TWI760254B - Automatic fund depositing method using neural network - Google Patents
Automatic fund depositing method using neural network Download PDFInfo
- Publication number
- TWI760254B TWI760254B TW110123319A TW110123319A TWI760254B TW I760254 B TWI760254 B TW I760254B TW 110123319 A TW110123319 A TW 110123319A TW 110123319 A TW110123319 A TW 110123319A TW I760254 B TWI760254 B TW I760254B
- Authority
- TW
- Taiwan
- Prior art keywords
- amount
- deposit
- fixed
- difference
- transfer
- Prior art date
Links
Images
Landscapes
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
Description
本發明係關於一種金融交易管理方法,特別是一種定期存款管理方法。The present invention relates to a financial transaction management method, especially a time deposit management method.
現有的自動定期存款系統,乃是客戶依據實際的收入,自行設定定存之固定金額以定存期間,藉以為將來的教育基金、旅遊基金或退休基金作準備。當設定的定存金額太低時,理財人員將難以說服客戶將定期存款轉換購買其他理財商品,定存利息之支出將造成銀行成本之負擔。反之,當設定的定存金額太高時,客戶若臨時有資金需求而必須解約,銀行雖然會因此取得客戶額外支付的解約金,但也失去了整筆的定存金額,導致理財人員無法為客戶提供適當之理財商品,以便幫助客戶賺取比儲蓄利息更高的收益。In the existing automatic time deposit system, customers set a fixed amount of time deposit according to their actual income for the time period of time deposit, so as to prepare for the future education fund, travel fund or retirement fund. When the fixed deposit amount set is too low, it will be difficult for wealth management personnel to persuade customers to convert the fixed deposit to purchase other wealth management products, and the expense of fixed deposit interest will cause the burden of bank costs. Conversely, when the set time deposit amount is too high, if the customer temporarily needs funds and must cancel the contract, although the bank will obtain the additional cancellation fee paid by the customer, it will also lose the entire fixed deposit amount, resulting in financial personnel unable to Customers provide appropriate financial products to help customers earn higher returns than savings interest.
有鑑於此,在實務上確實需要一種改良的自動儲蓄系統,至少可解決以上缺失。In view of this, there is a real need for an improved automatic savings system that can at least address the above deficiencies.
本發明在於提供一種使用類神經網路的自動儲蓄方法,可依據客戶的實際收支狀態調整客戶的當前定存轉帳金額。The present invention is to provide an automatic saving method using a neural network, which can adjust the customer's current fixed deposit and transfer amount according to the customer's actual income and expenditure status.
依據本發明一實施例所揭露的一種使用類神經網路的自動儲蓄方法,包括:以帳戶監控主機於每一預定週期收集一帳戶的一現有存款資料,該現有存款資料包含一存款金額及一存款時間; 以轉帳管理主機執行一機器學習模型,該機器學習模型為一類神經網路,以該類神經網路接收一固定金額、一金額差上限、一金額差下限以及該存款金額;以該類神經網路計算該存款金額與一固定金額的金額差;以該類神經網路將該金額差分別與一金額差下限以及一金額差上限作比較;若該類神經網路判定該金額差大於零且小於或等於該金額差下限,以該類神經網路輸出一當前定存轉帳金額,且該當前定存轉帳金額小於該固定金額;若該類神經網路判定該金額差大於該金額差上限,以該類神經網路輸出該當前定存轉帳金額,且該當前定存轉帳金額大於該固定金額;若該當前定存轉帳金額與該帳戶的一歷史定存轉帳金額之間的一定存轉帳金額差小於0時,則該類神經網路依據該定存轉帳金額差且透過一倒傳遞演算法,用於調升該第一權重、調升該第二權重以及調降該第三權重,其中該第一權重的一第一調整百分率小於該第二權重的一第二調整百分率與該第三權重的一第三調整百分率;若該當前定存轉帳金額與該歷史定存轉帳金額之間的該定存轉帳金額差落於一預設金額範圍時,則該類神經網路維持該第一權重、該第二權重以及該第三權重;若該定存轉帳金額差大於0時,則該類神經網路依據該定存轉帳金額差且透過該倒傳遞演算法,用於調升該第一權重、調升該第二權重以及調升該第三權重,其中該第一調整百分率大於該第二調整百分率以及該第三調整百分率;若該類神經網路判定該金額差小於0,則該類神經網路不進行轉帳;以該轉帳管理主機的一繪圖電路,依據一整年的一當前定存轉帳金額產生當年度的一定存金額曲線,且透過一網路將該定存金額曲線傳送至一客戶的一電子信箱;以及接收一密碼以重新設定該固定金額、該金額差上限與該金額差下限的量值。According to an embodiment of the present invention, an automatic deposit method using a neural network-like network is disclosed, comprising: collecting an existing deposit data of an account in each predetermined cycle by an account monitoring host, the existing deposit data including a deposit amount and a deposit amount. Deposit time; execute a machine learning model with the transfer management host, the machine learning model is a type of neural network, and receive a fixed amount, an upper limit of the amount difference, a lower limit of the amount difference and the deposit amount by the type of neural network; The neural network-like calculates the difference between the deposit amount and a fixed amount; the neural network compares the difference with a lower limit and an upper limit of the difference respectively; if the neural network determines that the difference is greater than zero and less than or equal to the lower limit of the amount difference, output