TWI763234B - 刀具狀態評估系統及方法 - Google Patents
刀具狀態評估系統及方法 Download PDFInfo
- Publication number
- TWI763234B TWI763234B TW110100349A TW110100349A TWI763234B TW I763234 B TWI763234 B TW I763234B TW 110100349 A TW110100349 A TW 110100349A TW 110100349 A TW110100349 A TW 110100349A TW I763234 B TWI763234 B TW I763234B
- Authority
- TW
- Taiwan
- Prior art keywords
- tool
- wear
- state information
- target
- information
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
- B23Q17/0952—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
- B23Q17/0957—Detection of tool breakage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
Abstract
一種刀具狀態評估系統及方法,其應用於具有控制器且配置有刀具之工具機,其預測方法:提供該刀具之複數加工訊號;進行特徵擷取作業,以令該複數加工訊號分成初始狀態資訊及磨耗狀態資訊;以及利用非監督式學習模型,針對該初始狀態資訊及磨耗狀態資訊進行狀態分析作業,以獲取包含複數健康值之目標資訊。俾藉由該非監督式學習模型之設計,以於生產線上隨時變動該目標資訊,而能線上即時評估該刀具之健康狀態。
Description
本發明有關一種狀態預測之系統與方法,尤指一種刀具狀態評估系統及方法。
隨著工具機自動化的快速發展,利用輸入相關參數以進行相關加工之作業已成為現今的主流,故目前工具機已廣泛採用電腦數值控制(Computer Numerical Control,簡稱CNC)的方式進行加工作業。
再者,隨著先進製造技術的發展,對切削加工的穩定性、可靠性提出更高的要求。在實際切削加工中,刀具失效常影響切削加工之效率、精度、品質、穩定性與可靠性等,故於切削加工過程中選取適當的切削參數對於提高加工精度及品質極為重要。
習知切削加工作業中,同一加工產品之製作,往往需使用不同刀具進行加工。
惟,於生產線上,同一刀具對於相同產品進行大量加工後,該刀具會產生損耗或該工具機會發生機械異狀,致使在實際加工作業時,該刀具無法有效進行加工作業,因而會造成加工品質不良。
因此,如何採用一個能即時反映出刀具呈現不佳狀態的方法,實已成為目前業界亟待克服之難題。
鑑於上述習知技術之種種缺失,本發明提供一種刀具狀態評估系統,係用於連接配置有控制器及刀具之工具機,該刀具狀態評估系統包括:擷取部,其用於接收複數加工訊號以進行特徵擷取作業,使該複數加工訊號分成初始狀態資訊及磨耗狀態資訊;以及運算部,其通訊連接該擷取部以接收該初始狀態資訊及磨耗狀態資訊,且利用非監督式學習模型針對該初始狀態資訊及磨耗狀態資訊進行狀態分析作業,以獲取包含複數健康值之目標資訊。
本發明復提供一種刀具狀態評估方法,係應用於配置有控制器及刀具之工具機,該刀具狀態評估方法包括:提供該刀具之複數加工訊號;進行特徵擷取作業,以令該複數加工訊號分成初始狀態資訊及磨耗狀態資訊;以及利用非監督式學習模型針對該初始狀態資訊及磨耗狀態資訊進行狀態分析作業,以獲取包含複數健康值之目標資訊。
由上可知,本發明之刀具狀態評估系統及方法中,主要藉由該非監督式學習模型之設計,以於生產線上隨時變動該目標資訊,而能隨時預測該刀具之健康狀態,故相較於習知技術,於生產線上,本發明所運作之刀具能維持有效進行加工作業,以維持加工品質,且可進一步隨時提醒使用者刀具發生異常或提醒使用者進行換刀作業,以避免產品出現瑕疵而需報廢之問題。
以下藉由特定的具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。
須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「上」、「第一」、「第二」、「第三」、「第四」及「一」等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當亦視為本發明可實施之範疇。
圖1為本發明之刀具狀態評估系統之架構配置示意圖。如圖1所示,所述之刀具狀態評估系統1舉例包括:一擷取部10、以及一運算部11,惟本發明並不限制上述架構配置之各組成之可能整合、替換或增減配置,例如復可包括一預測部12,如圖1’所示之刀具狀態評估系統1’。
