TWI759750B - Preparation of antivenom using recombinant toxins thereof - Google Patents
Preparation of antivenom using recombinant toxins thereof Download PDFInfo
- Publication number
- TWI759750B TWI759750B TW109118075A TW109118075A TWI759750B TW I759750 B TWI759750 B TW I759750B TW 109118075 A TW109118075 A TW 109118075A TW 109118075 A TW109118075 A TW 109118075A TW I759750 B TWI759750 B TW I759750B
- Authority
- TW
- Taiwan
- Prior art keywords
- recombinant
- neurotoxin
- venom
- cobra
- sequence
- Prior art date
Links
Images
Landscapes
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本發明涉及使用重組毒素製備抗蛇毒血清及其方法。 The present invention relates to the preparation of antivenoms and methods thereof using recombinant toxins.
毒蛇咬傷(Snake envenomation)一直是被忽視的公共衛生問題,每年在東南亞造成超過110,000例的叮咬事件。在這些叮咬事件中,以眼鏡蛇(Naja sp.)的毒害是最致命的事故之一,每年在中國、台灣、孟加拉國、泰國和斯里蘭卡的毒害事故中約佔17%、12%、34%、16%和17%。舟山眼鏡蛇(Naja atra),也被稱為中華眼鏡蛇,主要居住在中國、越南和台灣,孟加拉眼鏡蛇(Naja kaouthia)主要原產於孟加拉國、泰國、越南和馬來西亞,除此之外,還有其他物種,如:越南和泰國的暹羅眼鏡蛇(Naja sumatrana)、馬來西亞和蘇門答臘島的蘇門答臘噴液眼鏡蛇(Naja sumatrana),又稱赤道噴液眼鏡蛇(Equatorial spitting cobra)以及爪哇和印度尼西亞南部的馬來射毒眼鏡蛇(Naja sputatrix),又稱爪哇噴液眼鏡蛇(Javen spitting cobra)。 Snake envenomation has been a neglected public health problem, causing more than 110,000 bites in Southeast Asia every year. Among these bites, poisoning by cobra (Naja sp.) is one of the deadliest, accounting for about 17%, 12%, 34%, 16% and 17%. The Zhoushan cobra (Naja atra), also known as the Chinese cobra, mainly lives in China, Vietnam and Taiwan, and the Bengal cobra (Naja kaouthia) is mainly native to Bangladesh, Thailand, Vietnam and Malaysia, among other Species such as: Siamese cobra (Naja sumatrana) in Vietnam and Thailand, Sumatran spitting cobra (Naja sumatrana) in Malaysia and Sumatra, also known as Equatorial spitting cobra, and Malay spitting cobra in Java and southern Indonesia Cobra (Naja sputatrix), also known as Java spitting cobra (Javen spitting cobra).
過去的幾十年,透過毒液蛋白質體學的研究結果,已經將上述蛇毒毒液的成分進行分析並且也確定了臨床上最相關的毒素為三指毒素家族(three-fingered toxin family),其中的第一型及第二型的α-神經毒素為肌肉/神經元乙酰膽鹼受體(acetylcholine receptors,AchRs)的拮抗劑,因而被稱 為眼鏡蛇毒中最致命的毒素;另外,可以想像的是眼鏡蛇蛇毒的全部毒性可歸因於任何一種α-神經毒素。例如:N.atra和N.sputatrix毒液的神經毒性被認為是短鏈神經毒素的作用,而泰國獨眼眼鏡蛇(Thai monocled cobra,N.kaouthia)和印度普通眼鏡蛇(Indian common cobra,N.naja)是由長鏈神經毒素的作用。文獻中評估抗蛇毒血清的中和能力可藉由透過抗體對任一種神經毒素(如:N.kaouthia,N.naja和N.atra)的結合能力來判斷,因此與上述觀點一致,蛇毒中的神經毒素是最主要造成致死的重要成分。 In the past few decades, through the results of venom proteomics, the components of the snake venom have been analyzed and the most clinically relevant toxins have been identified as the three-fingered toxin family, the third of which is the three-fingered toxin family. Type I and Type II alpha-neurotoxins are antagonists of muscle/neuron acetylcholine receptors (AchRs) and are therefore known as It is the deadliest toxin of cobra venom; in addition, it is conceivable that the entire toxicity of cobra venom can be attributed to any one alpha-neurotoxin. For example: the neurotoxicity of N.atra and N.sputatrix venoms is thought to be the effect of short-chain neurotoxins, while Thai monocled cobra (N.kaouthia) and Indian common cobra (N.naja) is caused by the action of long-chain neurotoxins. In the literature, the neutralizing ability of snake antivenoms can be judged by the ability of antibodies to bind to any neurotoxin (such as: N.kaouthia, N.naja and N.atra), so consistent with the above point of view, the Neurotoxins are the most important cause of death.