a current fixed deposit and transfer amount by this type of neural network, and the current fixed deposit and transfer amount is less than the fixed amount; if the type of neural network determines that the amount difference is greater than the amount Difference upper limit, output the current fixed deposit and transfer amount by this type of neural network, and the current fixed deposit and transfer amount is greater than the fixed amount; When the difference between the deposit and transfer amount is less than 0, the neural network is used to increase the first weight, increase the second weight and decrease the third weight according to the fixed deposit and transfer amount difference and through a backward pass algorithm. weight, wherein a first adjustment percentage of the first weight is smaller than a second adjustment percentage of the second weight and a third adjustment percentage of the third weight; if the current fixed deposit and transfer amount and the historical fixed deposit and transfer amount When the difference between the fixed deposit and transfer amount falls within a preset amount range, the neural network maintains the first weight, the second weight and the third weight; if the fixed deposit and transfer amount difference is greater than 0 , then the neural network is used to increase the first weight, increase the second weight and increase the third weight according to the difference between the fixed deposit and transfer amount and through the backward pass algorithm, wherein the first adjustment The percentage is greater than the second adjustment percentage and the third adjustment percentage; if the neural network determines that the difference in the amount is less than 0, the neural network does not transfer funds; a drawing circuit of the transfer management host is used to manage the transfer according to a A current fixed deposit and transfer amount of a year generates a fixed deposit amount curve of the current year, and transmits the fixed deposit amount curve to a customer's e-mail through a network; and receives a password to reset the fixed amount, the amount The magnitude of the difference between the upper limit of the difference and the lower limit of this amount.
本發明所揭露的使用類神經網路的自動儲蓄方法,可依據客戶實際的個人金融收支狀況去規劃出客製化的定存轉帳金額並進行自動定存轉帳。當客戶有較高的資金需求時,自動儲蓄系統自動地降低客戶之定存轉帳金額,反之,當客戶資金較為充裕時,自動儲蓄系統自動地提高客戶之定存金額,所以客戶無須自行去調整定存轉帳金額。達到簡化操作流程之效果。The automatic saving method using a neural network disclosed in the present invention can plan a customized fixed deposit and transfer amount and perform automatic fixed deposit and transfer according to the actual personal financial income and expenditure status of the customer. When the customer has a high demand for funds, the automatic savings system automatically reduces the customer's fixed deposit and transfer amount. On the contrary, when the customer's funds are relatively abundant, the automatic savings system automatically increases the customer's fixed deposit amount, so the customer does not need to adjust it. Fixed deposit transfer amount. To achieve the effect of simplifying the operation process.
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the present disclosure and the following description of the embodiments are used to demonstrate and explain the spirit and principle of the present invention, and provide further explanation of the scope of the patent application of the present invention.
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are described in detail in the following embodiments, and the content is sufficient to enable any person skilled in the relevant art to understand the technical content of the present invention and implement it accordingly, and according to the content disclosed in this specification, the scope of the patent application and the drawings , any person skilled in the related art can easily understand the related objects and advantages of the present invention. The following examples further illustrate the viewpoints of the present invention in detail, but do not limit the scope of the present invention in any viewpoint.
