TWI761177B - Method for flattening impedance of power deliver network - Google Patents

Method for flattening impedance of power deliver network Download PDF

Info

Publication number
TWI761177B
TWI761177B TW110113506A TW110113506A TWI761177B TW I761177 B TWI761177 B TW I761177B TW 110113506 A TW110113506 A TW 110113506A TW 110113506 A TW110113506 A TW 110113506A TW I761177 B TWI761177 B TW I761177B
Authority
TW
Taiwan
Prior art keywords
impedance
power delivery
delivery network
capacitors
selecting
Prior art date
Application number
TW110113506A
Other languages
Chinese (zh)
Other versions
TW202243399A (en
Inventor
陳彥豪
林丁丙
尤智玉
Original Assignee
英業達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英業達股份有限公司 filed Critical 英業達股份有限公司
Priority to TW110113506A priority Critical patent/TWI761177B/en
Application granted granted Critical
Publication of TWI761177B publication Critical patent/TWI761177B/en
Publication of TW202243399A publication Critical patent/TW202243399A/en

Links

Images

Abstract

A method for flattening an impedance of a power deliver network, includes capturing a set of impedance parameters; obtaining an impedance of the power deliver network according to the set of impedance parameters; defining a target impedance; performing an importance calculation to determine a port, obtaining an intersection frequency according to the target impedance and the impedance of the power deliver network; selecting a decoupling capacitor according to the intersection frequency; and disposing the decoupling capacitor on the port. Hence, the method of the invention provides the effect of reducing the impedance of the power deliver network to the target impedance and flattening the impedance, so the rogue wave phenomenon can be avoided.

Description

平坦化電源遞送網路之阻抗的方法 Method for Flattening the Impedance of Power Delivery Networks

本發明關於一種平坦化電源遞送網路之阻抗的方法,尤指一種可選擇適宜的去耦電容以平坦化電源遞送網路之阻抗的方法。 The present invention relates to a method for flattening the impedance of a power delivery network, and more particularly, to a method for selecting a suitable decoupling capacitor to flatten the impedance of the power delivery network.

電源遞送網路(Power Distribution Network,PDN)為電壓源提供直流電源至負載的傳遞媒介,且於印刷電路板上,通常為電壓調節模組(Voltage Regulator Module,VRM)至負載電路的傳遞路徑。電源遞送網路可組成於印刷電路板之電源層及接地層,且與電源層及接地層電連接之纜線、連接器、電容等元件,皆可屬於電源遞送網路之一部分。 A power distribution network (PDN) provides a transmission medium for a voltage source to transmit DC power to a load, and is usually a transmission path from a voltage regulator module (VRM) to a load circuit on a printed circuit board. The power delivery network can be composed of the power supply layer and the ground layer of the printed circuit board, and components such as cables, connectors, and capacitors that are electrically connected to the power supply layer and the ground layer can be part of the power delivery network.

由於電源遞送網路的寄生效應可造成並聯諧振,故導致負載電路之位置的高自阻抗(self-impedance)。於負載電路之位置,因為負載電流的變化及電源遞送網路的高自阻抗,而會產生電壓擾動之問題。 Since parasitics of the power delivery network can cause parallel resonance, high self-impedance at the location of the load circuit results. At the position of the load circuit, the problem of voltage disturbance will arise due to the variation of the load current and the high self-impedance of the power delivery network.

此外,當電源遞送網路之自阻抗對頻率的曲線不平坦時,電壓擾動相互重疊造成的畸波(rouge wave)問題,將使電壓擾動問題更趨嚴重。伺服器為一種包含印刷電路板的電子裝置,其印刷電路板的電源層及接地層可構成電源遞送網路之一部分,因此,伺服器在印刷電路板的電源遞送網路的設計上除需考慮降低阻抗以避免雜訊干擾外,還需考慮阻抗平坦化的問題,以避免發生畸波現象。 In addition, when the self-impedance versus frequency curve of the power delivery network is not flat, the problem of rouge waves caused by overlapping voltage disturbances will make the voltage disturbance problem even more serious. A server is an electronic device including a printed circuit board. The power supply layer and the ground layer of the printed circuit board can form a part of the power delivery network. Therefore, the server needs to be considered in the design of the power delivery network of the printed circuit board. In addition to reducing the impedance to avoid noise interference, it is also necessary to consider the issue of impedance flattening to avoid distortion.

實施例提供一種平坦化電源遞送網路之阻抗的方法,包含擷取該電源遞送網路之一組阻抗參數;根據該組阻抗參數求得該電源遞送網路之阻抗;定義目標阻抗;執行重要性計算以決定埠位;根據該目標阻抗及該電源遞送網路之該阻抗,求得交點頻率;根據該交點頻率,選擇去耦電容;及設置該去耦電容於該埠位。 An embodiment provides a method for flattening the impedance of a power delivery network, including acquiring a set of impedance parameters of the power delivery network; obtaining the impedance of the power delivery network according to the set of impedance parameters; defining a target impedance; according to the target impedance and the impedance of the power delivery network, obtain the intersection frequency; according to the intersection frequency, select a decoupling capacitor; and set the decoupling capacitor at the port.

100:方法 100: Method

110至199,310,320,410至450,510至530:步驟 110 to 199, 310, 320, 410 to 450, 510 to 530: Steps

Z11,Z11',Z11’a,Z11’b,Z11’c:阻抗 Z11, Z11', Z11'a, Z11'b, Z11'c: Impedance

Fh:預定頻率 Fh: predetermined frequency

Fx,Fx’,Fx1,Fx2,Fx3:交點頻率 Fx, Fx', Fx1, Fx2, Fx3: Intersection frequency

第1圖為實施例中,平坦化電源遞送網路之阻抗的方法之流程圖。 FIG. 1 is a flowchart of a method for flattening the impedance of a power delivery network in an embodiment.