於本實施例中,該刀具狀態評估系統1,1’應用於電腦數值控制(CNC)的工具機,且該工具機配置有控制器、加速規(或其它可感測振動與聲音訊號之感測器,例如麥克風、位移計、速度計等)、可程式控制器(Programmable Logic Controller,簡稱PLC)及一架設於該工具機上以配置刀具之主軸,並可外接一資料擷取系統(data acquisition systems,簡稱DAQ或DAS),而該刀具狀態評估系統1,1’例如為該工具機的標準配備或獨立電腦(如遠端電腦、個人電腦、平板或手機等),具有運算與顯示偵測結果之功能。
再者,該刀具狀態評估系統1,1’亦可配置一通訊連接該擷取部10之收集部13(或資料庫),其用以收集並過濾外部資訊(包含複數加工訊號),例如,來自該控制器之加工資訊、來自該工具機之PLC狀態及來自擷取設備(如加速規、麥克風或DAQ)之感測數據,以將該複數加工訊號輸入至該擷取部10。例如,該收集部13之收集方式可為內部直接傳輸(例如,該工具機具有該刀具監控系統之配置)、應用程式介面(例如,用以取得該工具機之數值控制器的內部資訊)、用於控制器內外訊號傳遞及暫存的可程式控制器(PLC)、外部裝置直接傳輸(例如,編碼器傳輸座標訊號、光學尺傳輸座標訊號、資料擷取卡傳輸座標、控制指令)等。
所述之收集部13可進行訊號判斷作業,以獲取所需之加工訊號。例如,該收集部13可連接控制器,以同步擷取加工參數,進而判斷振動資料,因而能自動過濾刀具空轉狀態之訊號或其它加工製程(導孔、鉸孔或其它等)之狀態訊號。有關該訊號判斷作業之流程如圖1A所示,具體說明如下。
於步驟S10中,取得初始資訊,其包含加速規(其可監測主軸振動訊號)或麥克風(其可量測加工聲音訊號)等與振動相關之加工訊號之數值、由控制器取得之複數加工參數訊號之數值、或其它裝置與加工作業相關訊號之數值。例如,該收集部13可直接從控制器取得進給速率、主軸轉速、主軸負載等加工參數訊號。
於步驟S11中,篩選複數加工訊號,以選取部分加工訊號進行後續分析作業。例如,基於進給速率、主軸轉速、主軸負載等由控制器取得之加工參數訊號分別所建置之門檻值,判斷各加工訊號對應之加工參數訊號之數值是否大於門檻值,以選取加工參數訊號之數值大於門檻值所對應之與振動相關的加工訊號,若加工參數訊號之數值小於門檻值者,其對應之與振動相關的加工訊號則不會被選為後續分析對象。
於步驟S12中,進行資料端點檢測,以選取控制器加工參數訊號之數值大於門檻值所對應之加工訊號作為分析所需之加工訊號,如圖2A所示,經此資料端點檢測後,可將持續收集一段時間之振動相關的加工訊號分割成如五筆加工訊號F1,F2,F3,F4,F5的資料區間。例如,於一實施例中,可透過該收集部13執行步驟S11的篩選而自動判斷刀具實際加工之時間起始點與結束點,以擷取位於該資料區間之該加工訊號F1,F2,F3,F4,F5進行後續分析作業。
因此,該收集部13可包含用以安裝至刀具主軸上之加速規、麥克風或其它可感測振動與聲音訊號之之感測器,且連接該控制器以基於該控制器之加工參數資訊建置一門檻值,並過濾空轉狀態之資訊以及其處理製程,以精確擷取加工中之振動訊號。
所述之擷取部10用於接收複數加工訊號以進行特徵擷取作業,使第一時段加工訊號作為新刀(或初始)狀態資訊,且使第二時段加工資料作為磨耗狀態資訊。
於本實施例中,該特徵擷取作業所採用之方法係針對每一單位加工訊號利用頻帶分解法(如小波包分解、經驗模態分解或其它等方式)將原始時域訊號分解成不同頻帶(如圖2B-1及圖2B-2所示之16組頻帶)之時域訊號,並監測每一頻帶之統計參數(如方均根值、裕度、峭度波形因子、峰度因子、脈衝因子、最大值、最小值和方差或其它適當參數),其中,若該統計參數在該頻帶上隨著加工時間成長,即該擷取部10所需擷取之目標特徵。例如,該第一時段加工訊號經由該頻帶分解法分解與分析後辨識出與該刀具磨耗相關之特徵並定義其為磨耗特徵,以組成初始狀態資訊,且該第二時段加工訊號經由該頻帶分解法分解並擷取出對應上述與刀具磨耗相關之該等磨耗特徵(即其屬性與第一時段加工訊號所得之磨耗特徵之屬性相同),以組成磨耗狀態資訊。
於一實施例中,以小波包分解作為本案加工訊號之頻帶分解法,該小波包分解之公式係基於正交小波函數,其已知
是
空間的一組正交基(Orthogonal basis),而需要建構一組函數
,使其張成空間
是
在
中的正交補空間,其建立過程如下:
,其中,
,而小波方程式:
,其中,
。
接著,小波包分解則對𝑊
𝑗空間進行分解,將子空間𝑉
𝑗和小波子空間𝑊
𝑗用一個
統一來表示,可以得到下列空間分解:
其中,{𝜇
𝑛 , 𝑗(𝑥−𝑘)}
𝑘𝜖𝑍是空間
的標準正交基,故小波包分解算法為:
因此,藉由該收集部13篩選出大量所需之加工訊號,再將該些加工訊號輸入至該擷取部10,使該擷取部10進行特徵擷取作業。
所述之運算部11通訊連接該擷取部10,以接收該初始狀態資訊及磨耗狀態資訊,且針對該初始狀態資訊及磨耗狀態資訊進行狀態分析作業,以獲取目標資訊。
於本實施例中,該運算部11使用機器學習模型作為目標模型,如非監督式學習(Unsupervised Learning)模型,其採用支援向量資料描述法(Support Vector Data Description,簡稱SVDD),將該磨耗狀態資訊與該初始狀態資訊進行計算,以演算出刀具之健康值(如高維空間之距離差距),即刀具於加工時之好壞(或健康)狀態,俾供作為目標資訊,如圖3A所示。