圖1係為根據本發明第一實施例所繪示之自動儲蓄系統的功能方塊圖。如圖1所示,自動儲蓄系統100包括一帳戶監控主機10以及一轉帳管理主機12,帳戶監控主機10透過有線或無線網路與銀行內部伺服器S通訊連接。銀行內部伺服器S儲存有銀行所有客戶之金融交易資料,金融交易資料包含有存款資料 (至少包含存款金額及存款日期)、提款資料 (至少包含提款金額及提款日期)、以及轉帳資料 (至少包含轉帳金額、轉帳日期及轉入之帳戶)。帳戶監控主機10用於每一預定週期收集客戶之帳戶之存款資料及轉帳資料,預定週期例如為一個月。轉帳管理主機12包含一處理器121及一外部記憶體122,而處理器121電性連接於外部記憶體122。外部記憶體122用於儲存帳戶監控主機10所收集的關於客戶之存款資料、預設的固定金額、存款金額與固定金額之金額差、預設之金額差上限及金額差下限以及金融轉帳資料等,其中固定金額為客戶所事先預設的每一月份的定存轉帳金額。處理器121透過有線或無線網路與帳戶監控主機10通訊連接。處理器121更具有一內部記憶體123,而內部記憶體123儲存有一機器學習模型13。機器學習模型13包含類神經網路、模糊邏輯模型、隱藏式馬爾可夫模型、決策樹、貝氏演算法、條件隨機域或支持向量機,在一實施例中,機器學習模型13例如為類神經網路,而類神經網路可事先利用帳戶監控主機10所收集的歷史存款資料、歷史轉帳資料、預設之固定金額、金額差上限以及金額差下限進行離線訓練,使得類神經網路直接上線時,在接收到即時的現有存款資料時,即能計算出最符合客製化需求的定存轉帳金額。轉帳管理主機12用於執行機器學習模型13以驅動已經過訓練之機器學習模型13去計算客戶之存款金額與固定金額的金額差且將金額差分別與金額差下限以及金額差上限比較大小,依據比較之結果在每一預定週期產生一定存轉帳金額。在本實施例中,預定週期為每一個月,如此一來,自動儲蓄系統100的機器學習模型13在每一個月都會依據客戶的實際收支狀況去調整當前定存轉帳金額。轉帳管理主機12更包含一繪圖電路124,當機器學習模型13產生多筆當前定存轉帳金額之資料後,繪圖電路124可依據多筆當前定存轉帳金額及其對應之轉帳時間產生一定存金額曲線且將定存金額曲線儲存於外部記憶體122。舉例來說,機器學習模型13產生了一年份的當前定存轉帳金額,則繪圖電路124將依據一整年的當前定存轉帳金額產生一當年度的定存金額曲線,藉此顯示客戶在當年度的每一個月的定存轉帳金額。FIG. 1 is a functional block diagram of an automatic saving system according to a first embodiment of the present invention. As shown in FIG. 1 , the
再者,轉帳管理主機12更可透過無線網路與客戶的行動裝置或個人電腦通訊連接,以便將定存金額曲線的資料傳送至客戶的電子信箱。此外,為了資訊安全的考量,還可設定客戶的行動裝置或個人電腦需要額外安裝與轉帳管理主機12相搭配之指定應用程式,才可與轉帳管理主機12通訊連接以接收定存金額曲線的資料。Furthermore, the
圖2係為根據本發明第二實施例所繪示之自動儲蓄系統的功能方塊圖。如圖2所示,第二實施例的自動儲蓄系統200與第一實施例的自動儲蓄系統100之差異為自動儲蓄系統200更包括有一利率管理主機20,利率管理主機20透過有線或無線網路與轉帳管理主機12之處理器121及帳戶監控主機10通訊連接,利率管理主機20用於判斷客戶在一預定期間的當前定存轉帳金額之平均值是否大於固定金額,藉此判斷是否調整客戶之定存利率。舉例來說,若客戶在當年度內有超過六個月份之當前定存轉帳金額高於固定金額,以致使當年度的當前定存轉帳金額之平均值大於固定金額,則自動儲蓄系統200的利率管理主機20自動地提高客戶在下一年度的定存利率,藉此達到客製化規劃定存轉帳金額的效果。FIG. 2 is a functional block diagram of an automatic saving system according to a second embodiment of the present invention. As shown in FIG. 2, the difference between the
帳戶監控主機10用於判斷帳戶之現有存款資料是否除了來自本銀行的銀行內部伺服器S的存款資料之外,還包含屬於其他銀行的存款對帳單圖檔。若判斷結果為否定,則直接依據現有本銀行的存款資料進行後續之處理。若判斷結果為肯定,則進一步由存款對帳單圖檔中的預設位置,進行辨識並取得存款餘額。接著,以存款餘額以及本銀行的存款資料之總和,來更新現有存款資料。The
在一實施例中,存款對帳單圖檔中的存款金額的預設位置係依據以下辨識演算法來取得,該辨識演算法包含下列步驟。步驟1:各存款對帳單圖檔藉由RGB色彩空間影像轉換成灰階影像。步驟2:利用適應性門檻值將灰階影像轉換成二值化影像。步驟3:對二值化影像進行水平投影及垂直投影步驟4:去除二值化影像周圍的空白區域以取得辨識用圖檔。步驟5:使用分類演算法,以小數點為指示符,以判定辨識用圖檔中的各小數點的所在位置步驟6:基於指示符沿著水平方向取得數字字串,其中數字字串包含連續的阿拉伯數字及逗號或者連續的阿拉伯數字。步驟7:以光學字元辨識(OCR)辨識出辨識用圖檔中的關鍵字,關鍵字例如為餘額、結餘、總結或總額。步驟8:判斷通過每一數字字串的水平參考線或垂直參考線的數量,以通過數量最多的數字字串作為存款對帳單圖檔中的存款金額,其中水平參數線或垂直參考線通過關鍵字的所在位置。In one embodiment, the default position of the deposit amount in the deposit statement image file is obtained according to the following identification algorithm, and the identification algorithm includes the following steps. Step 1: Each deposit statement image file is converted to grayscale image by RGB color space image. Step 2: Convert the grayscale image into a binarized image using the adaptive threshold value. Step 3: Perform horizontal projection and vertical projection on the binarized image. Step 4: Remove the blank area around the binarized image to obtain an image file for identification. Step 5: Use the classification algorithm to use the decimal point as an indicator to determine the position of each decimal point in the identification image file. Step 6: Based on the indicator, obtain a digital string along the horizontal direction, wherein the digital string contains continuous Arabic numerals and commas or consecutive Arabic numerals. Step 7: Identify the keywords in the identification image file by optical character recognition (OCR), for example, the keywords are balance, balance, summary or total. Step 8: Determine the number of horizontal reference lines or vertical reference lines that pass through each number string, and use the number string with the largest number as the deposit amount in the deposit statement file, where the horizontal parameter line or vertical reference line passes through The location of the keyword.
