TWI759938B - Memory device transmitting and receiving data at high speed and low power - Google Patents

Memory device transmitting and receiving data at high speed and low power Download PDF

Info

Publication number
TWI759938B
TWI759938B TW109138212A TW109138212A TWI759938B TW I759938 B TWI759938 B TW I759938B TW 109138212 A TW109138212 A TW 109138212A TW 109138212 A TW109138212 A TW 109138212A TW I759938 B TWI759938 B TW I759938B
Authority
TW
Taiwan
Prior art keywords
write data
data strobe
strobe signal
signal
memory device
Prior art date
Application number
TW109138212A
Other languages
Chinese (zh)
Other versions
TW202129509A (en
Inventor
文炳模
金知慧
柳濟民
吉汎涌
安成悟
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202129509A publication Critical patent/TW202129509A/en
Application granted granted Critical
Publication of TWI759938B publication Critical patent/TWI759938B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

A memory device includes a control logic circuit, a write data strobe signal divider, a data transceiver, and a memory cell array. The control logic circuit generates a reset signal before a write data strobe signal provided from a memory controller starts to toggle. The write data strobe signal divider generates internal write data strobe signals that toggle depending on toggling of the write data strobe signal, the internal write data strobe signals toggling with different phases, respectively. The control logic circuit initializes the internal write data strobe signals to given values in response to the reset signal. The data transceiver receives write data provided from the memory controller based on the internal write data strobe signals. The memory cell array stores the received write data.

Description

高速且低功率傳輸及接收資料之記憶體裝置Memory device for high speed and low power transmission and reception of data [相關申請案的交叉參考] [Cross-reference to related applications]

本申請案主張於2020年1月21日在韓國智慧財產局提出申請的韓國專利申請案第10-2020-0008110號及於2020年5月22日在韓國智慧財產局提出申請的韓國專利申請案第10-2020-0061441號的優先權,該些韓國專利申請案中的每一者的揭露內容的全部併入本案供參考。 This application claims Korean Patent Application No. 10-2020-0008110 filed with the Korea Intellectual Property Office on January 21, 2020 and Korean Patent Application filed with the Korea Intellectual Property Office on May 22, 2020 Priority to No. 10-2020-0061441, the disclosures of each of these Korean Patent Applications are incorporated herein by reference in their entirety.

實施例是有關於一種半導體裝置,且更具體而言,是有關於一種高速且低功率傳輸及接收資料的記憶體裝置。 Embodiments relate to a semiconductor device, and more particularly, to a memory device that transmits and receives data at high speed and low power.

例如智慧型電話、圖形加速器及人工智慧(artificial intelligence,AI)加速器等電子裝置藉由使用例如動態隨機存取記憶體(dynamic random access memory,DRAM)等記憶體裝置來處理資料。隨著欲由電子裝置處理的資料量的增加,需要高容量且高頻寬的記憶體裝置。具體而言,正愈來愈多地使用以多通道介面方式提供寬輸入/輸出的記憶體裝置,例如用於高速處理資料的高頻寬記憶體。 Electronic devices such as smart phones, graphics accelerators, and artificial intelligence (AI) accelerators process data by using memory devices such as dynamic random access memory (DRAM). As the amount of data to be processed by electronic devices increases, high capacity and high bandwidth memory devices are required. In particular, memory devices that provide wide input/output in a multi-channel interface, such as high-bandwidth memory for high-speed processing of data, are increasingly being used.

當記憶體裝置支援高頻寬時,可在記憶體控制器與記憶體裝置之間高速傳輸資料。為了在高速傳輸資料時確保資料的完整性,可在記憶體控制器與記憶體裝置之間交換資料選通訊號(data strobe signal)。當在記憶體控制器與記憶體裝置之間傳輸資料訊號時,資料選通訊號可週期性地在高位準與低位準之間進行雙態切換(toggle)。如此,資料選通訊號可為鎖存資料訊號的位準提供時序資訊。亦即,在其中高速傳輸資料的情形中,可需要具有高頻率的資料選通訊號。然而,基於具有高頻率的資料選通訊號進行的資料交換可能導致記憶體裝置的功率消耗增加。 When the memory device supports high bandwidth, data can be transferred at high speed between the memory controller and the memory device. To ensure data integrity during high-speed data transmission, a data strobe signal may be exchanged between the memory controller and the memory device. When data signals are transmitted between the memory controller and the memory device, the data strobe signal can be toggled between a high level and a low level periodically. In this way, the data strobe signal can provide timing information for the level of the latched data signal. That is, in a situation in which data is transmitted at high speed, a data strobe signal having a high frequency may be required. However, data exchange based on data strobe signals with high frequency may result in increased power consumption of the memory device.

一個態樣是提供一種高速且低功率傳輸及接收資料的記憶體裝置。 One aspect is to provide a memory device that transmits and receives data at high speed and low power.

根據示例性實施例的態樣,提供一種記憶體裝置,包括:緩衝晶粒,被配置成藉由多個通道與主機裝置通訊,所述多個通道中的每一者構成獨立的介面;以及多個核心晶粒,藉由穿矽電極(silicon through electrode)堆疊於所述緩衝晶粒上,所述多個核心晶粒中的每一者包括與所述多個通道中的至少一者對應的記憶體胞元陣列。所述緩衝晶粒包括:命令/位址接收器,被配置成基於自所述主機裝置提供至所述多個通道中的第一通道的時脈訊號而接收自所述主機裝置提供至所述第一通道的命令;控制邏輯電路,被配置成依據自所述命令/位址接收器接收的所述命令而產生內部命令,且在自所述主機裝置提供至所述第一通道的寫 入資料選通訊號開始雙態切換之前產生重設訊號;寫入資料選通訊號分頻器,被配置成:產生依據所述寫入資料選通訊號的雙態切換而進行雙態切換的多個內部寫入資料選通訊號,所述多個內部寫入資料選通訊號分別以不同相位進行雙態切換;且因應於所述重設訊號而將所述多個內部寫入資料選通訊號初始化為給定值;以及資料收發器,被配置成基於所述多個內部寫入資料選通訊號而接收自所述主機裝置提供至所述第一通道的寫入資料,其中所述多個核心晶粒中支援所述第一通道的核心晶粒被配置成因應於自所述緩衝晶粒傳輸的所述內部命令而儲存自所述緩衝晶粒傳輸的所述寫入資料。 According to aspects of the exemplary embodiments, there is provided a memory device comprising: a buffer die configured to communicate with a host device via a plurality of channels, each of the plurality of channels constituting a separate interface; and a plurality of core dies stacked on the buffer die by silicon through electrodes, each of the plurality of core dies including corresponding to at least one of the plurality of channels array of memory cells. The buffer die includes a command/address receiver configured to receive from the host device to the channel based on a clock signal provided from the host device to a first channel of the plurality of channels a command for a first channel; control logic configured to generate an internal command in accordance with the command received from the command/address receiver, and upon write provided to the first channel from the host device The reset signal is generated before the input data strobe signal starts toggling; the write data strobe signal frequency divider is configured to: generate a multi-state switching signal according to the toggling of the write data strobe signal. a plurality of internal write data strobe signals, the plurality of internal write data strobe signals are toggled in different phases respectively; and the plurality of internal write data strobe signals are switched in response to the reset signal initialized to a given value; and a data transceiver configured to receive write data provided to the first channel from the host device based on the plurality of internal write data strobes, wherein the plurality of A core die supporting the first channel of the core dies is configured to store the write data transmitted from the buffer die in response to the internal command transmitted from the buffer die.

根據示例性實施例的另一態樣,提供一種記憶體裝置,包括:緩衝晶粒,被配置成藉由多個通道與主機裝置通訊,所述多個通道中的每一者構成獨立的介面;以及第一核心晶粒,藉由穿矽電極堆疊於所述緩衝晶粒上,且包括與所述多個通道中的第一通道應對的第一記憶體胞元陣列;以及第二核心晶粒,藉由所述穿矽電極堆疊於所述第一核心晶粒上,且包括與所述第一通道對應的第二記憶體胞元陣列。所述緩衝晶粒包括:命令/位址接收器,被配置成基於自所述主機裝置提供至所述第一通道的時脈訊號而接收自所述主機裝置提供至所述第一通道的命令及堆疊識別符;控制邏輯電路,被配置成依據自所述命令/位址接收器接收的所述命令而產生內部命令,且在自所述主機裝置提供至所述第一通道的寫入資料選通訊號開始雙態切換之前產生重設訊號;寫入 資料選通訊號分頻器,被配置成:產生依據所述寫入資料選通訊號的雙態切換而進行雙態切換的多個內部寫入資料選通訊號,所述多個內部寫入資料選通訊號分別以不同相位進行雙態切換;且因應於所述重設訊號而將所述多個內部寫入資料選通訊號初始化為給定值;以及資料收發器,被配置成基於所述多個內部寫入資料選通訊號而接收自所述主機裝置提供至所述第一通道的寫入資料,其中所述第一核心晶粒及所述第二核心晶粒中與所述堆疊識別符對應的核心晶粒被配置成因應於自所述緩衝晶粒傳輸的所述內部命令而儲存自所述緩衝晶粒傳輸的所述寫入資料。 According to another aspect of an exemplary embodiment, there is provided a memory device comprising: a buffer die configured to communicate with a host device via a plurality of channels, each of the plurality of channels constituting a separate interface ; and a first core die stacked on the buffer die by through-silicon electrodes and including a first array of memory cells corresponding to a first channel of the plurality of channels; and a second core die The die is stacked on the first core die by the through-silicon electrode, and includes a second memory cell array corresponding to the first channel. The buffer die includes a command/address receiver configured to receive a command provided to the first channel from the host device based on a clock signal provided to the first channel from the host device and a stack identifier; control logic configured to generate an internal command in accordance with the command received from the command/address receiver, and in write data provided to the first channel from the host device A reset signal is generated before the strobe signal begins toggling; write A data strobe signal frequency divider, configured to: generate a plurality of internal write data strobe signals that are toggled according to toggling of the write data strobe signal, the plurality of internal write data strobes The strobe signals are toggled with different phases respectively; and the plurality of internal write data strobe signals are initialized to a given value in response to the reset signal; and a data transceiver is configured to be based on the a plurality of internal write data strobe signals to receive write data provided from the host device to the first channel, wherein the first core die and the second core die are identified with the stack The core die corresponding to the symbol is configured to store the write data transmitted from the buffer die in response to the internal command transmitted from the buffer die.

根據示例性實施例的又一態樣,提供一種記憶體裝置,包括:緩衝晶粒,被配置成藉由多個通道與主機裝置通訊,所述多個通道中的每一者構成獨立的介面;以及多個核心晶粒,藉由穿矽電極堆疊於所述緩衝晶粒上,其中所述多個核心晶粒中的每一者包括與所述多個通道中的至少一者對應的記憶體胞元陣列,其中所述緩衝晶粒被配置成:基於自所述主機裝置提供至第一通道的時脈訊號而接收自所述主機裝置提供至所述第一通道的命令;在自所述主機裝置提供至所述第一通道的寫入資料選通訊號開始雙態切換之前,將多個內部寫入資料選通訊號初始化為給定值;產生依據所述寫入資料選通訊號的雙態切換而進行雙態切換的所述多個內部寫入資料選通訊號,所述多個內部寫入資料選通訊號分別以不同相位進行雙態切換;且基於所述多個內部寫入資料選通訊號而接收自所述主機裝置提供至所述第一通道的寫入資 料,其中所述多個核心晶粒中支援所述第一通道的核心晶粒被配置成儲存所接收的所述寫入資料。 According to yet another aspect of an exemplary embodiment, there is provided a memory device comprising: a buffer die configured to communicate with a host device via a plurality of channels, each of the plurality of channels constituting a separate interface ; and a plurality of core dies stacked on the buffer die by through-silicon electrodes, wherein each of the plurality of core dies includes a memory corresponding to at least one of the plurality of channels A voxel array, wherein the buffer die is configured to: receive a command provided from the host device to the first channel based on a clock signal provided to the first channel from the host device; Before the write data strobe signal provided by the host device to the first channel starts to toggle, a plurality of internal write data strobe signals are initialized to a given value; The plurality of internal write data strobe signals that are toggled by toggling, the plurality of internal write data strobe signals are toggled in different phases respectively; and based on the plurality of internal write data data strobe signal to receive write data from the host device to the first channel material, wherein a core die of the plurality of core dies supporting the first channel is configured to store the received write data.

根據示例性實施例的又一態樣,提供一種半導體封裝件,包括:封裝基底;中介層基底,堆疊於所述封裝基底上;系統晶片,堆疊於所述中介層基底上並包括至少一個處理器及記憶體控制器;以及記憶體裝置,包括堆疊於所述中介層基底上並藉由所述中介層基底與所述系統晶片通訊的緩衝晶粒以及藉由穿矽電極堆疊於所述緩衝晶粒上的多個核心晶粒。所述緩衝晶粒被配置成:基於自所述記憶體控制器提供的時脈訊號而接收自所述記憶體控制器提供的寫入命令;在自所述記憶體控制器提供的寫入資料選通訊號進行雙態切換之前,將多個內部寫入資料選通訊號初始化為給定值;產生依據所述寫入資料選通訊號的雙態切換而進行雙態切換的所述多個內部寫入資料選通訊號,所述多個內部寫入資料選通訊號以不同相位進行雙態切換;且基於所述多個內部寫入資料選通訊號而接收自所述記憶體控制器提供的寫入資料。所述多個核心晶粒之一儲存所接收的所述寫入資料。所述寫入資料選通訊號的前同步碼循環(pre-amble cycle)的數目與所述寫入資料選通訊號的後同步碼循環(post-amble cycle)的數目之和是偶數。 According to yet another aspect of the exemplary embodiments, there is provided a semiconductor package comprising: a package substrate; an interposer substrate stacked on the package substrate; a system chip stacked on the interposer substrate and including at least one process device and memory controller; and a memory device including a buffer die stacked on the interposer substrate and in communication with the system chip through the interposer substrate and stacked on the buffer by through-silicon electrodes Multiple core dies on a die. The buffer die is configured to: receive a write command provided from the memory controller based on a clock signal provided from the memory controller; write data provided from the memory controller Before the strobe signal is toggled, a plurality of internal write data strobe signals are initialized to a given value; Write data strobe signals, the plurality of internal write data strobe signals are toggled in different phases; and received from the memory controller based on the plurality of internal write data strobe signals Write data. One of the plurality of core dies stores the received write data. The sum of the number of pre-amble cycles of the write data strobe signal and the number of post-amble cycles of the write data strobe signal is an even number.

10:記憶體系統 10: Memory System

100、1220、3220:記憶體控制器 100, 1220, 3220: memory controller

110:記憶體介面(I/F) 110: Memory interface (I/F)

111:鎖相迴路 111: Phase-locked loop

112:相位控制器 112: Phase Controller

113:第一傳輸器 113: First Transmitter

114:第二傳輸器 114: Second Transmitter

115:內部時脈分頻器 115: Internal clock divider

116:第三傳輸器 116: Third Transmitter

117:第四傳輸器 117: Fourth Transmitter

200:記憶體裝置 200: memory device

210:主機介面(I/F) 210: Host Interface (I/F)

211、411:命令/位址(CA)接收器 211, 411: Command/Address (CA) receiver

212、412:控制邏輯電路 212, 412: control logic circuit

213、230、240、413:寫入資料選通訊號(WDQS)分頻器 213, 230, 240, 413: Write data strobe signal (WDQS) frequency divider

214、414:讀取資料選通訊號(RDQS)傳輸器 214, 414: read data strobe signal (RDQS) transmitter

215、415:資料收發器 215, 415: Data transceiver

220、423、433:記憶體胞元陣列 220, 423, 433: memory cell array

231、241:第一鎖存器 231, 241: the first latch

232、242:第二鎖存器 232, 242: the second latch

301:記憶組 301: Memory Group

302、401:TSV區域 302, 401: TSV area

310、410、1110、3110:緩衝晶粒 310, 410, 1110, 3110: Buffer Die

311、1111、1210、3111、3210:實體層(PHY) 311, 1111, 1210, 3111, 3210: Physical Layer (PHY)

320、420:核心晶粒/第一核心晶粒 320, 420: core die/first core die

330、340、350、1120、1130、1140、1150、3120、3130、3140、3150:核心晶粒 330, 340, 350, 1120, 1130, 1140, 1150, 3120, 3130, 3140, 3150: Core Die

400、1100、2100、3100:堆疊式記憶體裝置 400, 1100, 2100, 3100: Stacked Memory Devices

402、403、1101、3001:TSV 402, 403, 1101, 3001: TSV

416:時脈樹 416: Timeline Tree

421、431:命令解碼器 421, 431: Command Decoder

422、432:資料輸入/輸出(I/O)電路 422, 432: Data input/output (I/O) circuits

430:核心晶粒/第二核心晶粒 430: Core Die/Second Core Die

1000、2000、3000:半導體封裝件 1000, 2000, 3000: Semiconductor packages

1102、1103、3002、3003:凸塊 1102, 1103, 3002, 3003: bumps

1104、2001、3004:焊球 1104, 2001, 3004: Solder Balls

1112:直接存取區域(DAB) 1112: Direct Access Area (DAB)

1200、2200:系統晶片 1200, 2200: system chip

1300、2300:中介層 1300, 2300: intermediary layer

1400、2400、3300:封裝基底 1400, 2400, 3300: Package substrate

3200:主機晶粒 3200: host die

4000:計算系統 4000: Computing Systems

4100:主機 4100: host

4110:主機處理器 4110: Host processor

4120:主機記憶體控制器 4120: Host Memory Controller

4130:主機記憶體 4130: host memory

4140:介面 4140: interface

4200:加速器子系統 4200: Accelerator Subsystem

4210:專用處理器 4210: Dedicated processor

4220:本端記憶體控制器 4220: Local memory controller

4230:本端記憶體 4230: Local memory

4240:主機介面/介面 4240: Host Interface/Interface

4300:互連件 4300: Interconnects

ACT:現用命令 ACT: Active command

ADD:位址 ADD: address

AWORD:命令位址輸入/輸出區塊 AWORD: command address input/output block

C:時脈端子 C: Clock terminal

C/A:命令/位址訊號 C/A: command/address signal

CH0:通道/第一通道 CH0: channel/first channel

CH1、CH2、CH3、CH4、CH5、CH6、CH7、CHa:通道 CH1, CH2, CH3, CH4, CH5, CH6, CH7, CHa: Channel

CK:時脈訊號 CK: clock signal

CMD:命令 cmd:command

D:第一輸入端子 D: The first input terminal

D’:第二輸入端子 D’: The second input terminal

D0、D1、D2、D3、D4、D5、D6、D7、DATA:資料 D0, D1, D2, D3, D4, D5, D6, D7, DATA: data

Da0、Da1、Da2、Da3、Da4、Da5、Da6、Da7:第一資料 Da0, Da1, Da2, Da3, Da4, Da5, Da6, Da7: first data

Db0、Db1、Db2、Db3、Db4、Db5、Db6、Db7:第二資料 Db0, Db1, Db2, Db3, Db4, Db5, Db6, Db7: second data

dICS1:第一經分頻內部時脈訊號/經分頻內部時脈訊號 dICS1: The first frequency-divided internal clock signal/frequency-divided internal clock signal

dICS2:第二經分頻內部時脈訊號/經分頻內部時脈訊號 dICS2: Second frequency-divided internal clock signal/frequency-divided internal clock signal

DQ:資料訊號 DQ: data signal

DR:分頻器重設命令 DR: Divider reset command

DRCT:分頻器重設條件表 DRCT: Divider Reset Conditions Table

dWDQS:內部寫入資料選通訊號 dWDQS: Internal write data strobe signal

dWDQS[0]:內部寫入資料選通訊號/第一內部寫入資料選通訊號 dWDQS[0]: Internal write data strobe number/first internal write data strobe number

dWDQS[1]:內部寫入資料選通訊號/第二內部寫入資料選通訊號 dWDQS[1]: Internal write data strobe number/second internal write data strobe number

dWDQS[2]:內部寫入資料選通訊號/第三內部寫入資料選通訊號 dWDQS[2]: Internal write data strobe number/third internal write data strobe number

dWDQS[3]:內部寫入資料選通訊號/第四內部寫入資料選通訊號 dWDQS[3]: Internal write data strobe number/4th internal write data strobe number

DWORD0、DWORD1、DWORD2、DWORD3:資料輸入/輸出區塊 DWORD0, DWORD1, DWORD2, DWORD3: Data input/output block

iCMD:內部命令 iCMD: Internal Command

ICS1:第一內部時脈訊號 ICS1: The first internal clock signal

ICS2:第二內部時脈訊號 ICS2: Second internal clock signal

iCTRL:控制訊號 iCTRL: control signal

P1:第一接墊 P1: first pad

P2:第二接墊 P2: Second pad

P3:第三接墊 P3: The third pad

P4:第四接墊 P4: Fourth pad

P5:第五接墊 P5: Fifth pad

PWS:電源狀態資訊 PWS: Power Status Information

Q:第一輸出端子 Q: The first output terminal

Q’:第二輸出端子 Q': The second output terminal

RD:讀取命令 RD: read command

RDQS:讀取資料選通訊號 RDQS: read data strobe signal

RESET:重設訊號 RESET: reset signal

RL:讀取潛時 RL: read latency

RST:重設端子 RST: reset terminal

S201、S202、S203、S204、S211、S212、S213、S214、S221、 S222、S223:操作 S201, S202, S203, S204, S211, S212, S213, S214, S221, S222, S223: Operation

SID:堆疊識別符 SID: stack identifier

SID0:第一堆疊識別符 SID0: First stack identifier

SID1:第二堆疊識別符 SID1: Second stack identifier

t1:第一時間 t1: the first time

t2:第二時間 t2: second time

t3:第三時間 t3: the third time

t4:第四時間 t4: Fourth time

t5:第五時間 t5: Fifth time

t6:第六時間 t6: sixth time

t7:第七時間 t7: Seventh time

t8:第八時間 t8: Eighth time

t9:第九時間 t9: ninth time

t10:第十時間 t10: tenth time

t11:第十一時間 t11: Eleventh time

WDQS:寫入資料選通訊號 WDQS: write data strobe signal

WDQSB:互補寫入資料選通訊號 WDQSB: Complementary write data strobe signal

WL:寫入潛時 WL: write latency

WR:寫入命令 WR: write command

WRa:第一寫入命令 WRa: first write command

WRb:第二寫入命令 WRb: Second write command

藉由參照附圖詳細闡述示例性實施例,上述及其他態樣將變得顯而易見,附圖中: 圖1是示出根據實施例的記憶體系統的方塊圖。 These and other aspects will become apparent from the detailed description of exemplary embodiments with reference to the accompanying drawings, in which: FIG. 1 is a block diagram illustrating a memory system according to an embodiment.

圖2是示出圖1所示記憶體系統的記憶體裝置的示例性方塊圖。 FIG. 2 is an exemplary block diagram illustrating a memory device of the memory system shown in FIG. 1 .

圖3是指示用於由圖2所示記憶體裝置的控制邏輯電路產生重設訊號的示例性條件的表格。 FIG. 3 is a table indicating exemplary conditions for generating a reset signal by the control logic circuit of the memory device shown in FIG. 2 .

圖4是示出根據實施例的記憶體裝置的示例性寫入操作的流程圖。 4 is a flowchart illustrating an exemplary write operation of a memory device according to an embodiment.

圖5A及圖5B是示出圖4所示寫入操作的實例的時序圖。 5A and 5B are timing charts showing an example of the write operation shown in FIG. 4 .

圖6是示出根據實施例的記憶體裝置的示例性寫入操作的流程圖。 6 is a flowchart illustrating an exemplary write operation of a memory device according to an embodiment.

圖7A及圖7B是示出圖6所示寫入操作的實例的時序圖。 7A and 7B are timing charts showing an example of the write operation shown in FIG. 6 .

圖8是示出根據實施例的記憶體裝置的示例性讀取操作的流程圖。 8 is a flowchart illustrating an exemplary read operation of a memory device according to an embodiment.

圖9是示出圖8所示讀取操作的實例的時序圖。 FIG. 9 is a timing chart showing an example of the read operation shown in FIG. 8 .

圖10A及圖10B是示出根據各種實施例的寫入資料選通訊號(WDQS)分頻器的方塊圖。 10A and 10B are block diagrams illustrating a write data strobe signal (WDQS) divider according to various embodiments.

圖11是示出根據實施例的圖1所示記憶體系統的記憶體介面的示例性方塊圖。 11 is an exemplary block diagram illustrating a memory interface of the memory system shown in FIG. 1 according to an embodiment.

圖12是示出根據各種實施例的堆疊式記憶體裝置的方塊圖。 12 is a block diagram illustrating a stacked memory device according to various embodiments.

圖13是示出根據實施例的圖12所示堆疊式記憶體裝置的更詳細示例性方塊圖。 13 is a more detailed exemplary block diagram illustrating the stacked memory device shown in FIG. 12, according to an embodiment.

圖14是示出根據實施例的圖12所示堆疊式記憶體裝置的更 詳細示例性方塊圖。 FIG. 14 is a diagram illustrating a more detailed view of the stacked memory device shown in FIG. 12, according to an embodiment. Detailed exemplary block diagram.

圖15是示出圖13所示堆疊式記憶體裝置的緩衝晶粒的實施例的方塊圖。 FIG. 15 is a block diagram illustrating an embodiment of a buffer die of the stacked memory device shown in FIG. 13 .

圖16是示出根據實施例的半導體封裝件的圖。 FIG. 16 is a diagram illustrating a semiconductor package according to an embodiment.

圖17是示出根據實施例的半導體封裝件的實施實例的圖。 FIG. 17 is a diagram illustrating an implementation example of a semiconductor package according to an embodiment.

圖18是示出根據另一實施例的半導體封裝件的圖。 FIG. 18 is a diagram illustrating a semiconductor package according to another embodiment.

圖19是示出根據實施例的計算系統的方塊圖。 19 is a block diagram illustrating a computing system according to an embodiment.

以下,將在使此項技術中具有通常知識者可輕易地實施本發明實施例的程度上詳細且清楚地闡述實施例。 Hereinafter, the embodiments of the present invention will be described in detail and clearly to the extent that those skilled in the art can easily implement the embodiments of the present invention.

圖1是示出根據實施例的記憶體系統的方塊圖。參照圖1,記憶體系統10可包括記憶體控制器100及記憶體裝置200。記憶體控制器100可控制記憶體裝置200的整體操作。例如,記憶體控制器100可控制記憶體裝置200,使得資料自記憶體裝置200輸出或者資料儲存於記憶體裝置200中。例如,記憶體控制器100可被實施為但不限於系統晶片(system on chip,SoC)的一部分。 FIG. 1 is a block diagram illustrating a memory system according to an embodiment. Referring to FIG. 1 , the memory system 10 may include a memory controller 100 and a memory device 200 . The memory controller 100 can control the overall operation of the memory device 200 . For example, the memory controller 100 can control the memory device 200 so that data is output from the memory device 200 or data is stored in the memory device 200 . For example, the memory controller 100 may be implemented as, but not limited to, part of a system on chip (SoC).