再者,該支援向量資料描述法之原理係用以偵測一資料集中有無離群點(outlier)q(如圖3B所示之三角形),故該非監督式學習模型係利用此原理計算每一目標點t(如圖3B所示之小圓圈)與超球面(如圖3B所示)之中心點P之間的距離H。例如,該非監督式學習模型利用每把刀具之第一時段加工訊號進行訓練,以產生一個超球面,並自動計算出該超球面之中心點P之座標及該超球面對應的半徑R(>0),故於建置該超球面之後,該非監督式學習模型可計算第二時段加工訊號之目標點t與該超球面之中心點P之間的距離H,其與該刀具的狀態相關。在一實施例中,可將該距離H定義為健康值,而在另一實施例中,可將該距離H相較於半徑R之比值(即H/R)定義為健康值。因此,若該數值越大,則代表刀具狀態離初始(或新刀)狀態越遠,即磨耗越嚴重。
又,該運算部11之分析原理係先假設產生的超球面之條件為中心點P及對應的半徑R(>0)(如圖3B所示),該超球面之體積V(R)被最小化(或正規化),該中心點P是支援形式的線性組合,其類似傳統支援向量機(support vector machine,簡稱SVM)方法,可要求所有訓練用之資料點x
i(如圖3B所示之矩形)到中心點P的距離必須小於半徑R,同時構造一個具有懲罰係數C的鬆弛變數
之優化求解過程,如下所示:
,以避免該超球面為了包住幾個異常資料點(如離群點q)而變得過大之問題,即避免發生過擬合的情況。
因此,基於上述原理,該非監督式學習模型之訓練過程係用訓練資料(如第一時段加工訊號之資料點x
i)求出一中心點P之座標為a且半徑為R的最小球面,如下方程式:
,使其滿足:
之條件,再用拉格朗日函數(Lagrangian)乘子法求出一方程式,如下:
,藉此作為判定新資料(如第二時段加工訊號之目標點t)是否在該超球面內之基準條件,故該方程式之等號左邊的數值L係為該目標點t與該中心點P之間的距離H。
於另一實施例中,所述之預測部12係通訊連接該運算部11,以接收該目標資訊,且依據該目標資訊進行預判作業,以預測該刀具之損壞時間點。
於本實施例中,該預測部12之預判作業之結果可啟動預警機制,以在刀具出現異常前或換刀前發出警示(例如閃爍燈號、響起警鈴、發送電子訊息或其它適當方式等)。
再者,該預測部12係藉由判斷圖3A之曲線之走勢,以預估換刀時機。有關該預判作業之流程如圖4所示,且同時參照圖4A(其係依據圖3A之目標資訊所擬合之目標線段之示意圖),具體說明預判作業如下。
於步驟S40中,使用平滑異同移動平均線(Moving Average Convergence & Divergence,簡稱MACD)找尋圖3A中之曲線之轉折點,其中,舉例而言,將5個轉折點作為一評估用之單位點以定義出短期變動,且將20個轉折點作為一如鑽孔動作之單位點以定義出長期變動。
於步驟S41中,藉由該短期變動擬合成代表評估用之第一趨勢線L1,藉由該長期變動擬合成對照用之第二趨勢線L2,如圖4A所示,以判斷第一趨勢線L1與第二趨勢線L2是否產生黃金交叉(如圖4A所示之交叉點G)。於本實施例中,係基於MACD之指標,當該短期變動(第一趨勢線L1)高於(超越)該長期變動(第二趨勢線L2)時,視為黃金交叉。
於步驟S42中,判斷第一趨勢線L1與第二趨勢線L2是否產生死亡交叉(如圖4A所示之交叉點D)。於本實施例中,係當該短期變動(第一趨勢線L1)低於該長期變動(第二趨勢線L2)時,視為死亡交叉。
於步驟S43中,於該死亡交叉後,判斷該短期變動是否產生一定數量(如10個)的單位點。於本實施例中,若於該死亡交叉後,該短期變動產生之單位點過少,則該第一趨勢線L1有可能再上升而產生黃金交叉。
於步驟S44中,將該些(如10個)死亡交叉後之單位點的短期變動擬合成一目標線段L(如圖4A所示),以判斷該目標線段L之斜率是否滿足目標條件。於本實施例中,該目標條件係設定為小於-0.1,故當該目標線段L之斜率小於-0.1(即<-0.1)時,則表示該目標線段L之趨勢已由上升轉為下降,並持續下降(非持平不變),此時,該預測部12會啟動預警機制(如步驟S45所示之發出警報)。
圖5A為本發明之刀具狀態評估方法之流程示意圖。於本實施例中,採用該刀具狀態評估系統1,1’進行該刀具狀態評估方法。
如圖5A所示,首先,於步驟S50中,該工具機之主軸產生複數筆如振動訊號之加工訊號。於本實施例中,該工具機係於單一次加工作業中提供上百筆或上千筆加工訊號,且依據時間順序將該上百筆或上千筆加工訊號進行編號,即第1至100筆以上。
接著,於步驟S51中,該收集部13取得初始資訊(如圖1A之步驟S10),藉由控制器取得例如進給速率、主軸轉速、主軸負載等加工參數訊號,並設定特定門檻值以從該上萬筆資料中篩選出複數(如少於萬筆)加工訊號(如圖1A之步驟S11)。
接著,於步驟S52中,該收集部13透過控制器接收加工參數,以進行加工訊號的資料端點檢測作業(如圖1A之步驟S12),判斷出實際加工之加工訊號區間、過濾空轉狀態或其它製程訊號,藉以從該上百筆或上千筆資料(如56筆)中分割出複數檔案。
接著,於步驟S53中,該擷取部10判斷該些檔案中之加工訊號之數量(其對應加工作業量)是否達到門檻值。
接著,於步驟S54中,若該檔案中之加工訊號之數量小於或等於該門檻值,則該擷取部10藉由該些加工訊號產生初始狀態資訊。