除了上述辨識演算法之外,快速卷機神經網路(FCNN)、卷積神經網路(CNN)、遞迴神經網路(RNN)或長短期記憶神經網路(LSTM)基於多個存款對帳單樣本進行訓練所取得。由於存款對帳單圖檔有可能有格式編排的變動,而LSTM具有對新增樣本快速學習之優勢,因此在本實施例中,以LSTM取得存款對帳單圖檔中的存款金額的預設位置 。In addition to the above identification algorithms, Fast Convolutional Neural Networks (FCNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) or Long Short-Term Memory Neural Networks (LSTM) are based on multiple deposit pairs The billing samples are obtained for training. Since the format of the deposit statement image file may change, and LSTM has the advantage of quickly learning new samples, in this embodiment, the LSTM is used to obtain the default deposit amount in the deposit statement image file. Location.
圖3係為根據本發明第一實施例所繪示之自動儲蓄方法的流程圖。如圖3所示,在步驟301中,以帳戶監控主機10於每一預定週期收集關於客戶之現有存款資料,並將現有存款資料經由有線或無線網路傳送至轉帳管理主機12之外部記憶體122,其中現有存款資料至少包含存款金額及存款日期,在本實施例中,預定週期設定為一個月。FIG. 3 is a flowchart of an automatic saving method according to the first embodiment of the present invention. As shown in FIG. 3 , in step 301 , the
在步驟302中,以轉帳管理主機12之處理器121執行機器學習模型13以驅動機器學習模型13依據輸入於機器學習模型13之存款金額以及固定金額去計算存款金額與固定金額之間的金額差,且將金額差的資料儲存於外部記憶體122。In step 302, the
在步驟303中,以機器學習模型13將金額差分別與輸入於機器學習模型13之金額差下限以及金額差上限作大小比較,接著根據比較之結果選擇地執行步驟304、305、306或307。此外,客戶還可透過安裝於個人電腦或行動裝置之指定應用程式與轉帳管理主機12通訊連接,以便經由網路銀行或行動銀行所提供之功能頁面重新設定輸入於機器學習模型13之固定金額、金額差上限與金額差下限的量值。此外,轉帳管理主機12還可具備安全機制,即使經由指定應用程式連線至轉帳管理主機12後,還必須輸入密碼才能重新設定固定金額、金額差上限與金額差下限,以避免非銀行之客戶隨意修改轉帳管理主機12內的資料。In step 303, the
在步驟304中,若機器學習模型13判定金額差大於零且不大於金額差下限,以機器學習模型13產生小於固定金額的減額定存金額,且自動從客戶的活期存款帳戶將減額定存金額轉帳至客戶的定期存款帳戶,且將減額定存金額及其轉帳日期儲存於外部記憶體122,其中減額定存金額即為符合目前客戶的金融收支狀況的當前定存轉帳金額。舉例來說,客戶一開始設定每一個月的定存轉帳金額為10000元、金額差下限為2000元、以及金額差上限為6000元,意即輸入於機器學習模型13之固定金額、金額差下限與金額差上限分別為10000元、2000元以及6000元。當客戶的活期存款帳戶內的存款金額剩下11000元,則輸入於機器學習模型13的存款金額為11000元,則機器學習模型13依據輸入的存款金額、固定金額、金額差下限與金額差上限自動將定存轉帳金額由10000元調降為9000元,減額定存金額即為9000元。所以客戶之活期存款帳戶經過機器學習模型13自動地轉帳後,活期存款帳戶內的餘額仍有2000元,而不會低於先前預設之金額差下限。In step 304, if the
在步驟305中,若機器學習模型13判定金額差大於金額差下限且不大於金額差上限,則機器學習模型13從客戶的活期存款帳戶轉帳固定金額至客戶的定期存款,且將轉帳之固定金額及其轉帳日期儲存於外部記憶體122。舉例來說,客戶一開始設定每一個月的定存轉帳金額為10000元、金額差下限為2000元、以及金額差上限為6000元。當客戶的活期存款帳戶內的存款剩下15000元,則機器學習模型13計算出金額差為5000元而判定金額差介於預設之金額差上限與金額差下限之間,則機器學習模型13自動地從客戶的活期存款帳戶將固定金額(10000元) 轉帳至客戶的定期存款。所以客戶之活期存款帳戶經過機器學習模型13轉帳後活期存款,帳戶內的餘額仍有5000元而介於金額差上限與金額差下限之間。In step 305, if the
在步驟306中,若機器學習模型13判定金額差大於金額差上限,則機器學習模型13產生大於固定金額的增額定存金額且從客戶的活期存款帳戶將增額定存金額轉帳至客戶的定期存款帳戶,且將增額定存金額及其對應轉帳日期儲存於外部記憶體122,其中增額定存金額即為符合目前客戶的金融收支狀況的當前定存轉帳金額。舉例來說,客戶一開始設定每一個月的定存金額為10000元、金額差下限為2000元、以及金額差上限為6000元。當客戶之活期存款帳戶內的存款金額為20000元,機器學習模型13計算出金額差為10000元且判定金額差高於預設之金額差上限,則機器學習模型13將定存金額從10000元提高至14000元,增額定存金額即為14000元。所以客戶之活期存款帳戶經過機器學習模型13轉帳後,活期存款帳戶內的餘額有6000元,而不會高於金額差上限。In step 306, if the
在步驟307中,若機器學習模型13判定金額差小於零時,意即客戶之活期存款帳戶內的存款金額低於預設之固定金額,則機器學習模型13不對帳戶進行轉帳。在其他實施例中,當機器學習模型13不進行轉帳時,更進一步發送簡訊至客戶的行動裝置,以將帳戶內餘額不足之消息告客戶。In step 307, if the