記憶體控制器100可包括記憶體介面(interface,I/F)110。藉由記憶體介面110,記憶體控制器100可向記憶體裝置200傳輸各種訊號,且可自記憶體裝置200接收各種訊號。例如,如圖1所示,藉由記憶體介面110,記憶體控制器100可向記憶體裝置200傳輸時脈訊號CK、命令/位址訊號C/A、寫入資料選通訊號WDQS及資料訊號DQ,且可自記憶體裝置200接收讀取資料選通 訊號RDQS及資料訊號DQ。 The memory controller 100 may include a memory interface (I/F) 110 . Through the memory interface 110 , the memory controller 100 can transmit various signals to the memory device 200 and can receive various signals from the memory device 200 . For example, as shown in FIG. 1 , through the memory interface 110 , the memory controller 100 can transmit the clock signal CK, the command/address signal C/A, the write data strobe signal WDQS and the data to the memory device 200 Signal DQ and can receive read data strobe from memory device 200 Signal RDQS and data signal DQ.

記憶體裝置200可在記憶體控制器100的控制下操作。例如,在記憶體控制器100的控制下,記憶體裝置200可輸出所儲存的資料,或者可儲存自記憶體控制器100提供的資料。 The memory device 200 may operate under the control of the memory controller 100 . For example, under the control of the memory controller 100 , the memory device 200 can output the stored data, or can store the data provided from the memory controller 100 .

記憶體裝置200可包括主機介面(I/F)210及記憶體胞元陣列220。藉由主機介面210,記憶體裝置200可向記憶體控制器100傳輸各種訊號,且可自記憶體控制器100接收各種訊號。例如,藉由主機介面210,記憶體裝置200可將讀取資料選通訊號RDQS及資料訊號DQ傳輸至記憶體控制器100,且可自記憶體控制器100接收時脈訊號CK、命令/位址訊號C/A、寫入資料選通訊號WDQS及資料訊號DQ。主機介面210可基於自記憶體控制器100提供的訊號而產生控制訊號iCTRL。因應於控制訊號iCTRL,記憶體胞元陣列220可儲存資料「DATA」,或者可輸出所儲存的資料「DATA」。 The memory device 200 may include a host interface (I/F) 210 and a memory cell array 220 . Through the host interface 210 , the memory device 200 can transmit various signals to the memory controller 100 and can receive various signals from the memory controller 100 . For example, through the host interface 210, the memory device 200 can transmit the read data strobe signal RDQS and the data signal DQ to the memory controller 100, and can receive the clock signal CK, command/bit from the memory controller 100 address signal C/A, write data strobe signal WDQS and data signal DQ. The host interface 210 can generate the control signal iCTRL based on the signal provided from the memory controller 100 . In response to the control signal iCTRL, the memory cell array 220 may store the data "DATA", or may output the stored data "DATA".

記憶體胞元陣列220可包括多個記憶體胞元。例如,記憶體胞元可為動態隨機存取記憶體(DRAM)胞元。在此種情形中,記憶體介面110及主機介面210可基於例如雙倍資料速率(double data rate,DDR)、低功率雙倍資料速率(low power double data rate,LPDDR)、圖形雙倍資料速率(graphics double data rate,GDDR)、寬輸入/輸出(input/output,I/O)、高頻寬記憶體(high bandwidth memory,HBM)及/或混合記憶體立方體(hybrid memory cube,HMC)等標準之一來彼此通訊。 The memory cell array 220 may include a plurality of memory cells. For example, the memory cells may be dynamic random access memory (DRAM) cells. In this case, the memory interface 110 and the host interface 210 may be based on, for example, double data rate (DDR), low power double data rate (LPDDR), graphics double data rate (graphics double data rate, GDDR), wide input/output (input/output, I/O), high bandwidth memory (high bandwidth memory, HBM) and/or hybrid memory cube (hybrid memory cube, HMC) and other standards to communicate with each other.

記憶體介面110可產生時脈訊號CK,且可將時脈訊號CK傳輸至記憶體裝置200。在一些實施例中,時脈訊號CK可為差動訊號。時脈訊號CK可為週期性地在高位準與低位準之間雙態切換的訊號。記憶體介面110可基於時脈訊號CK的雙態切換時序(toggle timing)而向記憶體裝置200傳輸命令/位址訊號C/A。 The memory interface 110 can generate the clock signal CK, and can transmit the clock signal CK to the memory device 200 . In some embodiments, the clock signal CK may be a differential signal. The clock signal CK may be a signal that periodically toggles between a high level and a low level. The memory interface 110 may transmit the command/address signal C/A to the memory device 200 based on the toggle timing of the clock signal CK.

記憶體介面110可產生寫入資料選通訊號WDQS,且可將寫入資料選通訊號WDQS傳輸至記憶體裝置200。在一些實施例中,寫入資料選通訊號WDQS可為差動訊號。對於記憶體裝置200的寫入操作及讀取操作,記憶體介面110可產生週期性地在高位準與低位準之間雙態切換的寫入資料選通訊號WDQS。記憶體介面110可基於寫入資料選通訊號WDQS的雙態切換時序而將資料訊號DQ傳輸至記憶體裝置200。 The memory interface 110 can generate the write data strobe signal WDQS, and can transmit the write data strobe signal WDQS to the memory device 200 . In some embodiments, the write data strobe signal WDQS may be a differential signal. For the write operation and the read operation of the memory device 200, the memory interface 110 can generate the write data strobe signal WDQS that periodically toggles between a high level and a low level. The memory interface 110 can transmit the data signal DQ to the memory device 200 based on the toggling timing of the write data strobe signal WDQS.

記憶體介面110可自記憶體裝置200接收讀取資料選通訊號RDQS。在一些實施例中,讀取資料選通訊號RDQS可為差動訊號。記憶體介面110可自記憶體裝置200接收資料訊號DQ,且可基於讀取資料選通訊號RDQS的雙態切換時序而鎖存所接收的資料訊號DQ。如此,記憶體介面110可接收資料訊號DQ中所包含的資料「DATA」。 The memory interface 110 can receive the read data strobe signal RDQS from the memory device 200 . In some embodiments, the read data strobe signal RDQS may be a differential signal. The memory interface 110 can receive the data signal DQ from the memory device 200, and can latch the received data signal DQ based on the toggling timing of the read data strobe signal RDQS. In this way, the memory interface 110 can receive the data "DATA" contained in the data signal DQ.

主機介面210可自記憶體控制器100接收時脈訊號CK。主機介面210可自記憶體控制器100接收命令/位址訊號C/A,且可基於時脈訊號CK的雙態切換時序(例如,上升邊緣及/或下降邊緣)而鎖存命令/位址訊號C/A。如此,主機介面210可 接收命令/位址訊號C/A中所包含的命令或位址。 The host interface 210 can receive the clock signal CK from the memory controller 100 . The host interface 210 can receive the command/address signal C/A from the memory controller 100 and can latch the command/address based on the toggling timing (eg, rising edge and/or falling edge) of the clock signal CK Signal C/A. As such, the host interface 210 can Receive the command or address contained in the command/address signal C/A.

圖1中示出其中藉由使用相同的輸入/輸出通道將命令及位址自記憶體控制器100傳輸至記憶體裝置200的實例,但實施例並非僅限於此。例如,在一些實施例中,可藉由使用不同的輸入/輸出通道將命令及位址自記憶體控制器100傳輸至記憶體裝置200。 An example in which commands and addresses are transmitted from the memory controller 100 to the memory device 200 by using the same input/output channels is shown in FIG. 1, but the embodiment is not limited thereto. For example, in some embodiments, commands and addresses may be transmitted from memory controller 100 to memory device 200 by using different input/output channels.

主機介面210可自記憶體控制器100接收寫入資料選通訊號WDQS。主機介面210可接收資料訊號DQ,且可基於寫入資料選通訊號WDQS的雙態切換時序(例如,上升邊緣及/或下降邊緣)而鎖存資料訊號DQ。如此,主機介面210可接收資料訊號DQ中所包含的資料「DATA」。 The host interface 210 can receive the write data strobe signal WDQS from the memory controller 100 . The host interface 210 can receive the data signal DQ and can latch the data signal DQ based on the toggling timing (eg, rising edge and/or falling edge) of the write data strobe signal WDQS. In this way, the host interface 210 can receive the data "DATA" contained in the data signal DQ.

主機介面210可產生讀取資料選通訊號RDQS,且可將讀取資料選通訊號RDQS傳輸至記憶體控制器100。主機介面210可在記憶體裝置200的讀取操作中產生週期性地在高位準與低位準之間雙態切換的讀取資料選通訊號RDQS。在示例性實施例中,主機介面210可基於自記憶體控制器100接收的寫入資料選通訊號WDQS而產生讀取資料選通訊號RDQS。主機介面210可基於讀取資料選通訊號RDQS的雙態切換時序而將資料訊號DQ傳輸至記憶體控制器100。 The host interface 210 can generate the read data strobe signal RDQS, and can transmit the read data strobe signal RDQS to the memory controller 100 . The host interface 210 can generate a read data strobe signal RDQS that periodically toggles between a high level and a low level during a read operation of the memory device 200 . In an exemplary embodiment, the host interface 210 may generate the read data strobe signal RDQS based on the write data strobe signal WDQS received from the memory controller 100 . The host interface 210 can transmit the data signal DQ to the memory controller 100 based on the toggling timing of the read data strobe signal RDQS.

在示例性實施例中,寫入資料選通訊號WDQS及讀取資料選通訊號RDQS中的每一者的頻率可為時脈訊號CK的頻率的二倍。當基於資料選通訊號WDQS及RDQS傳輸資料訊號DQ時, 記憶體控制器100及記憶體裝置200可高速傳輸及接收資料。 In an exemplary embodiment, the frequency of each of the write data strobe signal WDQS and the read data strobe signal RDQS may be twice the frequency of the clock signal CK. When the data signal DQ is transmitted based on the data strobe signals WDQS and RDQS, The memory controller 100 and the memory device 200 can transmit and receive data at high speed.

圖2是示出圖1所示記憶體系統的記憶體裝置的示例性方塊圖。參照圖2,記憶體裝置200可包括命令/位址(CA)接收器211、控制邏輯電路212、寫入資料選通訊號(WDQS)分頻器213、讀取資料選通訊號(RDQS)傳輸器214、資料收發器215及記憶體胞元陣列220。在一些實施例中,C/A接收器211、控制邏輯電路212、WDQS分頻器213、RDQS傳輸器214及資料收發器215可包含於圖1所示主機介面210中。 FIG. 2 is an exemplary block diagram illustrating a memory device of the memory system shown in FIG. 1 . 2, the memory device 200 may include a command/address (CA) receiver 211, a control logic circuit 212, a write data strobe signal (WDQS) frequency divider 213, a read data strobe signal (RDQS) transmission 214, data transceiver 215 and memory cell array 220. In some embodiments, the C/A receiver 211 , the control logic circuit 212 , the WDQS divider 213 , the RDQS transmitter 214 , and the data transceiver 215 may be included in the host interface 210 shown in FIG. 1 .

C/A接收器211可藉由基於時脈訊號CK而鎖存命令/位址訊號C/A來接收命令CMD。所接收的命令CMD可被提供至控制邏輯電路212。儘管在圖2中未示出,但C/A接收器211可藉由基於時脈訊號CK而鎖存命令/位址訊號C/A來接收位址。所接收的位址可被提供至置於控制邏輯電路212之內或之外的位址暫存器,以便被解碼。 The C/A receiver 211 may receive the command CMD by latching the command/address signal C/A based on the clock signal CK. The received command CMD may be provided to the control logic circuit 212 . Although not shown in FIG. 2 , the C/A receiver 211 may receive an address by latching the command/address signal C/A based on the clock signal CK. The received address may be provided to an address register placed within or outside the control logic circuit 212 to be decoded.

控制邏輯電路212可解碼所接收的命令CMD,且可依據命令CMD的解碼結果而產生用於控制記憶體裝置200的任何其他組件的控制訊號。例如,控制邏輯電路212可基於命令CMD的解碼結果而產生用於將資料「DATA」儲存於記憶體胞元陣列220中或者自記憶體胞元陣列220輸出資料「DATA」的控制訊號iCTRL。例如,控制邏輯電路212可基於命令CMD的解碼結果而產生用於重設WDQS分頻器213的重設訊號RESET。 The control logic circuit 212 can decode the received command CMD, and can generate control signals for controlling any other components of the memory device 200 according to the decoding result of the command CMD. For example, the control logic circuit 212 may generate the control signal iCTRL for storing the data “DATA” in the memory cell array 220 or outputting the data “DATA” from the memory cell array 220 based on the decoding result of the command CMD. For example, the control logic circuit 212 may generate the reset signal RESET for resetting the WDQS frequency divider 213 based on the decoding result of the command CMD.

控制邏輯電路212可接收記憶體裝置200的電源狀態資 訊PWS。例如,在一些實施例中,控制邏輯電路212可自記憶體裝置200之外或自記憶體系統10之外(例如,自主機裝置)接收電源狀態資訊PWS。在其他實施例中,電源狀態資訊PWS可由記憶體裝置200產生。例如,電源狀態資訊PWS可包括提供至記憶體裝置200或者由記憶體裝置200產生的電壓資訊。控制邏輯電路212可基於電源狀態資訊PWS而確定記憶體裝置200的電源狀態。例如,基於電源狀態資訊PWS,控制邏輯電路212可判斷記憶體裝置200是否處於電源開啟狀態(power-up state)或者記憶體裝置200是否處於電源切斷退出狀態(power down exit state)。 The control logic circuit 212 may receive power state information of the memory device 200 News PWS. For example, in some embodiments, control logic circuit 212 may receive power state information PWS from outside of memory device 200 or from outside of memory system 10 (eg, from a host device). In other embodiments, the power state information PWS may be generated by the memory device 200 . For example, the power state information PWS may include voltage information provided to or generated by the memory device 200 . The control logic circuit 212 can determine the power state of the memory device 200 based on the power state information PWS. For example, based on the power state information PWS, the control logic circuit 212 can determine whether the memory device 200 is in a power-up state or whether the memory device 200 is in a power down exit state.

控制邏輯電路212可產生用於重設WDQS分頻器213的重設訊號RESET。控制邏輯電路212可在自記憶體控制器100提供的寫入資料選通訊號WDQS進行雙態切換之前產生重設訊號RESET。在一些示例性實施例中,控制邏輯電路212可基於命令CMD或電源狀態資訊PWS而產生重設訊號RESET。將參照圖3更全面地闡述用於由控制邏輯電路212產生重設訊號RESET的條件。 The control logic circuit 212 can generate a reset signal RESET for resetting the WDQS frequency divider 213 . The control logic circuit 212 can generate the reset signal RESET before the write data strobe signal WDQS provided from the memory controller 100 is toggled. In some exemplary embodiments, the control logic circuit 212 may generate the reset signal RESET based on the command CMD or the power state information PWS. The conditions for generating the reset signal RESET by the control logic circuit 212 will be described more fully with reference to FIG. 3 .

WDQS分頻器213可基於寫入資料選通訊號WDQS而產生多個內部寫入資料選通訊號dWDQS。詳細而言,WDQS分頻器213可產生依據寫入資料選通訊號WDQS的雙態切換而進行雙態切換的內部寫入資料選通訊號dWDQS。WDQS分頻器213可對寫入資料選通訊號WDQS的頻率進行分頻,以產生具有不同相位的內部寫入資料選通訊號dWDQS。例如,WDQS分頻器213可將 寫入資料選通訊號WDQS的頻率減半,以產生具有不同相位的四個內部寫入資料選通訊號dWDQS。在此種情形中,內部寫入資料選通訊號dWDQS的相位可為0度、90度、180度及270度。 The WDQS frequency divider 213 can generate a plurality of internal write data strobe signals dWDQS based on the write data strobe signal WDQS. In detail, the WDQS frequency divider 213 can generate the internal write data strobe signal dWDQS which is toggled according to the toggle of the write data strobe signal WDQS. The WDQS frequency divider 213 can divide the frequency of the write data strobe signal WDQS to generate the internal write data strobe signal dWDQS with different phases. For example, WDQS divider 213 may divide The frequency of the write data strobe signal WDQS is halved to generate four internal write data strobe signals dWDQS with different phases. In this case, the phase of the internal write data strobe signal dWDQS may be 0 degrees, 90 degrees, 180 degrees and 270 degrees.

在寫入資料選通訊號WDQS進行雙態切換之前,WDQS分頻器213可因應於重設訊號RESET而將內部寫入資料選通訊號dWDQS初始化為給定值。內部寫入資料選通訊號dWDQS中的每一者可被初始化為高位準或低位準的給定值(下文中稱為「重設值」)。在示例性實施例中,WDQS分頻器213可將內部寫入資料選通訊號dWDQS的一半初始化為低位準,且可將另一半初始化為高位準。內部寫入資料選通訊號dWDQS可維持重設值,直至寫入資料選通訊號WDQS進行雙態切換為止。 Before the write data strobe signal WDQS is toggled, the WDQS frequency divider 213 can initialize the internal write data strobe signal dWDQS to a given value in response to the reset signal RESET. Each of the internal write data strobe signals dWDQS may be initialized to a given value of a high level or a low level (hereinafter referred to as a "reset value"). In an exemplary embodiment, the WDQS divider 213 may initialize half of the internal write data strobe signal dWDQS to a low level and may initialize the other half to a high level. The internal write data strobe signal dWDQS can maintain the reset value until the write data strobe signal WDQS performs two-state switching.

在其中內部寫入資料選通訊號dWDQS依據重設操作維持於重設值的情形中,WDQS分頻器213可產生具有所期望相位的內部寫入資料選通訊號dWDQS。如此,記憶體裝置200可不單獨執行用於使內部寫入資料選通訊號dWDQS的相位與時脈訊號CK同步的自動同步。 In the case where the internal write data strobe signal dWDQS is maintained at the reset value according to the reset operation, the WDQS frequency divider 213 can generate the internal write data strobe signal dWDQS with the desired phase. As such, the memory device 200 may not perform automatic synchronization for synchronizing the phase of the internal write data strobe signal dWDQS with the clock signal CK alone.

RDQS傳輸器214可基於內部寫入資料選通訊號dWDQS而產生讀取資料選通訊號RDQS,且可將讀取資料選通訊號RDQS傳輸至記憶體控制器100。例如,RDQS傳輸器214可基於內部寫入資料選通訊號dWDQS的上升邊緣及/或下降邊緣而傳輸讀取資料選通訊號RDQS。傳輸至記憶體控制器100的讀取資料選通訊號RDQS的頻率可等於寫入資料選通訊號WDQS的頻率。 The RDQS transmitter 214 can generate the read data strobe signal RDQS based on the internal write data strobe signal dWDQS, and can transmit the read data strobe signal RDQS to the memory controller 100 . For example, the RDQS transmitter 214 may transmit the read data strobe signal RDQS based on the rising edge and/or the falling edge of the internal write data strobe signal dWDQS. The frequency of the read data strobe signal RDQS transmitted to the memory controller 100 may be equal to the frequency of the write data strobe signal WDQS.

資料收發器215可基於內部寫入資料選通訊號dWDQS而傳輸及接收包含資料「DATA」的資料訊號DQ。在寫入操作中,資料收發器215可藉由基於內部寫入資料選通訊號dWDQS而鎖存資料訊號DQ來接收資料「DATA」。例如,資料收發器215可基於內部寫入資料選通訊號dWDQS的上升邊緣及/或下降邊緣而鎖存自記憶體控制器100接收的資料訊號DQ。所接收的資料「DATA」可被提供至記憶體胞元陣列220並儲存於其中。在示例性實施例中,當將資料「DATA」傳送至記憶體胞元陣列220時,可基於時脈訊號CK的雙態切換時序而傳送資料「DATA」。亦即,在其中資料「DATA」被傳送至記憶體胞元陣列220的情形中,域可自寫入資料選通訊號WDQS的域改變至時脈訊號CK的域。 The data transceiver 215 can transmit and receive the data signal DQ including the data "DATA" based on the internal write data strobe signal dWDQS. In a write operation, the data transceiver 215 may receive the data "DATA" by latching the data signal DQ based on the internal write data strobe signal dWDQS. For example, the data transceiver 215 may latch the data signal DQ received from the memory controller 100 based on the rising edge and/or the falling edge of the internal write data strobe signal dWDQS. The received data "DATA" may be provided to and stored in the memory cell array 220. In an exemplary embodiment, when the data "DATA" is transferred to the memory cell array 220, the data "DATA" may be transferred based on the toggling timing of the clock signal CK. That is, in the case where the data "DATA" is transferred to the memory cell array 220, the field can be changed from the field of the write data strobe signal WDQS to the field of the clock signal CK.

在讀取操作中,資料收發器215可基於內部寫入資料選通訊號dWDQS而將包含資料「DATA」的資料訊號DQ傳輸至記憶體控制器100。可自記憶體胞元陣列220讀取資料「DATA」。例如,資料收發器215可基於內部寫入資料選通訊號dWDQS的上升邊緣及/或下降邊緣而傳輸資料「DATA」。如此,資料「DATA」可與讀取資料選通訊號RDQS的雙態切換時序對齊,且可被傳輸至記憶體控制器100。在示例性實施例中,當自記憶體胞元陣列220讀取資料「DATA」時,可基於時脈訊號CK的雙態切換時序而讀取資料「DATA」。資料收發器215可將所讀取的資料「DATA」與讀取資料選通訊號RDQS的雙態切換時序對齊,以便傳輸至記憶體控制器100。亦即,在其中資料「DATA」被傳輸至記憶體控制 器100的情形中,域可自時脈訊號CK的域改變至讀取資料選通訊號RDQS的域(即,寫入資料選通訊號WDQS的域)。 In the read operation, the data transceiver 215 may transmit the data signal DQ including the data "DATA" to the memory controller 100 based on the internal write data strobe signal dWDQS. The data “DATA” can be read from the memory cell array 220 . For example, the data transceiver 215 may transmit data "DATA" based on the rising edge and/or the falling edge of the internal write data strobe signal dWDQS. In this way, the data “DATA” can be aligned with the toggling timing of the read data strobe signal RDQS, and can be transmitted to the memory controller 100 . In an exemplary embodiment, when the data "DATA" is read from the memory cell array 220, the data "DATA" may be read based on the toggling timing of the clock signal CK. The data transceiver 215 can align the read data “DATA” with the toggling timing of the read data strobe signal RDQS for transmission to the memory controller 100 . That is, in which the data "DATA" is transferred to the memory control In the case of the device 100, the field can be changed from the field of the clock signal CK to the field of the read data strobe signal RDQS (ie, the field of the write data strobe signal WDQS).

如上所述,在寫入資料選通訊號WDQS進行雙態切換之前,記憶體裝置200可將內部寫入資料選通訊號dWDQS初始化為給定值。在此種情形中,在寫入資料選通訊號WDQS進行雙態切換時所產生的內部寫入資料選通訊號dWDQS可具有所期望相位。在其中內部寫入資料選通訊號dWDQS具有所期望相位的情形中,記憶體裝置200可基於內部寫入資料選通訊號dWDQS而傳輸及接收資料「DATA」。如此,記憶體裝置200可不單獨執行用於對內部寫入資料選通訊號dWDQS的相位進行調整的自動同步。在其中不單獨執行自動同步的情形中,記憶體裝置200可不接收用於自動同步的單獨命令,且可不包括用於自動同步的單獨電路。換言之,可省略用於自動同步的單獨命令,且可省略用於自動同步的單獨電路。如此,記憶體裝置200的功率消耗可降低。 As described above, before the write data strobe signal WDQS is toggled, the memory device 200 may initialize the internal write data strobe signal dWDQS to a given value. In this case, the internal write data strobe signal dWDQS generated when the write data strobe signal WDQS is toggled can have a desired phase. In the case where the internal write data strobe signal dWDQS has a desired phase, the memory device 200 may transmit and receive data "DATA" based on the internal write data strobe signal dWDQS. As such, the memory device 200 may not perform the automatic synchronization for adjusting the phase of the internal write data strobe signal dWDQS alone. In situations where automatic synchronization is not performed separately, memory device 200 may not receive a separate command for automatic synchronization, and may not include separate circuitry for automatic synchronization. In other words, a separate command for automatic synchronization can be omitted, and a separate circuit for automatic synchronization can be omitted. As such, the power consumption of the memory device 200 can be reduced.

如上所述,記憶體裝置200可基於內部寫入資料選通訊號dWDQS而產生讀取資料選通訊號RDQS及資料訊號DQ。由於內部寫入資料選通訊號dWDQS是基於寫入資料選通訊號WDQS而產生的,因此讀取資料選通訊號RDQS及資料訊號DQ可基於寫入資料選通訊號WDQS而產生。在此種情形中,與基於時脈訊號CK而產生讀取資料選通訊號RDQS及資料訊號DQ的情形相較,記憶體裝置200的功率消耗可降低。 As described above, the memory device 200 can generate the read data strobe signal RDQS and the data signal DQ based on the internal write data strobe signal dWDQS. Since the internal write data strobe signal dWDQS is generated based on the write data strobe signal WDQS, the read data strobe signal RDQS and the data signal DQ can be generated based on the write data strobe signal WDQS. In this case, compared with the case where the read data strobe signal RDQS and the data signal DQ are generated based on the clock signal CK, the power consumption of the memory device 200 can be reduced.

圖3是指示用於由圖2所示記憶體裝置的控制邏輯電路 產生重設訊號的示例性條件的表格。參照圖2及圖3,控制邏輯電路212可依據分頻器重設條件表DRCT的至少一個條件來產生重設訊號RESET。在其中命令CMD與分頻器重設條件匹配或者其中依據電源狀態資訊PWS確定的記憶體裝置200的電源狀態與分頻器重設條件匹配的情形中,控制邏輯電路212可產生重設訊號RESET。在此種情形中,控制邏輯電路212可在寫入資料選通訊號WDQS進行雙態切換之前產生重設訊號RESET。 FIG. 3 is a diagram indicating a control logic circuit for the memory device shown in FIG. 2 A table of exemplary conditions for generating a reset signal. Referring to FIG. 2 and FIG. 3 , the control logic circuit 212 can generate the reset signal RESET according to at least one condition of the frequency divider reset condition table DRCT. In the case where the command CMD matches the divider reset condition or where the power state of the memory device 200 determined according to the power state information PWS matches the divider reset condition, the control logic circuit 212 may generate the reset signal RESET. In this case, the control logic circuit 212 can generate the reset signal RESET before the write data strobe signal WDQS is toggled.

在示例性實施例中,在其中記憶體裝置200處於電源開啟狀態的情形中(即,在記憶體裝置200的電源開啟序列之後),控制邏輯電路212可產生重設訊號RESET。例如,控制邏輯電路212可基於依據電源狀態資訊PWS確定的記憶體裝置200的電源狀態而判斷記憶體裝置200是否處於電源開啟狀態。 In an exemplary embodiment, in a situation where the memory device 200 is in a power-on state (ie, after a power-on sequence of the memory device 200 ), the control logic circuit 212 may generate the reset signal RESET. For example, the control logic circuit 212 may determine whether the memory device 200 is in the power-on state based on the power state of the memory device 200 determined according to the power state information PWS.

