線之所佔總面積,3)藉由減少傳統埋入式導電層與奈米片隧道層180的距離,得以降低垂直接觸柱(Contact/Via)的製造困難度與其電阻值。In the embodiment of the present invention, placing the buried conductive layer 150 between the device bottom pillar 110 and the nanochip tunnel layer 180 can 1) simplify the complexity of the metal lines above the device, and 2) reduce the place where the device contains metal lines 3) By reducing the distance between the traditional buried conductive layer and the nanochip tunnel layer 180, the manufacturing difficulty and resistance value of the vertical contact column (Contact/Via) can be reduced.

本發明可以應用於不同領域,包含(但不限於):互補金氧半導體,電晶體元件、邏輯電路、記憶體電路與積體電路。The present invention can be applied in different fields, including (but not limited to): complementary metal oxide semiconductors, transistor elements, logic circuits, memory circuits and integrated circuits.

上述的方法可以用於積體電路晶片製造。製造商可以晶圓片形 式、裸晶片形式、封裝晶片形式分裝分送製成的積體電路晶片。封裝晶片形式中分為單晶片封裝與多晶片封裝。晶片可以整合於不同形式的晶片中例如離散電路元件、信號處理元件,或可整合於主機板甚至是客戶端產品中。客戶端產品可以是任何使用積體電路晶片之產品,從最低端應用如傳統冰箱乃至進階電腦產品。 The method described above can be used for integrated circuit wafer fabrication. Manufacturers can wafer form The integrated circuit chip produced by packaging and distribution in the form of a single chip, a bare chip form, and a packaged chip form. In the form of packaged wafers, it is divided into single-chip packaging and multi-chip packaging. Chips can be integrated into different forms of chips such as discrete circuit elements, signal processing elements, or can be integrated into motherboards or even client products. Client products can be any product that uses integrated circuit chips, from the lowest-end applications such as traditional refrigerators to advanced computer products.

化合物中的元素濃度以Si xGe (1-x)表達。其中x小於等於1。不同 的濃度比例都被包含於最簡單化學式SiGe中。若化合物有其他元素也可以合金(alloy)稱呼。 Elemental concentrations in compounds are expressed as Six Ge (1-x) . where x is less than or equal to 1. Different concentration ratios are included in the simplest chemical formula SiGe. If the compound has other elements, it can also be called an alloy.

“在一個實施例中”,並非一定都指相同的一個實施例,而是單一一個特點。“在有些實施例中”,並非一定都指相同的一些實施例,而是單ㄧ些特點。"In one embodiment" does not necessarily all refer to the same embodiment, but rather a single feature. "In some embodiments" does not necessarily all refer to the same embodiments, but rather to just some features.

當說明中出現“包含A、B、C或其組合”,代表文意包含單獨的A、 B、C項或者A與B、A與C、B與C或者A與B與C。此觀念還可以延伸,因為列舉內容可能僅為部分的可能方式。When "comprising A, B, C, or a combination thereof" appears in the description, it means that the context includes items of A, B, and C alone, or A and B, A and C, B and C, or A and B and C. This concept can also be extended, as the enumeration may only be part of the possible ways.

如本文中所使用的那樣,當提到場效應電晶體裝置FET的結構 時,出於方便目的可使用空間形容詞,例如下方、上方、底部、頂部、垂直、水平等。這些參考意圖以僅與附圖一致的方式使用,以用於教導目的,並非意圖作為FET的絕對參考。例如,FET可以不同於附圖中所示方位的任意方式空間取向。當提到附圖時,“垂直”用以指與半導體層表面垂直的方向,而“水平”用以只與半導體層表面水平的方向。“上方”用以指離開半導體層的垂直方向。位於另一個元件“上方”(“下方“)的元件與該另一個元件相比更遠離(更靠近)半導體層表面。 As used herein, when referring to the structure of a field effect transistor device FET When used, spatial adjectives such as below, above, bottom, top, vertical, horizontal, etc. may be used for convenience. These references are intended to be used in a manner consistent with the figures only, for teaching purposes, and are not intended to be absolute references to FETs. For example, the FETs may be spatially oriented in any manner other than the orientation shown in the figures. When referring to the drawings, "vertical" is used to refer to the direction perpendicular to the surface of the semiconductor layer, and "horizontal" is used to refer to the direction only horizontal to the surface of the semiconductor layer. "Above" is used to refer to the vertical direction away from the semiconductor layer. An element located "above" ("below") another element is further (closer) to the surface of the semiconductor layer than the other element.