由於缺乏政府的關注和支持,因此東南亞大多數國家/地區無法生產區域抗蛇毒血清,因此只能使用最接近的相關物種異源蛇毒的多價抗蛇毒血清。儘管總體上是有效的,但是由於毒液的弱免疫原性和物種內多樣性而影響了有效性,極大地阻礙了抗蛇毒血清的旁特異性(paraspecificity)。因此,已經做出了很多努力來優化免疫原混合物或開發重組單株克隆抗體/抗蛇毒血清,旨在設計一種廣效的泛亞州的多價抗蛇毒血清(broad-spectrum,pan-Asian polyvalent antivenom),這是Global Snakebite Initiative組織所提出的治療毒蛇咬傷的策略之一。 Due to lack of government attention and support, most countries in Southeast Asia are unable to produce regional antivenoms, so only polyvalent antivenoms from the closest related species, heterologous snake venom, are used. Although effective in general, the paraspecificity of antivenom is greatly hindered by the weak immunogenicity and intra-species diversity of the venom, which compromises effectiveness. Therefore, many efforts have been made to optimize immunogen mixtures or to develop recombinant monoclonal antibodies/antivenoms, aiming to design a broad-spectrum, pan-Asian polyvalent antivenom (broad-spectrum, pan-Asian polyvalent antivenom). antivenom), which is one of the strategies proposed by the Global Snakebite Initiative to treat venomous snakebites.
最近,通過使用多種毒液和毒素分液作為免疫原,成功地產生了一種能夠中和亞洲16種醫學上重要的眼鏡蛇科家族(elapids)的泛特異性抗血清。在免疫原混合物中包含多種主要毒素的概念被驗證是一種簡單的策略以克服眼鏡蛇抗蛇毒血清較差的旁特異性(paraspecificity)的方法,但是毒液的收集是相當的困難。 Recently, a pan-specific antiserum capable of neutralizing 16 medically important cobra families (elapids) in Asia was successfully generated by using multiple venom and toxin fractions as immunogens. The proof-of-concept inclusion of multiple major toxins in an immunogenic cocktail is a simple strategy to overcome the poor paraspecificity of cobra antivenom, but the collection of venom is rather difficult.
迄今為止,大腸桿菌(E.coli)仍然是用於許多表達藥物標的蛋白質最受歡迎的“生物工廠”。大腸桿菌B是產生基因工程蛋白的理想宿主, 由於其特徵,如:蛋白水解酶的缺乏、在高濃度的葡萄糖具有低濃度的乙酸鹽產生以及通透性增強等特徵,此外,BL21(DE3)還攜帶一個具有T7RNA聚合酶基因以及DE3重組噬菌體,因此,在T7啟動子控制之下,可以使載體的基因大量表達。 To date, E. coli remains the most popular "biofactory" for many proteins expressing drug targets. Escherichia coli B is an ideal host for the production of genetically engineered proteins, Due to its features such as lack of proteolytic enzymes, low acetate production at high glucose concentrations, and enhanced permeability, BL21(DE3) also carries a recombinant phage with T7 RNA polymerase gene and DE3 , therefore, under the control of the T7 promoter, the genes of the vector can be expressed in large quantities.