第2圖為實施例中,阻抗及頻率之關係曲線圖。 Fig. 2 is a graph showing the relationship between impedance and frequency in the embodiment.

第3圖至第5圖為第1圖中,選擇去耦電容之流程圖。 Figures 3 to 5 are the flow charts of the selection of decoupling capacitors in Figure 1.

第6圖為執行第5圖之流程之曲線圖。 FIG. 6 is a graph of executing the process of FIG. 5 .

為了處理前述的難題,可置放去耦合電容以降低電源遞送網路之自阻抗。然而,如此雖可使電源遞送網路之阻抗被降至目標阻抗,但仍未將電源遞送網路之阻抗予以平坦化及最佳化。實施例提供之方法可用以將電源遞送網路之阻抗予以平坦化及最佳化,如下所述。 To address the aforementioned challenges, decoupling capacitors can be placed to reduce the self-impedance of the power delivery network. However, although the impedance of the power delivery network can be reduced to the target impedance, the impedance of the power delivery network has not been flattened and optimized. Embodiments provide methods for planarizing and optimizing the impedance of a power delivery network, as described below.

第1圖為實施例中,平坦化電源遞送網路之阻抗的方法100之流程圖。第2圖為實施例中,阻抗及頻率之關係曲線圖。如第1圖及第2圖所示,方法100可包含以下步驟:步驟110:擷取電源遞送網路之一組阻抗參數;步驟120:根據該組阻抗參數產生電源遞送網路之阻抗Z11; 步驟130:定義目標阻抗Ztarget;步驟140:執行重要性計算,以決定埠位;步驟150:跟據目標阻抗Ztarget及電源遞送網路之阻抗Z11,求得交點頻率Fx;步驟160:根據交點頻率Fx,選擇去耦電容;步驟170:設置去耦電容於埠位;步驟180:執行並聯運算以產生電源遞送網路之調整後阻抗Z11’;步驟190:觀察調整後阻抗Z11’是否符合目標阻抗Ztarget;若是,進入步驟199;若否,進入步驟140;步驟199:結束。 FIG. 1 is a flow diagram of a method 100 of planarizing the impedance of a power delivery network, in accordance with an embodiment. Fig. 2 is a graph showing the relationship between impedance and frequency in the embodiment. As shown in FIG. 1 and FIG. 2 , the method 100 may include the following steps: Step 110 : acquiring a set of impedance parameters of the power delivery network; Step 120 : generating the impedance Z11 of the power delivery network according to the set of impedance parameters; Step 130: Define the target impedance Ztarget; Step 140: Perform importance calculation to determine the port position; Step 150: Obtain the intersection frequency Fx according to the target impedance Ztarget and the impedance Z11 of the power delivery network; Step 160: According to the intersection frequency Fx, select the decoupling capacitor; Step 170: Set the decoupling capacitor at the port; Step 180: Perform a parallel operation to generate the adjusted impedance Z11' of the power delivery network; Step 190: Observe whether the adjusted impedance Z11' meets the target impedance Ztarget; if yes, go to step 199; if no, go to step 140; step 199: end.

以下以舉例方式,描述第1圖之步驟。步驟110中,可擷取電源遞送網路的散射參數(Scattering parameters,又稱S-parameters),且根據散射參數,以計算方式求得阻抗參數,其中阻抗參數可為電源遞送網路之阻抗矩陣(impedance matrix,又稱Z-matrix)的元素(elements)。 The steps of FIG. 1 are described below by way of example. In step 110 , the scattering parameters (S-parameters) of the power delivery network can be acquired, and the impedance parameters can be obtained by calculation according to the scattering parameters, wherein the impedance parameters can be the impedance matrix of the power delivery network (impedance matrix, also known as Z-matrix) elements (elements).

步驟120中,可根據該組阻抗參數求得電源遞送網路之阻抗Z11,阻抗Z11之曲線如第2圖所示,阻抗Z11之曲線可呈現此時電源遞送網路於各頻率之自阻抗。第2圖僅為舉例,而非限制實施例之樣態。第2圖中,1e+05可表示1×105,1e+06可表示1×106,以此類推。 In step 120, the impedance Z11 of the power delivery network can be obtained according to the set of impedance parameters. The curve of impedance Z11 is shown in FIG. 2, and the curve of impedance Z11 can represent the self-impedance of the power delivery network at each frequency at this time. FIG. 2 is only an example, rather than limiting the aspect of the embodiment. In Figure 2, 1e+05 can represent 1×10 5 , 1e+06 can represent 1×10 6 , and so on.

電源遞送網路可包含多個埠位,阻抗Z11可為耦接於負載裝置(例如積體電路)之埠位的輸入阻抗,且其他埠位可用以設置去耦電容,從而平坦化阻抗Z11,如下所述。 The power delivery network can include multiple ports, the impedance Z11 can be the input impedance of the port coupled to the load device (such as an integrated circuit), and other ports can be used to set decoupling capacitors to flatten the impedance Z11, as described below.

步驟130中,可根據實際需求及產品規格,定義目標阻抗Ztarget,如第2圖所示,目標阻抗Ztarget之曲線可對應於各頻率之目標阻抗值,舉例而言,於低於預定頻率Fh之頻段,目標阻抗Ztarget可實質上為定值。步驟130可獨立於 步驟110及120,舉例而言,亦可先執行步驟130,再執行步驟110及120。 In step 130, the target impedance Ztarget can be defined according to the actual requirements and product specifications. As shown in FIG. 2, the curve of the target impedance Ztarget can correspond to the target impedance value of each frequency. In the frequency band, the target impedance Ztarget can be substantially constant. Step 130 may be independent of Steps 110 and 120, for example, step 130 can also be performed first, and then steps 110 and 120 can be performed.