在示例性實施例中,在其中記憶體裝置200處於電源切斷退出狀態的情形中(即,在記憶體裝置200的電源切斷退出序列之後),控制邏輯電路212可產生重設訊號RESET。例如,控制邏輯電路212可基於依據電源狀態資訊PWS確定的記憶體裝置200的電源狀態而判斷記憶體裝置200是否處於電源切斷退出狀態。此外,控制邏輯電路212可因應於命令CMD指示電源切斷退出而產生重設訊號RESET。 In an exemplary embodiment, the control logic circuit 212 may generate the reset signal RESET in situations where the memory device 200 is in a power-off exit state (ie, after a power-off exit sequence for the memory device 200). For example, the control logic circuit 212 may determine whether the memory device 200 is in the power-off exit state based on the power state of the memory device 200 determined according to the power state information PWS. In addition, the control logic circuit 212 can generate the reset signal RESET in response to the command CMD instructing the power off to exit.

在示例性實施例中,在其中記憶體裝置200處於自再新退出狀態(self refresh exit state)的情形中(即,在記憶體裝置200的自再新退出序列之後),控制邏輯電路212可產生重設訊號 RESET。例如,控制邏輯電路212可因應於命令CMD指示自再新退出而產生重設訊號RESET。 In an exemplary embodiment, in situations where memory device 200 is in a self refresh exit state (ie, after a self-refresh exit sequence of memory device 200 ), control logic 212 may generate reset signal RESET. For example, the control logic circuit 212 may generate the reset signal RESET in response to the command CMD indicating the self-reset exit.

在示例性實施例中,控制邏輯電路212可因應於現用命令(active command)ACT而產生重設訊號RESET。例如,現用命令ACT可為用於對記憶體胞元陣列220的所選擇字元線進行賦能的命令。作為另一選擇,控制邏輯電路212可因應於寫入命令WR及/或讀取命令RD而產生重設訊號RESET。 In an exemplary embodiment, the control logic circuit 212 may generate the reset signal RESET in response to the active command ACT. For example, the active command ACT may be a command for enabling a selected word line of the memory cell array 220 . Alternatively, the control logic circuit 212 may generate the reset signal RESET in response to the write command WR and/or the read command RD.

在示例性實施例中,控制邏輯電路212可因應於分頻器重設命令DR而產生重設訊號RESET。此處,分頻器重設命令DR可為自記憶體控制器100傳輸且指示對WDQS分頻器213的重設的命令CMD。 In an exemplary embodiment, the control logic circuit 212 may generate the reset signal RESET in response to the frequency divider reset command DR. Here, the divider reset command DR may be a command CMD transmitted from the memory controller 100 and indicating a reset of the WDQS divider 213 .

圖4是示出根據實施例的記憶體裝置的示例性寫入操作的流程圖。參照圖2及圖4,在操作S201中,在寫入資料選通訊號WDQS進行雙態切換之前,記憶體裝置200可將內部寫入資料選通訊號dWDQS初始化為給定值。例如,記憶體裝置200可依據圖3所示重設條件來執行重設操作。如此,內部寫入資料選通訊號dWDQS可維持於重設值,然後開始雙態切換。 4 is a flowchart illustrating an exemplary write operation of a memory device according to an embodiment. 2 and 4 , in operation S201, before the write data strobe signal WDQS is toggled, the memory device 200 may initialize the internal write data strobe signal dWDQS to a given value. For example, the memory device 200 may perform the reset operation according to the reset condition shown in FIG. 3 . In this way, the internal write data strobe signal dWDQS can be maintained at the reset value, and then starts toggling.

在操作S202中,記憶體裝置200可依據寫入資料選通訊號WDQS的雙態切換而產生以不同相位進行雙態切換的內部寫入資料選通訊號dWDQS。在內部寫入資料選通訊號dWDQS維持於重設值,然後開始雙態切換時,記憶體裝置200可產生具有所期望相位的內部寫入資料選通訊號dWDQS。 In operation S202, the memory device 200 may generate an internal write data strobe signal dWDQS that toggles with different phases according to the toggling of the write data strobe signal WDQS. When the internal write data strobe signal dWDQS is maintained at the reset value and then starts toggling, the memory device 200 can generate the internal write data strobe signal dWDQS with the desired phase.

在示例性實施例中,在寫入資料選通訊號WDQS進行雙態切換時,寫入資料選通訊號WDQS的前同步碼循環的數目與寫入資料選通訊號WDQS的後同步碼循環的數目之和可為偶數。在此種情形中,即使由於寫入資料選通訊號WDQS的雙態切換被停止而使內部寫入資料選通訊號dWDQS的雙態切換停止,內部寫入資料選通訊號dWDQS亦可在不進行附加重設操作的情況下維持重設值。如此,在其中寫入資料選通訊號WDQS再次進行雙態切換的情形中,亦可在不進行附加重設操作的情況下產生具有所期望相位的內部寫入資料選通訊號dWDQS。 In an exemplary embodiment, when the write data strobe signal WDQS is toggled, the number of preamble cycles written to the data strobe signal WDQS and the number of postamble cycles written to the data strobe signal WDQS The sum can be even. In this case, even if the toggling of the internal write data strobe signal dWDQS is stopped due to the toggling of the write data strobe signal WDQS being stopped, the internal write data strobe signal dWDQS may not be activated. The reset value is maintained in the case of additional reset operations. In this way, in the case where the write data strobe signal WDQS is toggled again, the internal write data strobe signal dWDQS with the desired phase can also be generated without additional reset operation.

在操作S203中,記憶體裝置200可藉由基於內部寫入資料選通訊號dWDQS而鎖存資料訊號DQ來接收資料「DATA」。在操作S204中,記憶體裝置200可將所接收的資料「DATA」儲存於記憶體胞元陣列220中。 In operation S203, the memory device 200 may receive the data "DATA" by latching the data signal DQ based on the internal write data strobe signal dWDQS. In operation S204 , the memory device 200 may store the received data “DATA” in the memory cell array 220 .

圖5A及圖5B是示出圖4所示寫入操作的實例的時序圖。參照圖5A及圖5B,記憶體裝置200可接收時脈訊號CK、包含寫入命令WR的命令/位址訊號C/A、寫入資料選通訊號WDQS及包含資料D0至D7的資料訊號DQ。以下,如圖5A及圖5B所示,將闡述其中記憶體裝置200在寫入資料選通訊號WDQS進行雙態切換時產生以不同相位進行雙態切換的四個內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的實例,但可以各種方式確定記憶體裝置200所產生的內部寫入資料選通訊號dWDQS的數目。 5A and 5B are timing charts showing an example of the write operation shown in FIG. 4 . 5A and 5B , the memory device 200 may receive a clock signal CK, a command/address signal C/A including a write command WR, a write data strobe signal WDQS, and a data signal DQ including data D0 to D7 . Hereinafter, as shown in FIGS. 5A and 5B , the memory device 200 will explain that when the write data strobe signal WDQS is toggled, the memory device 200 generates four internal write data strobe signals dWDQS that are toggled with different phases. [0] to dWDQS[3], but the number of internal write data strobe signals dWDQS generated by memory device 200 may be determined in various ways.

參照圖2及圖5A,在第一時間t1,記憶體裝置200可 將內部寫入資料選通訊號dWDQS[0]至dWDQS[3]初始化為重設值。例如,記憶體裝置200可將第一內部寫入資料選通訊號dWDQS[0]及第二內部寫入資料選通訊號dWDQS[1]初始化為低位準,且可將第三內部寫入資料選通訊號dWDQS[2]及第四內部寫入資料選通訊號dWDQS[3]初始化為高位準。 2 and 5A, at the first time t1, the memory device 200 may Initialize the internal write data strobe signals dWDQS[0] to dWDQS[3] to reset values. For example, the memory device 200 can initialize the first internal write data strobe signal dWDQS[0] and the second internal write data strobe signal dWDQS[1] to a low level, and can select the third internal write data strobe The communication signal dWDQS[2] and the fourth internal write data strobe signal dWDQS[3] are initialized to high level.

例如,如參照圖3所述,記憶體裝置200可基於命令CMD或記憶體裝置200的電源狀態而重設內部寫入資料選通訊號dWDQS[0]至dWDQS[3]。亦即,在寫入資料選通訊號WDQS開始雙態切換之前,記憶體裝置200可基於各種重設條件而重設內部寫入資料選通訊號dWDQS[0]至dWDQS[3]。 For example, as described with reference to FIG. 3, the memory device 200 may reset the internal write data strobe signals dWDQS[0] to dWDQS[3] based on the command CMD or the power state of the memory device 200. That is, before the write data strobe signal WDQS starts toggling, the memory device 200 may reset the internal write data strobe signals dWDQS[0] to dWDQS[3] based on various reset conditions.

記憶體裝置200可在第二時間t2接收包含寫入命令WR的命令/位址訊號C/A。記憶體裝置200可藉由基於時脈訊號CK的上升邊緣及下降邊緣而鎖存命令/位址訊號C/A來接收命令CMD。圖5A中示出其中在命令/位址訊號C/A的二個循環期間接收寫入命令WR的實例,但實施例並非僅限於此。 The memory device 200 may receive the command/address signal C/A including the write command WR at the second time t2. The memory device 200 can receive the command CMD by latching the command/address signal C/A based on the rising and falling edges of the clock signal CK. An example in which the write command WR is received during two cycles of the command/address signal C/A is shown in FIG. 5A, but the embodiment is not limited thereto.

記憶體裝置200可接收自第三時間t3至第六時間t6進行雙態切換的寫入資料選通訊號WDQS。在寫入資料選通訊號WDQS進行雙態切換之前(即,在第三時間t3之前),寫入資料選通訊號WDQS可維持靜態。例如,寫入資料選通訊號WDQS可維持低位準,如圖5A所示。寫入資料選通訊號WDQS的頻率可為時脈訊號CK的頻率的二倍。在寫入資料選通訊號WDQS進行雙態切換時,寫入資料選通訊號WDQS可包括一個前同步碼循環 及一個後同步碼循環。亦即,寫入資料選通訊號WDQS的前同步碼循環的數目與寫入資料選通訊號WDQS的後同步碼循環的數目之和可為偶數。圖5A中示出其中寫入資料選通訊號WDQS的後同步碼對應於自第五時間t5至第六時間t6的雙態切換週期的實例,但實施例並非僅限於此。 The memory device 200 may receive the write data strobe signal WDQS toggled from the third time t3 to the sixth time t6. Before the write data strobe signal WDQS is toggled (ie, before the third time t3 ), the write data strobe signal WDQS may remain static. For example, the write data strobe signal WDQS can be kept low, as shown in FIG. 5A . The frequency of the write data strobe signal WDQS may be twice the frequency of the clock signal CK. The write data strobe signal WDQS may include a preamble loop when the write data strobe signal WDQS is toggled and a postamble loop. That is, the sum of the number of preamble cycles in which the data strobe signal WDQS is written and the number of postamble cycles in which the data strobe signal WDQS is written may be an even number. FIG. 5A shows an example in which the postamble of the written data strobe signal WDQS corresponds to the toggle period from the fifth time t5 to the sixth time t6, but the embodiment is not limited thereto.

在其中寫入資料選通訊號WDQS自第三時間t3開始雙態切換的情形中,記憶體裝置200可基於內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的重設值而產生具有所期望相位的內部寫入資料選通訊號dWDQS[0]至dWDQS[3]。例如,在第三時間t3,記憶體裝置200可產生邊緣時序與寫入資料選通訊號WDQS的邊緣時序相同的第一內部寫入資料選通訊號dWDQS[0]。記憶體裝置200可產生相對於第一內部寫入資料選通訊號dWDQS[0]延遲90度相位差的第二內部寫入資料選通訊號dWDQS[1]、相對於第一內部寫入資料選通訊號dWDQS[0]延遲180度相位差的第三內部寫入資料選通訊號dWDQS[2]以及相對於第一內部寫入資料選通訊號dWDQS[0]延遲270度相位差的第四內部寫入資料選通訊號dWDQS[3]。在此種情形中,內部寫入資料選通訊號dWDQS[0]至dWDQS[3]中的每一者的頻率可為寫入資料選通訊號WDQS的頻率的一半。 In the case in which the write data strobe signal WDQS starts toggling from the third time t3, the memory device 200 may generate based on the reset values of the internal write data strobe signals dWDQS[0] to dWDQS[3] Internal write data strobe signals dWDQS[0] to dWDQS[3] with the desired phase. For example, at the third time t3, the memory device 200 may generate the first internal write data strobe signal dWDQS[0] with the same edge timing as that of the write data strobe signal WDQS. The memory device 200 can generate a second internal write data strobe signal dWDQS[1] delayed by a phase difference of 90 degrees with respect to the first internal write data strobe signal dWDQS[0], relative to the first internal write data strobe signal dWDQS[1], The third internal write data strobe signal dWDQS[2] delayed by a phase difference of 180 degrees and the fourth internal write data strobe signal dWDQS[0] delayed by a phase difference of 270 degrees with respect to the first internal write data strobe signal dWDQS[0] Write the data strobe signal dWDQS[3]. In this case, the frequency of each of the internal write data strobe signals dWDQS[0] to dWDQS[3] may be half the frequency of the write data strobe signal WDQS.

在自接收到寫入命令WR的第二時間t2起經過寫入潛時WL的第四時間t4,記憶體裝置200可開始接收包含資料D0至D7的資料訊號DQ。記憶體裝置200可藉由基於內部寫入資料選 通訊號dWDQS[0]至dWDQS[3]而鎖存資料訊號DQ來接收資料D0至D7。例如,記憶體裝置200可在內部寫入資料選通訊號dWDQS[0]至dWDQS[3]中的每一者的下降邊緣處鎖存資料訊號DQ。在此種情形中,可基於第一內部寫入資料選通訊號dWDQS[0]而接收資料D0及D4,可基於第二內部寫入資料選通訊號dWDQS[1]而接收資料D1及D5,可基於第三內部寫入資料選通訊號dWDQS[2]而接收資料D2及D6,且可基於第四內部寫入資料選通訊號dWDQS[3]而接收資料D3及D7。如此,自第四時間t4至第五時間t5,可自資料訊號DQ接收資料D0至D7。 After the fourth time t4 of the write latency WL has elapsed since the second time t2 when the write command WR is received, the memory device 200 may start to receive the data signal DQ including the data D0 to D7. The memory device 200 can be selected based on the internally written data The communication signals dWDQS[0] to dWDQS[3] latch the data signal DQ to receive the data D0 to D7. For example, memory device 200 may latch data signal DQ at the falling edge of each of the internal write data strobe signals dWDQS[0] through dWDQS[3]. In this case, the data D0 and D4 can be received based on the first internal write data strobe signal dWDQS[0], the data D1 and D5 can be received based on the second internal write data strobe signal dWDQS[1], Data D2 and D6 may be received based on the third internal write data strobe signal dWDQS[2], and data D3 and D7 may be received based on the fourth internal write data strobe signal dWDQS[3]. In this way, from the fourth time t4 to the fifth time t5, the data D0 to D7 can be received from the data signal DQ.

由於寫入資料選通訊號WDQS的雙態切換在第六時間t6停止,因此內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的雙態切換可停止。即使內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的雙態切換停止,內部寫入資料選通訊號dWDQS[0]至dWDQS[3]亦可具有與在第一時間t1相同的值。如此,在第六時間t6之後,內部寫入資料選通訊號dWDQS[0]至dWDQS[3]中的每一者可維持重設值。 Since the toggling of the write data strobe signal WDQS is stopped at the sixth time t6, the toggling of the internal write data strobe signals dWDQS[0] to dWDQS[3] can be stopped. Even if the toggling of the internal write data strobe signals dWDQS[0] to dWDQS[3] is stopped, the internal write data strobe signals dWDQS[0] to dWDQS[3] can have the same value as at the first time t1 value. As such, after the sixth time t6, each of the internal write data strobe signals dWDQS[0] to dWDQS[3] may maintain the reset value.

參照圖2及圖5B,在一些實施例中,寫入資料選通訊號WDQS可包括二個前同步碼循環及二個後同步碼循環。在此種情形中,為了依據寫入資料選通訊號WDQS的雙態切換來產生具有所期望相位(即,與圖5A所示內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的相位相同的相位)的內部寫入資料選通訊號dWDQS[0]至dWDQS[3],記憶體裝置200可將內部寫入資料選通 訊號dWDQS[0]至dWDQS[3]初始化為與圖5A所示重設值不同的值。亦即,可依據寫入資料選通訊號WDQS的前同步碼循環的數目來定義內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的重設值(即,WDQS分頻器213的重設值)。圖5B中示出其中寫入資料選通訊號WDQS的後同步碼對應於自第五時間t5至第六時間t6的雙態切換週期的實例,但實施例並非僅限於此。 2 and 5B, in some embodiments, the write data strobe signal WDQS may include two preamble cycles and two postamble cycles. In this case, in order to generate the desired phase (ie, the same as the internal write data strobe signals dWDQS[0] to dWDQS[3] shown in FIG. 5A in order to generate a The internal write data strobe signals dWDQS[0] to dWDQS[3] of the same phase), the memory device 200 can strobe the internal write data The signals dWDQS[0] to dWDQS[3] are initialized to a value different from the reset value shown in FIG. 5A. That is, the reset values of the internal write data strobe signals dWDQS[0] to dWDQS[3] can be defined according to the number of preamble cycles of the write data strobe signal WDQS (ie, the reset value). An example in which the postamble of the data strobe signal WDQS is written corresponds to the toggle period from the fifth time t5 to the sixth time t6 is shown in FIG. 5B , but the embodiment is not limited thereto.

在第一時間t1,記憶體裝置200可將第一內部寫入資料選通訊號dWDQS[0]及第二內部寫入資料選通訊號dWDQS[1]初始化為高位準,且可將第三內部寫入資料選通訊號dWDQS[2]及第四內部寫入資料選通訊號dWDQS[3]初始化為低位準。在此種情形中,在寫入資料選通訊號WDQS自第三時間t3開始雙態切換時產生的內部寫入資料選通訊號dWDQS[0]至dWDQS[3]可具有所期望相位。如此,如參照圖5A所述,記憶體裝置200可藉由基於內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的下降邊緣而鎖存資料訊號DQ來接收資料D0至D7。 At the first time t1, the memory device 200 can initialize the first internal write data strobe signal dWDQS[0] and the second internal write data strobe signal dWDQS[1] to a high level, and can initialize the third internal write data strobe signal dWDQS[1] to a high level The write data strobe signal dWDQS[2] and the fourth internal write data strobe signal dWDQS[3] are initialized to the low level. In this case, the internal write data strobe signals dWDQS[0] to dWDQS[3] generated when the write data strobe signal WDQS starts toggling from the third time t3 may have desired phases. Thus, as described with reference to FIG. 5A, the memory device 200 can receive data D0-D7 by latching the data signal DQ based on the falling edges of the internal write data strobe signals dWDQS[0]-dWDQS[3].

如上所述,在寫入資料選通訊號WDQS進行雙態切換之前,記憶體裝置200可將內部寫入資料選通訊號dWDQS初始化為重設值,且可產生具有所期望相位的內部寫入資料選通訊號dWDQS。如此,記憶體裝置200可不單獨執行用於對內部寫入資料選通訊號dWDQS的相位進行調整的自動同步。亦即,可省略自動同步。在其中不執行自動同步的情形中,可不需要為進行自動同步而使寫入資料選通訊號WDQS進行附加的雙態切換。亦即, 由於其中寫入資料選通訊號WDQS維持於靜態的週期在資料D0至D7被傳輸之前增加,因此雙態切換週期可縮短。 As described above, before the write data strobe signal WDQS is toggled, the memory device 200 can initialize the internal write data strobe signal dWDQS to a reset value, and can generate an internal write data strobe with a desired phase. Communication number dWDQS. As such, the memory device 200 may not perform the automatic synchronization for adjusting the phase of the internal write data strobe signal dWDQS alone. That is, automatic synchronization can be omitted. In situations where automatic synchronization is not performed, additional toggling of the write data strobe signal WDQS may not be required for automatic synchronization. that is, Since the period in which the write data strobe signal WDQS remains static increases before the data D0 to D7 are transmitted, the toggle period can be shortened.

圖6是示出根據實施例的記憶體裝置的示例性寫入操作的流程圖。參照圖2及圖6,在操作S211中,在寫入資料選通訊號WDQS進行雙態切換之前,記憶體裝置200可將內部寫入資料選通訊號dWDQS初始化為給定值。 6 is a flowchart illustrating an exemplary write operation of a memory device according to an embodiment. 2 and 6, in operation S211, before the write data strobe signal WDQS is toggled, the memory device 200 may initialize the internal write data strobe signal dWDQS to a given value.

在操作S212中,記憶體裝置200可依據與第一寫入命令及第二寫入命令對應的寫入資料選通訊號WDQS的雙態切換來產生內部寫入資料選通訊號dWDQS。在示例性實施例中,在不進行附加重設操作的情況下,記憶體裝置200可產生與第一寫入命令及第二寫入命令對應的寫入資料選通訊號WDQS。例如,即使寫入資料選通訊號WDQS的雙態切換在根據第一寫入命令而定的寫入資料選通訊號WDQS的第一雙態切換週期與根據第二寫入命令而定的寫入資料選通訊號WDQS的第二雙態切換週期之間停止,記憶體裝置200亦可在不進行附加重設操作的情況下產生內部寫入資料選通訊號dWDQS。 In operation S212, the memory device 200 may generate an internal write data strobe signal dWDQS according to toggling of the write data strobe signal WDQS corresponding to the first write command and the second write command. In an exemplary embodiment, the memory device 200 may generate the write data strobe signal WDQS corresponding to the first write command and the second write command without performing an additional reset operation. For example, even if the toggling of the write data strobe signal WDQS is performed between the first toggling cycle of the write data strobe signal WDQS according to the first write command and the write according to the second write command The data strobe signal WDQS is stopped between the second toggling cycles, and the memory device 200 can also generate the internal write data strobe signal dWDQS without performing an additional reset operation.

在操作S213中,記憶體裝置200可基於如此產生的內部寫入資料選通訊號dWDQS而接收第一資料及第二資料。此處,第一資料可對應於第一寫入命令,且第二資料可對應於第二寫入命令。在操作S214中,記憶體裝置200可將第一資料及第二資料儲存於記憶體胞元陣列220中。 In operation S213, the memory device 200 may receive the first data and the second data based on the thus generated internal write data strobe signal dWDQS. Here, the first data may correspond to the first write command, and the second data may correspond to the second write command. In operation S214 , the memory device 200 may store the first data and the second data in the memory cell array 220 .

圖7A及圖7B是示出圖6所示寫入操作的實例的時序 圖。參照圖7A及圖7B,記憶體裝置200可接收時脈訊號CK、包含第一寫入命令WRa及第二寫入命令WRb的命令/位址訊號C/A、寫入資料選通訊號WDQS以及包含第一資料Da0至Da7及第二資料Db0至Db7的資料訊號DQ。詳細而言,圖7A是示出當第一寫入命令WRa與第二寫入命令WRb之間的間隔等於或小於參考時間時(即,當第一資料Da0至Da7及第二資料Db0至Db7是無縫的時)的寫入操作的時序圖。圖7B是示出當第一寫入命令WRa與第二寫入命令WRb之間的間隔超過參考時間時(即,當第一資料Da0至Da7及第二資料Db0至Db7不是無縫的時)的寫入操作的時序圖。此處,參考時間可為與一個寫入命令對應的資料傳輸時間。例如,如圖7A及圖7B所示,當與一個寫入命令對應的資料傳輸時間對應於時脈訊號CK的二個循環時,參考時間可對應於時脈訊號CK的二個循環。 7A and 7B are timings showing an example of the write operation shown in FIG. 6 picture. 7A and 7B, the memory device 200 can receive a clock signal CK, a command/address signal C/A including a first write command WRa and a second write command WRb, a write data strobe signal WDQS, and The data signal DQ includes the first data Da0 to Da7 and the second data Db0 to Db7. In detail, FIG. 7A shows when the interval between the first write command WRa and the second write command WRb is equal to or less than the reference time (ie, when the first data Da0 to Da7 and the second data Db0 to Db7 is seamless) timing diagram of the write operation. 7B is a diagram illustrating when the interval between the first write command WRa and the second write command WRb exceeds the reference time (ie, when the first data Da0 to Da7 and the second data Db0 to Db7 are not seamless) Timing diagram of the write operation. Here, the reference time may be the data transmission time corresponding to one write command. For example, as shown in FIGS. 7A and 7B , when the data transmission time corresponding to one write command corresponds to two cycles of the clock signal CK, the reference time may correspond to two cycles of the clock signal CK.

參照圖2及圖7A,在寫入資料選通訊號WDQS進行雙態切換之前,亦即,在第一時間t1,記憶體裝置200可將第一內部寫入資料選通訊號dWDQS[0]及第二內部寫入資料選通訊號dWDQS[1]初始化為低位準,且可將第三內部寫入資料選通訊號dWDQS[2]及第四內部寫入資料選通訊號dWDQS[3]初始化為高位準。 2 and 7A, before the write data strobe signal WDQS is toggled, that is, at the first time t1, the memory device 200 may write the first internal write data strobe signal dWDQS[0] and The second internal write data strobe signal dWDQS[1] is initialized to a low level, and the third internal write data strobe signal dWDQS[2] and the fourth internal write data strobe signal dWDQS[3] can be initialized as high level.

基於時脈訊號CK,記憶體裝置200可在第二時間t2接收第一寫入命令WRa,且可在第三時間t3接收第二寫入命令WRb。例如,在一些實施例中,第一寫入命令WRa與第二寫入命 令WRb之間的間隔可等於或小於時脈訊號CK的二個循環。 Based on the clock signal CK, the memory device 200 may receive the first write command WRa at the second time t2, and may receive the second write command WRb at the third time t3. For example, in some embodiments, the first write command WRa and the second write command Let the interval between WRb be equal to or less than two cycles of the clock signal CK.

記憶體裝置200可接收自第四時間t4至第八時間t8進行雙態切換的寫入資料選通訊號WDQS。在此種情形中,寫入資料選通訊號WDQS可具有與第一寫入命令WRa及第二寫入命令WRb對應的一個雙態切換週期(即,自第四時間t4至第八時間t8)。如此,關於第一寫入命令WRa及第二寫入命令WRb,寫入資料選通訊號WDQS可具有一個前同步碼及一個後同步碼,如圖7A所示。 The memory device 200 may receive the write data strobe signal WDQS toggled from the fourth time t4 to the eighth time t8. In this case, the write data strobe signal WDQS may have one toggle period corresponding to the first write command WRa and the second write command WRb (ie, from the fourth time t4 to the eighth time t8 ) . As such, regarding the first write command WRa and the second write command WRb, the write data strobe signal WDQS may have a preamble and a postamble, as shown in FIG. 7A .