通過共同表現一硫代-雙硫鍵異構酶(thio-disulfide isomerase)可以使得細胞中表達一經過校正過的折疊且具有生物活性的富含雙硫鍵的蛋白質(例如:三指毒素),其中該蛋白質為一種在大腸桿菌的細胞質中難以表達的蛋白質,因此可使得製備天然毒素的方法具有可擴展性且具有成本效益。因此,在眼鏡蛇科的蛇毒液中所發現的許多主要毒素已在大腸桿菌系統被成功的重組表達和純化,這意味著大腸桿菌來源的重組毒素具有作為免疫抗原的替代來源的潛力。 By co-expressing a thio-disulfide isomerase, a corrected folded and biologically active disulfide-rich protein (eg, three-finger toxin) can be expressed in cells, The protein is a protein that is difficult to express in the cytoplasm of E. coli, thus making the method for preparing natural toxins scalable and cost-effective. Therefore, many of the major toxins found in snake venom of the Cobra family have been successfully recombinantly expressed and purified in E. coli systems, which means that E. coli-derived recombinant toxins have potential as alternative sources of immune antigens.
由於蛇毒的多樣性,到目前為止屬於UniProt資料庫中存放的眼鏡蛇屬的序列共有60種定序完成的α-神經毒素(α-NTX),包括:29條短鏈NTX(SNTX)、16條長鏈NTX(LNTX)和15條弱NTX。由於在整個進化過程,α-NTXs被定制為透過四對或五對雙硫鍵來維持一個具有保留性的和固定的三指支架(three-fingered scaffolds),因此,保存了許多與其功能或結構穩定性相關的保留性的抗原決定位(epitopes);相應地,據報導α-NTX的交叉中和作用透過屬於同一個亞家族(例如:長鏈神經毒素)的異源抗蛇毒血清或是具有一樣的α-NTX產生的抗蛇毒血清來交叉辨識。儘管如此,據推測,當前使用的抗蛇毒血清中的抗體很少能交叉識別這兩種類型的α-NTX。考慮到短鏈α-NTX和長鏈α-NTX在整合整個蛇毒的毒性扮演著至關重要的作用,因此,具有有效的泛抗蛇毒血清去中和這兩種類型的 α-NTX是很重要的。 Due to the diversity of snake venom, there are 60 sequenced α-neurotoxins (α-NTX) in the Cobra genus stored in the UniProt database so far, including: 29 short-chain NTX (SNTX), 16 Long chain NTX (LNTX) and 15 weak NTX. Since α-NTXs have been tailored to maintain a retained and fixed three-fingered scaffolds through four or five pairs of disulfide bonds throughout evolution, many of their functions or structures have been preserved. Stability-related retained epitopes; accordingly, cross-neutralization of α-NTX has been reported through heterologous antivenoms belonging to the same subfamily (eg, long-chain neurotoxins) or with The same α-NTX produced antivenom for cross identification. Nonetheless, it is speculated that antibodies in currently used antivenoms rarely cross-recognize these two types of α-NTX. Considering that short-chain α-NTX and long-chain α-NTX play a crucial role in integrating the toxicity of the whole snake venom, therefore, having an effective pan-antivenom to neutralize these two types of α-NTX is important.