根據實施例,如步驟140至170所述,可於電源遞送網路之多個埠位,選擇重要性最高的埠位,再於多個候選電容中,選擇最適宜的電容作為去耦電容,以設置於所選定之埠位。 According to an embodiment, as described in steps 140 to 170, the most important port may be selected from a plurality of ports in the power delivery network, and then the most suitable capacitor may be selected as the decoupling capacitor among the plurality of candidate capacitors. to set at the selected port.

步驟140中,可分別計算電源遞送網路之複數個埠位被設置電容後,所降低之複數個電感特性值,且挑選複數個電感特性值之最高者所對應的埠位,作為所選之埠位。換言之,於多個埠位中,被設置電容後,電感特性下降最多之埠位,可為重要性最高的埠位。 In step 140, a plurality of inductance characteristic values that are reduced after a plurality of ports of the power delivery network are set with capacitors can be calculated respectively, and the port corresponding to the highest one of the plurality of inductance characteristic values is selected as the selected one. port. In other words, among multiple ports, the port whose inductance characteristic decreases the most after the capacitors are set can be the most important port.

舉例而言,若電源遞送網路為2埠(2-port)網路,具有第一埠位(例如耦接於負載裝置,如積體電路)及第二埠位(例如耦接於去耦電容),則可執行算式eq-1及eq-2之計算:

Figure 110113506-A0305-02-0006-1
Figure 110113506-A0305-02-0006-2
其中,L11及L22可為第一埠位及第二埠位之自感,L12可為第一埠位及第二埠位之互感,L11wdecap@2可為第二埠位被設置去耦電容後的電感矩陣之調整後元素,且△L11wGND@2可為第二埠位被設置去耦電容後所降低之電感特性。其中,Ld可為所設置的去耦電容之自感值,可為常數,為了計算方便,可予以忽略。上述算式eq-1、eq-2僅為舉例,若於n-埠(n-port)網路,則相關於第A埠之互感的通式可如下述:
Figure 110113506-A0305-02-0006-3
Figure 110113506-A0305-02-0006-4
舉例而言,若電源遞送網路為10埠(10-port)網路,則可根據算式eq-2之原理,求得表1:
Figure 110113506-A0305-02-0007-5
For example, if the power delivery network is a 2-port network, it has a first port (eg, coupled to a load device, such as an integrated circuit) and a second port (eg, coupled to a decoupling) Capacitance), then the calculation of formula eq-1 and eq-2 can be performed:
Figure 110113506-A0305-02-0006-1
Figure 110113506-A0305-02-0006-2
Wherein, L11 and L22 can be the self-inductance of the first port and the second port, L12 can be the mutual inductance of the first port and the second port, and L11wdecap@2 can be the decoupling capacitor set for the second port The adjusted element of the latter inductance matrix, and ΔL 11wGND@2 can be the inductance characteristic reduced after the second port is set with a decoupling capacitor. Among them, Ld can be the self-inductance value of the set decoupling capacitor, which can be a constant, and can be ignored for the convenience of calculation. The above formulas eq-1 and eq-2 are only examples. For an n-port network, the general formula related to the mutual inductance of the A-th port can be as follows:
Figure 110113506-A0305-02-0006-3
Figure 110113506-A0305-02-0006-4
For example, if the power delivery network is a 10-port network, Table 1 can be obtained according to the principle of the formula eq-2:
Figure 110113506-A0305-02-0007-5

於表1之舉例中,可見當去耦電容設置於埠位P2時,電感特性降低最多,故埠位P2之重要性最高,且可於步驟140挑選埠位P2。表1之埠位數量及數值僅為舉例,實施例不限於此。 In the example in Table 1, it can be seen that when the decoupling capacitor is set at the port P2, the inductance characteristic decreases the most, so the port P2 is the most important, and the port P2 can be selected in step 140. The number and value of the ports in Table 1 are only examples, and the embodiment is not limited thereto.

步驟150中,如第2圖所示,可跟據目標阻抗Ztarget之曲線及此時電源遞送網路之自阻抗Z11之曲線,於阻抗對頻率之曲線圖上,求得交點頻率Fx。 In step 150, as shown in FIG. 2, the intersection frequency Fx can be obtained on the impedance versus frequency curve according to the curve of the target impedance Ztarget and the curve of the self-impedance Z11 of the power delivery network at this time.

步驟160中,可於去耦電容資料庫(library)挑選去耦電容,再於步驟170將所挑選的去耦電容設置於步驟140所決定的埠位。 In step 160 , a decoupling capacitor can be selected from the decoupling capacitor library, and then in step 170 the selected decoupling capacitor is set to the port determined in step 140 .

執行步驟170後,電源遞送網路的等效阻抗矩陣之各元素,可因去耦電容之設置而改變,故須重新計算電源遞送網路之自阻抗。 After step 170 is executed, each element of the equivalent impedance matrix of the power delivery network can be changed due to the setting of the decoupling capacitor, so the self-impedance of the power delivery network needs to be recalculated.

舉例而言,若電源遞送網路具有100個埠位及一個耦接於負載裝置(例如積體電路)之埠位,則原本的阻抗矩陣之維度可為101×101,執行步驟170而設置一個去耦電容後,則阻抗矩陣之維度可為100×100,且矩陣之各元素皆可能改變,故須重新產生阻抗矩陣及據以計算自阻抗。 For example, if the power delivery network has 100 ports and one port coupled to a load device (such as an integrated circuit), the dimension of the original impedance matrix can be 101×101, and step 170 is executed to set one After decoupling capacitors, the dimension of the impedance matrix can be 100×100, and each element of the matrix may be changed, so the impedance matrix must be regenerated and the self-impedance calculated accordingly.