由於本發明可以本領域的技術人員借助本文中的教導而明白的不同但均等的方式修改並實施,因此上面所揭示的特定實施例僅為示例性質。例如,可以不同順序執行上述製程步驟。而且本發明並非意圖限於文本中所示的結構或設計的細節,而是如上面的申請專利範圍所述。因此,顯然,可對上面所揭示的特定實施例進行修改或變更,且此類變更落入本發明的範圍與精神內。要注意的是,用於說明本說明書以及所附申請專利範圍中的各種製程或結構的例如“第一”、“第二”、“第三”或者“第四”等術語的使用僅被用作此類結構/步驟的快捷參考,並不一定意味著按排列順序/形成此類步驟/結構。當然,依據準確的申請專利範圍語言,可能要求或者不要求此類製程的排列順序。因此,本發明請求保護的範圍如上面的申請專利範圍所述。The specific embodiments disclosed above are merely exemplary in nature, as the invention may be modified and carried out in different but equivalent manners apparent to those skilled in the art having the aid of the teachings herein. For example, the above-described process steps may be performed in a different order. Furthermore, the invention is not intended to be limited to the details of construction or design herein shown, but rather is as described in the above claims. Therefore, it is apparent that modifications or variations may be made to the specific embodiments disclosed above, and such variations fall within the scope and spirit of the invention. It is to be noted that the use of terms such as "first," "second," "third," or "fourth" to describe various processes or structures within the scope of this specification and the appended claims are used only A quick reference to such structures/steps does not necessarily imply a sequential order/formation of such steps/structures. Of course, such an order of processing may or may not be required depending on the precise scope language. Therefore, the claimed scope of the present invention is as described in the above claims.

習知技術(示於圖1) 410:元件底柱 440:奈米片犧牲層 450:奈米片隧道層 470:溝槽填入層(為介電材質的面板472之前身) 472:介電材質的面板 495:保護層 504:側壁保護柱(詳情可參考美國專利案號20200411436專利原文與其圖6 512:埋入式電源線 515:電源線上蓋 527:介電材料塊 530:隧道底部介電層Known Technology (shown in Figure 1) 410: Element Base Post 440: Nanochip Sacrificial Layer 450: Nanosheet Tunnel Layer 470: trench filling layer (predecessor of dielectric panel 472) 472: Panels with Dielectric Materials 495: Protective Layer 504: Sidewall guard column (for details, please refer to the original text of US Patent No. 20200411436 and its Figure 6 512: Buried power cord 515: Power cord cover 527: Dielectric Material Block 530: Dielectric layer at the bottom of the tunnel

習知技術(示於圖2) 60:基板 611、711:元件底柱 612、712:第一半導體層 613、713:矽上層 614:中間層 615:矽鍺層 640A:第一保護層 650A:第二保護層Prior art (shown in Figure 2) 60: Substrate 611, 711: Component base column 612, 712: the first semiconductor layer 613, 713: Silicon upper layer 614: middle layer 615: SiGe layer 640A: first protective layer 650A: Second protective layer

本發明(示於圖3至圖12) 100:基板 110:元件底柱 130:第一介電材料層(包含第一介電層131與第一絕緣層132) 131:第一介電層 132:第一絕緣層 150:埋入式導電層 140:第二介電材料層(包含第二介電層141與第二絕緣層142) 141:第二介電層 142:第二絕緣層 210:第一保護層 220:第二保護層 250:溝槽填入層 170:奈米片犧牲層 180:奈米片隧道層 280:閘極層 120、310:基層 160、320:中間層 190、330:半導體層/奈米片堆疊層 340:硬式罩幕層 341:墊氧化層 342:墊氮化層 345:元件結構的硬式罩幕圖形 W1:埋入式導電層於相鄰元件之間距 W2:埋入式導電層寬度 W3:埋入式導電層於相鄰元件之間距W1在第二保護層220沉積後標示為W3 T1:埋入式導電層150的厚度 T2:埋入式導電層150與之後的閘極層280的垂直距離 T3:埋入式導電層150與第二介電層141之頂部的垂直距離 T4:埋入式導電層150與第一介電層131之底部的垂直距離 D1:完成第一次硬式罩幕層340圖形製程後的溝槽深度 D2:完成溝槽圖形製程循環(trench patterning cycle)後的溝槽深度 R1:溝槽底部與元件側壁形成之邊角的角度The present invention (shown in Figures 3 to 12) 100: Substrate 110: Component base column 130: the first dielectric material layer (including the first dielectric layer 131 and the first insulating layer 132) 131: first dielectric layer 132: first insulating layer 150: Buried conductive layer 140: the second dielectric material layer (including the second dielectric layer 141 and the second insulating layer 142) 141: Second Dielectric Layer 142: Second insulating layer 210: First protective layer 220: Second protective layer 250: trench fill layer 170: Nanochip Sacrificial Layer 180: Nanosheet Tunnel Layer 280: gate layer 120, 310: grassroots 160, 320: middle layer 190, 330: Semiconductor layer/nanosheet stack 340: Hard cover layer 341: Pad oxide layer 342: Pad nitride layer 345: Rigid Mask Graphics for Component Structures W1: The distance between the buried conductive layer and the adjacent components W2: Buried conductive layer width W3: The distance between the buried conductive layer and the adjacent elements W1 is marked as W3 after the second protective layer 220 is deposited T1: Thickness of the buried conductive layer 150 T2: the vertical distance between the buried conductive layer 150 and the subsequent gate layer 280 T3: the vertical distance between the buried conductive layer 150 and the top of the second dielectric layer 141 T4: the vertical distance between the buried conductive layer 150 and the bottom of the first dielectric layer 131 D1: trench depth after the first hard mask layer 340 patterning process D2: trench depth after trench patterning cycle R1: The angle of the corner formed by the bottom of the trench and the side wall of the device