一方面,本發明涉及一種重組DsbC-NTX嵌合蛋白,其中該重組DsbC-NTX嵌合蛋白係由DsbC-Linker-NTX序列所組成,其中:DsbC是一DsbC蛋白序列;Linker是一連結蛋白序列,其中該連結蛋白序列包含一6xHis重複序列以及在該6xHis重複序列後連接一TEV蛋白水解位點序列;以及NTX是一重組蛇α-神經毒素序列,其中該重組蛇α-神經毒素序列係選自一SEQ ID NO.1或一SEQ ID NO.6。 In one aspect, the present invention relates to a recombinant DsbC-NTX chimeric protein, wherein the recombinant DsbC-NTX chimeric protein is composed of a DsbC-Linker-NTX sequence, wherein: DsbC is a DsbC protein sequence; Linker is a linker protein sequence , wherein the connexin sequence comprises a 6xHis repeat and a TEV proteolytic site sequence is attached after the 6xHis repeat; and NTX is a recombinant snake alpha-neurotoxin sequence, wherein the recombinant snake alpha-neurotoxin sequence is selected from From a SEQ ID NO.1 or a SEQ ID NO.6.
在另一方面,本發明涉及一種重組蛇α-神經毒素的製備方法,其包含以下步驟:(a)在一細菌蛋白表達系統中表達如申請專利範圍第1項所述的重組DsbC-NTX嵌合蛋白;(b)以一金屬親和層析法純化該重組DsbC-NTX嵌合蛋白;(c)以一TEV蛋白酶切割純化後的該重組DsbC-NTX嵌合蛋白;以及(d)以一陽離子交換層析法再純化不含DsbC序列和連接蛋白序列的該重組蛇α-神經毒素。
In another aspect, the present invention relates to a method for preparing a recombinant snake α-neurotoxin, comprising the following steps: (a) expressing the recombinant DsbC-NTX chimeric DsbC-NTX as described in
在另一方面,本發明涉及一種重組蛇α-神經毒素用於產生一眼鏡蛇有效抗蛇毒血清的免疫原,其中該重組蛇α-神經毒素係由SEQ ID NO.1或SEQ ID NO.6的序列所組成 In another aspect, the present invention relates to a recombinant snake alpha-neurotoxin for the production of an immunogen for the production of a cobra effective antivenom, wherein the recombinant snake alpha-neurotoxin is represented by SEQ ID NO.1 or SEQ ID NO.6 composed of sequences
圖1. 眼鏡蛇屬(Naja genus)中的主要(A)長鏈NTX和(B)短鏈NTX的多重序列比對。(a:UniProt數據庫中的登錄號,b:文獻中報導的相應毒液中相對含量的百分比(%),c:與P01391(對於LNTXs)或 P60770(對於SNTXs)的序列相比,在同一位置的胺基酸序列相同或相似的的百分比。在同一亞家族的所有序列中相同的胺基酸以紅色顯示及明亮的黃色背景;而相似的胺基酸以黑色顯示及藍色或綠色背景。 Figure 1. Multiple sequence alignment of major (A) long-chain NTX and (B) short-chain NTX in Naja genus. (a: accession number in UniProt database, b: percentage (%) of relative content in corresponding venoms reported in literature, c: same as P01391 (for LNTXs) or The percentage of identical or similar amino acid sequences at the same position compared to the sequences of P60770 (for SNTXs). Identical amino acids in all sequences of the same subfamily are shown in red with a bright yellow background; while similar amino acids are shown in black with a blue or green background.