記憶體裝置200可基於內部寫入資料選通訊號dWDQS[1]至dWDQS[3]的重設值而在第四時間t4產生邊緣時序與寫入資料選通訊號WDQS的邊緣時序相同的第一內部寫入資料選通訊號dWDQS[0],且可產生相對於第一內部寫入資料選通訊號dWDQS[0]分別延遲90度、180度及270度的相位差的第二內部寫入資料選通訊號dWDQS[1]至第四內部寫入資料選通訊號dWDQS[3]。於在第一時間t1執行重設操作之後,記憶體裝置200可在不進行附加重設操作的情況下產生內部寫入資料選通訊號dWDQS[0]至dWDQS[3]。 The memory device 200 may generate a first edge timing that is the same as the edge timing of the write data strobe signal WDQS at the fourth time t4 based on the reset values of the internal write data strobe signals dWDQS[1] to dWDQS[3]. Internal write data strobe signal dWDQS[0], and can generate the second internal write data with a phase difference of 90 degrees, 180 degrees and 270 degrees respectively delayed from the first internal write data strobe signal dWDQS[0] The strobe signal dWDQS[1] to the fourth internal write data strobe signal dWDQS[3]. After the reset operation is performed at the first time t1, the memory device 200 may generate the internal write data strobe signals dWDQS[0] to dWDQS[3] without performing an additional reset operation.

在自接收到第一寫入命令WRa的第二時間t2起經過寫入潛時WL的第五時間t5,記憶體裝置200可開始接收包含第一資料Da0至Da7的資料訊號DQ。在自接收到第二寫入命令WRb的第三時間t3起經過寫入潛時WL的第六時間t6,記憶體裝置200可開始接收包含第二資料Db0至Db7的資料訊號DQ。 After the fifth time t5 of the write latency WL has elapsed since the second time t2 when the first write command WRa is received, the memory device 200 may start to receive the data signal DQ including the first data Da0 to Da7. After the sixth time t6 of the write latency WL has elapsed since the third time t3 when the second write command WRb is received, the memory device 200 may start to receive the data signal DQ including the second data Db0 to Db7 .

記憶體裝置200可藉由基於內部寫入資料選通訊號dWDQS[0]至dWDQS[3]而鎖存資料訊號DQ來接收第一資料Da0至Da7及第二資料Db0至Db7。例如,記憶體裝置200可在內部寫入資料選通訊號dWDQS[0]至dWDQS[3]中的每一者的下降邊緣處鎖存資料訊號DQ。如此,自第五時間t5至第七時間t7,可自資料訊號DQ接收第一資料Da0至Da7及第二資料Db0至Db7。 The memory device 200 can receive the first data Da0 to Da7 and the second data Db0 to Db7 by latching the data signal DQ based on the internal write data strobe signals dWDQS[0] to dWDQS[3]. For example, memory device 200 may latch data signal DQ at the falling edge of each of the internal write data strobe signals dWDQS[0] through dWDQS[3]. In this way, from the fifth time t5 to the seventh time t7, the first data Da0 to Da7 and the second data Db0 to Db7 can be received from the data signal DQ.

參照圖2及圖7B,在寫入資料選通訊號WDQS進行雙態切換之前,亦即,在第一時間t1,記憶體裝置200可將第一內部寫入資料選通訊號dWDQS[0]及第二內部寫入資料選通訊號dWDQS[1]初始化為低位準,且可將第三內部寫入資料選通訊號dWDQS[2]及第四內部寫入資料選通訊號dWDQS[3]初始化為高位準。 2 and 7B, before the write data strobe signal WDQS is toggled, that is, at the first time t1, the memory device 200 may write the first internal write data strobe signal dWDQS[0] and The second internal write data strobe signal dWDQS[1] is initialized to a low level, and the third internal write data strobe signal dWDQS[2] and the fourth internal write data strobe signal dWDQS[3] can be initialized as high level.

基於時脈訊號CK,記憶體裝置200可在第二時間t2接收第一寫入命令WRa,且可在第三時間t3接收第二寫入命令WRb。例如,第一寫入命令WRa與第二寫入命令WRb之間的間隔可超過時脈訊號CK的二個循環。 Based on the clock signal CK, the memory device 200 may receive the first write command WRa at the second time t2, and may receive the second write command WRb at the third time t3. For example, the interval between the first write command WRa and the second write command WRb may exceed two cycles of the clock signal CK.

記憶體裝置200可接收包括分別與第一寫入命令WRa及第二寫入命令WRb對應的雙態切換週期的寫入資料選通訊號WDQS。寫入資料選通訊號WDQS可具有與第一寫入命令WRa對應的第一(1st)雙態切換週期(即,自第四時間t4至第七時間t7)及與第二寫入命令WRb對應的第二(2nd)雙態切換週期(即,自第八時間t8至第十一時間t11)。亦即,寫入資料選通訊號WDQS 的雙態切換可在第一雙態切換週期與第二雙態切換週期之間(即,自第七時間t7至第八時間t8)停止。如此,對於第一雙態切換及第二雙態切換中的每一者,寫入資料選通訊號WDQS可具有一個前同步碼及一個後同步碼,如圖7B所示。 The memory device 200 may receive a write data strobe signal WDQS including toggle periods corresponding to the first write command WRa and the second write command WRb, respectively. The write data strobe signal WDQS may have a first (1 st ) toggle period corresponding to the first write command WRa (ie, from the fourth time t4 to the seventh time t7 ) and the second write command WRb The corresponding second (2 nd ) toggle period (ie, from the eighth time t8 to the eleventh time t11). That is, the toggling of the write data strobe signal WDQS may be stopped between the first toggling period and the second toggling period (ie, from the seventh time t7 to the eighth time t8 ). As such, for each of the first toggle and the second toggle, the write data strobe signal WDQS may have one preamble and one postamble, as shown in Figure 7B.

記憶體裝置200可產生關於第一雙態切換自第四時間t4至第七時間t7進行雙態切換的內部寫入資料選通訊號dWDQS[0]至dWDQS[3],且可產生關於第二雙態切換自第八時間t8至第十一時間t11進行雙態切換的內部寫入資料選通訊號dWDQS[0]至dWDQS[3]。於在第一時間t1執行重設操作之後,記憶體裝置200可在不進行附加重設操作的情況下產生內部寫入資料選通訊號dWDQS[0]至dWDQS[3]。 The memory device 200 can generate the internal write data strobe signals dWDQS[0] to dWDQS[3] for the first toggle from the fourth time t4 to the seventh time t7, and can generate the second The internal write data strobe signals dWDQS[0] to dWDQS[3] for toggling are toggled from the eighth time t8 to the eleventh time t11. After the reset operation is performed at the first time t1, the memory device 200 may generate the internal write data strobe signals dWDQS[0] to dWDQS[3] without performing an additional reset operation.

內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的雙態切換可自第七時間t7至第八時間t8停止。在雙態切換停止時,內部寫入資料選通訊號dWDQS[1]至dWDQS[3]可維持與在第一時間t1相同的值。如此,關於第二雙態切換進行雙態切換的內部寫入資料選通訊號dWDQS[1]至dWDQS[3]可具有所期望相位(即,關於第一雙態切換進行雙態切換的內部寫入資料選通訊號dWDQS[1]至dWDQS[3]的相位)。 The toggling of the internal write data strobe signals dWDQS[0] to dWDQS[3] can be stopped from the seventh time t7 to the eighth time t8. When the toggling is stopped, the internal write data strobe signals dWDQS[1] to dWDQS[3] can maintain the same value as at the first time t1. As such, the internal write data strobe signals dWDQS[1] to dWDQS[3] toggled with respect to the second toggling may have the desired phase (ie, the internal write data toggled with respect to the first toggle input data strobe signals dWDQS[1] to dWDQS[3] phase).

在自接收到第一寫入命令WRa的第二時間t2起經過寫入潛時WL的第五時間t5,記憶體裝置200可開始接收包含第一資料Da0至Da7的資料訊號DQ。在自接收到第二寫入命令WRb的第三時間t3起經過寫入潛時WL的第九時間t9,記憶體裝置200 可開始接收包含第二資料Db0至Db7的資料訊號DQ。 After the fifth time t5 of the write latency WL has elapsed since the second time t2 when the first write command WRa is received, the memory device 200 may start to receive the data signal DQ including the first data Da0 to Da7. At the ninth time t9 that elapses the write latency WL from the third time t3 when the second write command WRb is received, the memory device 200 The reception of the data signal DQ including the second data Db0 to Db7 can be started.

記憶體裝置200可藉由基於內部寫入資料選通訊號dWDQS[0]至dWDQS[3]而鎖存資料訊號DQ來接收第一資料Da0至Da7及第二資料Db0至Db7。例如,記憶體裝置200可在內部寫入資料選通訊號dWDQS[0]至dWDQS[3]中的每一者的下降邊緣處鎖存資料訊號DQ。如此,自第五時間t5至第十一時間t11,可自資料訊號DQ接收第一資料Da0至Da7及第二資料Db0至Db7。 The memory device 200 can receive the first data Da0 to Da7 and the second data Db0 to Db7 by latching the data signal DQ based on the internal write data strobe signals dWDQS[0] to dWDQS[3]. For example, memory device 200 may latch data signal DQ at the falling edge of each of the internal write data strobe signals dWDQS[0] through dWDQS[3]. In this way, from the fifth time t5 to the eleventh time t11, the first data Da0 to Da7 and the second data Db0 to Db7 can be received from the data signal DQ.

如參照圖7A及圖7B所述,在其中於寫入資料選通訊號WDQS開始雙態切換之前將內部寫入資料選通訊號dWDQS初始化為重設值的情形中,記憶體裝置200可在不進行附加重設操作的情況下產生具有所期望相位的內部寫入資料選通訊號dWDQS,且可接收與多個寫入命令對應的寫入資料。如此,記憶體裝置200的功率消耗可降低。 As described with reference to FIGS. 7A and 7B , in the case where the internal write data strobe signal dWDQS is initialized to a reset value before the write data strobe signal WDQS starts toggling, the memory device 200 may not perform An internal write data strobe signal dWDQS with a desired phase is generated in the case of an additional reset operation, and write data corresponding to a plurality of write commands can be received. As such, the power consumption of the memory device 200 can be reduced.

參照圖6、圖7A及圖7B闡述了根據多個寫入命令進行的寫入操作,但實施例並非僅限於此。例如,在根據多個讀取命令進行的讀取操作中,記憶體裝置200可在不執行附加重設操作的情況下產生內部寫入資料選通訊號dWDQS。作為另一選擇,在根據寫入命令進行的寫入操作及根據讀取命令進行的讀取操作中,記憶體裝置200可在不執行附加重設操作的情況下產生內部寫入資料選通訊號dWDQS。 A write operation according to a plurality of write commands is explained with reference to FIGS. 6 , 7A and 7B, but the embodiment is not limited thereto. For example, in a read operation according to multiple read commands, the memory device 200 may generate the internal write data strobe signal dWDQS without performing an additional reset operation. Alternatively, in the write operation according to the write command and the read operation according to the read command, the memory device 200 may generate an internal write data strobe signal without performing an additional reset operation dWDQS.

圖8是示出根據實施例的記憶體裝置的示例性讀取操作的流程圖。參照圖2及圖8,在操作S221中,在寫入資料選通訊 號WDQS進行雙態切換之前,記憶體裝置200可將內部寫入資料選通訊號dWDQS初始化為給定值。如此,內部寫入資料選通訊號dWDQS可在雙態切換之前維持於重設值。 8 is a flowchart illustrating an exemplary read operation of a memory device according to an embodiment. Referring to FIG. 2 and FIG. 8, in operation S221, select communication in writing data Before the toggling of signal WDQS, the memory device 200 may initialize the internal write data strobe signal dWDQS to a given value. In this way, the internal write data strobe signal dWDQS can be maintained at the reset value before toggling.

在操作S222中,記憶體裝置200可依據寫入資料選通訊號WDQS的雙態切換而產生以不同相位進行雙態切換的內部寫入資料選通訊號dWDQS。由於內部寫入資料選通訊號dWDQS在雙態切換之前維持於重設值,因此記憶體裝置200可產生具有所期望相位的內部寫入資料選通訊號dWDQS。 In operation S222, the memory device 200 may generate an internal write data strobe signal dWDQS that toggles with different phases according to the toggling of the write data strobe signal WDQS. Since the internal write data strobe signal dWDQS is maintained at the reset value before toggling, the memory device 200 can generate the internal write data strobe signal dWDQS with the desired phase.

在操作S223中,記憶體裝置200可基於內部寫入資料選通訊號dWDQS將讀取資料選通訊號RDQS及自記憶體胞元陣列220讀取的資料「DATA」傳輸至記憶體控制器100。 In operation S223, the memory device 200 may transmit the read data strobe signal RDQS and the data “DATA” read from the memory cell array 220 to the memory controller 100 based on the internal write data strobe signal dWDQS.

圖9是示出圖8所示讀取操作的實例的時序圖。參照圖2及圖9,記憶體裝置200可接收時脈訊號CK、包含讀取命令RD的命令/位址訊號C/A及寫入資料選通訊號WDQS。記憶體裝置200可因應於記憶體控制器100而向記憶體控制器100傳輸讀取資料選通訊號RDQS及包含資料D0至D7的資料訊號DQ(參照圖1)。 FIG. 9 is a timing chart showing an example of the read operation shown in FIG. 8 . Referring to FIG. 2 and FIG. 9 , the memory device 200 can receive a clock signal CK, a command/address signal C/A including a read command RD, and a write data strobe signal WDQS. The memory device 200 can transmit the read data strobe signal RDQS and the data signal DQ including the data D0 to D7 to the memory controller 100 in response to the memory controller 100 (refer to FIG. 1 ).

在第一時間t1,記憶體裝置200可將內部寫入資料選通訊號dWDQS[0]至dWDQS[3]初始化為重設值。記憶體裝置200可將第一內部寫入資料選通訊號dWDQS[0]及第二內部寫入資料選通訊號dWDQS[1]初始化為低位準,且可將第三內部寫入資料選通訊號dWDQS[2]及第四內部寫入資料選通訊號dWDQS[3]初始化為高位準。 At the first time t1, the memory device 200 may initialize the internal write data strobe signals dWDQS[0] to dWDQS[3] to reset values. The memory device 200 can initialize the first internal write data strobe signal dWDQS[0] and the second internal write data strobe signal dWDQS[1] to a low level, and can initialize the third internal write data strobe signal dWDQS[2] and the fourth internal write data strobe signal dWDQS[3] are initialized to high level.

記憶體裝置200可在第二時間t2接收包含讀取命令RD的命令/位址訊號C/A。記憶體裝置200可藉由基於時脈訊號CK的上升邊緣及下降邊緣而鎖存命令/位址訊號C/A來接收讀取命令RD。圖9中示出其中在命令/位址訊號C/A的二個循環期間接收讀取命令RD的實例,但實施例並非僅限於此。 The memory device 200 may receive the command/address signal C/A including the read command RD at the second time t2. The memory device 200 can receive the read command RD by latching the command/address signal C/A based on the rising and falling edges of the clock signal CK. An example in which the read command RD is received during two cycles of the command/address signal C/A is shown in FIG. 9, but the embodiment is not limited thereto.

記憶體裝置200可接收自第三時間t3至第六時間t6進行雙態切換的寫入資料選通訊號WDQS。在寫入資料選通訊號WDQS進行雙態切換時,寫入資料選通訊號WDQS可包括一個前同步碼循環及一個後同步碼循環。 The memory device 200 may receive the write data strobe signal WDQS toggled from the third time t3 to the sixth time t6. When the write data strobe signal WDQS performs two-state switching, the write data strobe signal WDQS may include a preamble cycle and a postamble cycle.

在第三時間t3,記憶體裝置200可產生邊緣時序與寫入資料選通訊號WDQS的邊緣時序相同的第一內部寫入資料選通訊號dWDQS[0]。記憶體裝置200可產生相對於第一內部寫入資料選通訊號dWDQS[0]分別延遲90度、180度及270度的相位差的第二內部寫入資料選通訊號dWDQS[1]至第四內部寫入資料選通訊號dWDQS[3]。 At the third time t3, the memory device 200 may generate the first internal write data strobe signal dWDQS[0] with the same edge timing as the edge timing of the write data strobe signal WDQS. The memory device 200 can generate the second internal write data strobe signal dWDQS[1] to the first internal write data strobe signal dWDQS[1] which is delayed by a phase difference of 90 degrees, 180 degrees and 270 degrees, respectively, with respect to the first internal write data strobe signal dWDQS[0]. Four internal write data strobe signal dWDQS[3].

記憶體裝置200可基於內部寫入資料選通訊號dWDQS[0]至dWDQS[3]而產生自第三時間t3至第六時間t6進行雙態切換的讀取資料選通訊號RDQS。在讀取資料選通訊號RDQS進行雙態切換時,讀取資料選通訊號RDQS可包括一個前同步碼循環及一個後同步碼循環。圖9中示出其中開始接收雙態切換的寫入資料選通訊號WDQS的時間與開始傳輸雙態切換的讀取資料選通訊號RDQS的時間相同(亦即,二者均對應於第三時間t3) 的實例,但在開始接收雙態切換的寫入資料選通訊號WDQS的時間與開始傳輸雙態切換的讀取資料選通訊號RDQS的時間之間可存在延遲。以下,為了闡述方便,假設開始接收雙態切換的寫入資料選通訊號WDQS的時間與開始傳輸雙態切換的讀取資料選通訊號RDQS的時間是相同的。 The memory device 200 may generate a read data strobe signal RDQS that toggles from the third time t3 to the sixth time t6 based on the internal write data strobe signals dWDQS[0] to dWDQS[3]. When the read data strobe signal RDQS is toggled, the read data strobe signal RDQS may include a preamble cycle and a postamble cycle. It is shown in FIG. 9 that the time to start receiving the toggled write data strobe signal WDQS is the same as the time to start transmitting the toggled read data strobe signal RDQS (ie, both correspond to a third time) t3) , but there may be a delay between the time at which the toggled write data strobe signal WDQS begins to be received and the time at which the toggled read data strobe signal RDQS begins to be transmitted. In the following, for the convenience of description, it is assumed that the time of starting to receive the write data strobe signal WDQS of the toggle is the same as the time of starting to transmit the read data strobe signal RDQS of the toggle.

記憶體裝置200可基於內部寫入資料選通訊號dWDQS[0]至dWDQS[3]而自第四時間t4至第五時間t5產生包含資料D0至D7的資料訊號DQ。在自接收到讀取命令RD的第二時間t2起經過讀取潛時RL的第四時間t4,記憶體裝置200可開始傳輸包含資料D0至D7的資料訊號DQ。如此,資料D0至D7可與讀取資料選通訊號RDQS的雙態切換時序對齊,且可被傳輸至記憶體控制器100。 The memory device 200 may generate the data signal DQ including the data D0 to D7 from the fourth time t4 to the fifth time t5 based on the internal write data strobe signals dWDQS[0] to dWDQS[3]. After the fourth time t4 of the read latency RL has elapsed since the second time t2 when the read command RD was received, the memory device 200 may start to transmit the data signal DQ including the data D0 to D7. In this way, the data D0 to D7 can be aligned with the toggling timing of the read data strobe signal RDQS, and can be transmitted to the memory controller 100 .

由於寫入資料選通訊號WDQS的雙態切換在第六時間t6停止,因此內部寫入資料選通訊號dWDQS[0]至dWDQS[3]的雙態切換可停止。在此種情形中,內部寫入資料選通訊號dWDQS[0]至dWDQS[3]中的每一者可具有與在第一時間t1相同的值。亦即,在第六時間t6之後,內部寫入資料選通訊號dWDQS[0]至dWDQS[3]中的每一者可維持重設值。如此,如參照圖7A及圖7B所述,記憶體裝置200可在不進行附加重設操作的情況下產生具有所期望相位的內部寫入資料選通訊號dWDQS[0]至dWDQS[3],且可執行以下寫入操作及讀取操作。已參照圖8及圖9闡述了讀取操作的實例。然而,此項技術中具有通常知識者將理解,以上 參照圖5B、圖7A及圖7B所示時序圖闡述的寫入操作的技術概念亦可應用於讀取操作。因此,為了簡明起見,不再對此予以贅述。 Since the toggling of the write data strobe signal WDQS is stopped at the sixth time t6, the toggling of the internal write data strobe signals dWDQS[0] to dWDQS[3] can be stopped. In this case, each of the internal write data strobe signals dWDQS[0] to dWDQS[3] may have the same value as at the first time t1. That is, after the sixth time t6, each of the internal write data strobe signals dWDQS[0] to dWDQS[3] may maintain the reset value. Thus, as described with reference to FIGS. 7A and 7B , the memory device 200 can generate the internal write data strobe signals dWDQS[0] to dWDQS[3] with desired phases without additional reset operations, And the following write and read operations can be performed. An example of a read operation has been explained with reference to FIGS. 8 and 9 . However, those of ordinary skill in the art will understand that the above The technical concept of the write operation explained with reference to the timing diagrams shown in FIGS. 5B , 7A and 7B can also be applied to the read operation. Therefore, for the sake of brevity, it will not be repeated here.

圖10A及圖10B是示出根據各種實施例的WDQS分頻器的方塊圖。例如,可利用圖10A所示的WDQS分頻器230或圖10B所示的WDQS分頻器240來實施圖2所示記憶體裝置200的WDQS分頻器213。WDQS分頻器230及240中的每一者可基於寫入資料選通訊號WDQS而產生四個內部寫入資料選通訊號dWDQS[0]至dWDQS[3],如參照圖5A所述。 10A and 10B are block diagrams illustrating a WDQS frequency divider according to various embodiments. For example, the WDQS frequency divider 213 of the memory device 200 shown in FIG. 2 may be implemented using the WDQS frequency divider 230 shown in FIG. 10A or the WDQS frequency divider 240 shown in FIG. 10B . Each of the WDQS dividers 230 and 240 may generate four internal write data strobe signals dWDQS[0] through dWDQS[3] based on the write data strobe signal WDQS, as described with reference to FIG. 5A.

參照圖10A,WDQS分頻器230可包括第一鎖存器231及第二鎖存器232。第一鎖存器231及第二鎖存器232中的每一者可包括第一輸入端子「D」、第二輸入端子D’、第一輸出端子「Q」、第二輸出端子Q’、重設端子RST及時脈端子「C」。第一鎖存器231及第二鎖存器232中的每一者可藉由第一輸入端子「D」及第二輸入端子D’接收互補的輸入,且可藉由第一輸出端子「Q」及第二輸出端子Q’輸出互補的值。 Referring to FIG. 10A , the WDQS frequency divider 230 may include a first latch 231 and a second latch 232 . Each of the first latch 231 and the second latch 232 may include a first input terminal "D", a second input terminal D', a first output terminal "Q", a second output terminal Q', Reset terminal RST and clock terminal "C". Each of the first latch 231 and the second latch 232 may receive complementary inputs through the first input terminal "D" and the second input terminal D', and may receive complementary inputs through the first output terminal "Q" " and the second output terminal Q' output complementary values.

第一鎖存器231的第一輸入端子「D」可與第二鎖存器232的第二輸出端子Q’連接,且第一鎖存器231的第二輸入端子D’可與第二鎖存器232的第一輸出端子「Q」連接。第一鎖存器231的第一輸出端子「Q」可與第二鎖存器232的第一輸入端子「D」連接,且第一鎖存器231的第二輸出端子Q’可與第二鎖存器232的第二輸入端子D’連接。 The first input terminal "D" of the first latch 231 can be connected to the second output terminal Q' of the second latch 232, and the second input terminal D' of the first latch 231 can be connected to the second latch 232. The first output terminal "Q" of the register 232 is connected. The first output terminal "Q" of the first latch 231 may be connected with the first input terminal "D" of the second latch 232, and the second output terminal Q' of the first latch 231 may be connected with the second input terminal "D" of the second latch 232. The second input terminal D' of the latch 232 is connected.

重設訊號RESET可被輸入至第一鎖存器231及第二鎖 存器232中的每一者的重設端子RST。第一鎖存器231及第二鎖存器232可由重設訊號RESET重設。例如,如參照圖5A及圖5B所述,第一鎖存器231及第二鎖存器232中的每一者可依據寫入資料選通訊號WDQS的前同步碼循環的數目被初始化為低位準或高位準。當第一鎖存器231及第二鎖存器232中的每一者被重設時,第一鎖存器231及第二鎖存器232中的每一者可藉由第一輸出端子「Q」輸出重設值,且可藉由第二輸出端子Q’輸出互補值。 The reset signal RESET can be input to the first latch 231 and the second latch A reset terminal RST of each of the registers 232. The first latch 231 and the second latch 232 can be reset by the reset signal RESET. For example, as described with reference to FIGS. 5A and 5B , each of the first latch 231 and the second latch 232 may be initialized to low bits according to the number of preamble cycles of the write data strobe signal WDQS standard or high level. When each of the first latch 231 and the second latch 232 is reset, each of the first latch 231 and the second latch 232 can pass through the first output terminal " Q" outputs the reset value, and can output the complementary value through the second output terminal Q'.

寫入資料選通訊號WDQS可輸入至第一鎖存器231的時脈端子「C」,且互補寫入資料選通訊號WDQSB可輸入至第二鎖存器232的時脈端子「C」。寫入資料選通訊號WDQS及互補寫入資料選通訊號WDQSB可分別輸入至第一鎖存器231及第二鎖存器232的時脈端子「C」。在此種情形中,可自記憶體控制器100作為差動訊號來提供寫入資料選通訊號WDQS及互補寫入資料選通訊號WDQSB。第一鎖存器231可基於寫入資料選通訊號WDQS的上升邊緣而將輸入至輸入端子「D」及D’的值輸出至輸出端子「Q」及Q’。第二鎖存器232可基於互補寫入資料選通訊號WDQSB的上升邊緣而將輸入至輸入端子「D」及D’的值輸出至輸出端子「Q」及Q’。 The write data strobe signal WDQS may be input to the clock terminal “C” of the first latch 231 , and the complementary write data strobe signal WDQSB may be input to the clock terminal “C” of the second latch 232 . The write data strobe signal WDQS and the complementary write data strobe signal WDQSB can be input to the clock terminal "C" of the first latch 231 and the second latch 232, respectively. In this case, the write data strobe signal WDQS and the complementary write data strobe signal WDQSB can be provided from the memory controller 100 as differential signals. The first latch 231 may output the values input to the input terminals "D" and D' to the output terminals "Q" and Q' based on the rising edge of the write data strobe signal WDQS. The second latch 232 may output the values input to the input terminals "D" and D' to the output terminals "Q" and Q' based on the rising edge of the complementary write data strobe signal WDQSB.

可自第一鎖存器231的第一輸出端子「Q」輸出第一內部寫入資料選通訊號dWDQS[0],且可自第一鎖存器231的第二輸出端子Q’輸出第三內部寫入資料選通訊號dWDQS[2]。可自第二鎖存器232的第一輸出端子「Q」輸出第二內部寫入資料選通訊號 dWDQS[1],且可自第二鎖存器232的第二輸出端子Q’輸出第四內部寫入資料選通訊號dWDQS[3]。 The first internal write data strobe signal dWDQS[0] can be output from the first output terminal "Q" of the first latch 231, and the third output terminal Q' can be output from the first latch 231 Internal write data strobe signal dWDQS[2]. The second internal write data strobe signal can be output from the first output terminal "Q" of the second latch 232 dWDQS[1], and the fourth internal write data strobe signal dWDQS[3] can be output from the second output terminal Q' of the second latch 232.