例如,於步驟S540中,先組合矩陣。假設於步驟S53中之門檻值為40筆,每一筆資料為100個數值,故於S540步驟中會先設定一個40*100的空矩陣。接著,於步驟S541中,判斷該些加工訊號之數量(如40筆)是否等於門檻值,即偵測該空矩陣是否裝滿40筆資料。應可理解地,該門檻值並無特別限制,只需可用於後續該目標模型之訓練即可。
接著,於步驟S542中,該40筆加工訊號之其中1筆如圖5B所示,其取樣頻率為10240赫茲(Hz),且有效頻寬為5120赫茲(Hz),以利用如小波包分解之頻帶分解法將圖5B所示之加工訊號F1依據不同頻帶切分成N個(如圖5C-1~圖5C-4所示之四個)資料集,其分別為第一頻帶0~1280赫茲的時域訊號(如圖5C-1所示)、第二頻帶1281~2560赫茲的時域訊號(如圖5C-2所示)、第三頻帶2561~3840赫茲的時域訊號(如圖5C-3所示)、第四頻帶3841~5120赫茲的時域訊號(如圖5C-4所示),並分別計算該N個(如四個)資料集之統計參數(如方均根值、裕度、峭度波形因子、峰度因子、脈衝因子或其它特徵等,共V個特徵)。
舉例而言,計算第一至第四頻帶之資料集的方均根(RMS)、峭度(Kurtosis)和裕度(Allowance),以產生如下表所示之統計參數:
,其中,該些統計參數係為波形圖,而上表之R1~R4、K1~K4及A1~A4僅作為代號,以利於後續說明。
第一頻帶 | 第二頻帶 | 第三頻帶 | 第四頻帶 | |
方均根 | R1 | R2 | R3 | R4 |
峭度 | K1 | K2 | K3 | K4 |
裕度 | A1 | A2 | A3 | A4 |
再者,當該工具機進行多次(如40次)加工作業時,可重複步驟S50~步驟S542,以獲取多組(如40組)第一至第四頻帶之資料集之統計參數。
接著,於步驟S543中,搜尋特徵頻帶,以判斷每一組(如40組)第一至第四頻帶之資料集中之N×V個特徵之統計參數是否隨時間成長及遞減之狀況,若其中有S個統計參數在該頻帶上隨著加工時間成長及遞減,則定義該S個特徵為第一磨耗特徵。
舉例而言,係將每一頻帶中之方均根、峭度和裕度整合,以觀察隨時間明顯成長或減少的頻帶,供作後續訓練模型之目標特徵,其中,經分析後判斷該目標特徵為第一頻帶裕度A1(如圖5D-1所示)、第二頻帶方均根值R2(如圖5D-2所示)與第三頻帶峭度K3(如圖5D-3所示)。
之後,於步驟S544中,將該40次加工作業中之第一磨耗特徵(目標特徵)集合成一新刀資料矩陣(如圖5E所示),供作為該初始狀態資訊,其中,該矩陣之其中一維度係為加工作業之次別(或加工作業之數量),而另一維度係為磨耗特徵。
另一方面,於步驟S54’中(其類似步驟S54),若該檔案中之加工訊號之數量(其對應加工作業量)大於該門檻值,則該擷取部10藉由該些加工訊號產生磨耗狀態資訊。
於本實施例中,藉由第M+Y筆之單次加工訊號形成一磨耗狀態資訊,其中,Y係為≧1之正整數。
例如,於步驟S54a中,先擷取編號第M+Y筆(如編號第41筆)之加工訊號;接著,於步驟S54b中,利用如小波包分解之頻帶分解法將該加工訊號依據不同頻帶切分成N個(如四個)資料集,並計算N個(如四個)資料集之統計參數;接著,於步驟S54c中,套用步驟S543中之特徵頻帶之條件,以僅計算步驟S543所篩選出之第二磨耗特徵(即屬性為第一頻帶裕度A1、第二頻帶方均根值R2與第三頻帶峭度K3)之統計參數,而獲取該次(如第41次)加工作業之第二磨耗特徵之統計參數;之後,於步驟S54d中,依該次(如第41次)加工作業的所有磨耗特徵計算出一磨耗狀態資訊。
接著,於步驟S55中,進行刀具狀態評估作業,令該運算部11將該初始狀態資訊及磨耗狀態資訊輸入一目標模型,以進行狀態分析作業。
於本實施例中,該目標模型係為非監督式學習模型,其藉由該初始狀態資訊進行訓練,以產生半徑R為0.33單位長度之超球面(配合參閱圖3B),故當該磨耗狀態資訊中之例如共35次加工作業(即刀具進行35次加工作業)之磨耗特徵輸入至該非監督式學習模型中後,該非監督式學習模型將計算出多個目標點t與該中心點P之間的距離H,且同時計算出該距離H與該半徑R之比值,以獲取一目標資訊(即健康值),其中,單一次加工作業產生單一目標點t,故本實施例可於圖3B中產生35個目標點t,以令該非監督式學習模型計算出35個健康值。
因此,該運算部11係將該35次加工作業之目標點t進行狀態分析作業,以獲取如圖5F所示之曲線圖,供作為該目標資訊。
再者,若生產線不斷進行加工作業,則加工訊號會不斷輸入至該刀具狀態評估系統1,1’中,故該運算部11將隨時變動該目標資訊,如圖3A所示之依照另一實施例執行100次以上之加工作業。
又,該刀具狀態評估系統1,1’收集來自加速規(如圖5F-1所示)或麥克風(如圖5F-2所示)之加工訊號所產生之目標資訊大致相同,其由圖5F-1及圖5F-2可知,兩者所產生之新刀訊號區Z1、初期磨耗訊號區Z2及劇烈磨耗訊號區Z3大致相同。
另外,若該刀具狀態評估系統1’配置有預測部12,則於後續作業中,該預測部12會藉由該目標資訊進行預判作業,以評估刀具狀態。
舉例而言,基於圖3A所示之目標資訊,該預測部12分別形成第一趨勢線L1與第二趨勢線L2於該目標資訊上,如圖5G-1至圖5G-3所示,以判斷是否產生黃金交叉(如圖5G-1所示)及死亡交叉(如圖5G-2所示)等狀況。