圖2. 重組短鏈神經毒素和長鏈神經毒素的十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(SDS-PAGE)。(A)重組短鏈神經毒素和(B)長鏈神經毒素的蛋白質樣品通過4-12%還原梯度凝膠分離並且以考馬斯亮藍R-250(Coomassie blue R-250)進行染色(左圖)或轉移到PVDF膜上以BAV抗蛇毒血清和NPAV抗蛇毒血清抗體進行免疫墨點法進行分析(右圖)。M泳道:預先染色的蛋白質標記(kDa),泳道1和5:誘導後的總裂解物,泳道2和6:誘導前的總裂解物,泳道3和7:可溶部分,泳道4和8:純化後的重組神經毒素。
Figure 2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of recombinant short-chain neurotoxin and long-chain neurotoxin. Protein samples of (A) recombinant short-chain neurotoxin and (B) long-chain neurotoxin were separated by 4-12% reducing gradient gel and stained with Coomassie blue R-250 (left panel) Or transferred to PVDF membrane for analysis by immunoblotting with BAV anti-venom and NPAV anti-venom antibodies (right panel). Lane M: pre-stained protein marker (kDa),
圖3. 天然、重組和還原形式的神經毒素的CD光譜。天然毒素的光譜顯示為黑線、重組毒素的光譜顯示為紅線以及以30mM二硫蘇糖醇(dithiothreitol)預先處理過的還原重組毒素的光譜顯示為虛線顯示,結果顯示為五次掃描的平均值,其中掃描的波長範圍從190到260nm。SNTX:天然短鏈NTX,rSNTX:重組短鏈NTX,RSNTX:還原的短鏈NTX。 Figure 3. CD spectra of native, recombinant and reduced forms of neurotoxins. The spectra of the native toxin are shown as black lines, the spectra of recombinant toxins are shown as red lines, and the spectra of reduced recombinant toxins pretreated with 30 mM dithiothreitol are shown as dashed lines, and the results are shown as the average of five scans , where the scanned wavelength range is from 190 to 260 nm. SNTX: native short-chain NTX, rSNTX: recombinant short-chain NTX, RSNTX: reduced short-chain NTX.
圖4. 長鏈α-神經毒素的二甲基標記和雙硫鍵連接胜肽的MS2質譜圖。從(A)rLNTX和(B)天然LNTX的消化物中觀察到具有質荷比(m/z)為616.2637(2+)的離子代表TWC26DAFC30SIR的胰蛋白酶片段,其中C26C30是雙硫鍵連接的。唯一一個增強的a1離子106.1212指出該片段由一條鏈組成,其中蘇胺酸(T)為N端胺基酸。從rLNTX(C)和天然LNTX(D) 的消化物中具有質荷比(m/z)為846.9937(7+)觀察到的離子代表了C3FITPDITSK-DC17PNGHVC24YTK-VDLGC41AATC44PTVK-TGVDIQC54C55STDNC60PFPTR的胰蛋白酶片段,其中八個半胱氨酸(cysteine)都被氧化了。四個增強的a1離子106.0628、120.0963、104.1446和106.1249說明了該胜肽由四條鏈組成,其中半胱胺酸(C),天冬胺酸(D),纈胺酸(V)和蘇胺酸(T)為第一個N端胺基酸。 Figure 4. MS 2 mass spectrum of dimethyl-labeled and disulfide-linked peptides of long-chain alpha-neurotoxins. An ion with a mass-to-charge ratio (m/z) of 616.2637 (2+) was observed in the digests of (A) rLNTX and (B) native LNTX representing the trypsin fragment of TWC 26 DAFC 30 SIR with C 26 C 30 are connected by disulfide bonds. The only enhanced a1 ion, 106.1212, indicates that the fragment consists of a single chain in which threonine (T) is the N-terminal amino acid. The ions observed from digests of rLNTX (C) and native LNTX (D) with a mass-to-charge ratio (m/z) of 846.9937 (7+) represent C 3 FITPDITSK-DC 17 PGHVC 24 YTK-VDLGC 41 AATC 44 PTVK-TGVDIQC 54 C 55 STDNC 60 Trypsin fragment of PFPTR in which all eight cysteines are oxidized. The four enhanced a1 ions 106.0628, 120.0963, 104.1446 and 106.1249 illustrate that the peptide consists of four chains, of which cysteine (C), aspartic acid (D), valine (V) and threonine (T) is the first N-terminal amino acid.