參照圖5A及圖10A,當在寫入資料選通訊號WDQS進行雙態切換之前輸入重設訊號RESET時,依據重設訊號RESET,WDQS分頻器230可藉由第一輸出端子「Q」輸出具有低位準的第一內部寫入資料選通訊號dWDQS[0]及第二內部寫入資料選通訊號dWDQS[1],且可藉由第二輸出端子Q’輸出具有高位準的第三內部寫入資料選通訊號dWDQS[2]及第四內部寫入資料選通訊號dWDQS[3]。在寫入資料選通訊號WDQS進行雙態切換時,WDQS分頻器230可基於寫入資料選通訊號WDQS的上升邊緣及互補寫入資料選通訊號WDQSB的上升邊緣而輸出雙態切換的內部寫入資料選通訊號dWDQS[0]至dWDQS[3]。 5A and FIG. 10A , when the reset signal RESET is input before the write data strobe signal WDQS is toggled, the WDQS frequency divider 230 can be output through the first output terminal “Q” according to the reset signal RESET The first internal write data strobe signal dWDQS[0] and the second internal write data strobe signal dWDQS[1] have a low level, and the third internal write data strobe signal with a high level can be output through the second output terminal Q' Write data strobe signal dWDQS[2] and the fourth internal write data strobe signal dWDQS[3]. When the write data strobe signal WDQS is toggled, the WDQS frequency divider 230 can output the internal toggling based on the rising edge of the write data strobe signal WDQS and the rising edge of the complementary write data strobe signal WDQSB. Write the data strobe signals dWDQS[0] to dWDQS[3].

參照圖10B,WDQS分頻器240可包括第一鎖存器241及第二鎖存器242。第一鎖存器241及第二鎖存器242中的每一者可包括輸入端子「D」、第一輸出端子「Q」、第二輸出端子Q’、重設端子RST及時脈端子「C」。第一鎖存器241及第二鎖存器242中的每一者可藉由第一輸出端子「Q」及第二輸出端子Q’輸出互補的值。第一鎖存器241的輸入端子「D」可與第二鎖存器242的第二輸出端子Q’連接。第一鎖存器241的第一輸出端子「Q」可與第二鎖存器242的輸入端子「D」連接。 Referring to FIG. 10B , the WDQS frequency divider 240 may include a first latch 241 and a second latch 242 . Each of the first latch 241 and the second latch 242 may include an input terminal "D", a first output terminal "Q", a second output terminal Q', a reset terminal RST, and a clock terminal "C" ". Each of the first latch 241 and the second latch 242 can output complementary values through the first output terminal "Q" and the second output terminal Q'. The input terminal "D" of the first latch 241 may be connected to the second output terminal Q' of the second latch 242. The first output terminal "Q" of the first latch 241 may be connected to the input terminal "D" of the second latch 242 .

可自第一鎖存器241的第一輸出端子「Q」輸出第一內部寫入資料選通訊號dWDQS[0],且可自第一鎖存器241的第二輸 出端子Q’輸出第三內部寫入資料選通訊號dWDQS[2]。可自第二鎖存器242的第一輸出端子「Q」輸出第二內部寫入資料選通訊號dWDQS[1],且可自第二鎖存器242的第二輸出端子Q’輸出第四內部寫入資料選通訊號dWDQS[3]。如此,WDQS分頻器240的操作可與圖10A所示WDQS分頻器230的操作實質上相同,且因此,將省略附加的說明以避免冗餘。 The first internal write data strobe signal dWDQS[0] can be output from the first output terminal “Q” of the first latch 241 , and can be output from the second output terminal of the first latch 241 . The output terminal Q' outputs the third internal write data strobe signal dWDQS[2]. The second internal write data strobe signal dWDQS[1] can be output from the first output terminal "Q" of the second latch 242, and the fourth output terminal Q' can be output from the second latch 242. Internal write data strobe signal dWDQS[3]. As such, the operation of the WDQS frequency divider 240 may be substantially the same as that of the WDQS frequency divider 230 shown in FIG. 10A, and thus, additional description will be omitted to avoid redundancy.

圖11是示出圖1所示記憶體系統10的記憶體介面的示例性方塊圖。參照圖11,記憶體介面(I/F)110可包括鎖相迴路111、相位控制器112、第一傳輸器113、第二傳輸器114、內部時脈分頻器115、第三傳輸器116及第四傳輸器117。鎖相迴路111可產生第一內部時脈訊號ICS1。基於第一內部時脈訊號ICS1,相位控制器112可產生相位與第一內部時脈訊號ICS1的相位不同的第二內部時脈訊號ICS2。例如,第一內部時脈訊號ICS1及第二內部時脈訊號ICS2可異相90度。 FIG. 11 is an exemplary block diagram illustrating a memory interface of the memory system 10 shown in FIG. 1 . 11 , the memory interface (I/F) 110 may include a phase-locked loop 111 , a phase controller 112 , a first transmitter 113 , a second transmitter 114 , an internal clock divider 115 , and a third transmitter 116 and the fourth transmitter 117 . The phase-locked loop 111 can generate the first internal clock signal ICS1. Based on the first internal clock signal ICS1, the phase controller 112 can generate a second internal clock signal ICS2 with a phase different from that of the first internal clock signal ICS1. For example, the first internal clock signal ICS1 and the second internal clock signal ICS2 may be out of phase by 90 degrees.

第一傳輸器113可基於第二內部時脈訊號ICS2而傳輸資料「DATA」。如此,第一傳輸器113可向記憶體裝置200傳輸包含資料「DATA」的資料訊號DQ。第二傳輸器114可將第一內部時脈訊號ICS1作為寫入資料選通訊號WDQS傳輸至記憶體裝置200。 The first transmitter 113 can transmit the data "DATA" based on the second internal clock signal ICS2. In this way, the first transmitter 113 can transmit the data signal DQ including the data “DATA” to the memory device 200 . The second transmitter 114 can transmit the first internal clock signal ICS1 to the memory device 200 as the write data strobe signal WDQS.

內部時脈分頻器115可對第一內部時脈訊號ICS1進行分頻,以產生具有不同相位的第一經分頻內部時脈訊號dICS1及第二經分頻內部時脈訊號dICS2。第一經分頻內部時脈訊號dICS1 的邊緣時序可與第一內部時脈訊號ICS1的邊緣時序相同,且第一經分頻內部時脈訊號dICS1與第二經分頻內部時脈訊號dICS2可異相270度。例如,經分頻內部時脈訊號dICS1及dICS2的頻率可為第二內部時脈訊號ICS2的頻率的一半。 The internal clock frequency divider 115 can divide the frequency of the first internal clock signal ICS1 to generate the first frequency-divided internal clock signal dICS1 and the second frequency-divided internal clock signal dICS2 having different phases. The first divided internal clock signal dICS1 The edge timing of dICS1 may be the same as the edge timing of the first internal clock signal ICS1, and the first frequency-divided internal clock signal dICS1 and the second frequency-divided internal clock signal dICS2 may be out of phase by 270 degrees. For example, the frequency of the divided internal clock signals dICS1 and dICS2 may be half the frequency of the second internal clock signal ICS2.

第三傳輸器116可將第一經分頻內部時脈訊號dICS1作為時脈訊號CK傳輸至記憶體裝置200。由於第一經分頻內部時脈訊號dICS1的邊緣時序與第二內部時脈訊號ICS2的邊緣時序相同,因此可以相同的邊緣時序輸出時脈訊號CK及寫入資料選通訊號WDQS。第四傳輸器117可基於第二經分頻內部時脈訊號dICS2而傳輸命令CMD及/或位址ADD。如此,第四傳輸器117可將包含命令CMD及/或位址ADD的命令/位址訊號C/A傳輸至記憶體裝置200。 The third transmitter 116 can transmit the first divided internal clock signal dICS1 to the memory device 200 as the clock signal CK. Since the edge timing of the first frequency-divided internal clock signal dICS1 is the same as that of the second internal clock signal ICS2, the clock signal CK and the write data strobe signal WDQS can be output at the same edge timing. The fourth transmitter 117 may transmit the command CMD and/or the address ADD based on the second divided internal clock signal dICS2. In this way, the fourth transmitter 117 can transmit the command/address signal C/A including the command CMD and/or the address ADD to the memory device 200 .

如上所述,可藉由一個鎖相迴路111產生時脈訊號CK及寫入資料選通訊號WDQS。如此,記憶體控制器100的操作電流可降低。 As mentioned above, the clock signal CK and the write data strobe signal WDQS can be generated by a phase-locked loop 111 . As such, the operating current of the memory controller 100 can be reduced.

圖12是示出根據各種實施例的堆疊式記憶體裝置的方塊圖。參照圖12,堆疊式記憶體裝置300可包括緩衝晶粒310及多個核心晶粒320至350。例如,緩衝晶粒310亦可被稱為「介面晶粒」、「基礎晶粒」、「邏輯晶粒」或「主晶粒」,且核心晶粒320至350中的每一者亦可被稱為「記憶體晶粒」或「從晶粒」。圖12中示出其中堆疊式記憶體裝置300包括四個核心晶粒320至350的一個實例,但可以各種方式改變核心晶粒的數目。例如,堆疊 式記憶體裝置300可包括8、12或16個核心晶粒。 12 is a block diagram illustrating a stacked memory device according to various embodiments. Referring to FIG. 12 , the stacked memory device 300 may include a buffer die 310 and a plurality of core dies 320 to 350 . For example, buffer die 310 may also be referred to as an "interface die," "base die," "logic die," or "main die," and each of core dies 320-350 may also be referred to as Known as "memory die" or "slave die". An example in which the stacked memory device 300 includes four core dies 320-350 is shown in FIG. 12, but the number of core dies may be varied in various ways. For example, stack Format memory device 300 may include 8, 12, or 16 core dies.

緩衝晶粒310及核心晶粒320至350可被堆疊,且可藉由使用矽穿孔(through silicon vias,TSV)進行電性連接。如此,堆疊式記憶體裝置300可具有其中堆疊有多個晶粒310至350的三維記憶體結構。例如,可遵照HBM或HMC標準來實施堆疊式記憶體裝置300。 The buffer die 310 and the core dies 320-350 may be stacked and electrically connected by using through silicon vias (TSVs). As such, the stacked memory device 300 may have a three-dimensional memory structure in which a plurality of dies 310 to 350 are stacked. For example, the stacked memory device 300 may be implemented in compliance with the HBM or HMC standards.

堆疊式記憶體裝置300可支援功能上彼此獨立的多個通道(或記憶庫(vault))。例如,如圖12所示,堆疊式記憶體裝置300可支援8個通道CH0至CH7。在其中通道CH0至CH7中的每一者支援128個DQ I/O的情形中,堆疊式記憶體裝置300可支援1204個DQ I/O。然而,實施例並非僅限於此。例如,堆疊式記憶體裝置300可支援1024或更多個DQ I/O,且可支援8或更多個通道(例如,16個通道)。在其中堆疊式記憶體裝置300支援16個通道的情形中,通道中的每一者可支援64個DQ I/O。 The stacked memory device 300 may support multiple channels (or vaults) that are functionally independent from each other. For example, as shown in FIG. 12, the stacked memory device 300 can support 8 channels CH0 to CH7. In the case where each of channels CH0-CH7 supports 128 DQ I/Os, stacked memory device 300 may support 1204 DQ I/Os. However, the embodiments are not so limited. For example, stacked memory device 300 may support 1024 or more DQ I/Os, and may support 8 or more channels (eg, 16 channels). In the case where stacked memory device 300 supports 16 channels, each of the channels may support 64 DQ I/Os.

核心晶粒320至350中的每一者可支援至少一個通道。例如,如圖12所示,核心晶粒320至350可分別支援通道對CH0及CH2、CH1及CH3、CH4及CH6以及CH5及CH7。在此種情形中,核心晶粒320至350可支援不同的通道。然而,實施例並非僅限於此。例如,核心晶粒320至350中的至少二者可支援相同的通道。例如,核心晶粒320至350中的每一者可支援第一通道CH0。 Each of core dies 320-350 may support at least one channel. For example, as shown in FIG. 12, core dies 320-350 may support channel pairs CH0 and CH2, CH1 and CH3, CH4 and CH6, and CH5 and CH7, respectively. In this case, core dies 320-350 may support different channels. However, the embodiments are not so limited. For example, at least two of core dies 320-350 may support the same channel. For example, each of core dies 320-350 may support the first channel CH0.

通道中的每一者可形成獨立的命令及資料介面。例如, 通道可基於獨立的時序要求而被獨立地時控,且亦可不同步。例如,基於獨立的命令,每一通道可改變電源狀態或者可執行再新操作。 Each of the channels can form independent command and data interfaces. E.g, Channels can be independently clocked based on independent timing requirements, and can also be asynchronous. For example, each channel can change power state or perform a refresh operation based on an independent command.

通道中的每一者可包括多個記憶組(memory bank)301。記憶組301中的每一者可包括與字元線及位元線連接的記憶體胞元、列解碼器、行解碼器、感測放大器等。例如,如圖12所示,通道CH0至CH7中的每一者可支援8個記憶組301。然而,實施例並非僅限於此。例如,通道CH0至CH7中的每一者可支援8或更多個記憶組301。圖12中示出其中屬於一個通道的記憶組被包含於一個核心晶粒中的實例,但屬於一個通道的記憶組可被分佈至多個核心晶粒中。例如,在其中核心晶粒320至350中的每一者支援第一通道CH0的情形中,第一通道CH0中所包括的記憶組可被分佈至核心晶粒320至350中。 Each of the channels may include multiple memory banks 301 . Each of the memory groups 301 may include memory cells, column decoders, row decoders, sense amplifiers, etc. connected to word lines and bit lines. For example, as shown in FIG. 12 , each of channels CH0 to CH7 may support 8 memory groups 301 . However, the embodiments are not so limited. For example, each of channels CH0-CH7 may support 8 or more memory banks 301 . An example in which memory groups belonging to one channel are included in one core die is shown in FIG. 12 , but memory groups belonging to one channel may be distributed to a plurality of core dies. For example, in the case where each of the core dies 320-350 supports the first channel CH0, the memory groups included in the first channel CH0 may be distributed among the core dies 320-350.

在示例性實施例中,一個通道可被劃分成彼此獨立操作的二個偽通道(pseudo channel)。例如,偽通道可共享對應通道的命令及時脈輸入(例如,時脈訊號CK及時脈賦能訊號CKE),但可獨立地解碼及執行命令。例如,在其中一個通道支援128個DQ I/O的情形中,偽通道中的每一者可支援64個DQ I/O。例如,在其中一個通道支援64個DQ I/O的情形中,偽通道中的每一者可支援32個DQ I/O。 In an exemplary embodiment, one channel may be divided into two pseudo channels that operate independently of each other. For example, pseudo-channels can share the command and pulse input of the corresponding channel (eg, the clock signal CK and the pulse enable signal CKE), but can decode and execute the commands independently. For example, in the case where one channel supports 128 DQ I/Os, each of the pseudo channels may support 64 DQ I/Os. For example, in the case where one channel supports 64 DQ I/Os, each of the pseudo channels may support 32 DQ I/Os.

緩衝晶粒310及核心晶粒320至350各自可包括TSV區域302。TSV區域302中可設置有被配置成穿透晶粒310至350 的TSV。緩衝晶粒310可藉由TSV與核心晶粒320至350交換訊號及/或資料。核心晶粒320至350中的每一者可藉由TSV與緩衝晶粒310交換訊號及/或資料,且核心晶粒320至350可藉由TSV彼此交換訊號及/或資料。在此種情形中,可藉由每一通道的對應TSV獨立地交換訊號及/或資料。例如,在其中外部主機裝置為了存取第一核心晶粒320的記憶體胞元而向第一通道CH0傳輸命令及位址的情形中,緩衝晶粒310可藉由與第一通道CH0對應的TSV向第一核心晶粒320傳輸控制訊號,且可存取第一通道CH0的記憶體胞元。 Buffer die 310 and core dies 320 - 350 may each include TSV region 302 . TSV region 302 may be provided with dies 310 to 350 configured to penetrate TSV. The buffer die 310 can exchange signals and/or data with the core dies 320 to 350 through the TSV. Each of core dies 320-350 can exchange signals and/or data with buffer die 310 via TSVs, and core dies 320-350 can exchange signals and/or data with each other via TSVs. In such a case, signals and/or data can be exchanged independently by the corresponding TSV of each channel. For example, in a situation where the external host device transmits commands and addresses to the first channel CH0 in order to access the memory cells of the first core die 320, the buffer die 310 may The TSV transmits control signals to the first core die 320 and can access the memory cells of the first channel CH0.

緩衝晶粒310可包括實體層(physical layer,PHY)311。實體層311可包括用於與外部主機裝置通訊的介面電路。例如,實體層311可包括與參照圖1至圖11闡述的主機介面210對應的介面電路。藉由實體層311接收的訊號及/或資料可藉由TSV被傳輸至核心晶粒320至350。 The buffer die 310 may include a physical layer (PHY) 311 . The physical layer 311 may include interface circuitry for communicating with external host devices. For example, the physical layer 311 may include interface circuits corresponding to the host interface 210 described with reference to FIGS. 1 to 11 . Signals and/or data received through physical layer 311 may be transmitted to core dies 320-350 through TSV.

在示例性實施例中,緩衝晶粒310可包括分別與通道對應的通道控制器。通道控制器可管理對應通道的記憶體參考操作,且可確定對應通道的時序要求。 In an exemplary embodiment, the buffer die 310 may include channel controllers corresponding to the channels, respectively. The channel controller can manage the memory reference operation of the corresponding channel and can determine the timing requirements of the corresponding channel.

在示例性實施例中,緩衝晶粒310可包括用於自外部主機裝置接收訊號的多個接腳。藉由所述多個接腳,緩衝晶粒310可接收時脈訊號CK、命令/位址訊號C/A、寫入資料選通訊號WDQS及資料訊號DQ,且可傳輸讀取資料選通訊號RDQS及資料訊號DQ。例如,對於每一通道,緩衝晶粒310可包括用於接收時 脈訊號CK的2個接腳、用於接收命令/位址訊號C/A的14個接腳、用於接收寫入資料選通訊號WDQS的8個接腳、用於傳輸讀取資料選通訊號RDQS的8個接腳以及用於傳輸及接收資料訊號DQ的128個接腳。 In an exemplary embodiment, the buffer die 310 may include a plurality of pins for receiving signals from an external host device. Through the plurality of pins, the buffer die 310 can receive the clock signal CK, the command/address signal C/A, the write data strobe signal WDQS and the data signal DQ, and can transmit the read data strobe signal RDQS and data signal DQ. For example, for each channel, buffer die 310 may include a buffer die 310 for receiving 2 pins of pulse signal CK, 14 pins used to receive command/address signal C/A, 8 pins used to receive write data strobe signal WDQS, used to transmit read data strobe 8 pins of RDQS and 128 pins of DQ for transmitting and receiving data signals.

圖13是示出根據實施例的圖12所示堆疊式記憶體裝置的更詳細示例性方塊圖。參照圖13,堆疊式記憶體裝置400可包括緩衝晶粒410及核心晶粒420。核心晶粒420可支援多個通道中的通道CHa。緩衝晶粒410及核心晶粒420可藉由置於TSV區域401中的TSV 402及403彼此通訊。TSV區域401可對應於通道CHa。例如,緩衝晶粒410可藉由TSV 402向核心晶粒420傳輸內部命令iCMD,且可藉由TSV 403與核心晶粒420交換資料「DATA」。 13 is a more detailed exemplary block diagram illustrating the stacked memory device shown in FIG. 12, according to an embodiment. Referring to FIG. 13 , the stacked memory device 400 may include a buffer die 410 and a core die 420 . The core die 420 may support the channel CHa of the plurality of channels. Buffer die 410 and core die 420 can communicate with each other through TSVs 402 and 403 placed in TSV region 401 . The TSV area 401 may correspond to the channel CHa. For example, the buffer die 410 can transmit the internal command iCMD to the core die 420 through the TSV 402 , and can exchange data “DATA” with the core die 420 through the TSV 403 .

緩衝晶粒410可包括C/A接收器411、控制邏輯電路412、WDQS分頻器413、RDQS傳輸器414及資料收發器415。C/A接收器411、控制邏輯電路412、WDQS分頻器413、RDQS傳輸器414及資料收發器415可被包含於圖12所示堆疊式記憶體裝置300的實體層311中,作為通道CHa的介面電路。亦即,對於每一通道,圖12所示實體層311可包括圖13所示的介面電路。C/A接收器411、控制邏輯電路412、WDQS分頻器413、RDQS傳輸器414及資料收發器415可分別對應於圖2所示C/A接收器211、控制邏輯電路212、WDQS分頻器213、RDQS傳輸器214及資料收發器215,且因此,將省略附加的說明以避免冗餘。 The buffer die 410 may include a C/A receiver 411 , a control logic circuit 412 , a WDQS frequency divider 413 , an RDQS transmitter 414 and a data transceiver 415 . The C/A receiver 411 , the control logic circuit 412 , the WDQS divider 413 , the RDQS transmitter 414 and the data transceiver 415 may be included in the physical layer 311 of the stacked memory device 300 shown in FIG. 12 as the channel CHa interface circuit. That is, for each channel, the physical layer 311 shown in FIG. 12 may include the interface circuit shown in FIG. 13 . The C/A receiver 411 , the control logic circuit 412 , the WDQS frequency divider 413 , the RDQS transmitter 414 and the data transceiver 415 may correspond to the C/A receiver 211 , the control logic circuit 212 , and the WDQS frequency divider shown in FIG. 2 , respectively. 213, RDQS transmitter 214, and data transceiver 215, and therefore, additional descriptions will be omitted to avoid redundancy.

緩衝晶粒410可接收藉由通道CHa提供的時脈訊號CK、命令/位址訊號C/A、寫入資料選通訊號WDQS及資料訊號DQ。緩衝晶粒410可將在通道CHa處產生的讀取資料選通訊號RDQS及資料訊號DQ傳輸至外部主機裝置。 The buffer die 410 can receive the clock signal CK, the command/address signal C/A, the write data strobe signal WDQS and the data signal DQ provided by the channel CHa. The buffer die 410 can transmit the read data strobe signal RDQS and the data signal DQ generated at the channel CHa to the external host device.

C/A接收器411可藉由基於時脈訊號CK而鎖存命令/位址訊號C/A來接收命令CMD。所接收的命令CMD可被提供至控制邏輯電路412。 The C/A receiver 411 may receive the command CMD by latching the command/address signal C/A based on the clock signal CK. The received command CMD may be provided to control logic circuit 412 .

依據命令CMD或電源狀態資訊PWS,控制邏輯電路412可在寫入資料選通訊號WDQS開始雙態切換之前產生重設訊號RESET。控制邏輯電路412可解碼命令CMD,且可依據命令CMD產生內部命令iCMD。例如,內部命令iCMD可遵照緩衝晶粒410與核心晶粒420之間的內部通訊協定以不同於命令CMD的格式產生,或者可以與命令CMD相同的格式產生。內部命令iCMD可藉由TSV 402被傳輸至支援通道CHa的核心晶粒420。 According to the command CMD or the power state information PWS, the control logic circuit 412 can generate the reset signal RESET before the write data strobe signal WDQS starts toggling. The control logic circuit 412 can decode the command CMD, and can generate the internal command iCMD according to the command CMD. For example, the internal command iCMD may be generated in a format different from that of the command CMD, or may be generated in the same format as the command CMD, in accordance with the internal communication protocol between the buffer die 410 and the core die 420 . The internal command iCMD can be transmitted through the TSV 402 to the core die 420 supporting the channel CHa.

WDQS分頻器413可因應於重設訊號RESET而被重設。如此,WDQS分頻器413可將內部寫入資料選通訊號dWDQS初始化為重設值。WDQS分頻器413可依據寫入資料選通訊號WDQS的雙態切換而產生以不同相位進行雙態切換的內部寫入資料選通訊號dWDQS。 The WDQS frequency divider 413 can be reset in response to the reset signal RESET. In this way, the WDQS frequency divider 413 can initialize the internal write data strobe signal dWDQS to a reset value. The WDQS frequency divider 413 can generate the internal write data strobe signal dWDQS which is toggled in different phases according to the toggling of the write data strobe signal WDQS.

在示例性實施例中,堆疊式記憶體裝置400可在沒有單獨的終端電阻器(termination resistor)的情況下傳輸或接收寫入資料選通訊號WDQS。換言之,可省略單獨的終端電阻器。在此 種情形中,寫入資料選通訊號WDQS可處於靜態低狀態或靜態高狀態,而不是高阻抗狀態High-Z。如此,可輕易地執行WDQS分頻器413的重設操作。 In an exemplary embodiment, the stacked memory device 400 may transmit or receive the write data strobe signal WDQS without a separate termination resistor. In other words, a separate terminating resistor can be omitted. here In this case, the write data strobe signal WDQS may be in a static low state or a static high state instead of the high impedance state High-Z. In this way, the reset operation of the WDQS frequency divider 413 can be easily performed.

RDQS傳輸器414可基於內部寫入資料選通訊號dWDQS而產生讀取資料選通訊號RDQS,且可將讀取資料選通訊號RDQS傳輸至外部主機裝置。讀取資料選通訊號RDQS可被產生為具有與寫入資料選通訊號WDQS的頻率相同的頻率。 The RDQS transmitter 414 can generate the read data strobe signal RDQS based on the internal write data strobe signal dWDQS, and can transmit the read data strobe signal RDQS to the external host device. The read data strobe signal RDQS may be generated to have the same frequency as the write data strobe signal WDQS.

資料收發器415可基於內部寫入資料選通訊號dWDQS而傳輸及接收包含資料「DATA」的資料訊號DQ。在寫入操作中,資料收發器415可藉由基於內部寫入資料選通訊號dWDQS而鎖存資料訊號DQ來接收資料「DATA」。所接收的資料「DATA」可藉由TSV 403被傳輸至支援通道CHa的核心晶粒420。在讀取操作中,資料收發器415可接收藉由TSV 403自核心晶粒420傳輸的資料「DATA」。資料收發器415可基於內部寫入資料選通訊號dWDQS而向外部主機裝置傳輸包含資料「DATA」的資料訊號DQ。資料「DATA」可與讀取資料選通訊號RDQS的雙態切換時序對齊,且可被傳輸。 The data transceiver 415 can transmit and receive the data signal DQ including the data "DATA" based on the internal write data strobe signal dWDQS. In a write operation, the data transceiver 415 may receive the data "DATA" by latching the data signal DQ based on the internal write data strobe signal dWDQS. The received data "DATA" can be transmitted to the core die 420 supporting the channel CHa through the TSV 403 . In a read operation, data transceiver 415 may receive data "DATA" transmitted from core die 420 via TSV 403 . The data transceiver 415 can transmit the data signal DQ including the data "DATA" to the external host device based on the internal write data strobe signal dWDQS. The data "DATA" can be aligned with the toggling timing of the read data strobe signal RDQS and can be transmitted.