再者,由於生產線不斷運作,因而第一趨勢線L1與第二趨勢線L2會不斷變動,故該預測部12可即時顯示該第一趨勢線L1與第二趨勢線L2之變動,如步驟S55’所示,以即時反映該刀具之狀態。
接著,於步驟S56中,該預測部12藉由判斷該第一趨勢線L1之走線趨勢,以進行刀具損壞判斷,即預估換刀時機。
於本實施例中,如圖5G-3所示,當發生死亡交叉後,若該短期變動產生一定數量單位點,則判斷該目標線段L之斜率是否滿足目標條件。另一方面,若於該死亡交叉後,該短期變動產生之單位點過少,則該第一趨勢線L1會產生假性線段L’(如圖5G-1所示),即該第一趨勢線L1會再上升而產生黃金交叉。
之後,於步驟S57中,當步驟S56中判斷刀具即將損壞(例如當該目標線段L之斜率滿足該目標條件時),該預測部12會發出警示,啟動如燈號警示之預警機制,以提醒使用者進行換刀作業。
綜上所述,本發明之刀具狀態評估系統1,1’及其狀態評估方法,藉由該運算部11之非監督式學習模型之設計,以於生產線上隨時變動該目標資訊,藉以評估該刀具之健康狀態,故於生產線上,該刀具狀態評估系統1,1’所運作之刀具能維持有效進行加工作業,以維持加工品質。
進一步,該預測部12可由該健康狀態預測該刀具是否即將損壞,故於生產線上,該刀具狀態評估系統1’可隨時提醒使用者刀具發生異常或提醒使用者進行換刀作業,以避免產品(或物料)出現瑕疵而需報廢等加工品質不良之問題。
上述實施例用以例示性說明本發明之原理及其功效,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修改。因此本發明之權利保護範圍,應如後述之申請專利範圍所列。
1,1’:刀具狀態評估系統
10:擷取部
11:運算部
12:預測部
13:收集部
D,G:交加點
F1~F5:加工訊號
H:距離
L1:第一趨勢線
L2:第二趨勢線
L:目標線段
L’:假性線段
P:中心點
q:離群點
R:半徑
S10~S12:步驟
S40~S43:步驟
S50~S57:步驟
t:目標點
Z1:新刀訊號區
Z2:初期磨耗訊號區
Z3:劇烈磨耗訊號區
圖1為本發明之刀具狀態評估系統之架構配置圖。
圖1’為圖1之另一實施例之架構配置圖。
圖1A為圖1之收集部進行訊號判斷作業之流程方塊圖。
圖2A為圖1之收集部所得之加工資訊之波形示意圖。
圖2B-1及2B-2為圖1之擷取部所得之不同狀態資訊之示意圖。
圖3A為圖1之運算部所得之目標資訊之示意圖。
圖3B為圖1之運算部使用非監督式學習模型之示意圖;
圖4為圖1之預測部進行預判作業之流程方塊圖。
圖4A為依據圖3A之目標資訊所擬合之目標線段之示意圖。
圖5A為本發明之刀具狀態評估方法之流程方塊圖。
圖5B為圖2A之初始資訊中之其中一檔案之加工訊號之波形示意圖。
圖5C-1至圖5C-4為圖5B之檔案中所切分出之不同資料集之加工訊號之波形示意圖。
圖5D-1至圖5D-3為不同磨耗特徵之波形示意圖。
圖5E為圖5之初始狀態資訊之矩陣示意圖。
圖5F為圖5之目標資訊之曲線示意圖。
圖5F-1及圖5F-2為本發明之刀具狀態評估系統接收不同訊號源所得之目標資訊之曲線示意圖。
圖5G-1至圖5G-3為本發明之預判作業之過程之曲線示意圖。
S50~S57:步驟
Claims (20)
- 一種刀具狀態評估方法,係應用於配置有控制器及刀具之工具機,該刀具狀態評估方法包括:提供該刀具之複數加工訊號,其中,該複數加工訊號係定義有第一時段加工訊號與第二時段加工訊號;進行特徵擷取作業,以令該複數加工訊號分成初始狀態資訊及磨耗狀態資訊,其中,該特徵擷取作業係針對該加工訊號利用頻帶分解法,將原始時域訊號分解成不同頻帶之時域訊號,使該第一時段加工訊號經由該頻帶分解法分解與分析後,辨識出與刀具磨耗相關之特徵並定義其為第一磨耗特徵,以組成該初始狀態資訊,且該第二時段加工訊號經由該頻帶分解法分解並擷取出對應與該刀具磨耗相關之特徵之第二磨耗特徵,以組成該磨耗狀態資訊;以及利用非監督式學習模型,針對該初始狀態資訊及該磨耗狀態資訊進行狀態分析作業,以獲取包含複數健康值之目標資訊。
- 如請求項1所述之刀具狀態評估方法,其中,該加工訊號係為該刀具磨耗之特徵訊號。
- 如請求項1所述之刀具狀態評估方法,其中,該第二磨耗特徵之屬性與該第一磨耗特徵之屬性相同。
- 如請求項1所述之刀具狀態評估方法,其中,該非監督式學習模型採用支援向量資料描述法,以將該磨耗狀態資訊與該初始狀態資訊進行計算,以演算出該健康值。
- 如請求項4所述之刀具狀態評估方法,其中,該磨耗狀態資訊具有複數目標點,且該非監督式學習模型藉由該初始狀態資訊進行訓練,以產生 超球面及該超球面對應的半徑,以令該支援向量資料描述法計算該些目標點與該超球面之中心點之間的距離,使該距離相較於該半徑之比值供作為該健康值。
- 如請求項1所述之刀具狀態評估方法,其中,該目標資訊係將該複數健康值以曲線圖方式呈現。
- 如請求項6所述之刀具狀態評估方法,復包括依據該目標資訊進行預判作業,以預測該刀具之損壞時間點。
- 如請求項7所述之刀具狀態評估方法,其中,該預判作業係藉由判斷該曲線圖之走勢,以預測該刀具之損壞時間點。