步驟180中,可根據步驟170設置的去耦電容,執行並聯運算,以產生電源遞送網路之調整後阻抗Z11’之曲線。所述的並聯運算,可如可如算式eq-5所示:Z11’=Z11-(Z1i×Zi1)/Z11+Zd...eq-5;其中Z11可為調整前之電源遞送網路之自阻抗,Z11’可為設置去耦電容後的調整後之電源遞送網路之自阻抗,Z1i及Zi1可為阻抗矩陣之元素,若矩陣維度為n×n,則i及n為正整數且0<i

Figure 110113506-A0305-02-0008-12
n。Zd可為所設置的去耦電容之阻抗。 In step 180, a parallel operation may be performed according to the decoupling capacitor set in step 170 to generate a curve of the adjusted impedance Z11' of the power delivery network. The parallel operation can be as shown in the formula eq-5: Z11'=Z11-(Z1i×Zi1)/Z11+Zd...eq-5; wherein Z11 can be the part of the power delivery network before the adjustment. Self-impedance, Z11' can be the self-impedance of the adjusted power delivery network after setting the decoupling capacitor, Z1i and Zi1 can be the elements of the impedance matrix, if the matrix dimension is n×n, then i and n are positive integers and 0<i
Figure 110113506-A0305-02-0008-12
n. Zd can be the impedance of the set decoupling capacitor.

步驟190中,可觀察調整後阻抗Z11’是否符合目標阻抗Ztarget,若是,可進入步驟199結束流程;若否,則可進入步驟140,再度選擇埠位,及根據調整後交點頻率Fx’選擇及設置適宜的去耦電容於所選的埠位,以使電源遞送網路之阻抗的曲線,於阻抗-頻率坐標上更接近目標阻抗Ztarget的曲線,且更為平坦。 In step 190, it can be observed whether the adjusted impedance Z11' conforms to the target impedance Ztarget. If so, step 199 can be entered to end the process; Set an appropriate decoupling capacitor at the selected port, so that the impedance curve of the power delivery network is closer to the target impedance Ztarget curve on the impedance-frequency coordinate, and is flatter.

步驟190中,可至少根據調整後阻抗Z11’於特定頻段內是否小於目標阻抗Ztarget,以判斷調整後自阻抗Z11’是否符合目標阻抗Ztarget。又,可根據調整後阻抗Z11’於特定頻段內的標準差及平均值,以判斷平坦度是否夠好。舉例而言,可將調整後阻抗Z11’於特定頻段內的標準差及平均值相除後,以百分比表示,以得到平坦度。 In step 190, whether the adjusted self-impedance Z11' meets the target impedance Ztarget can be determined at least according to whether the adjusted impedance Z11' is smaller than the target impedance Ztarget in a specific frequency band. In addition, it can be judged whether the flatness is good enough according to the standard deviation and average value of the adjusted impedance Z11' in a specific frequency band. For example, the standard deviation and average value of the adjusted impedance Z11' in a specific frequency band can be divided and expressed as a percentage to obtain the flatness.

關於步驟140至190,舉例而言,於步驟140可執行第一重要性計算以決定第一埠位,並如第1圖所示,執行步驟150至180,以設置第一去耦電容於第一埠位及求得調整後阻抗;若於步驟190中,調整後阻抗Z11’尚未符合目標阻抗Ztarget,可再執行步驟140以執行第二重要性計算而決定第二埠位,且再執行執 行步驟150至180以設置第二去耦電容於第二埠位及求得調整後阻抗;如此,可用迴圈方式改善調整後阻抗Z11’之平坦度。此處提及的第一重要性計算及第二重要性計算,僅為舉例,用以描述可用迴圈方式執行第1圖之步驟,然而實施例不限於此,若有須要,第1圖之步驟可用迴圈方式執行更多次(例如多於兩次)重要性計算,從而改善調整後阻抗Z11’之平坦度。於此舉例中,如上述,第一重要性計算可包含分別計算電源遞送網路之複數個埠位被設置電容後,所降低之複數個電感特性值,且挑選複數個電感特性值之最高者所對應的埠位,作為第一埠位;同理,第二重要性計算可包含分別計算電源遞送網路之複數個埠位被設置電容後,所降低之複數個電感特性值,且挑選複數個電感特性值之最高者所對應的埠位,作為第二埠位;若有第三重要性計算、第四重要性計算等,則可依此類推。 Regarding steps 140 to 190, for example, in step 140, a first importance calculation is performed to determine the first port, and as shown in FIG. 1, steps 150 to 180 are performed to set the first decoupling capacitor on the first port. a port and obtain the adjusted impedance; if in step 190, the adjusted impedance Z11' does not yet meet the target impedance Ztarget, step 140 can be performed again to perform the second importance calculation to determine the second port, and then the execution Steps 150 to 180 are performed to set the second decoupling capacitor at the second port and obtain the adjusted impedance; in this way, the flatness of the adjusted impedance Z11' can be improved by a loop method. The first importance calculation and the second importance calculation mentioned here are only examples, and are used to describe that the steps in FIG. 1 can be executed in a loop manner. However, the embodiment is not limited to this. The steps may perform more (eg, more than two) importance calculations in a loop fashion, thereby improving the flatness of the adjusted impedance Z11'. In this example, as described above, the first importance calculation may include separately calculating a plurality of inductance characteristic values reduced after a plurality of ports of the power delivery network are set with capacitances, and selecting the highest one of the plurality of inductance characteristic values The corresponding port is regarded as the first port; similarly, the second importance calculation may include calculating the plurality of inductance characteristic values that are reduced after the capacitances are set on the plurality of ports of the power delivery network, and selecting the plurality of inductance characteristics. The port corresponding to the highest inductance characteristic value is used as the second port; if there is a third importance calculation, a fourth importance calculation, etc., it can be deduced by analogy.