圖1至2是根據先前技術所提供之電晶體元件之剖面圖。1 to 2 are cross-sectional views of transistor elements provided according to the prior art.

圖3是根據一些實施例,繪示出相鄰元件之奈米片隧道層180、埋入式導電層150與閘極層280之剖面圖。3 is a cross-sectional view illustrating the nanochip tunnel layer 180 , the buried conductive layer 150 , and the gate layer 280 of adjacent devices, according to some embodiments.

圖4至12是根據一些實施例,繪示出形成相鄰元件之奈米片隧道層180、埋入式導電層150與閘極層280之中間階段剖面圖。4-12 are cross-sectional views illustrating intermediate stages of forming the nanochip tunnel layer 180, the buried conductive layer 150, and the gate layer 280 of adjacent elements, according to some embodiments.

本文中所用之圖示(包含習知技術圖1與圖2及本發明圖3至圖12) 皆為電晶體元件通道或其製程中間階段之剖面圖。此類剖面圖之截面方向垂直元件矽基板之鰭式圖案,且截面橫斷元件通道區域,因此也可稱為位於元件通道處且垂直元件矽基板圖案(鰭式結構)之剖面圖,英文稱為Cross Fin-Cut on device channel region 或 Fin-Cut across device channel region,即圖示中之y方向。 Diagrams used in this document (including FIGS. 1 and 2 of the prior art and FIGS. 3 to 12 of the present invention) All are cross-sectional views of transistor device channels or intermediate stages of their fabrication. The cross-sectional direction of such a cross-sectional view is perpendicular to the fin pattern of the device silicon substrate, and the cross section crosses the device channel area, so it can also be called a cross-sectional view at the device channel and perpendicular to the device silicon substrate pattern (fin structure), which is called in English. It is Cross Fin-Cut on device channel region or Fin-Cut across device channel region, which is the y direction in the figure.

100:基板 100: Substrate

110:元件底柱 110: Component base column

131:第一介電層 131: first dielectric layer

132:第一絕緣層 132: first insulating layer

150:埋入式導電層 150: Buried conductive layer

141:第二介電層 141: Second Dielectric Layer

142:第二絕緣層 142: Second insulating layer

220:第二保護層 220: Second protective layer

250:溝槽填入層 250: trench fill layer

180:奈米片隧道層 180: Nanosheet Tunnel Layer

280:閘極層 280: gate layer

120、310:基層 120, 310: grassroots

160、320:中間層 160, 320: middle layer

190、330:半導體層/奈米片堆疊層 190, 330: Semiconductor layer/nanosheet stack

W1:埋入式導電層於相鄰元件之間距 W1: The distance between the buried conductive layer and the adjacent components

W2:埋入式導電層寬度 W2: Buried conductive layer width

W3:埋入式導電層於相鄰元件之間距W1在第二保護層220沉積後標示為W3 W3: The distance between the buried conductive layer and the adjacent elements W1 is marked as W3 after the second protective layer 220 is deposited

T1:埋入式導電層150的厚度 T1: Thickness of the buried conductive layer 150

T2:埋入式導電層150與之後的閘極層280的垂直距離 T2: the vertical distance between the buried conductive layer 150 and the subsequent gate layer 280