- 如請求項7所述之刀具狀態評估方法,其中,該曲線圖中之轉折點係透過數量多寡定義出不同之單位點,以擬合成代表該健康值之第一趨勢線與對照用之第二趨勢線。
- 如請求項9所述之刀具狀態評估方法,其中,該第一趨勢線低於該第二趨勢線之情況係視為死亡交叉,且將該死亡交叉後之單位點擬合成一目標線段,以藉由該目標線段之斜率預測該刀具之損壞時間點。
- 一種刀具狀態評估系統,係應用於連接配置有控制器及刀具之工具機,該刀具狀態評估系統包括:擷取部,其用於接收複數加工訊號以進行特徵擷取作業,令該複數加工訊號分成初始狀態資訊及磨耗狀態資訊,其中,該擷取部係將該複數加工訊號分成第一時段加工訊號與第二時段加工訊號,該特徵擷取作業係針對該加工訊號利用頻帶分解法,將原始時域訊號分解成不同頻帶之時域訊號,使該第一時段加工訊號經由該頻帶分解法分解與分析後辨識出與刀具磨耗相關之特徵並定義其為第一磨耗特徵,以組成該初始狀態資訊,且該第二時段加工訊號經由該頻帶分解法 分解並擷取出對應與該刀具磨耗相關之特徵之第二磨耗特徵,以組成該磨耗狀態資訊;以及運算部,其通訊連接該擷取部以接收該初始狀態資訊及該磨耗狀態資訊,且利用非監督式學習模型,針對該初始狀態資訊及該磨耗狀態資訊進行狀態分析作業,以獲取包含複數健康值之目標資訊。
- 如請求項11所述之刀具狀態評估系統,其中,該加工訊號係為該刀具磨耗之特徵訊號。
- 如請求項11所述之刀具狀態評估系統,其中,該第二磨耗特徵之屬性與該第一磨耗特徵之屬性相同。
- 如請求項11所述之刀具狀態評估系統,其中,該非監督式學習模型採用支援向量資料描述法,以將該磨耗狀態資訊與該初始狀態資訊進行計算,以演算出該健康值。
- 如請求項14所述之刀具狀態評估系統,其中,該磨耗狀態資訊具有複數目標點,且該非監督式學習模型藉由該初始狀態資訊進行訓練,以產生超球面及該超球面對應的半徑,以令該支援向量資料描述法計算該些目標點與該超球面之中心點之間的距離,使該距離相較於該半徑之比值供作為該健康值。
- 如請求項11所述之刀具狀態評估系統,其中,該運算部係將該複數健康值以曲線圖方式呈現,供作為該目標資訊。
- 如請求項16所述之刀具狀態評估系統,復包括預測部,其通訊連接該運算部以接收該目標資訊,且依據該目標資訊進行預判作業,以預測該刀具之損壞時間點。
- 如請求項17所述之刀具狀態評估系統,其中,該預測部係藉由判斷該曲線圖之走勢,以預測該刀具之損壞時間點。
- 如請求項17所述之刀具狀態評估系統,其中,該曲線圖中之轉折點係透過數量多寡定義出不同之單位點,以令該預測部藉由該不同之單位點分別擬合成代表該健康值之第一趨勢線與對照用之第二趨勢線。
- 如請求項19所述之刀具狀態評估系統,其中,該第一趨勢線低於該第二趨勢線之情況係視為死亡交叉,且將該死亡交叉後之單位點擬合成一目標線段,以藉由該目標線段之斜率預測該刀具之損壞時間點。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011356281.6 | 2020-11-27 | ||
CN202011356281.6A CN114559297B (zh) | 2020-11-27 | 2020-11-27 | 刀具状态评估系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI763234B true TWI763234B (zh) | 2022-05-01 |
TW202221435A TW202221435A (zh) | 2022-06-01 |
Family
ID=81711405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110100349A TWI763234B (zh) | 2020-11-27 | 2021-01-06 | 刀具狀態評估系統及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114559297B (zh) |
TW (1) | TWI763234B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI835519B (zh) * | 2022-12-21 | 2024-03-11 | 財團法人工業技術研究院 | 模具狀態監控系統及方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106483931A (zh) * | 2015-08-27 | 2017-03-08 | 发那科株式会社 | 具备菜单的数值控制装置 |
CN106483934A (zh) * | 2015-08-27 | 2017-03-08 | 发那科株式会社 | 数值控制装置 |
CN106557075A (zh) * | 2015-09-28 | 2017-04-05 | 发那科株式会社 | 生成最佳的加速/减速的机床 |
CN109434564A (zh) * | 2018-12-21 | 2019-03-08 | 哈尔滨理工大学 | 一种基于深度神经网络的铣刀磨损状态监测方法 |
TWM583566U (zh) * | 2019-05-24 | 2019-09-11 | 國立虎尾科技大學 | 刀具壽命預測設備 |