第3圖為第1圖之步驟160中,選擇去耦電容之流程圖。根據實施例,第1圖之步驟160,可包含以下步驟:步驟310:選擇一組電容,該組電容之每一電容之自諧振頻率(self-resonant frequency,SRF)係介於第一值及第二值之間;步驟320:選擇該組電容之一者為去耦電容。 FIG. 3 is a flowchart of selecting a decoupling capacitor in step 160 of FIG. 1 . According to an embodiment, step 160 in FIG. 1 may include the following steps: Step 310 : Select a set of capacitors, and the self-resonant frequency (SRF) of each capacitor in the set of capacitors is between the first value and the between the second values; Step 320: Select one of the capacitors as a decoupling capacitor.

第3圖提及之第一值可為交點頻率Fx之A倍,第二值可為交點頻率Fx之B倍,A及B為正參數,且0<A<B。 The first value mentioned in Figure 3 may be A times the intersection frequency Fx, and the second value may be B times the intersection frequency Fx, A and B are positive parameters, and 0<A<B.

舉例來說,若資料庫有200個電容可供選用,其中30個電容的自諧振頻率介於A×Fx至B×Fx之間,則可選用該30個電容之一者作為去耦電容。根據實施例,0.5<A<B<5。根據實施例,A實質上可為1.5,且B實質上可為3。 For example, if there are 200 capacitors for selection in the database, and the self-resonant frequency of 30 capacitors is between A×Fx and B×Fx, one of the 30 capacitors can be selected as the decoupling capacitor. According to the embodiment, 0.5<A<B<5. According to an embodiment, A may be substantially 1.5 and B may be substantially 3.

第4圖為第1圖之步驟160中,選擇去耦電容之流程圖。根據實施例, 第1圖之步驟160,可包含以下步驟:步驟410:選擇k個電容;步驟420:分別計算k個電容之每一電容及電源遞送網路之自阻抗之並聯值,以求得k個並聯阻抗值;步驟430:k個並聯阻抗值中,是否有介於特定範圍之並聯阻抗值?若是,進入步驟440;若否,進入步驟460;步驟440:挑選k個並聯阻抗值中,介於特定範圍之m個並聯阻抗值;步驟450:選擇m個並聯阻抗值對應之m個電容之一者為去耦電容;及步驟460:調整特定範圍,進入步驟430。 FIG. 4 is a flowchart of selecting a decoupling capacitor in step 160 of FIG. 1 . According to the embodiment, Step 160 in FIG. 1 may include the following steps: Step 410 : select k capacitors; Step 420 : calculate the parallel value of each of the k capacitors and the self-impedance of the power delivery network respectively, so as to obtain k parallel connections Impedance value; Step 430: Is there a parallel impedance value within a specific range among the k parallel impedance values? If yes, go to step 440; if no, go to step 460; Step 440: Select m parallel impedance values within a specific range among the k parallel impedance values; Step 450: Select the m capacitors corresponding to the m parallel impedance values One is a decoupling capacitor; and Step 460 : Adjust the specific range, and proceed to Step 430 .

第4圖中,m及k為正整數,且0<m

Figure 110113506-A0305-02-0010-13
k。步驟430之特定範圍介於目標阻抗Ztarget之α倍至β倍之間,且0<α<β。 In Figure 4, m and k are positive integers, and 0<m
Figure 110113506-A0305-02-0010-13
k. The specific range of step 430 is between α times and β times the target impedance Ztarget, and 0<α<β.

舉例來說,若將100個候選電容分別設置於第1圖之步驟140決定之埠位,則可求得100個並聯阻抗值,亦即100個電源遞送網路之調整後自阻抗Z11’。而這100個調整後自阻抗Z11’中,若有40個調整後自阻抗可落入α×Ztarget至β×Ztarget之區間,則可將挑選該40調整後自阻抗對應之40個候選電容之一者為去耦電容,而不選擇其餘60個候選電容。 For example, if 100 candidate capacitors are respectively set at the port positions determined in step 140 in FIG. 1, 100 parallel impedance values can be obtained, that is, the adjusted self-impedance Z11' of 100 power delivery networks. Among the 100 adjusted self-impedances Z11', if there are 40 adjusted self-impedances that can fall within the range of α×Ztarget to β×Ztarget, then the 40 candidate capacitors corresponding to the 40 adjusted self-impedances can be selected. One is the decoupling capacitor, and the remaining 60 candidate capacitors are not selected.

舉例而言,α可為0.9,且β可為1,若步驟430中,無並聯阻抗值介於特定範圍內,則可將α減小,以增大步驟430所述的特定範圍,從而於步驟430可選到介於特定範圍之並聯阻抗值。舉例而言,可將α由0.9,逐步調整為0.85、0.8、0.75...等,以逐漸增大特定範圍。根據另一實施例,亦可調整α及β,使步驟460調整後的特定範圍相異於調整前的特定範圍。 For example, α can be 0.9, and β can be 1. If in step 430, no parallel impedance value is within a specific range, α can be decreased to increase the specific range described in step 430, so that the Step 430 selects a shunt impedance value within a specific range. For example, α can be gradually adjusted from 0.9 to 0.85, 0.8, 0.75, etc. to gradually increase the specific range. According to another embodiment, α and β can also be adjusted so that the specific range after the adjustment in step 460 is different from the specific range before the adjustment.