T3:埋入式導電層150與第二介電層141之頂部的垂直距離 T3: the vertical distance between the buried conductive layer 150 and the top of the second dielectric layer 141

T4:埋入式導電層150與第一介電層131之底部的垂直距離 T4: the vertical distance between the buried conductive layer 150 and the bottom of the first dielectric layer 131

D1:完成第一次硬式罩幕層340圖形製程(hard mask patterning)後的溝槽深度 D1: The trench depth after the first hard mask patterning process (hard mask patterning) is completed

D2:完成溝槽圖形製程循環(trench patterning cycle)後的溝槽深度 D2: trench depth after trench patterning cycle

R1:溝槽底部與元件側壁形成之邊角的角度 R1: The angle of the corner formed by the bottom of the trench and the side wall of the device

Claims (8)

一種在電晶體元件製造埋入式導電層於電晶體元件上的方法,該方法包括:形成一基板,其中電晶體結構包含一基層、一個位於基層上方的中間層,以及一個位於該中間層上方的半導體層;在該基板上形成相鄰的電晶體元件,其中該些相鄰的電晶體元件由深度為D1的溝槽隔開;形成一第一保護層覆蓋該些相鄰的電晶體元件;去除該第一保護層的下半段,將其上半段保留且暴露第二介電層;形成延長的溝槽,其中該些相鄰的電晶體元件由深度為D2的溝槽隔開;形成一第二保護層覆蓋該些相鄰的電晶體元件;以及形成一溝槽填入層於溝槽中,覆蓋下方的第一保護層與第二保護層。A method of fabricating an embedded conductive layer on a transistor element in a transistor element, the method comprising: forming a substrate, wherein the transistor structure comprises a base layer, an intermediate layer located above the base layer, and a layer located above the intermediate layer The semiconductor layer; adjacent transistor elements are formed on the substrate, wherein the adjacent transistor elements are separated by a trench with a depth of D1; a first protective layer is formed to cover the adjacent transistor elements ; remove the lower half of the first protective layer, leave the upper half of the protective layer and expose the second dielectric layer; form elongated trenches, wherein the adjacent transistor elements are separated by a trench of depth D2 ; forming a second protective layer to cover the adjacent transistor elements; and forming a trench filling layer in the trench to cover the first protective layer and the second protective layer below. 如申請專利範圍第1項所述的方法,其中,中間層包括設置於基層上之第一介電層,設置於第一介電層上之埋入式導電層及設置於埋入式導電層上之第二介電層。The method of claim 1, wherein the intermediate layer comprises a first dielectric layer disposed on the base layer, a buried conductive layer disposed on the first dielectric layer, and a buried conductive layer disposed on the first dielectric layer on top of the second dielectric layer. 如申請專利範圍第1項所述的方法,其中除去第一保護層的下半段包含:形成另一硬式罩幕層,覆蓋於元件結構與第一保護層之上;除去硬式罩幕層的下面部分,露出第一保護層的下面部分;除去露出的第一保護層的下面部分;以及除去剩下的硬式罩幕層。The method of claim 1, wherein removing the lower half of the first protective layer comprises: forming another hard mask layer covering the element structure and the first protective layer; removing the hard mask layer The lower portion, exposing the lower portion of the first protective layer; removing the exposed lower portion of the first protective layer; and removing the remaining hard mask layer. 如申請專利範圍第1項所述的方法,其中形成延長的溝槽,包含:除去第二介電層、第二絕緣層,使露出埋入式導電層;除去露出埋入式導電層,使露出下方介電層;除去第一絕緣層、第一介電層,使露出基板;以及除去部分基板,形成元件底柱。The method of claim 1, wherein forming the extended trench comprises: removing the second dielectric layer and the second insulating layer to expose the buried conductive layer; removing and exposing the buried conductive layer to expose the buried conductive layer The lower dielectric layer is exposed; the first insulating layer and the first dielectric layer are removed to expose the substrate; and part of the substrate is removed to form the element bottom pillar. 如申請專利範圍第4項所述的方法,其中蝕刻後的埋入式導電層的間距為W1。The method according to claim 4, wherein the interval of the buried conductive layer after etching is W1. 如申請專利範圍第1項所述的方法,其中第二保護層沉積後溝槽中段的寬度為W3。The method of claim 1, wherein the width of the middle section of the trench after the deposition of the second protective layer is W3. 如申請專利範圍第1項所述的方法,進一步包含:蝕回部分的溝槽填入層;去除第一保護層與第二保護層上半部分,使曝露出半導體層;去除奈米片犧牲層,使暴露出奈米片隧道層;以及形成閘極層包覆暴露出的奈米片隧道層。The method of claim 1, further comprising: etching back part of the trench filling layer; removing the first protective layer and the upper half of the second protective layer to expose the semiconductor layer; removing the nanochip sacrificial layer layer to expose the nanosheet tunnel layer; and forming a gate layer to cover the exposed nanosheet tunnel layer. 如申請專利範圍第7項所述的方法,其中形成閘極層包覆暴露出的奈米片隧道層,包含:形成閘極介電層;形成功函數調整層;以及形成閘極電極。The method of claim 7, wherein forming a gate layer to cover the exposed nanosheet tunnel layer comprises: forming a gate dielectric layer; forming a work function adjustment layer; and forming a gate electrode.
TW110128366A 2021-08-02 2021-08-02 Transistor device with buried conductive layer and manufacturing method thereof TWI763573B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110128366A TWI763573B (en) 2021-08-02 2021-08-02 Transistor device with buried conductive layer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110128366A TWI763573B (en) 2021-08-02 2021-08-02 Transistor device with buried conductive layer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI763573B true TWI763573B (en) 2022-05-01
TW202308090A TW202308090A (en) 2023-02-16