CN110647943A (zh) * | 2019-09-26 | 2020-01-03 | 西北工业大学 | 基于演化数据聚类分析的切削刀具磨损监测方法 |
TW202014914A (zh) * | 2018-10-12 | 2020-04-16 | 財團法人工業技術研究院 | 設備健康狀態監控方法及其系統 |
CN111506019A (zh) * | 2019-01-31 | 2020-08-07 | 发那科株式会社 | 数值控制系统 |
CN111633467A (zh) * | 2020-05-15 | 2020-09-08 | 大连理工大学 | 一种基于一维深度卷积自动编码器的刀具磨损状态监测方法 |
US20200301403A1 (en) * | 2019-03-18 | 2020-09-24 | Fanuc Corporation | Machine learning apparatus, control device, laser machine, and machine learning method |
CN111782624A (zh) * | 2020-06-16 | 2020-10-16 | 中译语通科技(青岛)有限公司 | 基于人工智能和大数据的机床刀具振动监控和分析方法 |
CN111881860A (zh) * | 2020-07-31 | 2020-11-03 | 重庆理工大学 | 滚刀磨损在位识别模型建模方法及滚刀磨损在位识别方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1243744A (en) * | 1984-06-18 | 1988-10-25 | John M. Fildes | Cutting tool wear monitor |
EP1195668B1 (de) * | 2000-09-27 | 2004-03-10 | LIEBHERR-VERZAHNTECHNIK GmbH | Prozessüberwachung zur Verschleisserkennung an Verzahnungswerkzeugen |
CN102091972B (zh) * | 2010-12-28 | 2013-06-05 | 华中科技大学 | 一种数控机床刀具磨损监测方法 |
DE112017007980T5 (de) * | 2017-08-28 | 2020-06-10 | Mitsubishi Electric Corporation | Numerisches steuerungssystem |
CN109015111A (zh) * | 2018-07-06 | 2018-12-18 | 华中科技大学 | 一种基于信息融合及支持向量机的刀具状态在线监测方法 |
CN109940458B (zh) * | 2019-04-07 | 2021-02-02 | 西北工业大学 | 一种刀具未来磨损量在线预测方法 |
US11657118B2 (en) * | 2019-05-23 | 2023-05-23 | Google Llc | Systems and methods for learning effective loss functions efficiently |
CN110561193B (zh) * | 2019-09-18 | 2020-09-29 | 杭州友机技术有限公司 | 一种基于特征融合的刀具磨损评估及监控的方法与系统 |
CN111644900B (zh) * | 2020-05-21 | 2021-11-09 | 西安交通大学 | 一种基于主轴振动特征融合的刀具破损实时监测方法 |
-
2020
- 2020-11-27 CN CN202011356281.6A patent/CN114559297B/zh active Active
-
2021
- 2021-01-06 TW TW110100349A patent/TWI763234B/zh active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106483931A (zh) * | 2015-08-27 | 2017-03-08 | 发那科株式会社 | 具备菜单的数值控制装置 |
CN106483934A (zh) * | 2015-08-27 | 2017-03-08 | 发那科株式会社 | 数值控制装置 |
CN106557075A (zh) * | 2015-09-28 | 2017-04-05 | 发那科株式会社 | 生成最佳的加速/减速的机床 |
TW202014914A (zh) * | 2018-10-12 | 2020-04-16 | 財團法人工業技術研究院 | 設備健康狀態監控方法及其系統 |
CN109434564A (zh) * | 2018-12-21 | 2019-03-08 | 哈尔滨理工大学 | 一种基于深度神经网络的铣刀磨损状态监测方法 |
CN111506019A (zh) * | 2019-01-31 | 2020-08-07 | 发那科株式会社 | 数值控制系统 |