第5圖為第1圖之步驟160中,選擇去耦電容之流程圖。根據實施例, 第1圖之步驟160,可包含以下步驟:步驟510:分別計算複數個電容之每一電容及電源遞送網路之自阻抗Z11之並聯值,以求得複數條參考阻抗曲線;步驟520:根據複數條參考阻抗曲線及目標阻抗,產生複數個參考交點頻率;及步驟530:選擇複數個參考交點頻率之最高者所對應的電容為去耦電容。 FIG. 5 is a flowchart of selecting a decoupling capacitor in step 160 of FIG. 1 . According to the embodiment, Step 160 in FIG. 1 may include the following steps: Step 510: Calculate the parallel value of each capacitor of the plurality of capacitors and the self-impedance Z11 of the power delivery network to obtain a plurality of reference impedance curves; Step 520: According to A plurality of reference impedance curves and a target impedance are used to generate a plurality of reference intersection frequencies; and Step 530 : Select a capacitor corresponding to the highest of the plurality of reference intersection frequencies as a decoupling capacitor.

第6圖可為執行第5圖之流程之曲線圖。第6圖僅為舉例,而非限制實施例之樣態。舉例而言,當三個候選電容分別設置於第1圖之步驟140決定的埠位後,可求得三個參考阻抗Z11’a、Z11’b及Z11’c及其參考阻抗曲線。如第6圖所示,根據目標阻抗Ztarget之曲線及參考阻抗曲線,可得到參考交點頻率Fx1、Fx2及Fx3,其中參考交點頻率Fx3為三個參考交點頻率之最高者。因此,三個候選電容中,對應於參考交點頻率Fx3及參考阻抗Z11’c之曲線之電容,可被選為去耦電容。 FIG. 6 is a graph of executing the process of FIG. 5 . FIG. 6 is only an example, rather than limiting the aspect of the embodiment. For example, after the three candidate capacitors are respectively set at the ports determined in step 140 in FIG. 1, three reference impedances Z11'a, Z11'b and Z11'c and their reference impedance curves can be obtained. As shown in FIG. 6 , according to the curve of the target impedance Ztarget and the reference impedance curve, the reference intersection frequencies Fx1 , Fx2 and Fx3 can be obtained, wherein the reference intersection frequency Fx3 is the highest of the three reference intersection frequencies. Therefore, among the three candidate capacitors, the capacitor corresponding to the curve of the reference intersection frequency Fx3 and the reference impedance Z11'c can be selected as the decoupling capacitor.

第3圖、第4圖及第5圖之流程,可用以於電容資料庫逐步選出去耦電容。舉例而言,若有100個候選電容,可先以第3圖之流程,選出30個電容,再以第4圖之流程從該30個電容選出10個電容,之後再以第5圖之流程從該10個電容選出1個電容,作為第1圖之步驟160所選之去耦電容。然而,此僅為舉例,執行第3圖、第4圖及第5圖之流程的順序不限於此。 The process shown in Figure 3, Figure 4, and Figure 5 can be used to select decoupling capacitors step by step from the capacitor database. For example, if there are 100 candidate capacitors, you can first select 30 capacitors using the process in Figure 3, then select 10 capacitors from the 30 capacitors using the process in Figure 4, and then use the process in Figure 5 to select 10 capacitors. One capacitor is selected from the ten capacitors as the decoupling capacitor selected in step 160 of FIG. 1 . However, this is only an example, and the sequence of executing the processes in FIG. 3 , FIG. 4 , and FIG. 5 is not limited thereto.

綜上,藉由實施例提供的方法,可有效地選擇重要性最高的埠位,及選擇適宜的去耦電容,以設置於所選之埠位。藉由第1圖之迴圈方式,於適宜的埠位設置適宜的去耦電容後,可有利於平坦化電源遞送網路之自阻抗。根據實驗,實施例之方法所得的調整後阻抗Z11’於阻抗-頻率坐標之曲線,可較為接近目標阻抗Ztarget之曲線,亦即具有更佳的平坦度。因此,實施例之方法可有效 避免畸波現象。因此,對於處理本領域之難題,實有助益。 In conclusion, with the method provided by the embodiments, the most important port position can be effectively selected, and an appropriate decoupling capacitor can be selected to be set at the selected port position. With the loop method shown in Figure 1, after setting a suitable decoupling capacitor at a suitable port position, it can help to flatten the self-impedance of the power delivery network. According to experiments, the curve of the adjusted impedance Z11' on the impedance-frequency coordinate obtained by the method of the embodiment can be closer to the curve of the target impedance Ztarget, that is, has better flatness. Therefore, the method of the embodiment can be effective Avoid distortion. Therefore, it is helpful to deal with the problems in this field.

本發明之方法可應用在伺服器的印刷電路板的設計上,讓伺服器具有高品質的電源遞送網路,以增進伺服器的穩定性,使伺服器能應用在人工智慧(Artificial Intelligence,簡稱AI)運算、邊緣運算(Edge Computing),亦可當作5G伺服器、雲端伺服器或車聯網伺服器使用。 The method of the present invention can be applied to the design of the printed circuit board of the server, so that the server has a high-quality power delivery network, so as to improve the stability of the server, so that the server can be applied to artificial intelligence (Artificial Intelligence, referred to for short). AI) computing, edge computing (Edge Computing), can also be used as 5G server, cloud server or car networking server.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:方法 100: Method

110至199:步驟 110 to 199: Steps

Claims (10)