圖5. 短鏈α-神經毒素的二甲基標記胜肽和雙硫鍵連接的胜肽的MS2質譜圖。從(A)rSNTX和(B)天然SNTX的消化物中觀察到具有質荷比899.94(6+)和909.39(6+)的離子代表了GLEC4HNQQSSQTPTTTGC18SGGETNC25Y-GC42GC44PSVK-NGIEINC55C56TTDRGC-SG61CKCC-CNCC-C24C-C60NN,其中八個半胱胺酸均被氧化。四個增強的a1離子118.1596、62.1038、119.1195和106.0682說明了該胜肽由四個鏈組成,包含了以亮胺酸(L)、甘胺酸(G)、天冬醯胺(N)和半胱胺酸(C)為第一個N端胺基酸的片段。上圖中缺乏了a1離子(118.1534)是由於重組SNTX的第一個胺基酸是甘胺酸而不是亮胺酸。 Figure 5. MS 2 mass spectra of dimethyl-labeled and disulfide-linked peptides of short-chain alpha-neurotoxins. Ions with mass-to-charge ratios 899.94 (6+) and 909.39 (6+) were observed from digests of (A) rSNTX and (B) native SNTX representing GLEC4HNQQSSQTPTTTGC18SGGETNC25Y - GC42GC44PSVK- NGIEINC 55 C 56 TTDRGC-SG 61 CKCC-CNCC-C 24 CC 60 NN in which all eight cysteines are oxidized. The four enhanced a1 ions 118.1596, 62.1038, 119.1195 and 106.0682 indicate that the peptide consists of four chains, including leucine (L), glycine (G), asparagine (N) and half Cystine (C) is a fragment of the first N-terminal amino acid. The lack of a1 ion (118.1534) in the above figure is due to the fact that the first amino acid of recombinant SNTX is glycine rather than leucine.
圖6.(A)rSNTX(藍色)和天然SNTX(紅色)的NMR光譜;(B)rLNTX(藍色)和天然LNTX(紅色)。 Figure 6. (A) NMR spectra of rSNTX (blue) and native SNTX (red); (B) rLNTX (blue) and native LNTX (red).
圖7. 免疫小鼠的毒素特異性抗體反應和存活曲線。(A)免疫小鼠對短鍊和長鏈神經毒素的血清抗體反應,結果為定量且表示為平均值±標準差(n=12);(B)在3 x LD50 N.Atra毒液(LD50=0.67μg/g)攻擊後,以雙重重組毒素(●)、雙重毒液(▲)或PBS(■)免疫的小鼠的存活曲線; (C)以3倍LD50劑量的孟加拉眼鏡蛇(N.siamensis)毒液(LD50=0.15μg/g)攻擊後小鼠的存活曲線;(D)以3倍LD50劑量的泰國眼鏡蛇(N.siamensis)毒液(LD50=0.19μg/g)攻擊後小鼠的存活曲線。 Figure 7. Toxin-specific antibody responses and survival curves of immunized mice. (A) Serum antibody responses to short-chain and long-chain neurotoxins in immunized mice, results are quantified and presented as mean ± SD (n=12); (B) at 3 x LD50 N.Atra venom (LD 50 = 0.67 μg/g) after challenge, the survival curve of mice immunized with double recombinant toxin (●), double venom (▲) or PBS (■); (C) Bengal cobra (N) with 3 times the LD50 dose. .siamensis) venom (LD 50 =0.15 μg/g) challenged mice survival curve; (D) after challenge with 3 times LD 50 dose of Thai cobra (N. siamensis) venom (LD 50 =0.19 μg/g) Survival curves of mice.