核心晶粒420可包括命令解碼器421、資料輸入/輸出(I/O)電路422及記憶體胞元陣列423。命令解碼器421、資料輸入/輸出電路422及記憶體胞元陣列423可為支援通道CHa的電路。 The core die 420 may include a command decoder 421 , data input/output (I/O) circuits 422 and a memory cell array 423 . The command decoder 421, the data input/output circuit 422, and the memory cell array 423 may be circuits supporting the channel CHa.

命令解碼器421可解碼藉由TSV 402自緩衝晶粒410傳 輸的內部命令iCMD。例如,內部命令iCMD可包括與記憶體胞元陣列220相關聯的現用命令、寫入命令、讀取命令、再新命令等。在寫入操作中,命令解碼器421可接收包括寫入命令的內部命令iCMD。在讀取操作中,命令解碼器421可接收包括讀取命令的內部命令iCMD。命令解碼器421可依據內部命令iCMD來控制資料輸入/輸出電路422及記憶體胞元陣列423。 The command decoder 421 can decode the transmission from the buffer die 410 through the TSV 402 Input the internal command iCMD. For example, the internal commands iCMD may include active commands, write commands, read commands, refresh commands, etc. associated with the memory cell array 220 . In a write operation, the command decoder 421 may receive an internal command iCMD including a write command. In a read operation, the command decoder 421 may receive an internal command iCMD including a read command. The command decoder 421 can control the data input/output circuit 422 and the memory cell array 423 according to the internal command iCMD.

資料輸入/輸出電路422可藉由TSV 403與緩衝晶粒410交換資料。在寫入操作中,資料輸入/輸出電路422可接收藉由TSV 403自緩衝晶粒410傳輸的資料「DATA」,且可將資料「DATA」傳輸至記憶體胞元陣列423。記憶體胞元陣列423可儲存資料「DATA」。在讀取操作中,資料輸入/輸出電路422可自記憶體胞元陣列423讀取資料「DATA」,且可藉由TSV 403將所接收的資料「DATA」傳輸至緩衝晶粒410。 The data input/output circuit 422 can exchange data with the buffer die 410 through the TSV 403 . In a write operation, the data input/output circuit 422 may receive the data "DATA" transmitted from the buffer die 410 by the TSV 403 and may transmit the data "DATA" to the memory cell array 423. The memory cell array 423 can store data "DATA". In the read operation, the data input/output circuit 422 can read the data “DATA” from the memory cell array 423 , and can transmit the received data “DATA” to the buffer die 410 through the TSV 403 .

在示例性實施例中,緩衝晶粒410可更包括用於偵測及校正資料「DATA」的錯誤的錯誤校正碼(error correction code,ECC)電路(圖中未示出)。例如,在寫入操作中,ECC電路可為藉由資料收發器415接收的資料「DATA」產生錯誤偵測位元(例如,同位位元)。在讀取操作中,ECC電路可藉由使用錯誤偵測位元來偵測及校正自核心晶粒420傳送的資料「DATA」的錯誤,且可將經錯誤校正的資料「DATA」傳送至資料收發器415。 In an exemplary embodiment, the buffer die 410 may further include an error correction code (ECC) circuit (not shown) for detecting and correcting errors of the data "DATA". For example, in a write operation, the ECC circuit may generate error detection bits (eg, parity bits) for the data "DATA" received by the data transceiver 415 . During a read operation, the ECC circuit can detect and correct errors in the data "DATA" transmitted from the core die 420 by using the error detection bits, and can transmit the error-corrected data "DATA" to the data Transceiver 415.

如上所述,在寫入資料選通訊號WDQS開始雙態切換之前,堆疊式記憶體裝置400可將內部寫入資料選通訊號dWDQS 初始化為重設值。在此種情形中,在寫入資料選通訊號WDQS進行雙態切換時產生的內部寫入資料選通訊號dWDQS可具有所期望相位。如此,堆疊式記憶體裝置400可在不執行單獨的自動同步的情況下調整內部寫入資料選通訊號dWDQS的相位。堆疊式記憶體裝置400可基於具有所期望相位的內部寫入資料選通訊號dWDQS來傳輸及接收資料「DATA」。 As described above, before the write data strobe signal WDQS starts toggling, the stacked memory device 400 can internally write the data strobe signal dWDQS Initialized to reset value. In this case, the internal write data strobe signal dWDQS generated when the write data strobe signal WDQS is toggled can have a desired phase. As such, the stacked memory device 400 can adjust the phase of the internal write data strobe signal dWDQS without performing a separate automatic synchronization. The stacked memory device 400 can transmit and receive data "DATA" based on the internal write data strobe signal dWDQS having a desired phase.

圖14是示出根據實施例的圖12所示堆疊式記憶體裝置的更詳細示例性方塊圖。參照圖14,堆疊式記憶體裝置400可包括緩衝晶粒410、核心晶粒420(關於圖14所示實施例,下文中稱為「第一核心晶粒420」)及第二核心晶粒430。第一核心晶粒420及第二核心晶粒430可支援多個通道中的同一通道CHa。在此種情形中,可藉由使用堆疊識別符SID來區分第一核心晶粒420及第二核心晶粒430。例如,第一核心晶粒420可對應於第一堆疊識別符SID0,且第二核心晶粒430可對應於第二堆疊識別符SID1。圖14中示出其中在第一核心晶粒420與第二核心晶粒430之間不存在任何其他核心晶粒的實例,但在第一核心晶粒420與第二核心晶粒430之間可夾置有任何其他核心晶粒。 14 is a more detailed exemplary block diagram illustrating the stacked memory device shown in FIG. 12, according to an embodiment. 14 , the stacked memory device 400 may include a buffer die 410 , a core die 420 (with respect to the embodiment shown in FIG. 14 , hereinafter referred to as “first core die 420 ”) and a second core die 430 . The first core die 420 and the second core die 430 may support the same channel CHa in multiple channels. In this case, the first core die 420 and the second core die 430 can be distinguished by using the stack identifier SID. For example, the first core die 420 may correspond to the first stack identifier SID0, and the second core die 430 may correspond to the second stack identifier SID1. An example is shown in FIG. 14 in which no other core die exists between the first core die 420 and the second core die 430 , but there may be between the first core die 420 and the second core die 430 sandwiched with any other core die.

緩衝晶粒410以及第一核心晶粒420及第二核心晶粒430可藉由置於TSV區域401中的TSV 402及403彼此通訊。例如,緩衝晶粒410可藉由TSV 402將內部命令iCMD傳輸至第一核心晶粒420及/或第二核心晶粒430,且可藉由TSV 403與第一核心晶粒420及/或第二核心晶粒430交換資料「DATA」。圖14 中示出其中緩衝晶粒410藉由使用相同的TSV 402及403與第一核心晶粒420及第二核心晶粒430通訊的實例,但緩衝晶粒410可藉由使用分別與第一核心晶粒420及第二核心晶粒430對應的單獨的TSV進行通訊。 The buffer die 410 and the first core die 420 and the second core die 430 can communicate with each other through the TSVs 402 and 403 placed in the TSV region 401 . For example, the buffer die 410 can transmit the internal command iCMD to the first core die 420 and/or the second core die 430 through the TSV 402, and can communicate with the first core die 420 and/or the second core die 430 through the TSV 403 The two core dies 430 exchange data "DATA". Figure 14 An example is shown in which the buffer die 410 communicates with the first core die 420 and the second core die 430 by using the same TSVs 402 and 403, but the buffer die 410 may communicate with the first core die respectively by using the same TSVs 402 and 403 The individual TSVs corresponding to the die 420 and the second core die 430 communicate with each other.

第二核心晶粒430可包括命令解碼器431、資料輸入/輸出(I/O)電路432及記憶體胞元陣列433。命令解碼器431、資料輸入/輸出電路432及記憶體胞元陣列433的操作可與核心晶粒420的命令解碼器421、資料輸入/輸出電路422及記憶體胞元陣列423的操作實質上相同,如參照圖13所述,且因此為了簡明起見,不再對此予以贅述。 The second core die 430 may include a command decoder 431 , a data input/output (I/O) circuit 432 and a memory cell array 433 . The operations of the command decoder 431 , the data input/output circuit 432 and the memory cell array 433 may be substantially the same as the operations of the command decoder 421 , the data input/output circuit 422 and the memory cell array 423 of the core die 420 , as described with reference to FIG. 13 , and therefore, for the sake of brevity, will not be repeated here.

C/A接收器411可藉由基於時脈訊號CK而鎖存命令/位址訊號C/A來接收命令CMD及堆疊識別符SID。堆疊識別符SID可為指示至少一個核心晶粒的位址,用於區分支援同一通道的核心晶粒。所接收的命令CMD及堆疊識別符SID可被提供至控制邏輯電路412。 The C/A receiver 411 may receive the command CMD and the stack identifier SID by latching the command/address signal C/A based on the clock signal CK. The stack identifier SID may be an address indicating at least one core die for distinguishing core dies supporting the same channel. The received command CMD and stack identifier SID may be provided to control logic circuit 412 .

控制邏輯電路412可基於堆疊識別符SID而將內部命令iCMD傳輸至第一核心晶粒420及第二核心晶粒430中的至少一者。例如,在其中堆疊識別符SID指示第一堆疊識別符SID0的情形中,控制邏輯電路412可將內部命令iCMD傳輸至第一核心晶粒420。 The control logic circuit 412 may transmit the internal command iCMD to at least one of the first core die 420 and the second core die 430 based on the stack identifier SID. For example, in the case where the stack identifier SID indicates the first stack identifier SID0 , the control logic circuit 412 may transmit the internal command iCMD to the first core die 420 .

在示例性實施例中,如圖14所示,在其中內部命令iCMD及資料「DATA」是藉由公共的TSV 402及403被傳送至第 一核心晶粒420及第二核心晶粒430的情形中,緩衝晶粒410可將堆疊識別符SID傳送至第一核心晶粒420及第二核心晶粒430。第一核心晶粒420及第二核心晶粒430可解碼所傳送的堆疊識別符SID,以選擇性地接收內部命令iCMD及資料「DATA」。例如,在其中堆疊識別符SID指示第一堆疊識別符SID0的情形中,第一核心晶粒420可接收藉由TSV 420及430傳送的內部命令iCMD及資料「DATA」。在此種情形中,第二核心晶粒430可不接收藉由TSV 420及430傳送的內部命令iCMD及資料「DATA」。 In an exemplary embodiment, as shown in FIG. 14, in which the internal command iCMD and the data "DATA" are transmitted to the first via the common TSVs 402 and 403 In the case of a core die 420 and a second core die 430 , the buffer die 410 can transmit the stack identifier SID to the first core die 420 and the second core die 430 . The first core die 420 and the second core die 430 can decode the transmitted stack identifier SID to selectively receive the internal command iCMD and the data "DATA". For example, in the case where the stack identifier SID indicates the first stack identifier SID0 , the first core die 420 may receive the internal command iCMD and the data “DATA” transmitted through the TSVs 420 and 430 . In this case, the second core die 430 may not receive the internal command iCMD and the data "DATA" transmitted through the TSVs 420 and 430 .

在另一實施例中,在其中內部命令iCMD及資料「DATA」是藉由單獨的TSV被傳送至第一核心晶粒420及第二核心晶粒430的情形中,緩衝晶粒410可藉由單獨的TSV將內部命令iCMD及資料「DATA」傳送至與堆疊識別符SID對應的核心晶粒。 In another embodiment, in the case where the internal command iCMD and the data "DATA" are transmitted to the first core die 420 and the second core die 430 by separate TSVs, the buffer die 410 may be transmitted by A separate TSV transmits the internal command iCMD and data "DATA" to the core die corresponding to the stack identifier SID.

如上所述,在其中第一核心晶粒420及第二核心晶粒430支援同一通道CHa的情形中,堆疊式記憶體裝置400可依據堆疊識別符SID對第一核心晶粒420及第二核心晶粒430中的至少一者執行寫入操作及讀取操作。 As described above, in the case where the first core die 420 and the second core die 430 support the same channel CHa, the stacked memory device 400 can identify the first core die 420 and the second core according to the stack identifier SID At least one of the dies 430 performs a write operation and a read operation.

圖15是示出根據實施例的圖13所示堆疊式記憶體裝置的緩衝晶粒的實施例的方塊圖。參照圖15,緩衝晶粒410可包括命令位址輸入/輸出區塊AWORD及資料輸入/輸出區塊DWORD0至DWORD3。圖15中示出其中緩衝晶粒410包括四個資料輸入/輸出區塊DWORD0至DWORD3的實例,但可以各種方式改變緩衝晶粒410所包括的資料輸入/輸出區塊的數目。例如,緩衝晶粒 410可包括二個資料輸入/輸出區塊。 15 is a block diagram illustrating an embodiment of a buffer die of the stacked memory device shown in FIG. 13, according to an embodiment. 15, the buffer die 410 may include a command address input/output block AWORD and data input/output blocks DWORD0 to DWORD3. An example in which the buffer die 410 includes four data input/output blocks DWORD0 to DWORD3 is shown in FIG. 15 , but the number of data input/output blocks included in the buffer die 410 may be changed in various ways. For example, buffer die 410 may include two data input/output blocks.

命令位址輸入/輸出區塊AWORD可包括C/A接收器411、控制邏輯電路412及時脈樹416。C/A接收器411可藉由基於自第二接墊P2接收的時脈訊號CK而鎖存自第一接墊P1接收的命令/位址訊號C/A來接收命令CMD。控制邏輯電路412可基於命令CMD或電源狀態資訊PWS而產生重設訊號RESET,且可將重設訊號RESET傳輸至相應的資料輸入/輸出區塊DWORD0至DWORD3。控制邏輯電路412可依據命令CMD產生內部命令iCMD,且可將內部命令iCMD傳輸至核心晶粒420。可利用包括多個反相器的反相器鏈來實施時脈樹416。時脈樹416基於時脈訊號CK而產生的內部時脈訊號iCK可被傳輸至相應的資料輸入/輸出區塊DWORD0至DWORD3。 The command address input/output block AWORD may include a C/A receiver 411 , a control logic circuit 412 and a clock tree 416 . The C/A receiver 411 may receive the command CMD by latching the command/address signal C/A received from the first pad P1 based on the clock signal CK received from the second pad P2. The control logic circuit 412 can generate the reset signal RESET based on the command CMD or the power state information PWS, and can transmit the reset signal RESET to the corresponding data input/output blocks DWORD0 to DWORD3. The control logic circuit 412 can generate the internal command iCMD according to the command CMD, and can transmit the internal command iCMD to the core die 420 . Clock tree 416 may be implemented with an inverter chain including multiple inverters. The internal clock signal iCK generated by the clock tree 416 based on the clock signal CK can be transmitted to the corresponding data input/output blocks DWORD0 to DWORD3.

資料輸入/輸出區塊DWORD0至DWORD3中的每一者可自命令位址輸入/輸出區塊AWORD接收內部時脈訊號iCK及重設訊號RESET。資料輸入/輸出區塊DWORD0至DWORD3中的每一者可包括WDQS分頻器413、RDQS傳輸器414及資料收發器415。WDQS分頻器413可基於自第三接墊P3接收的寫入資料選通訊號WDQS而產生內部寫入資料選通訊號dWDQS。WDQS分頻器413可因應於重設訊號RESET而將內部寫入資料選通訊號dWDQS初始化為重設值。RDQS傳輸器414可基於內部寫入資料選通訊號dWDQS而產生讀取資料選通訊號RDQS。讀取資料選通訊號RDQS可藉由第四接墊P4被傳輸至外部主機裝置。資料收發 器415可基於內部寫入資料選通訊號dWDQS而產生包含自核心晶粒420傳輸的資料「DATA」的資料訊號DQ。資料訊號DQ可藉由第五接墊P5被傳輸至外部主機裝置。 Each of the data input/output blocks DWORD0 to DWORD3 can receive the internal clock signal iCK and the reset signal RESET from the command address input/output block AWORD. Each of the data input/output blocks DWORD0 through DWORD3 may include a WDQS divider 413 , an RDQS transmitter 414 and a data transceiver 415 . The WDQS frequency divider 413 can generate the internal write data strobe signal dWDQS based on the write data strobe signal WDQS received from the third pad P3. The WDQS frequency divider 413 can initialize the internal write data strobe signal dWDQS to a reset value in response to the reset signal RESET. The RDQS transmitter 414 can generate the read data strobe signal RDQS based on the internal write data strobe signal dWDQS. The read data strobe signal RDQS can be transmitted to the external host device through the fourth pad P4. data sending and receiving The device 415 may generate a data signal DQ including the data "DATA" transmitted from the core die 420 based on the internal write data strobe signal dWDQS. The data signal DQ can be transmitted to the external host device through the fifth pad P5.

如上所述,藉以接收時脈訊號CK的第二接墊P2可被置於命令位址輸入/輸出區塊AWORD處,且藉以分別接收寫入資料選通訊號WDQS及讀取資料選通訊號RDQS的第三接墊P3及第四接墊P4可被置於資料輸入/輸出區塊DWORD處。由命令位址輸入/輸出區塊AWORD接收的時脈訊號CK可藉由時脈樹416被傳送至資料輸入/輸出區塊DWORD。如此,在其中基於時脈訊號CK而產生讀取資料選通訊號RDQS的情形中,由於在藉以傳送時脈訊號CK的路徑上置有反相器鏈,電源雜訊及製程-電壓-溫度(process-voltage-temperature,PVT)變化的影響可增加。在其中基於由資料輸入/輸出區塊DWORD接收的寫入資料選通訊號WDQS而產生讀取資料選通訊號RDQS的情形中,由於在藉以傳送寫入資料選通訊號WDQS的路徑上未置有反相器鏈,因此功率雜訊及PVT變化的影響可降低。如此,讀取資料選通訊號RDQS的可靠性可得以改良。 As described above, the second pad P2 for receiving the clock signal CK can be placed at the command address input/output block AWORD, and thereby respectively receive the write data strobe signal WDQS and the read data strobe signal RDQS The third pad P3 and the fourth pad P4 can be placed at the data input/output block DWORD. The clock signal CK received by the command address input/output block AWORD can be transmitted to the data input/output block DWORD through the clock tree 416 . Thus, in the case where the read data strobe signal RDQS is generated based on the clock signal CK, since the inverter chain is placed on the path through which the clock signal CK is transmitted, power noise and process-voltage-temperature ( The effect of process-voltage-temperature, PVT) changes can increase. In the case where the read data strobe signal RDQS is generated based on the write data strobe signal WDQS received by the data input/output block DWORD, since there is no setting on the path through which the write data strobe signal WDQS is transmitted inverter chain, so the effects of power noise and PVT variations can be reduced. In this way, the reliability of reading the data strobe signal RDQS can be improved.

圖16是示出根據實施例的半導體封裝件的圖。參照圖16,半導體封裝件1000可包括堆疊式記憶體裝置1100、系統晶片1200、中介層1300及封裝基底1400。堆疊式記憶體裝置1100可包括緩衝晶粒1110及核心晶粒1120至1150。緩衝晶粒1110可對應於圖12所示緩衝晶粒310,且核心晶粒1120至1150可分別對 應於圖12所示核心晶粒320至350。 FIG. 16 is a diagram illustrating a semiconductor package according to an embodiment. 16 , a semiconductor package 1000 may include a stacked memory device 1100 , a system chip 1200 , an interposer 1300 and a package substrate 1400 . The stacked memory device 1100 may include a buffer die 1110 and core dies 1120-1150. The buffer die 1110 may correspond to the buffer die 310 shown in FIG. 12 , and the core dies 1120 to 1150 may correspond to should correspond to the core dies 320 to 350 shown in FIG. 12 .

核心晶粒1120至1150中的每一者可包括記憶體胞元陣列。緩衝晶粒1110可包括實體層1111及直接存取區域(direct access area,DAB)1112。實體層1111可與系統晶片1200的實體層1210電連接。藉由實體層1111,堆疊式記憶體裝置1100可自系統晶片1200接收訊號,或者可向系統晶片1200傳輸訊號。實體層1111可包括參照圖13闡述的緩衝晶粒410的介面電路。 Each of core dies 1120-1150 may include an array of memory cells. The buffer die 1110 may include a physical layer 1111 and a direct access area (DAB) 1112 . The physical layer 1111 may be electrically connected to the physical layer 1210 of the system die 1200 . Through the physical layer 1111 , the stacked memory device 1100 can receive signals from the SoC 1200 , or can transmit signals to the SoC 1200 . The physical layer 1111 may include the interface circuits of the buffer die 410 described with reference to FIG. 13 .

直接存取區域1112可提供能夠在不穿過系統晶片1200的情況下測試堆疊式記憶體裝置1100的存取路徑。直接存取區域1112可包括能夠與外部測試裝置直接通訊的傳導構件(例如,埠或接腳)。藉由直接存取區域1112接收的測試訊號及資料可藉由TSV被傳輸至核心晶粒1120至1150。為了測試核心晶粒1120至1150,自核心晶粒1120至1150讀取的資料可藉由TSV及直接存取區域1112被傳輸至測試裝置。如此,可對核心晶粒1120至1150執行直接存取測試。 The direct access area 1112 may provide an access path capable of testing the stacked memory device 1100 without passing through the SoC 1200 . The direct access area 1112 may include conductive members (eg, ports or pins) that can communicate directly with external test devices. Test signals and data received through the direct access area 1112 may be transmitted to the core dies 1120-1150 through TSV. In order to test core dies 1120-1150, data read from core dies 1120-1150 may be transferred to a test device via TSV and direct access area 1112. As such, direct access testing can be performed on core dies 1120-1150.

緩衝晶粒1110及核心晶粒1120至1150可藉由TSV 1101及凸塊1102進行電性連接。緩衝晶粒1110可自系統晶片1200接收藉由為每一通道分配的凸塊1102被提供至每一通道的訊號。例如,凸塊1102可為微凸塊。 The buffer die 1110 and the core die 1120 to 1150 can be electrically connected through the TSV 1101 and the bump 1102 . Buffer die 1110 may receive signals from system chip 1200 that are provided to each channel through bumps 1102 assigned to each channel. For example, bumps 1102 may be micro-bumps.

系統晶片1200可藉由使用堆疊式記憶體裝置1100來執行半導體封裝件1000支援的應用。例如,系統晶片1200可包括中央處理單元(central processing unit,CPU)、應用處理器 (application processor,AP)、圖形處理單元(graphic processing unit,GPU)、神經處理單元(neural processing unit,NPU)、張量處理單元(tensor processing unit,TPU)、視覺處理單元(vision processing unit,VPU)、影像訊號處理器(image signal processor,ISP)或數位訊號處理器(digital signal processor,DSP)中的至少一者,且可執行專門的計算。 The system chip 1200 may execute the applications supported by the semiconductor package 1000 by using the stacked memory device 1100 . For example, the SoC 1200 may include a central processing unit (CPU), an application processor (application processor, AP), graphics processing unit (graphic processing unit, GPU), neural processing unit (neural processing unit, NPU), tensor processing unit (tensor processing unit, TPU), vision processing unit (vision processing unit, VPU) ), at least one of an image signal processor (image signal processor, ISP) or a digital signal processor (digital signal processor, DSP), and can perform specialized calculations.

系統晶片1200可包括實體層1210及記憶體控制器1220。實體層1210可包括用於與堆疊式記憶體裝置1100的實體層1111交換訊號的輸入/輸出電路。系統晶片1200可藉由實體層1210向實體層1111提供各種訊號。提供至實體層1111的訊號可藉由實體層1111的介面電路及TSV 1101被傳送至核心晶粒1120至1150。 The SoC 1200 may include a physical layer 1210 and a memory controller 1220 . The physical layer 1210 may include input/output circuits for exchanging signals with the physical layer 1111 of the stacked memory device 1100 . The system chip 1200 can provide various signals to the physical layer 1111 through the physical layer 1210 . The signals provided to the physical layer 1111 may be transmitted to the core dies 1120 to 1150 through the interface circuits of the physical layer 1111 and the TSV 1101 .

記憶體控制器1220可控制堆疊式記憶體裝置1100的整體操作。記憶體控制器1220可藉由實體層1210向堆疊式記憶體裝置1100提供用於控制堆疊式記憶體裝置1100的訊號。記憶體控制器1220可對應於圖1所示記憶體控制器100。 The memory controller 1220 may control the overall operation of the stacked memory device 1100 . The memory controller 1220 can provide signals for controlling the stacked memory device 1100 to the stacked memory device 1100 through the physical layer 1210 . The memory controller 1220 may correspond to the memory controller 100 shown in FIG. 1 .

中介層1300可連接堆疊式記憶體裝置1100與系統晶片1200。中介層1300可連接堆疊式記憶體裝置1100的實體層1111與系統晶片1200的實體層1210,且可提供藉由使用導電材料形成的實體路徑。如此,堆疊式記憶體裝置1100及系統晶片1200可堆疊於中介層1300上,且可彼此交換訊號。 The interposer 1300 may connect the stacked memory device 1100 and the SoC 1200 . The interposer 1300 can connect the physical layer 1111 of the stacked memory device 1100 and the physical layer 1210 of the system chip 1200, and can provide a physical path formed by using a conductive material. In this way, the stacked memory device 1100 and the system chip 1200 can be stacked on the interposer 1300 and can exchange signals with each other.

凸塊1103可附著於封裝基底1400的上表面上,且焊球 1104可附著於封裝基底1400的下表面上。例如,凸塊1103可為覆晶(flip-chip)凸塊。中介層1300可藉由凸塊1103堆疊於封裝基底1400上。半導體封裝件1000可藉由焊球1104與任何其他外部封裝件或半導體裝置交換訊號。例如,封裝基底1400可為印刷電路板(printed circuit board,PCB)。 The bumps 1103 may be attached to the upper surface of the package substrate 1400, and the solder balls 1104 may be attached to the lower surface of the package substrate 1400 . For example, the bumps 1103 may be flip-chip bumps. The interposer 1300 may be stacked on the package substrate 1400 through the bumps 1103 . The semiconductor package 1000 can exchange signals with any other external package or semiconductor device via the solder balls 1104 . For example, the package substrate 1400 may be a printed circuit board (PCB).

圖17是示出根據實施例的半導體封裝件的實施實例的圖。參照圖17,半導體封裝件2000可包括多個堆疊式記憶體裝置2100及系統晶片2200。堆疊式記憶體裝置2100及系統晶片2200可堆疊於中介層2300上,且中介層2300可堆疊於封裝基底2400上。半導體封裝件2000可藉由附著於封裝基底2400的下表面上的焊球2001與任何其他外部封裝件或半導體裝置交換訊號。 FIG. 17 is a diagram illustrating an implementation example of a semiconductor package according to an embodiment. Referring to FIG. 17 , a semiconductor package 2000 may include a plurality of stacked memory devices 2100 and a system chip 2200 . The stacked memory device 2100 and the system chip 2200 may be stacked on the interposer 2300 , and the interposer 2300 may be stacked on the package substrate 2400 . The semiconductor package 2000 can exchange signals with any other external package or semiconductor device through the solder balls 2001 attached on the lower surface of the package substrate 2400 .