圖4為圖2的自動儲蓄系統的機器學習模型的一實施例的示意圖。如圖4所示,做為該機器學習模型13的類神經網路包含第一節點N1至第四節點N4,其中第一節點N1與第二節點N2為輸入節點且函式均為[|(第一輸入資料)-(第二輸入資料)|-(第三輸入資料)],意即第一輸入資料減去第二輸入資料的絕對值再減去第三輸入資料。第一節點N1的三個輸入資料分別為存款金額、固定金額以及金額差上限,其中存款金額、固定金額以及金額差上限分別為第一節點N1的第一至第三輸入資料。第二節點N2的三個輸入資料分別為存款金額、固定金額以及金額差下限,其中存款金額、固定金額以及金額差下限分別為第二節點N2的第一至第三輸入資料。至於存款金額與固定金額之差的絕對值為金額差。FIG. 4 is a schematic diagram of an embodiment of a machine learning model of the automatic savings system of FIG. 2 . As shown in FIG. 4 , the neural network as the
第三節點N3為中間層節點且其函式為判斷[金額差-金額差上限]以及[金額差-金額差下限]是否大於0,其中金額差為存款金額與固定金額之差。第四節點N4為輸出節點且其函式為三個輸入資料的總和,而第四節點N4的三個輸入資料分別為(金額差-金額差上限)*第一權重W1、(金額差-金額差下限)*第二權重W2、以及(固定金額)*第三權重W3。類神經網路的第四節點N4的輸出為當前月份的當前定存轉帳金額。The third node N3 is an intermediate layer node and its function is to determine whether [amount difference - amount difference upper limit] and [amount difference - amount difference lower limit] are greater than 0, where the amount difference is the difference between the deposit amount and the fixed amount. The fourth node N4 is the output node and its function is the sum of the three input data, and the three input data of the fourth node N4 are (amount difference - amount difference upper limit) * first weight W1, (amount difference - amount difference lower limit)*second weight W2, and (fixed amount)*third weight W3. The output of the fourth node N4 of the neural network is the current fixed deposit transfer amount of the current month.
在本實施例中,類神經網路具有線上學習機制,若類神經網路的第四節點N4的輸出小於前一年度時同一月份的歷史定存轉帳金額時,例如2020年的1月的當前定存轉帳金額小於2019年的1月的歷史定存轉帳金額,則類神經網路依據當前月份的當前定存轉帳金額與前一年度同一月份之歷史定存轉帳金額之間的定存轉帳金額差且透過倒傳遞演算法,調升第一權重W1、調升第二權重W2以及調降第三權重W3,其中第一權重W1的調整百分率小於第二權重W2與第三權重W3的調整百比率,例如調升第一權重W1的調整百分率為12%,調升的第二權重W2的調整百分率為20%,而調降第三權重W3的調整百分率為20%,上述調整百分率為一示例,不以此為限。In this embodiment, the neural network has an online learning mechanism. If the output of the fourth node N4 of the neural network is smaller than the historical fixed deposit and transfer amount in the same month of the previous year, for example, the current amount in January 2020 If the fixed deposit and transfer amount is less than the historical fixed deposit and transfer amount in January 2019, the neural network is based on the fixed deposit and transfer amount between the current fixed deposit and transfer amount of the current month and the historical fixed deposit and transfer amount of the same month in the previous year. and through the backward pass algorithm, the first weight W1 is increased, the second weight W2 is increased, and the third weight W3 is decreased, wherein the adjustment percentage of the first weight W1 is less than the adjustment percentage of the second weight W2 and the third weight W3. For example, the adjustment percentage of increasing the first weight W1 is 12%, the adjustment percentage of increasing the second weight W2 is 20%, and the adjustment percentage of decreasing the third weight W3 is 20%. The above adjustment percentage is an example , not limited to this.