一種平坦化一電源遞送網路之阻抗的方法,包含:擷取該電源遞送網路之一組阻抗參數;根據該組阻抗參數求得該電源遞送網路之一阻抗;定義一目標阻抗;執行一第一重要性計算,以決定一第一埠位;根據該目標阻抗及該電源遞送網路之該阻抗,求得一交點頻率;根據該交點頻率,選擇一第一去耦電容;及設置該第一去耦電容於該第一埠位。 A method for flattening the impedance of a power delivery network, comprising: acquiring a set of impedance parameters of the power delivery network; obtaining an impedance of the power delivery network according to the set of impedance parameters; defining a target impedance; a first importance calculation to determine a first port; obtain an intersection frequency according to the target impedance and the impedance of the power delivery network; select a first decoupling capacitor according to the intersection frequency; and set The first decoupling capacitor is at the first port. 如請求項1所述的方法,另包含:執行一並聯運算以產生該電源遞送網路之一調整後阻抗;執行一第二重要性計算,以決定一第二埠位;根據該目標阻抗及該電源遞送網路之該調整後阻抗,求得一調整後交點頻率;根據該調整後交點頻率,選擇一第二去耦電容;及設置該第二去耦電容於該第二埠位。 The method of claim 1, further comprising: performing a parallel operation to generate an adjusted impedance of the power delivery network; performing a second importance calculation to determine a second port; according to the target impedance and The adjusted impedance of the power delivery network is to obtain an adjusted cross-point frequency; according to the adjusted cross-point frequency, a second decoupling capacitor is selected; and the second decoupling capacitor is set at the second port. 如請求項1所述的方法,其中選擇該第一去耦電容,包含:選擇一組電容,該組電容之每一電容之一自諧振頻率係介於一第一值及一第二值之間;及選擇該組電容之一者為該第一去耦電容;其中該第一值為該交點頻率之A倍,該第二值為該交點頻率之B倍,A及B為正參數,且0<A<B。 The method of claim 1, wherein selecting the first decoupling capacitor comprises: selecting a set of capacitors, wherein a self-resonant frequency of each capacitor in the set of capacitors is between a first value and a second value and selecting one of the capacitors as the first decoupling capacitor; wherein the first value is A times the frequency of the intersection, the second value is B times the frequency of the intersection, A and B are positive parameters, And 0<A<B. 如請求項3所述的方法,其中A實質上為1.5。 The method of claim 3, wherein A is substantially 1.5. 如請求項3所述的方法,其中B實質上為3。 The method of claim 3, wherein B is substantially 3. 如請求項1所述的方法,其中選擇該第一去耦電容,包含:選擇k個電容;分別計算該k個電容之每一電容及該電源遞送網路之一自阻抗之並聯值,以求得k個並聯阻抗值;挑選該k個並聯阻抗值中,介於一特定範圍之m個並聯阻抗值;及選擇該m個並聯阻抗值對應之m個電容之一者為該第一去耦電容;其中m及k為正整數,且0<m
Figure 110113506-A0305-02-0014-14
k。
The method of claim 1, wherein selecting the first decoupling capacitor comprises: selecting k capacitors; separately calculating a parallel value of each of the k capacitors and a self-impedance of the power delivery network, to obtain Obtain k shunt impedance values; select m shunt impedance values within a specific range among the k shunt impedance values; and select one of m capacitors corresponding to the m shunt impedance values as the first Coupling capacitor; where m and k are positive integers, and 0<m
Figure 110113506-A0305-02-0014-14
k.
如請求項6所述的方法,其中該特定範圍介於該目標阻抗之α倍至β倍之間,且0<α<β。 The method of claim 6, wherein the specific range is between α times and β times the target impedance, and 0<α<β. 如請求項1所述的方法,其中選擇該第一去耦電容,包含:選擇k個電容;分別計算該k個電容之每一電容及該電源遞送網路之一自阻抗之並聯值,以求得k個並聯阻抗值;挑選該k個並聯阻抗值中,介於一第一特定範圍之並聯阻抗值;及當該k個並聯阻抗值皆未落於該第一特定範圍,挑選該k個並聯阻抗值中,介於一第二特定範圍之m個並聯阻抗值;及選擇該m個並聯阻抗值對應之m個電容之一者為該第一去耦電容;其中m及k為正整數,0<m
Figure 110113506-A0305-02-0014-16
k。
The method of claim 1, wherein selecting the first decoupling capacitor comprises: selecting k capacitors; separately calculating a parallel value of each of the k capacitors and a self-impedance of the power delivery network, to obtain Obtaining k parallel impedance values; selecting a parallel impedance value within a first specific range among the k parallel impedance values; and selecting the k parallel impedance values when none of the k parallel impedance values falls within the first specific range Among the shunt impedance values, m shunt impedance values within a second specific range; and selecting one of m capacitors corresponding to the m shunt impedance values to be the first decoupling capacitor; wherein m and k are positive Integer, 0<m
Figure 110113506-A0305-02-0014-16
k.
如請求項1所述的方法,其中選擇該第一去耦電容,包含: 分別計算複數個電容之每一電容及該電源遞送網路之一自阻抗之並聯值,以求得複數個參考阻抗;根據該複數個參考阻抗及該目標阻抗產生複數個參考交點頻率;及選擇該複數個參考交點頻率之一最高者所對應的一電容為該第一去耦電容。 The method of claim 1, wherein selecting the first decoupling capacitor comprises: calculating a parallel value of each capacitance of a plurality of capacitors and a self-impedance of the power delivery network respectively to obtain a plurality of reference impedances; generating a plurality of reference intersection frequencies according to the plurality of reference impedances and the target impedance; and selecting A capacitor corresponding to the highest one of the plurality of reference intersection frequencies is the first decoupling capacitor. 如請求項1所述的方法,其中執行該第一重要性計算,包含:分別計算該電源遞送網路之複數個埠位被設置電容後,所降低之複數個電感特性值;及挑選該複數個電感特性值之最高者對應的一埠位,作為該第一埠位。 The method of claim 1, wherein performing the first importance calculation comprises: separately calculating a plurality of inductance characteristic values reduced after a plurality of ports of the power delivery network are set with capacitance; and selecting the plurality of inductance characteristic values A port corresponding to the highest inductance characteristic value is used as the first port.
TW110113506A 2021-04-15 2021-04-15 Method for flattening impedance of power deliver network TWI761177B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110113506A TWI761177B (en) 2021-04-15 2021-04-15 Method for flattening impedance of power deliver network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110113506A TWI761177B (en) 2021-04-15 2021-04-15 Method for flattening impedance of power deliver network