可遵照HBM標準來實施堆疊式記憶體裝置2100中的每一者。然而,實施例並非僅限於此。例如,可基於GDDR、HMC或寬I/O標準來實施堆疊式記憶體裝置2100中的每一者。堆疊式記憶體裝置2100中的每一者可對應於圖12至圖16所示的堆疊式記憶體裝置300、400或1100。 Each of the stacked memory devices 2100 may be implemented in compliance with the HBM standard. However, the embodiments are not so limited. For example, each of the stacked memory devices 2100 may be implemented based on GDDR, HMC, or wide I/O standards. Each of the stacked memory devices 2100 may correspond to the stacked memory devices 300 , 400 or 1100 shown in FIGS. 12-16 .

系統晶片2200可包括至少一個處理器(例如CPU、AP、GPU或NPU)以及用於控制所述多個堆疊式記憶體裝置2100的多個記憶體控制器。系統晶片2200可藉由記憶體控制器與對應的堆疊式記憶體裝置交換訊號。系統晶片2200可對應於圖16所示系統晶片1200。 The system chip 2200 may include at least one processor (eg, CPU, AP, GPU, or NPU) and a plurality of memory controllers for controlling the plurality of stacked memory devices 2100 . The SoC 2200 can exchange signals with the corresponding stacked memory devices through the memory controller. The system wafer 2200 may correspond to the system wafer 1200 shown in FIG. 16 .

圖18是示出根據另一實施例的半導體封裝件的圖。參 照圖18,半導體封裝件3000可包括堆疊式記憶體裝置3100、主機晶粒3200及封裝基底3300。堆疊式記憶體裝置3100可包括緩衝晶粒3110及核心晶粒3120至3150。緩衝晶粒3110可包括用於與主機晶粒3200通訊的實體層3111,且核心晶粒3120至3150中的每一者可包括記憶體胞元陣列。堆疊式記憶體裝置3100可對應於圖12至圖13所示堆疊式記憶體裝置300及400。 FIG. 18 is a diagram illustrating a semiconductor package according to another embodiment. ginseng As shown in FIG. 18 , a semiconductor package 3000 may include a stacked memory device 3100 , a host die 3200 and a package substrate 3300 . The stacked memory device 3100 may include a buffer die 3110 and core dies 3120-3150. Buffer die 3110 may include a physical layer 3111 for communicating with host die 3200, and each of core dies 3120-3150 may include an array of memory cells. The stacked memory device 3100 may correspond to the stacked memory devices 300 and 400 shown in FIGS. 12-13 .

主機晶粒3200可包括用於與堆疊式記憶體裝置3100通訊的實體層3210及用於控制堆疊式記憶體裝置3100的整體操作的記憶體控制器3220。此外,主機晶粒3200可包括控制半導體封裝件3000的整體操作並執行半導體封裝件3000支援的應用的處理器。例如,主機晶粒3200可包括例如CPU、AP、GPU或NPU等的至少一個處理器。 The host die 3200 may include a physical layer 3210 for communicating with the stacked memory device 3100 and a memory controller 3220 for controlling the overall operation of the stacked memory device 3100 . Additionally, the host die 3200 may include a processor that controls the overall operation of the semiconductor package 3000 and executes applications supported by the semiconductor package 3000 . For example, host die 3200 may include at least one processor such as a CPU, AP, GPU, or NPU.

堆疊式記憶體裝置3100可基於TSV 3001設置於主機晶粒3200上,以便垂直堆疊於主機晶粒3200上。如此,緩衝晶粒3110、核心晶粒3120至3150及主機晶粒3200可在沒有中介層的情況下藉由TSV 3001及凸塊3002進行電性連接。例如,凸塊3002可為微凸塊。 The stacked memory device 3100 may be disposed on the host die 3200 based on the TSV 3001 so as to be vertically stacked on the host die 3200 . In this way, the buffer die 3110 , the core dies 3120 to 3150 and the host die 3200 can be electrically connected through the TSV 3001 and the bump 3002 without an interposer. For example, bumps 3002 may be micro-bumps.

凸塊3003可附著於封裝基底3300的上表面上,且焊球3004可附著於封裝基底1400的下表面上。例如,凸塊3003可為覆晶凸塊。主機晶粒3200可藉由凸塊3003堆疊於封裝基底3300上。半導體封裝件3000可藉由焊球3004與任何其他外部封裝件或半導體裝置交換訊號。 The bumps 3003 may be attached to the upper surface of the package substrate 3300 , and the solder balls 3004 may be attached to the lower surface of the package substrate 1400 . For example, the bumps 3003 may be flip chip bumps. The host die 3200 can be stacked on the package substrate 3300 through the bumps 3003 . The semiconductor package 3000 can exchange signals with any other external package or semiconductor device via the solder balls 3004 .

在另一實施例中,可在沒有緩衝晶粒3110的情況下僅利用核心晶粒3120至3150來實施堆疊式記憶體裝置3100。在此種情形中,核心晶粒3120至3150中的每一者可包括用於與主機晶粒3200通訊的介面電路,如參照圖1至圖15所述。核心晶粒3120至3150中的每一者可藉由TSV 3001與主機晶粒3200交換訊號。 In another embodiment, the stacked memory device 3100 may be implemented with only the core dies 3120-3150 without the buffer die 3110. In this case, each of the core dies 3120-3150 may include interface circuitry for communicating with the host die 3200, as described with reference to FIGS. 1-15. Each of the core dies 3120 to 3150 can exchange signals with the host die 3200 through the TSV 3001 .

圖19是示出根據實施例的計算系統的方塊圖。計算系統4000可利用一個電子裝置來實施,或者可分佈至二或更多個電子裝置中並利用所述二或更多個電子裝置來實施。例如,計算系統4000可利用例如以下等各種電子裝置中的至少一種來實施:桌上型電腦、膝上型電腦、平板電腦、智慧型電話、自主駕駛車輛、數位照相機、可穿戴裝置、醫療保健裝置、伺服器系統、資料中心、無人機、手持式遊戲機、物聯網(Internet of Things,IoT)裝置、圖形加速器、AI加速器。 19 is a block diagram illustrating a computing system according to an embodiment. Computing system 4000 may be implemented with one electronic device, or may be distributed among and implemented with two or more electronic devices. For example, computing system 4000 may be implemented with at least one of various electronic devices, such as desktop computers, laptop computers, tablet computers, smartphones, autonomous vehicles, digital cameras, wearable devices, healthcare Devices, server systems, data centers, drones, handheld game consoles, Internet of Things (IoT) devices, graphics accelerators, AI accelerators.

參照圖19,計算系統4000可包括主機4100、加速器子系統4200及互連件4300。主機4100可控制加速器子系統4200的整體操作,且加速器子系統4200可在主機4100的控制下操作。主機4100及加速器子系統4200可藉由互連件4300進行連接。可藉由互連件4300在主機4100與加速器子系統4200之間交換各種訊號及資料。 Referring to FIG. 19 , a computing system 4000 may include a host 4100 , an accelerator subsystem 4200 , and an interconnect 4300 . The host 4100 may control the overall operation of the accelerator subsystem 4200 , and the accelerator subsystem 4200 may operate under the control of the host 4100 . Host 4100 and accelerator subsystem 4200 may be connected by interconnect 4300 . Various signals and data may be exchanged between the host 4100 and the accelerator subsystem 4200 through the interconnect 4300 .

主機4100可包括主機處理器4110、主機記憶體控制器4120、主機記憶體4130及介面4140。主機處理器4110可控制計 算系統4000的整體操作。主機處理器4110可藉由主機記憶體控制器4120控制主機記憶體4130。例如,主機處理器4110可自主機記憶體4130讀取資料,或者可將資料儲存於主機記憶體4130中。主機處理器4110可控制藉由互連件4300連接的加速器子系統4200。例如,主機處理器4110可向加速器子系統4200傳輸命令,且可給加速器子系統4200指派任務。 The host 4100 may include a host processor 4110 , a host memory controller 4120 , a host memory 4130 and an interface 4140 . The host processor 4110 can control the The overall operation of the computing system 4000. The host processor 4110 can control the host memory 4130 through the host memory controller 4120 . For example, host processor 4110 may read data from host memory 4130 or may store data in host memory 4130 . Host processor 4110 can control accelerator subsystem 4200 connected by interconnect 4300. For example, host processor 4110 may transmit commands to accelerator subsystem 4200 and may assign tasks to accelerator subsystem 4200 .

主機處理器4110可為執行與計算系統4000的各種操作相關聯的一般計算的通用處理器或主要處理器。例如,主機處理器4110可為CPU或AP。 Host processor 4110 may be a general-purpose or primary processor that performs general computations associated with various operations of computing system 4000 . For example, the host processor 4110 may be a CPU or an AP.

主機記憶體4130可為計算系統4000的主要記憶體。主機記憶體4130可儲存由主機處理器4110處理的資料,或者可儲存自加速器子系統4200接收的資料。例如,主機記憶體4130可利用DRAM來實施。 Host memory 4130 may be the main memory of computing system 4000 . Host memory 4130 may store data processed by host processor 4110 or may store data received from accelerator subsystem 4200. For example, host memory 4130 may be implemented using DRAM.

介面4140可被配置成允許主機4100與加速器子系統4200通訊。藉由介面4140,主機處理器4110可向加速器子系統4200傳輸控制訊號及資料,且可自加速器子系統4200接收訊號及資料。在示例性實施例中,主機處理器4110、主機記憶體控制器4120及介面4140可利用一個晶片來實施。 Interface 4140 may be configured to allow host 4100 to communicate with accelerator subsystem 4200. Through the interface 4140 , the host processor 4110 can transmit control signals and data to the accelerator subsystem 4200 and can receive signals and data from the accelerator subsystem 4200 . In an exemplary embodiment, host processor 4110, host memory controller 4120, and interface 4140 may be implemented using one chip.

加速器子系統4200可在主機4100的控制下執行特定功能。例如,加速器子系統4200可在主機4100的控制下執行專門用於特定應用的計算。加速器子系統4200可以例如模組類型、卡類型、封裝類型、晶片類型及裝置類型等各種類型來實施,以便 與主機4100實體連接或電性連接,或者以便與主機4100以有線或無線方式連接。例如,加速器子系統4200可利用參照圖16至圖18闡述的半導體封裝件之一來實施。例如,加速器子系統4200可以圖形卡或加速器卡的形式實施。例如,加速器子系統4200可以現場可程式化閘陣列(field programmable gate array,FPGA)、特殊應用積體電路(application specific integrated circuit,ASIC)等的形式實施。 The accelerator subsystem 4200 may perform certain functions under the control of the host 4100 . For example, accelerator subsystem 4200 may perform computations dedicated to a particular application under control of host 4100 . Accelerator subsystem 4200 may be implemented in various types such as module type, card type, package type, wafer type, and device type in order to Physically or electrically connected to the host 4100 , or connected to the host 4100 in a wired or wireless manner. For example, accelerator subsystem 4200 may be implemented using one of the semiconductor packages described with reference to FIGS. 16-18 . For example, accelerator subsystem 4200 may be implemented in the form of a graphics card or accelerator card. For example, accelerator subsystem 4200 may be implemented in the form of a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or the like.

在示例性實施例中,加速器子系統4200可藉由各種封裝技術之一來實施。例如,加速器子系統4200可藉由例如以下等封裝技術來實施:球柵陣列(ball grid array,BGA)技術、多晶片封裝(multi-chip package,MCP)技術、系統整合封裝(system on package,SOP)技術、系統級封裝(system in package,SIP)技術、疊層封裝(package on package,POP)技術、晶片級封裝(chip scale package,CSP)技術、晶圓級封裝(wafer level package,WLP)技術或面板級封裝(panel level package,PLP)技術。例如,可藉由銅間接合(copper-to-copper bonding)來連接加速器子系統4200的所有或部分組件。例如,可藉由中介層(例如矽中介層、有機中介層、玻璃中介層或主動中介層)來連接加速器子系統4200的所有或部分組件。例如,可基於TSV而堆疊加速器子系統4200的所有或部分組件。例如,可藉由高速連接路徑(例如,矽橋)來連接加速器子系統4200的所有或部分組件。 In an exemplary embodiment, accelerator subsystem 4200 may be implemented by one of various packaging techniques. For example, accelerator subsystem 4200 may be implemented by packaging technologies such as ball grid array (BGA) technology, multi-chip package (MCP) technology, system on package, SOP) technology, system in package (SIP) technology, package on package (POP) technology, chip scale package (CSP) technology, wafer level package (WLP) ) technology or panel level package (PLP) technology. For example, all or some components of accelerator subsystem 4200 may be connected by copper-to-copper bonding. For example, all or some of the components of accelerator subsystem 4200 may be connected by interposers such as silicon interposers, organic interposers, glass interposers, or active interposers. For example, all or some components of accelerator subsystem 4200 may be stacked based on TSVs. For example, all or some of the components of accelerator subsystem 4200 may be connected by high-speed connection paths (eg, silicon bridges).

加速器子系統4200可包括專用處理器4210、本端記憶 體控制器4220、本端記憶體4230及主機介面4240。專用處理器4210可在主機處理器4110的控制下操作。例如,專用處理器4210可因應於主機處理器4110的命令而藉由本端記憶體控制器4220自本端記憶體4230讀取資料。專用處理器4210可藉由對所讀取的資料執行計算來處理所讀取的資料。專用處理器4210可將經處理的資料傳送至主機處理器4110,或者可將經處理的資料儲存於本端記憶體4230中。 Accelerator subsystem 4200 may include dedicated processor 4210, local memory The system controller 4220, the local memory 4230 and the host interface 4240 are included. Special purpose processor 4210 may operate under the control of host processor 4110. For example, the dedicated processor 4210 can read data from the local memory 4230 through the local memory controller 4220 in response to commands from the host processor 4110 . The dedicated processor 4210 can process the read data by performing computations on the read data. The dedicated processor 4210 may transmit the processed data to the host processor 4110, or may store the processed data in the local memory 4230.

專用處理器4210可基於本端記憶體4230中所儲存的值來執行專門用於特定應用的計算。例如,專用處理器4210可執行專門用於例如人工智慧、串流分析、視訊轉碼、資料索引、資料編碼/解碼及資料加密等應用的計算。如此,專用處理器4210可處理例如影像資料、語音資料、運動資料、生物資料及鍵值等各種類型的資料。例如,專用處理器4210可包括GPU、NPU、TPU、VPU、ISP及DSP中的至少一者。 The special-purpose processor 4210 may perform computations specific to a particular application based on the values stored in the local memory 4230. For example, special purpose processor 4210 may perform computations specific to applications such as artificial intelligence, stream analysis, video transcoding, data indexing, data encoding/decoding, and data encryption. In this way, the dedicated processor 4210 can process various types of data such as image data, voice data, motion data, biological data, and key values. For example, the special purpose processor 4210 may include at least one of a GPU, NPU, TPU, VPU, ISP, and DSP.

專用處理器4210可包括一個處理器核心,或者可包括多個處理器核心,例如雙核心、四核心或六核心。在示例性實施例中,專用處理器4210可包括數目較主機處理器4110的核心的數目多的核心,用於執行專門用於平行性的計算。例如,專用處理器4210可包括1000或更多個核心。 Special-purpose processor 4210 may include one processor core, or may include multiple processor cores, such as dual-core, quad-core, or six-core. In an exemplary embodiment, special-purpose processor 4210 may include a greater number of cores than host processor 4110 for performing computations dedicated to parallelism. For example, special purpose processor 4210 may include 1000 or more cores.

在示例性實施例中,專用處理器4210可為專門用於影像資料計算的處理器。在此種情形中,專用處理器4210可藉由本端記憶體控制器4220讀取本端記憶體4230中所儲存的影像資 料,且可對所讀取的資料執行計算。專用處理器4210可將計算結果傳送至主機處理器4110,或者可將計算結果儲存於本端記憶體4230中。主機處理器4110可將所傳送的計算結果儲存於主機記憶體4130中或者儲存於分配給單獨記憶體的訊框緩衝器中。訊框緩衝器中所儲存的資料可被傳送至單獨的顯示裝置。 In an exemplary embodiment, the dedicated processor 4210 may be a processor dedicated to image data computation. In this case, the dedicated processor 4210 can read the image data stored in the local memory 4230 through the local memory controller 4220 data, and can perform calculations on the read data. The dedicated processor 4210 may transmit the calculation result to the host processor 4110, or may store the calculation result in the local memory 4230. The host processor 4110 may store the transmitted calculation results in the host memory 4130 or in a frame buffer allocated to a separate memory. The data stored in the frame buffer can be sent to a separate display device.

在示例性實施例中,專用處理器4210可為專門用於基於神經網路的訓練及推理的處理器。專用處理器4210可自本端記憶體4230讀取神經網路參數(例如,神經網路模型參數、權重及偏差),且可對所讀取的神經網路參數執行訓練或推理。神經網路參數可由主機處理器4110提供,可為藉由專用處理器4210的處理獲得的值,或者可為預先儲存的值。例如,主機處理器4110可向專用處理器4210提供用於推理的權重參數。在此種情形中,權重參數可為藉由主機處理器4110的訓練而更新的參數。專用處理器4210可基於本端記憶體4230的神經網路參數,藉由矩陣乘法及累加來執行訓練或推理。專用處理器4210可將計算結果傳送至主機處理器4110,或者可將計算結果儲存於本端記憶體4230中。 In an exemplary embodiment, the special-purpose processor 4210 may be a processor dedicated to neural network-based training and inference. The dedicated processor 4210 can read neural network parameters (eg, neural network model parameters, weights, and biases) from the local memory 4230, and can perform training or inference on the read neural network parameters. The neural network parameters may be provided by the host processor 4110, may be values obtained through processing by the dedicated processor 4210, or may be pre-stored values. For example, host processor 4110 may provide weight parameters for inference to special purpose processor 4210. In this case, the weight parameter may be a parameter updated by the training of the host processor 4110 . The dedicated processor 4210 may perform training or inference by matrix multiplication and accumulation based on the neural network parameters of the local memory 4230 . The dedicated processor 4210 may transmit the calculation result to the host processor 4110, or may store the calculation result in the local memory 4230.

本端記憶體控制器4220可控制本端記憶體4230的整體操作。在示例性實施例中,本端記憶體控制器4220可處理欲寫入本端記憶體4230中的資料,且可將經處理的資料寫入本端記憶體4230中。作為另一選擇,本端記憶體控制器4220可處理自本端記憶體4230讀取的資料。例如,本端記憶體控制器4220可執行錯誤校正碼(ECC)編碼及ECC解碼,可以循環冗餘檢查(cyclic redundancy check,CRC)方式驗證資料,或者可執行資料加密或資料解密。本端記憶體控制器4220可對應於參照圖1至圖18闡述的記憶體控制器。例如,對於本端記憶體4230的寫入操作及讀取操作,本端記憶體控制器4220可向本端記憶體4230傳輸雙態切換的寫入資料選通訊號WDQS。在此種情形中,寫入資料選通訊號WDQS的前同步碼循環的數目與寫入資料選通訊號WDQS的後同步碼循環的數目之和可為偶數。 The local memory controller 4220 can control the overall operation of the local memory 4230 . In an exemplary embodiment, the local memory controller 4220 can process data to be written into the local memory 4230 and can write the processed data into the local memory 4230 . Alternatively, the local memory controller 4220 may process data read from the local memory 4230 . For example, the local memory controller 4220 can perform error correction code (ECC) encoding and ECC decoding, and can perform cyclic redundancy checking (cyclic redundancy check). redundancy check, CRC) method to verify data, or perform data encryption or data decryption. The local memory controller 4220 may correspond to the memory controller described with reference to FIGS. 1 to 18 . For example, for the write operation and the read operation of the local memory 4230 , the local memory controller 4220 may transmit a toggled write data strobe signal WDQS to the local memory 4230 . In this case, the sum of the number of preamble cycles written to the data strobe signal WDQS and the number of postamble cycles written to the data strobe signal WDQS may be an even number.

本端記憶體4230可僅由專用處理器4210使用。在示例性實施例中,本端記憶體4230可與專用處理器4210一起安裝於一個基底上,或者可以晶粒、晶片、封裝、模組、卡或裝置的形式實施,以便基於單獨的連接件與專用處理器4210連接。本端記憶體4230可對應於參照圖1至圖18闡述的記憶體裝置或堆疊式記憶體裝置。例如,本端記憶體4230可對自本端記憶體控制器4220傳輸的寫入資料選通訊號WDQS的頻率進行分頻,且可以低功率產生具有不同相位的內部寫入資料選通訊號dWDQS。本端記憶體4230可基於內部寫入資料選通訊號dWDQS與本端記憶體控制器4220通訊。 The local memory 4230 may be used by the dedicated processor 4210 only. In an exemplary embodiment, the local memory 4230 may be mounted on a substrate together with the dedicated processor 4210, or may be implemented in the form of a die, chip, package, module, card or device so as to be based on a separate connector Connect with the dedicated processor 4210. The local memory 4230 may correspond to the memory device or the stacked memory device described with reference to FIGS. 1 to 18 . For example, the local memory 4230 can divide the frequency of the write data strobe signal WDQS transmitted from the local memory controller 4220, and can generate the internal write data strobe signal dWDQS with different phases at low power. The local memory 4230 can communicate with the local memory controller 4220 based on the internal write data strobe signal dWDQS.

在示例性實施例中,本端記憶體4230可包括32或更多個資料接腳。例如,為了提供寬頻寬,本端記憶體4230可包括1024或更多個資料接腳。如此,本端記憶體4230的每一晶片的匯流排寬度可大於主機記憶體4130的每一晶片的匯流排寬度。 In an exemplary embodiment, the local memory 4230 may include 32 or more data pins. For example, to provide wide bandwidth, the local memory 4230 may include 1024 or more data pins. In this way, the busbar width of each chip of the local memory 4230 can be larger than the busbar width of each chip of the host memory 4130 .

在示例性實施例中,本端記憶體4230可基於DDR、 LPDDR、GDDR、HBM、HMC或寬I/O標準介面而操作。然而,實施例並非僅限於此。例如,本端記憶體4230可基於各種標準介面而操作。 In an exemplary embodiment, the local memory 4230 may be based on DDR, LPDDR, GDDR, HBM, HMC or wide I/O standard interface. However, the embodiments are not so limited. For example, the local memory 4230 may operate based on various standard interfaces.

在示例性實施例中,本端記憶體4230可包括能夠執行一些計算的邏輯電路。邏輯電路可對自本端記憶體4230讀取的資料或欲寫入本端記憶體4230中的資料執行線性運算、比較運算、壓縮運算、資料轉換運算、算術運算。如此,可減小由邏輯電路處理的資料的大小。在其中資料的大小減小的情形中,本端記憶體4230與本端記憶體控制器4220之間的頻寬效率可得以改良。 In an exemplary embodiment, local memory 4230 may include logic circuitry capable of performing some computations. The logic circuit can perform linear operations, comparison operations, compression operations, data conversion operations, and arithmetic operations on the data read from the local memory 4230 or the data to be written into the local memory 4230 . In this way, the size of the data processed by the logic circuit can be reduced. In situations where the size of the data is reduced, the bandwidth efficiency between the local memory 4230 and the local memory controller 4220 can be improved.

主機介面4240可被配置成允許加速器子系統4200與主機4100通訊。加速器子系統4200可藉由主機介面4240向主機4100傳輸訊號及資料,且可自主機4100接收控制訊號及資料。在示例性實施例中,專用處理器4210、本端記憶體控制器4220及主機介面4240可利用一個晶片來實施。 Host interface 4240 may be configured to allow accelerator subsystem 4200 to communicate with host 4100. The accelerator subsystem 4200 can transmit signals and data to the host 4100 through the host interface 4240 , and can receive control signals and data from the host 4100 . In an exemplary embodiment, the dedicated processor 4210, the local memory controller 4220, and the host interface 4240 may be implemented using one chip.

互連件4300可提供主機4100與加速器子系統4200之間的傳輸路徑,且可執行資料匯流排或資料鏈路的角色。可以有線或無線方式建立資料傳輸路徑。介面4140與主機介面4240可基於給定的協定藉由互連件4300通訊。例如,介面4140及4240可基於例如以下等各種標準之一來彼此通訊:進階技術附件(Advanced Technology Attachment,ATA)、串列ATA(Serial ATA,SATA)、外部SATA(external SATA,e-SATA)、小型電腦小型介面(Small Computer Small Interface,SCSI)、串列附接SCSI(Serial Attached SCSI,SAS)、周邊組件互連(Peripheral Component Interconnection,PCI)、PCI高速(PCI express,PCIe)、NVM高速(NVM express,NVMe)、進階可擴展介面(Advanced eXtensible Interface,AXI)、ARM微控制器匯流排架構(ARM Microcontroller Bus Architecture,AMBA)、IEEE 1394、通用串列匯流排(Universal Serial Bus,USB)、安全數位(Secure Digital,SD)卡、多媒體卡(multi-media card,MMC)、嵌入式多媒體卡(embedded multi-media card,eMMC)、通用快閃儲存(Universal Flash Storage,UFS)、緊湊快閃(compact flash,CF)及Gen-Z。作為另一選擇,介面4140及4240可基於例如以下等裝置間通訊鏈路來彼此通訊:同調加速器處理器介面(Coherent Accelerator Processor Interface,openCAPI)、加速器的快取同調互連(Cache Coherent Interconnect for Accelerators,CCIX)、計算高速鏈路(Compute Express Link,CXL)及NVLINK。作為另一選擇,介面4140及4240可基於例如以下等無線通訊技術來彼此通訊:長期演進(Long Term Evolution,LTE)、第五代(5th generation,5G)、LTE機器對機器(LTE-Machine to Machine,LTE-M)、窄頻帶物聯網(Narrow Band-Internet of Things,NB-IoT)、低功率廣域網路(Low Power Wide Area Network,LPWAN)、藍芽(Bluetooth)、近場通訊(Near Field Communication,NFC)、紫蜂(Zigbee)、Z波(Z-Wave)或無線區域網路(Wireless Local Area Network,WLAN)。 Interconnect 4300 may provide a transmission path between host 4100 and accelerator subsystem 4200, and may perform the role of a data bus or data link. The data transmission path can be established in a wired or wireless manner. Interface 4140 and host interface 4240 can communicate via interconnect 4300 based on a given protocol. For example, the interfaces 4140 and 4240 can communicate with each other based on one of various standards such as: Advanced Technology Attachment (ATA), Serial ATA (SATA), external SATA (external SATA, e-SATA) ), Small Computer Small Interface (Small Computer Small Interface, SCSI), Serial Attached SCSI (SAS), Peripheral Component Interconnection (PCI), PCI Express (PCIe), NVM High-speed (NVM express, NVMe), Advanced eXtensible Interface (AXI), ARM Microcontroller Bus Architecture (AMBA), IEEE 1394, Universal Serial Bus (Universal Serial Bus, USB), Secure Digital (SD) card, multi-media card (MMC), embedded multi-media card (eMMC), Universal Flash Storage (UFS), Compact flash (compact flash, CF) and Gen-Z. Alternatively, interfaces 4140 and 4240 may communicate with each other based on inter-device communication links such as: Coherent Accelerator Processor Interface (openCAPI), Cache Coherent Interconnect for Accelerators , CCIX), Compute Express Link (CXL) and NVLINK. Alternatively, the interfaces 4140 and 4240 may communicate with each other based on wireless communication technologies such as: Long Term Evolution (LTE), 5th generation (5G), LTE Machine-to-Machine (LTE-Machine) to Machine, LTE-M), Narrow Band-Internet of Things (NB-IoT), Low Power Wide Area Network (LPWAN), Bluetooth, Near Field Communication (Near Field Communication) Field Communication (NFC), Zigbee (Zigbee), Z-Wave (Z-Wave) or Wireless Local Area Network (WLAN).