若類神經網路之當前年度的當前定存轉帳金額與前一年度同一月份的歷史定存轉帳金額之定存轉帳金額差落於一預設金額範圍時,則類神經網路維持當前的第一權重W1、第二權重W2以及第三權重W3。If the difference between the current fixed deposit and transfer amount of the neural network in the current year and the historical fixed deposit and transfer amount in the same month of the previous year is within a predetermined range, the neural network will maintain the current first A weight W1, a second weight W2 and a third weight W3.
若類神經網路之當前年度的當前定存轉帳金額大於前一年度同一月份的歷史定存轉帳金額時,則類神經網路依據當前年度的當前定存轉帳金額與前一年度同一月份之歷史定存轉帳金額之間的定存轉帳金額差且透過倒傳遞演算法,去調升第一權重W1、調升第二權重W2以及調升第三權重W3,其中第一權重W1的調整百分率大於第二權重W2與第三權重W3的調整百比率,例如調升第一權重W1的調整百分率為20%,調升第二權重W2的調整百分率為12%,而調升第三權重W3的調整百分率為12%,上述百分率為一示例,不以此為限。If the current fixed deposit and transfer amount of the neural network in the current year is greater than the historical fixed deposit and transfer amount in the same month of the previous year, the neural network will base on the current fixed deposit and transfer amount of the current year and the history of the same month in the previous year. The difference between the fixed deposit and transfer amounts and the backward pass algorithm is used to increase the first weight W1, increase the second weight W2 and increase the third weight W3, wherein the adjustment percentage of the first weight W1 is greater than The adjustment percentage ratio between the second weight W2 and the third weight W3, for example, the adjustment percentage of the first weight W1 is increased by 20%, the adjustment percentage of the second weight W2 is increased by 12%, and the adjustment percentage of the third weight W3 is increased. The percentage is 12%, and the above percentage is an example, not limited thereto.
圖5係為根據本發明第二實施例所繪示之自動儲蓄方法的流程圖。如圖5所示,第二實施例的自動儲蓄方法與第一實施例的自動儲蓄方法之差異在於更包括以利率管理主機20判斷帳戶在預定期間內的定存轉帳金額之平均值是否大於預設之固定金額,若平均值大於固定金額則提高帳戶之定存利率。FIG. 5 is a flowchart of an automatic saving method according to a second embodiment of the present invention. As shown in FIG. 5 , the difference between the automatic saving method of the second embodiment and the automatic saving method of the first embodiment is that it further includes the interest
在其他實施例中,自動儲蓄系統的帳戶監控主機10於每一預定週期收集帳戶之存款資料之前,自動儲蓄系統的機器學習模型13還可經過離線學習,以類神經網路為例依據所收集的帳戶的歷史存款資料(包含存款金額及存款日期)、歷史轉帳資料(包含轉帳金額及轉帳日期) ,可依據上述歷史存款資料及歷史轉帳資料且搭配機器學習模型13預設的固定金額、金額差上限及金額差下限以進行離線訓練,使機器學習模型13所輸出的定存轉帳金額就可與每一帳戶的個人金融金易行為相符合。In other embodiments, before the
如此一來,所收集的歷史金融交易資料越多,經過離線訓練後之類神經網路在接收到即時的存款資料、固定金額、金額差下限以及金額差上限時,所計算出的定存轉帳金額也將越符合客戶收支狀況,藉此達到個人化規劃安排定存轉帳的效果。再者,當外部記憶體122儲存有前一年度的每一個月的定存轉帳金額的資料時,類神經網路也可依據前一年度的定存金額曲線作為調整權重的依據。In this way, the more historical financial transaction data collected, the fixed deposit transfer calculated by the neural network after offline training when it receives the real-time deposit data, fixed amount, lower limit of amount difference, and upper limit of amount difference. The amount will also be more in line with the customer's income and expenditure situation, so as to achieve the effect of personal planning and arrangement of fixed deposit and transfer. Furthermore, when the
在其他實施例中,自動儲蓄系統可依客戶歷年的交易明細進行分析,當已屆年度保費、學費繳納月份或房貸餘額已日趨減少時有更多資金可儲蓄,可在客戶登入自動儲蓄系統時出現提示訊息,提醒客戶是否需修改自動儲蓄的設定條件(固定金額、金額差上限及金額差下限)及顯示目前的定存儲蓄方案。In other embodiments, the automatic savings system can analyze the customer's transaction details over the past years. When the annual premium, tuition payment month or mortgage balance has been decreasing, there are more funds to save, which can be saved when the customer logs in to the automatic savings system. A prompt message will appear, reminding customers whether to modify the setting conditions of automatic savings (fixed amount, upper limit of amount difference and lower limit of amount difference) and display the current fixed savings plan.