Publications (2)

Publication Number Publication Date
TWI761177B true TWI761177B (en) 2022-04-11
TW202243399A TW202243399A (en) 2022-11-01

Family

ID=82199194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113506A TWI761177B (en) 2021-04-15 2021-04-15 Method for flattening impedance of power deliver network

Country Status (1)

Country Link
TW (1) TWI761177B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114757143A (en) * 2022-06-16 2022-07-15 飞腾信息技术有限公司 Decoupling capacitor selection method and device, server and readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419790A (en) * 2012-01-04 2012-04-18 西安电子科技大学 Quick capacitor select algorithm-based power distribution network design method
US20120136598A1 (en) * 2010-08-04 2012-05-31 Vladimir Dmitriev-Zdorov Optimization of Decoupling Device Choice for Electronic Design
US8716898B1 (en) * 2011-06-10 2014-05-06 Altera Corporation Tunable power distribution network and method of use thereof
US9582628B1 (en) * 2011-09-14 2017-02-28 Altera Corporation Method and apparatus for performing automatic decoupling capacitor selection for power distribution networks
US20190206815A1 (en) * 2017-12-29 2019-07-04 Seagate Technology Llc Design and placement of de-coupling capacitors for pdn design
TWI723648B (en) * 2019-11-27 2021-04-01 英業達股份有限公司 Noise suppression filter and method for manufacturing a noise suppression filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120136598A1 (en) * 2010-08-04 2012-05-31 Vladimir Dmitriev-Zdorov Optimization of Decoupling Device Choice for Electronic Design
US8716898B1 (en) * 2011-06-10 2014-05-06 Altera Corporation Tunable power distribution network and method of use thereof
US9582628B1 (en) * 2011-09-14 2017-02-28 Altera Corporation Method and apparatus for performing automatic decoupling capacitor selection for power distribution networks
CN102419790A (en) * 2012-01-04 2012-04-18 西安电子科技大学 Quick capacitor select algorithm-based power distribution network design method
US20190206815A1 (en) * 2017-12-29 2019-07-04 Seagate Technology Llc Design and placement of de-coupling capacitors for pdn design
TWI723648B (en) * 2019-11-27 2021-04-01 英業達股份有限公司 Noise suppression filter and method for manufacturing a noise suppression filter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
網路文獻韕2019年12月30日公開文件oldfriend "定義目標阻抗的電源完整性優化設計"https://www.oldfriend.url.tw/SIwave/ansys_ch_Target%20Impedance.html韕NA韕 韕 韕NA韕NA韕 韕NA; *
網路文獻韕2020年5月12日公開文件Heidi Barnes "Optimizing Power Distribution Networks for Flat Impedance" https://www.signalintegrityjournal.com/articles/1715-optimizing-power-distribution-networks-for-flat-impedance韕NA韕 韕 韕NA韕NA韕 韕NA *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114757143A (en) * 2022-06-16 2022-07-15 飞腾信息技术有限公司 Decoupling capacitor selection method and device, server and readable storage medium
CN114757143B (en) * 2022-06-16 2022-09-27 飞腾信息技术有限公司 Decoupling capacitor selection method and device, server and readable storage medium

Also Published As

Publication number Publication date
TW202243399A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP5501471B2 (en) Method for generating a T-coil network design, recording medium and T-coil network
US6571184B2 (en) System and method for determining the decoupling capacitors for power distribution systems with a frequency-dependent target impedance
JP2002541531A (en) System and method for determining desired decoupling components for a power distribution system using a computer system
JP2002518763A (en) System and method for determining desired decoupling components for a power distribution system using a computer system
TWI761177B (en) Method for flattening impedance of power deliver network
CN108959779B (en) Decoupling network design method based on power supply noise time domain analysis
CN104470212A (en) Circuit board impedance line compensation method and device
CN110290637B (en) Method, system and related assembly for reducing signal crosstalk of PCB (printed circuit board)
TW202304257A (en) Systems and methods for repetitive tuning of matching networks
US9507906B2 (en) Metal interconnect modeling
CN112231866B (en) Capacitance selection method, device, server and medium of power distribution network
US8682625B2 (en) Methods, systems, and computer-readable media for improving accuracy of network parameter in electromagnetic simulation and modeling
US11735921B2 (en) Method for flattening impedance of power delivery network by means of selecting decoupling capacitor
EP0922262A2 (en) Circuit simulation
DE102021133949A1 (en) CHIP MODULE STRUCTURE AND METHOD AND SYSTEM FOR CHIP MODULE DESIGN USING CHIP PACKAGE CO-OPTIMIZATION
CN115828823B (en) Layout information output method and device for reading cavity and filter in superconducting quantum chip
KR102028921B1 (en) Device for measuring integrated circuit current and method for measuring integrated circuit current using the device
CN114757143B (en) Decoupling capacitor selection method and device, server and readable storage medium
US6606012B2 (en) Wideband bypass capacitor methods for achieving a desired value of electrical impedance between parallel planar conductors of an electrical power distribution structure
CN109241578B (en) Low-pass filter design method and device
Sedaghat et al. Development of a non-iterative macromodeling technique by data integration and least square method
CN113252991A (en) Method for calculating junction capacitance of diode
JP2019200676A (en) Radiated electromagnetic wave estimation device, radiated electromagnetic wave estimation method, and radiated electromagnetic wave estimation program
US6946824B2 (en) Power delivery system having a plurality of stages and method for setting power delivery system parameters
CN109728828A (en) Separate the method and signal processing apparatus of signal