Family

ID=82594011

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110128366A TWI763573B (en) 2021-08-02 2021-08-02 Transistor device with buried conductive layer and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI763573B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138195A1 (en) * 2016-11-14 2018-05-17 SK Hynix Inc. Semiconductor device and method of manufacturing the same
US20190305096A1 (en) * 2018-04-03 2019-10-03 SK Hynix Inc. Semiconductor device and manufacturing method of semiconductor device
US20200350215A1 (en) * 2019-05-01 2020-11-05 International Business Machines Corporation Source/drain for gate-all-around devices
TW202114070A (en) * 2019-09-17 2021-04-01 日商鎧俠股份有限公司 Memory device
US20210193513A1 (en) * 2019-12-20 2021-06-24 Taiwan Semiconductor Manufacturing Co., Ltd. Selective deposition of a protective layer to reduce interconnect structure critical dimensions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138195A1 (en) * 2016-11-14 2018-05-17 SK Hynix Inc. Semiconductor device and method of manufacturing the same
US20190305096A1 (en) * 2018-04-03 2019-10-03 SK Hynix Inc. Semiconductor device and manufacturing method of semiconductor device
US20200350215A1 (en) * 2019-05-01 2020-11-05 International Business Machines Corporation Source/drain for gate-all-around devices
TW202114070A (en) * 2019-09-17 2021-04-01 日商鎧俠股份有限公司 Memory device
US20210193513A1 (en) * 2019-12-20 2021-06-24 Taiwan Semiconductor Manufacturing Co., Ltd. Selective deposition of a protective layer to reduce interconnect structure critical dimensions

Also Published As

Publication number Publication date
TW202308090A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US10879374B2 (en) Semiconductor device and manufacturing method thereof
US20210351038A1 (en) Semiconductor device and manufacturing method thereof
US9305921B2 (en) Semiconductor device
TWI759277B (en) Semiconductor devices, finfet devices and methods of forming the same
CN106169501A (en) Fin formula field effect transistor (FinFET) device architecture with uneven grid structure and forming method thereof
KR102053973B1 (en) Semiconductor device and a method for fabricating the same
US20160307803A1 (en) Method of manufacturing semiconductor device
KR101951088B1 (en) Self-aligned metal gate etch back process and device
CN111834361A (en) Semiconductor device and method for manufacturing the same
TWI585972B (en) Finfet semiconductor device having fins with stronger structural strength
TW202004843A (en) Methods of forming semiconductor devices
TW202220099A (en) Method for fabricating semiconductor device
TW202217994A (en) Semiconductor device
KR20220058383A (en) Semiconductor structures and methods thereof
US20230260838A1 (en) Method for fabricating a semiconductor device
KR20200121740A (en) Semiconductor device and method of manufacturing the same
US20220336450A1 (en) Semiconductor device and manufacturing method thereof
TWI763573B (en) Transistor device with buried conductive layer and manufacturing method thereof
US20230008496A1 (en) Contact structure for semiconductor device
KR20210122676A (en) Reducing parasitic capacitance in field-effect transistors
US20220406661A1 (en) Method of manufacturing a semiconductor device
TW202341297A (en) Transistor devices with patterned buried conductive layer and manufacturing and connecting method thereof
CN113451302A (en) Semiconductor device and method of forming the same