在其他實施例中,當自動儲蓄系統在計算出定存轉帳金額之後,先不自行執行定存轉帳,可先輸出一確認操作頁面至使用者的個人電腦或者行動通訊裝置而該確認操作介面將自動儲蓄系統已所計算出的當前定存轉帳金額先行填入該確認操作頁面上的一定存轉帳金額輸入欄之中。In other embodiments, after calculating the fixed deposit and transfer amount, the automatic savings system does not perform the fixed deposit and transfer by itself, but can first output a confirmation operation page to the user's personal computer or mobile communication device, and the confirmation operation interface will display The current fixed deposit and transfer amount calculated by the automatic savings system is firstly filled in the input column of the fixed deposit and transfer amount on the confirmation operation page.
該確認操作頁面上更具有一確認鍵與一取消鍵,當客戶確認該定存轉帳金額輸入欄中的當前定存轉帳金額為正確時而不需另外調整,客戶僅需按下確認鍵,則自動儲蓄系統即進行定存轉帳。若客戶認為定存轉帳金額輸入欄中的當前定存轉帳金額需要調整,也可按下取消鍵,接著自行於定存轉帳金額輸入欄輸入新的當前定存轉帳金額,接著按下確認鍵,則自動儲蓄系統將依據新輸入的當前定存轉帳金額進行定存轉帳。如此一來,可大幅簡化定存轉帳的作業流程,以減少自動儲蓄系統轉入錯誤定存金額的狀況發生。There is a confirmation button and a cancel button on the confirmation operation page. When the customer confirms that the current fixed deposit and transfer amount in the input column of the fixed deposit and transfer amount is correct, no additional adjustment is required, and the customer only needs to press the confirm button, then The automatic savings system conducts fixed deposit transfers. If the customer thinks that the current fixed deposit and transfer amount in the input column of the fixed deposit and transfer amount needs to be adjusted, he can also press the cancel button, and then enter the new current fixed deposit and transfer amount in the input column of the fixed deposit and transfer amount by himself, and then press the confirm button. Then the automatic savings system will transfer the fixed deposit according to the newly input current fixed deposit and transfer amount. In this way, the operation process of time deposit transfer can be greatly simplified, so as to reduce the occurrence of wrong time deposit amount transferred by the automatic savings system.
綜合以上所述,本發明所揭露的自動儲蓄系統及自動儲蓄方法,可依據客戶實際的個人金融收支狀況去規劃出客製化的定存轉帳金額並進行自動定存轉帳。當客戶有較高的資金需求時,自動儲蓄系統自動地降低客戶之定存轉帳金額,反之,當客戶資金較為充裕時,自動儲蓄系統自動地提高客戶之定存金額,所以客戶無須自行去調整定存轉帳金額。達到簡化操作流程之效果。Based on the above, the automatic savings system and automatic savings method disclosed in the present invention can plan a customized fixed deposit and transfer amount and perform automatic fixed deposit and transfer according to the customer's actual personal financial income and expenditure status. When the customer has a high demand for funds, the automatic savings system automatically reduces the customer's fixed deposit and transfer amount. On the contrary, when the customer's funds are relatively abundant, the automatic savings system automatically increases the customer's fixed deposit amount, so the customer does not need to adjust it. Fixed deposit transfer amount. To achieve the effect of simplifying the operation process.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention is disclosed in the foregoing embodiments, it is not intended to limit the present invention. Changes and modifications made without departing from the spirit and scope of the present invention belong to the scope of patent protection of the present invention. For the protection scope defined by the present invention, please refer to the attached patent application scope.