US20200301403A1 (en) * | 2019-03-18 | 2020-09-24 | Fanuc Corporation | Machine learning apparatus, control device, laser machine, and machine learning method |
TWM583566U (zh) * | 2019-05-24 | 2019-09-11 | 國立虎尾科技大學 | 刀具壽命預測設備 |
CN110647943A (zh) * | 2019-09-26 | 2020-01-03 | 西北工业大学 | 基于演化数据聚类分析的切削刀具磨损监测方法 |
CN111633467A (zh) * | 2020-05-15 | 2020-09-08 | 大连理工大学 | 一种基于一维深度卷积自动编码器的刀具磨损状态监测方法 |
CN111782624A (zh) * | 2020-06-16 | 2020-10-16 | 中译语通科技(青岛)有限公司 | 基于人工智能和大数据的机床刀具振动监控和分析方法 |
CN111881860A (zh) * | 2020-07-31 | 2020-11-03 | 重庆理工大学 | 滚刀磨损在位识别模型建模方法及滚刀磨损在位识别方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI835519B (zh) * | 2022-12-21 | 2024-03-11 | 財團法人工業技術研究院 | 模具狀態監控系統及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114559297B (zh) | 2023-09-19 |
TW202221435A (zh) | 2022-06-01 |
CN114559297A (zh) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10695884B2 (en) | Tool wear monitoring and predicting method | |
EP3387448B1 (en) | System and method for monitoring manufacturing | |
US7341410B2 (en) | Dynamical instrument for machining | |
US20170276594A1 (en) | Particle counter with advanced features | |
TWI422460B (zh) | Tool nose detection method for cutting machine tool | |
CN105834835A (zh) | 一种基于多尺度主元分析的刀具磨损在线监测方法 | |
JP6504089B2 (ja) | 工程監視装置、工程監視システム、工程監視方法、工程監視プログラム及び記録媒体 | |
US10607470B2 (en) | Vibrational analysis systems and methods | |
JP7493930B2 (ja) | 情報処理方法、情報処理装置、生産システム、プログラム、記録媒体 | |
CN105973583B (zh) | 一种动态报警方法 | |
TWI763234B (zh) | 刀具狀態評估系統及方法 | |
CN115077627A (zh) | 一种多融合环境数据监管方法及监管系统 | |
CN111324863A (zh) | 机械状态检测方法和电子设备 | |
CN111272456A (zh) | 基于位置变化数据的机械状态检测方法和电子设备 | |
CN114326593B (zh) | 一种刀具寿命预测系统及方法 | |
TWI670138B (zh) | 應用於自動加工機的刀具磨耗預測方法 | |
JP2002372440A (ja) | 状態判定法並びに状態判定装置及び状態判定機能を備えた信号収録装置 | |
CN114986258A (zh) | 刀具状态监测方法、装置、计算机设备及系统 | |
CN109211564B (zh) | 一种用于滚珠丝杠副健康评估的自适应阈值检测方法 | |
CN110488775A (zh) | 设备状态判定及产量节拍统计系统及方法 | |
JP7368189B2 (ja) | 分析装置 | |
TWI498531B (zh) | 含自回歸分析模型的振動監測警報方法 | |
WO2023035076A1 (en) | Sensor-based smart tooling for machining process online measurement and monitoring | |
US20240210911A1 (en) | Mold state monitoring system and method thereof | |
CN111307207A (zh) | 基于电压数据的机械状态检测方法和及电子设备 |