在示例性實施例中,加速器子系統4200可更包括能夠感測影像資料、語音資料、運動資料、生物資料及周圍環境資訊的感測器。在示例性實施例中,在其中感測器包含於加速器子系統4200中的情形中,感測器可基於上述封裝技術與任何其他組件(例如,專用處理器4210或本端記憶體4230)連接。加速器子系統4200可基於特定操作而處理藉由感測器感測的資料。 In an exemplary embodiment, the accelerator subsystem 4200 may further include a sensor capable of sensing image data, voice data, motion data, biological data and surrounding environment information. In an exemplary embodiment, where the sensor is included in the accelerator subsystem 4200, the sensor may be interfaced with any other component (eg, dedicated processor 4210 or local memory 4230) based on the packaging techniques described above . The accelerator subsystem 4200 can process data sensed by sensors based on certain operations.

圖19中示出其中專用處理器4210藉由一個本端記憶體控制器4220使用一個本端記憶體4230的實例,但實施例並非僅限於此。例如,專用處理器4210可藉由一個本端記憶體控制器4220使用多個本端記憶體。作為另一實例,專用處理器4210可藉由分別與多個本端記憶體對應的多個本端記憶體控制器來使用所述本端記憶體。 An example in which a dedicated processor 4210 uses a local memory 4230 via a local memory controller 4220 is shown in FIG. 19, but the embodiment is not limited thereto. For example, a dedicated processor 4210 may use multiple local memories through one local memory controller 4220. As another example, the dedicated processor 4210 may use the local memory by a plurality of local memory controllers respectively corresponding to the local memory.

為了高速交換資料,根據本文所述的各種實施例的記憶體裝置可基於自記憶體控制器提供的寫入資料選通訊號而產生內部寫入資料選通訊號。在此種情形中,記憶體裝置可將內部寫入資料選通訊號初始化為給定值,且因此可在寫入操作及讀取操作中產生具有所期望相位的內部寫入資料選通訊號。如此,記憶體裝置可不單獨執行用於對內部寫入資料選通訊號的相位進行調整的自動同步。亦即,可省略自動同步及用於實施自動同步的電路。因此,記憶體裝置的功率消耗可降低。 To exchange data at high speed, memory devices according to various embodiments described herein may generate internal write data strobe signals based on write data strobe signals provided from the memory controller. In this case, the memory device can initialize the internal write data strobe signal to a given value, and thus can generate the internal write data strobe signal with the desired phase during write operations and read operations. In this way, the memory device may not perform automatic synchronization for adjusting the phase of the internal write data strobe signal alone. That is, the automatic synchronization and the circuit for implementing the automatic synchronization can be omitted. Therefore, the power consumption of the memory device can be reduced.

根據上述各種實施例的記憶體裝置可基於寫入資料選通訊號而產生欲提供至記憶體控制器的讀取資料選通訊號,因此 改良讀取資料選通訊號的可靠性。 The memory device according to the various embodiments described above can generate the read data strobe signal to be provided to the memory controller based on the write data strobe signal, so Improved reliability of reading data strobe signals.

根據上述各種實施例的記憶體控制器可基於一個鎖相迴路而產生時脈訊號及寫入資料選通訊號。如此,記憶體控制器的功率消耗可降低。 The memory controller according to the various embodiments described above can generate the clock signal and the write data strobe signal based on a phase-locked loop. As such, the power consumption of the memory controller can be reduced.

雖然已闡述了各種示例性實施例,但此項技術中具有通常知識者將明瞭,在不背離以下申請專利範圍中所述的本發明的精神及範圍的條件下,可對所述實施例作出各種改變及潤飾。 While various exemplary embodiments have been described, it will be apparent to those of ordinary skill in the art that the described embodiments can be made without departing from the spirit and scope of the invention as described in the following claims Various changes and retouches.

400:堆疊式記憶體裝置400: Stacked memory device

401:TSV區域401:TSV area

402、403:TSV402, 403: TSV

410:緩衝晶粒410: Buffer Die

411:命令/位址(CA)接收器411: Command/Address (CA) Receiver

412:控制邏輯電路412: Control Logic Circuit

413:寫入資料選通訊號(WDQS)分頻器413: Write data strobe signal (WDQS) frequency divider

414:讀取資料選通訊號(RDQS)傳輸器414: read data strobe signal (RDQS) transmitter

415:資料收發器415: Data Transceiver

420:核心晶粒/第一核心晶粒420: core die/first core die

421、431:命令解碼器421, 431: Command Decoder

422、432:資料輸入/輸出(I/O)電路422, 432: Data input/output (I/O) circuits

423:記憶體胞元陣列423: Memory Cell Array

430:核心晶粒/第二核心晶粒430: Core Die/Second Core Die

433:記憶體胞元陣列433: Memory Cell Array

C/A:命令/位址訊號C/A: command/address signal

CHa:通道CHa: channel

CK:時脈訊號CK: clock signal

CMD:命令cmd:command

DATA:資料DATA: data

DQ:資料訊號DQ: data signal

dWDQS:內部寫入資料選通訊號dWDQS: Internal write data strobe signal

iCMD:內部命令iCMD: Internal Command

PWS:電源狀態資訊PWS: Power Status Information

RDQS:讀取資料選通訊號RDQS: read data strobe signal

RESET:重設訊號RESET: reset signal

SID:堆疊識別符SID: stack identifier

SID0:第一堆疊識別符SID0: First stack identifier

SID1:第二堆疊識別符SID1: Second stack identifier

WDQS:寫入資料選通訊號WDQS: write data strobe signal

Claims (20)

一種記憶體裝置,包括:緩衝晶粒,被配置成藉由多個通道與主機裝置通訊;以及多個核心晶粒,堆疊於所述緩衝晶粒上並藉由穿矽電極連接至所述緩衝晶粒,所述多個核心晶粒中的每一者包括與所述多個通道中的至少一者對應的記憶體胞元陣列,其中所述緩衝晶粒包括:命令/位址接收器,被配置成基於自所述主機裝置提供至所述多個通道中的第一通道的時脈訊號而接收自所述主機裝置提供至所述第一通道的命令;控制邏輯電路,被配置成基於自所述命令/位址接收器接收的所述命令而產生內部命令,且在自再新退出、電源開啟或電源切斷退出之後且在接收到自所述主機裝置至所述第一通道之間雙態切換的寫入資料選通訊號之前產生重設訊號;寫入資料選通訊號分頻器,被配置成:產生基於所述寫入資料選通訊號的雙態切換而進行雙態切換的多個內部寫入資料選通訊號,所述多個內部寫入資料選通訊號分別以不同相位進行雙態切換;且基於所述重設訊號而將所述多個內部寫入資料選通訊號初始化為給定值;以及資料收發器,被配置成基於所述多個內部寫入資料選通訊號而接收自所述主機裝置提供至所述第一通道的寫入資料,其中所述多個核心晶粒中支援所述第一通道的核心晶粒被配 置成基於自所述緩衝晶粒傳輸的所述內部命令而儲存自所述緩衝晶粒傳輸的所述寫入資料。 A memory device includes: a buffer die configured to communicate with a host device through a plurality of channels; and a plurality of core dies stacked on the buffer die and connected to the buffer by through-silicon electrodes a die, each of the plurality of core dies including an array of memory cells corresponding to at least one of the plurality of channels, wherein the buffer die includes: a command/address receiver, is configured to receive a command provided from the host device to the first channel based on a clock signal provided from the host device to the first channel of the plurality of channels; the control logic circuit is configured to be based on The command received from the command/address receiver generates an internal command, and after a self-reboot, power-on, or power-off exit and upon receipt of a transfer from the host device to the first channel A reset signal is generated before the write data strobe signal that toggles between the two states; the write data strobe signal divider is configured to: generate a toggle based on the write data strobe signal and perform toggling a plurality of internal write data strobe signals, the plurality of internal write data strobe signals are respectively switched in two states with different phases; and the plurality of internal write data strobe signals are selected based on the reset signal and a data transceiver configured to receive write data provided to the first channel from the host device based on the plurality of internal write data strobe signals, wherein the plurality of The core die supporting the first channel among the core dies is configured configured to store the write data transmitted from the buffer die based on the internal command transmitted from the buffer die. 如請求項1所述的記憶體裝置,其中所述控制邏輯電路被配置成基於自所述命令/位址接收器接收的命令或者基於所述記憶體裝置的電源狀態而產生所述重設訊號。 The memory device of claim 1, wherein the control logic circuit is configured to generate the reset signal based on a command received from the command/address receiver or based on a power state of the memory device . 如請求項2所述的記憶體裝置,其中所述控制邏輯電路被配置成基於所述記憶體裝置的所述電源狀態而產生所述重設訊號,且當所述記憶體裝置處於電源開啟狀態時,所述控制邏輯電路被配置成產生所述重設訊號。 The memory device of claim 2, wherein the control logic circuit is configured to generate the reset signal based on the power state of the memory device, and when the memory device is in a power-on state , the control logic circuit is configured to generate the reset signal. 如請求項2所述的記憶體裝置,其中所述控制邏輯電路被配置成基於所述記憶體裝置的所述電源狀態而產生所述重設訊號,且當所述記憶體裝置的所述第一通道處於電源切斷退出狀態或自再新退出狀態時,所述控制邏輯電路被配置成產生所述重設訊號。 The memory device of claim 2, wherein the control logic circuit is configured to generate the reset signal based on the power state of the memory device, and when the first power state of the memory device The control logic circuit is configured to generate the reset signal when a channel is in a power-off exit state or a self-restart exit state. 如請求項2所述的記憶體裝置,其中所述控制邏輯電路被配置成基於自所述命令/位址接收器接收的所述命令而產生所述重設訊號,且其中所述控制邏輯電路被配置成基於現用命令、寫入命令、讀取命令及分頻器重設命令中的至少一者而產生所述重設訊號。 The memory device of claim 2, wherein the control logic circuit is configured to generate the reset signal based on the command received from the command/address receiver, and wherein the control logic circuit is configured to generate the reset signal based on at least one of an active command, a write command, a read command, and a divider reset command. 如請求項1所述的記憶體裝置,其中所述寫入資料選通訊號的前同步碼循環的數目與所述寫入資料選通訊號的後同步碼循環的數目之和是偶數。 The memory device of claim 1, wherein the sum of the number of preamble cycles of the write data strobe signal and the number of postamble cycles of the write data strobe signal is an even number. 如請求項1所述的記憶體裝置,其中在所述寫入資料選通訊號開始雙態切換之前,所述寫入資料選通訊號維持靜態低值或靜態高值。 The memory device of claim 1, wherein the write data strobe signal maintains a static low value or a static high value before the write data strobe signal begins toggling. 如請求項1所述的記憶體裝置,其中所述給定值是基於所述寫入資料選通訊號的前同步碼循環的數目而定義的。 The memory device of claim 1, wherein the given value is defined based on a number of preamble cycles of the write data strobe signal. 如請求項1所述的記憶體裝置,其中基於所述重設訊號,所述寫入資料選通訊號分頻器被配置成將所述多個內部寫入資料選通訊號的一半初始化為低位準並將所述多個內部寫入資料選通訊號的另一半初始化為高位準。 The memory device of claim 1, wherein based on the reset signal, the write data strobe signal divider is configured to initialize half of the plurality of internal write data strobe signals to low bits level and initialize the other half of the plurality of internal write data strobe signals to a high level. 如請求項1所述的記憶體裝置,其中所述多個內部寫入資料選通訊號包括分別與0度、90度、180度及270度的相位對應的第一內部寫入資料選通訊號、第二內部寫入資料選通訊號、第三內部寫入資料選通訊號及第四內部寫入資料選通訊號,且其中所述第一內部寫入資料選通訊號至所述第四內部寫入資料選通訊號中的每一者的頻率是所述寫入資料選通訊號的頻率的一半。 The memory device of claim 1, wherein the plurality of internal write data strobe signals include first internal write data strobe signals corresponding to phases of 0 degrees, 90 degrees, 180 degrees, and 270 degrees, respectively , the second internal write data strobe signal, the third internal write data strobe signal and the fourth internal write data strobe signal, and wherein the first internal write data strobe signal to the fourth internal The frequency of each of the write data strobe signals is half the frequency of the write data strobe signal. 如請求項10所述的記憶體裝置,其中所述寫入資料選通訊號分頻器包括:第一鎖存器,包括:第一輸入端子;第一輸出端子,輸出第一內部寫入資料選通訊號;以及 第二輸出端子,輸出第三內部寫入資料選通訊號;第二鎖存器,包括:第二輸入端子,與所述第一輸出端子連接;第三輸出端子,輸出第二內部寫入資料選通訊號;以及第四輸出端子,與所述第一輸入端子連接並輸出第四內部寫入資料選通訊號,其中所述第一鎖存器被配置成:基於所述重設訊號而將重設值及互補重設值輸出至所述第一輸出端子及所述第二輸出端子;且基於所述寫入資料選通訊號的上升邊緣而將藉由所述第一輸入端子輸入的所述第四內部寫入資料選通訊號的值及互補值分別輸出至所述第一輸出端子及所述第二輸出端子;且其中所述第二鎖存器被配置成:基於所述重設訊號而將所述重設值及所述互補重設值輸出至所述第三輸出端子及所述第四輸出端子;且基於互補寫入資料選通訊號的上升邊緣而將藉由所述第二輸入端子輸入的所述第一內部寫入資料選通訊號的值及互補值分別輸出至所述第三輸出端子及所述第四輸出端子。 The memory device of claim 10, wherein the write data strobe signal divider comprises: a first latch, comprising: a first input terminal; a first output terminal, outputting the first internal write data strobe signal; and The second output terminal outputs the third internal write data strobe signal; the second latch includes: a second input terminal, connected to the first output terminal; and a third output terminal, outputting the second internal write data a strobe signal; and a fourth output terminal connected to the first input terminal and outputting a fourth internal write data strobe signal, wherein the first latch is configured to: based on the reset signal A reset value and a complementary reset value are output to the first output terminal and the second output terminal; and based on the rising edge of the write data strobe signal, all input through the first input terminal is the value and the complementary value of the fourth internal write data strobe signal are output to the first output terminal and the second output terminal, respectively; and wherein the second latch is configured to: based on the reset signal to output the reset value and the complementary reset value to the third output terminal and the fourth output terminal; and based on the rising edge of the complementary write data strobe signal The value and the complementary value of the first internal write data strobe signal input by the two input terminals are output to the third output terminal and the fourth output terminal, respectively. 如請求項1所述的記憶體裝置,其中所述緩衝晶粒更包括:讀取資料選通訊號傳輸器,被配置成基於所述多個內部寫入資料選通訊號而產生欲藉由所述第一通道提供至所述主機裝置的 讀取資料選通訊號,其中所述資料收發器被配置成基於所述多個內部寫入資料選通訊號而將自支援所述第一通道的所述核心晶粒傳輸的讀取資料與所述讀取資料選通訊號的雙態切換時序對齊,以將所述讀取資料傳輸至所述主機裝置。 The memory device of claim 1, wherein the buffer die further comprises: a read data strobe signal transmitter, configured to generate a data strobe signal to be read by the plurality of internal write data strobe signals the first channel is provided to the host device read data strobe signals, wherein the data transceiver is configured to associate read data transmitted from the core die supporting the first channel with all of the read data strobe signals based on the plurality of internal write data strobe signals The toggling timing of the read data strobe signal is aligned to transmit the read data to the host device. 如請求項1所述的記憶體裝置,其中所述寫入資料選通訊號的頻率是所述時脈訊號的頻率的二倍。 The memory device of claim 1, wherein the frequency of the write data strobe signal is twice the frequency of the clock signal. 如請求項1所述的記憶體裝置,其中所述緩衝晶粒包括被配置成接收所述寫入資料的128個資料接腳及被配置成接收所述寫入資料選通訊號的8個選通接腳,所述128個資料接腳及所述8個選通接腳對應於所述第一通道。 The memory device of claim 1, wherein the buffer die includes 128 data pins configured to receive the write data and 8 select pins configured to receive the write data strobe signal Through pins, the 128 data pins and the 8 gate pins correspond to the first channel. 一種記憶體裝置,包括:緩衝晶粒,被配置成藉由多個通道與主機裝置通訊;以及第一核心晶粒,堆疊於所述緩衝晶粒上,藉由穿矽電極連接至所述緩衝晶粒,且包括與所述多個通道中的第一通道應對的第一記憶體胞元陣列;以及第二核心晶粒,堆疊於所述第一核心晶粒上,藉由所述穿矽電極連接至所述第一核心晶粒,且包括與所述第一通道對應的第二記憶體胞元陣列,其中所述緩衝晶粒包括:命令/位址接收器,被配置成基於自所述主機裝置提供至所述第一通道的時脈訊號而接收自所述主機裝置提供至所述 第一通道的命令及堆疊識別符;控制邏輯電路,被配置成基於自所述命令/位址接收器接收的所述命令而產生內部命令,且在自所述主機裝置提供至所述第一通道的寫入資料選通訊號開始雙態切換之前產生重設訊號;寫入資料選通訊號分頻器,被配置成:產生基於所述寫入資料選通訊號的雙態切換而進行雙態切換的多個內部寫入資料選通訊號,所述多個內部寫入資料選通訊號分別以不同相位進行雙態切換;且基於所述重設訊號而將所述多個內部寫入資料選通訊號初始化為給定值;以及資料收發器,被配置成基於所述多個內部寫入資料選通訊號而接收自所述主機裝置提供至所述第一通道的寫入資料,其中與所述堆疊識別符對應的所述第一核心晶粒及所述第二核心晶粒之一被配置成基於自所述緩衝晶粒傳輸的所述內部命令而儲存自所述緩衝晶粒傳輸的所述寫入資料。 A memory device includes: a buffer die configured to communicate with a host device through a plurality of channels; and a first core die stacked on the buffer die and connected to the buffer by through-silicon electrodes a die including a first array of memory cells corresponding to a first channel of the plurality of channels; and a second core die stacked on the first core die by the through silicon An electrode is connected to the first core die and includes a second array of memory cells corresponding to the first channel, wherein the buffer die includes a command/address receiver configured to The clock signal provided by the host device to the first channel is received from the host device and provided to the first channel a command and stack identifier for a first channel; control logic configured to generate an internal command based on the command received from the command/address receiver, and to provide an internal command from the host device to the first A reset signal is generated before the write data strobe signal of the channel starts toggling; the write data strobe signal divider is configured to: generate a toggling based on the write data strobe signal for toggling A plurality of switched internal write data strobe signals, the plurality of internal write data strobe signals are respectively switched in two states with different phases; and the plurality of internal write data strobes are selected based on the reset signal a communication signal initialized to a given value; and a data transceiver configured to receive write data provided to the first channel from the host device based on the plurality of internal write data strobe signals, wherein One of the first core die and the second core die corresponding to the stack identifier is configured to store all data transferred from the buffer die based on the internal command transferred from the buffer die. write data. 如請求項15所述的記憶體裝置,其中當所述記憶體裝置處於電源開啟狀態或電源切斷退出狀態時,所述控制邏輯電路產生所述重設訊號。 The memory device of claim 15, wherein the control logic circuit generates the reset signal when the memory device is in a power-on state or a power-off state. 如請求項15所述的記憶體裝置,其中所述寫入資料選通訊號的前同步碼循環的數目與所述寫入資料選通訊號的後同步碼循環的數目之和是偶數。 The memory device of claim 15, wherein the sum of the number of preamble cycles of the write data strobe signal and the number of postamble cycles of the write data strobe signal is an even number. 如請求項15所述的記憶體裝置,其中基於所述 重設訊號,所述寫入資料選通訊號分頻器將所述多個內部寫入資料選通訊號的一半初始化為低位準並將所述多個內部寫入資料選通訊號的另一半初始化為高位準。 The memory device of claim 15, wherein based on the reset signal, the write data strobe signal divider initializes half of the plurality of internal write data strobe signals to a low level and initializes the other half of the plurality of internal write data strobe signals for high level. 一種記憶體裝置,包括:緩衝晶粒,被配置成藉由多個通道與主機裝置通訊;以及多個核心晶粒,堆疊於所述緩衝晶粒上並藉由穿矽電極連接至所述緩衝晶粒,其中所述多個核心晶粒中的每一者包括與所述多個通道中的至少一者對應的記憶體胞元陣列,其中所述緩衝晶粒被配置成:基於自所述主機裝置提供至第一通道的時脈訊號而接收自所述主機裝置提供至所述第一通道的命令;在自所述主機裝置提供至所述第一通道的寫入資料選通訊號開始雙態切換之前,將多個內部寫入資料選通訊號初始化為給定值;產生基於所述寫入資料選通訊號的雙態切換而進行雙態切換的所述多個內部寫入資料選通訊號,所述多個內部寫入資料選通訊號分別以不同相位進行雙態切換;且基於所述多個內部寫入資料選通訊號而接收自所述主機裝置提供至所述第一通道的寫入資料,且其中所述多個核心晶粒中支援所述第一通道的核心晶粒被配置成儲存所接收的所述寫入資料。 A memory device includes: a buffer die configured to communicate with a host device through a plurality of channels; and a plurality of core dies stacked on the buffer die and connected to the buffer by through-silicon electrodes A die, wherein each of the plurality of core dies includes an array of memory cells corresponding to at least one of the plurality of channels, wherein the buffer die is configured to: The clock signal provided by the host device to the first channel receives a command provided from the host device to the first channel; after the write data strobe signal provided by the host device to the first channel starts double Before the state switching, initialize a plurality of internal write data strobe signals to a given value; generate the plurality of internal write data strobes that perform two-state switching based on the two-state switching of the write data strobe signals signal, the plurality of internal write data strobe signals are toggled in different phases respectively; and based on the plurality of internal write data strobe signals, a signal provided from the host device to the first channel is received Write data, and wherein a core die of the plurality of core dies supporting the first channel is configured to store the received write data. 如請求項19所述的記憶體裝置,其中所述寫入資料選通訊號的前同步碼循環的數目與所述寫入資料選通訊號的後同步碼循環的數目之和是偶數。 The memory device of claim 19, wherein the sum of the number of preamble cycles of the write data strobe signal and the number of postamble cycles of the write data strobe signal is an even number.
TW109138212A 2020-01-21 2020-11-03 Memory device transmitting and receiving data at high speed and low power TWI759938B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200008110 2020-01-21
KR10-2020-0008110 2020-01-21
KR10-2020-0061441 2020-05-22
KR1020200061441A KR20210095009A (en) 2020-01-21 2020-05-22 Memory device transmitting and receiving data at high speed and low power

Publications (2)

Publication Number Publication Date
TW202129509A TW202129509A (en) 2021-08-01
TWI759938B true TWI759938B (en) 2022-04-01

Family

ID=77127844

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109138212A TWI759938B (en) 2020-01-21 2020-11-03 Memory device transmitting and receiving data at high speed and low power
TW110102104A TWI769671B (en) 2020-01-21 2021-01-20 Memory device and method of operating the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110102104A TWI769671B (en) 2020-01-21 2021-01-20 Memory device and method of operating the same

Country Status (3)

Country Link
KR (2) KR20210095009A (en)
SG (1) SG10202100590QA (en)
TW (2) TWI759938B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI789064B (en) * 2021-10-20 2023-01-01 鯨鏈科技股份有限公司 Computer system based on wafer-on-wafer architecture
TWI779935B (en) * 2021-11-24 2022-10-01 瑞昱半導體股份有限公司 Data processing system, buffer circuit and method for operating buffer circuit
US20240072772A1 (en) * 2022-08-31 2024-02-29 Global Unichip Corporation Interface device and signal transceiving method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110055671A1 (en) * 2009-09-03 2011-03-03 International Business Machines Corporation Advanced memory device having improved performance, reduced power and increased reliability
US20140233292A1 (en) * 2010-05-25 2014-08-21 Samsung Electronics Co., Ltd. 3d semiconductor device
US20170084320A1 (en) * 2015-06-16 2017-03-23 SK Hynix Inc. Semiconductor devices and semiconductor systems including the same
US20190163650A1 (en) * 2017-11-29 2019-05-30 Samsung Electronics Co., Ltd. Memory device communicating with system on chip through at least two channels, electronic device including the same, and operating method of electronic device
US20190206478A1 (en) * 2017-12-28 2019-07-04 Samsung Electronics Co., Ltd. Memory device for receiving operation codes through dq pins, a memory module including the same, and a setting method of the memory module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5420433B2 (en) * 2010-01-14 2014-02-19 ルネサスエレクトロニクス株式会社 Semiconductor device and power supply device
KR20130102816A (en) * 2012-03-08 2013-09-23 삼성전자주식회사 An data processing device and method for protecting data loss thereof
WO2019145753A1 (en) * 2018-01-25 2019-08-01 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110055671A1 (en) * 2009-09-03 2011-03-03 International Business Machines Corporation Advanced memory device having improved performance, reduced power and increased reliability
US20140233292A1 (en) * 2010-05-25 2014-08-21 Samsung Electronics Co., Ltd. 3d semiconductor device
US20170084320A1 (en) * 2015-06-16 2017-03-23 SK Hynix Inc. Semiconductor devices and semiconductor systems including the same
US20190163650A1 (en) * 2017-11-29 2019-05-30 Samsung Electronics Co., Ltd. Memory device communicating with system on chip through at least two channels, electronic device including the same, and operating method of electronic device
US20190206478A1 (en) * 2017-12-28 2019-07-04 Samsung Electronics Co., Ltd. Memory device for receiving operation codes through dq pins, a memory module including the same, and a setting method of the memory module

Also Published As

Publication number Publication date
KR20210094446A (en) 2021-07-29
KR20210095009A (en) 2021-07-30
TW202134895A (en) 2021-09-16
SG10202100590QA (en) 2021-08-30
TWI769671B (en) 2022-07-01
TW202129509A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
US20230395103A1 (en) Memory bandwidth aggregation using simultaneous access of stacked semiconductor memory die
US11769547B2 (en) Memory device transmitting and receiving data at high speed and low power
US11963299B2 (en) Load reduced memory module
TWI759938B (en) Memory device transmitting and receiving data at high speed and low power
US11309013B2 (en) Memory device for reducing resources used for training
US11636885B2 (en) Memory device for supporting new command input scheme and method of operating the same
KR102501147B1 (en) Extended application of error checking and correcting codes in memory
JP2021093129A (en) Technique for command bus training to memory device
US11599458B2 (en) Stacked memory device and operating method thereof
US20230171007A1 (en) Translation device, test system including the same, and memory system including the translation device
KR20210133832A (en) Memory device for reducing resources used for training
US20240196633A1 (en) Memory device and system having multiple physical interfaces
US20240241840A1 (en) Apparatus and method for die-to-die (d2d) interconnects
EP4210099A1 (en) Package routing for crosstalk reduction in high frequency communication
CN115104154B (en) Multi-cycle command processing in memory devices and related methods, devices, and systems