100:自動儲蓄系統 10:帳戶監控主機 12:轉帳管理主機 121:處理器 122:外部記憶體 123:內部記憶體 124:繪圖電路 13:機器學習模型 200:自動儲蓄系統 20:利率管理主機 S:銀行內部伺服器 N1~N4:第一節點~第四節點 W1~W3:第一權重~第三權重100: Automatic Savings System 10: Account Monitoring Host 12: Transfer management host 121: Processor 122: External memory 123: Internal memory 124: Drawing Circuits 13: Machine Learning Models 200: Automatic Savings System 20: Rate Management Host S: Bank internal server N1~N4: The first node ~ the fourth node W1~W3: The first weight ~ the third weight
圖1係為根據本發明第一實施例所繪示之自動儲蓄系統的功能方塊圖。 圖2係為根據本發明第二實施例所繪示之自動儲蓄系統的功能方塊圖。 圖3係為根據本發明第一實施例所繪示之自動儲蓄方法的流程圖。 圖4為圖2的自動儲蓄系統的機器學習模型的一實施例的示意圖 圖5係為根據本發明第二實施例所繪示之自動儲蓄方法的流程圖。FIG. 1 is a functional block diagram of an automatic saving system according to a first embodiment of the present invention. FIG. 2 is a functional block diagram of an automatic saving system according to a second embodiment of the present invention. FIG. 3 is a flowchart of an automatic saving method according to the first embodiment of the present invention. FIG. 4 is a schematic diagram of an embodiment of the machine learning model of the automatic savings system of FIG. 2 FIG. 5 is a flowchart of an automatic saving method according to a second embodiment of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110123319A TWI760254B (en) | 2020-02-13 | 2020-02-13 | Automatic fund depositing method using neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110123319A TWI760254B (en) | 2020-02-13 | 2020-02-13 | Automatic fund depositing method using neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202139108A TW202139108A (en) | 2021-10-16 |
TWI760254B true TWI760254B (en) | 2022-04-01 |
Family
ID=79600952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110123319A TWI760254B (en) | 2020-02-13 | 2020-02-13 | Automatic fund depositing method using neural network |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI760254B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016124118A1 (en) * | 2015-02-02 | 2016-08-11 | 北京嘀嘀无限科技发展有限公司 | Order processing method and system |
CN106682067A (en) * | 2016-11-08 | 2017-05-17 | 浙江邦盛科技有限公司 | Machine learning anti-fraud monitoring system based on transaction data |
CN107369011A (en) * | 2016-05-13 | 2017-11-21 | 三星电子株式会社 | The electronic equipment and its operating method of e-payment are provided |
TWM572012U (en) * | 2018-12-21 | Deposit interest rate bargaining system |
-
2020
- 2020-02-13 TW TW110123319A patent/TWI760254B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM572012U (en) * | 2018-12-21 | Deposit interest rate bargaining system | ||
WO2016124118A1 (en) * | 2015-02-02 | 2016-08-11 | 北京嘀嘀无限科技发展有限公司 | Order processing method and system |
CN107369011A (en) * | 2016-05-13 | 2017-11-21 | 三星电子株式会社 | The electronic equipment and its operating method of e-payment are provided |
CN106682067A (en) * | 2016-11-08 | 2017-05-17 | 浙江邦盛科技有限公司 | Machine learning anti-fraud monitoring system based on transaction data |
Also Published As
Publication number | Publication date |
---|---|
TW202139108A (en) | 2021-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108846520B (en) | Loan overdue prediction method, loan overdue prediction device and computer-readable storage medium | |
US7296734B2 (en) | Systems and methods for scoring bank customers direct deposit account transaction activity to match financial behavior to specific acquisition, performance and risk events defined by the bank using a decision tree and stochastic process | |
TWI690865B (en) | Transaction volume prediction method and device | |
WO2022105525A1 (en) | Method and apparatus for predicting user probability, and computer device | |
US11687936B2 (en) | System and method for managing chargeback risk | |
MXPA01008620A (en) | Valuation prediction models in situations with missing inputs. | |
TWI764767B (en) | Automatic fund depositing system for planning customized deposit transfer amount | |
CN111008896A (en) | Financial risk early warning method and device, electronic equipment and storage medium | |
CN115564549B (en) | Enterprise intelligent tax payment reporting method and system | |
CN114049222A (en) | Tendency prediction method based on attention mechanism and reinforcement learning | |
CN112446541A (en) | Fusion classification model establishing method, marketing conversion rate gain prediction method and system | |
US11636536B2 (en) | Systems and methods for automating pricing desk operation | |
TWI760254B (en) | Automatic fund depositing method using neural network | |
CN116777592A (en) | Financial business approval method, device, equipment and storage medium | |
TWM641470U (en) | Customer financing system for dollar cost averaging financial products | |
AU2022420862A1 (en) | Deduplication of accounts using account data collision detected by machine learning models | |
CN112037047B (en) | Method and device for distributing cash at net points and electronic equipment | |
TWI720638B (en) | Deposit interest rate bargaining adjustment system and method thereof | |
Kanimozhi et al. | Predicting Mortgage-Backed Securities Prepayment Risk Using Machine Learning Models | |
CN113947475A (en) | Credit staging method and system based on big data | |
TWM578834U (en) | Automatic fund depositing system | |
JP2020187441A (en) | Model providing program, model providing method and model providing device | |
TWI709923B (en) | Behavioral model credit assessment system | |
KR102650314B1 (en) | Arbitrage transaction prediction method, device, and system using an artificial intelligence model learned based on cryptocurrency transaction data | |
KR102650302B1 (en) | Method, device and system for providing automatic robo-advisor service for arbitrage between cryptocurrency exchanges |