本發明涉及一種重組DsbC-NTX嵌合蛋白,其由該重組DsbC-NTX嵌合蛋白係由DsbC-Linker-NTX序列所組成,其中:DsbC是一DsbC蛋白序列;Linker是一連結蛋白序列,其中該連結蛋白序列包含一6xHis重複序列以及在該6xHis重複序列後連接一TEV蛋白水解位點序列;以及NTX是一重組蛇α-神經毒素序列,其中該重組蛇α-神經毒素序列係選自一SEQ ID NO.1或一SEQ ID NO.6;其中該SEQ ID NO.1的序列中X9=I或V;X12=K、T或Q;X13=D或I;X15=P或A;X28=A、G或N;X31=S或A;X32=I或S;X35=K或R;X38=D或E;X49=K或R;X50=T或P;X55=Q或K;X69=K、P或N;以及X70-71=RP或無;以及其中該SEQ ID NO.6的序列中X1=L或M;X2=E或I;X4=H或Y;X5=N、D或K;X9=S或L;X11=T、A、P或F;X13=T或I;X15-16=TG、KT或KV;X18=S或P;X20=G或無;X22=T或K;X28=R、W、S或Q;X30=R或S;X31=D或G;X35-37=YRT、TII或YRI;X45=S或K;X48=N、P或K;X50-52=IEI、VNL或VKI;X56和X57=T或R;X59=R或K;X62=N或R。 The present invention relates to a recombinant DsbC-NTX chimeric protein. The recombinant DsbC-NTX chimeric protein is composed of a DsbC-Linker-NTX sequence, wherein: DsbC is a DsbC protein sequence; Linker is a linker protein sequence, wherein The connexin sequence comprises a 6xHis repeat and a TEV proteolytic site sequence followed by the 6xHis repeat; and NTX is a recombinant snake alpha-neurotoxin sequence, wherein the recombinant snake alpha-neurotoxin sequence is selected from a SEQ ID NO.1 or a SEQ ID NO.6; wherein in the sequence of the SEQ ID NO.1, X 9 =I or V; X 12 =K, T or Q; X 13 =D or I; X 15 =P or A; X28 =A, G or N; X31 =S or A; X32 =I or S; X35 =K or R; X38 =D or E; X49 =K or R; X50 = X 55 =Q or K; X 69 =K, P or N; and X 70 - 71 =RP or none; and wherein X 1 =L or M in the sequence of SEQ ID NO. 6; X 2 X 4 =H or Y; X 5 =N, D or K; X 9 =S or L; X 11 =T, A, P or F; X 13 =T or I; X 15-16 =TG, KT or KV; X18 =S or P; X20 =G or none; X22 =T or K; X28 =R, W, S or Q; X30 =R or S; X31 =D or G; X35-37 =YRT, TII or YRI ; X45=S or K; X48 =N, P or K; X50-52 =IEI, VNL or VKI; X56 and X57 =T or R ; X 59 =R or K; X 62 =N or R.
在本發明一方面,所述的連結蛋白序列為一6xHis重複序列以及其後是TEV蛋白水解位點序列,所述的連結蛋白序列位於DsbC蛋白序列之後且在重組蛇α-神經毒素序列的前面。 In one aspect of the invention, the connexin sequence is a 6xHis repeat followed by a TEV proteolytic site sequence, the connexin sequence is located after the DsbC protein sequence and before the recombinant snake alpha-neurotoxin sequence .
在本發明另一方面,所述的重組蛇α-神經毒素序列,其由選自SEQ ID NO.1的序列組成,其中該SEQ ID NO.1與SEQ ID NO.2具有至少80%的序列一致性和90%的序列相似性。 In another aspect of the present invention, the recombinant snake α-neurotoxin sequence consists of a sequence selected from SEQ ID NO.1, wherein the SEQ ID NO.1 and SEQ ID NO.2 have at least 80% of the sequence Identity and 90% sequence similarity.
在一實施例,上述重組蛇α-神經毒素序列係選自SEQ ID Nos.2-5。在一較佳實施例,上述重組蛇α-神經毒素係選自SEQ ID NO.2。 In one embodiment, the above-mentioned recombinant snake α-neurotoxin sequence is selected from SEQ ID Nos. 2-5. In a preferred embodiment, the recombinant snake α-neurotoxin is selected from SEQ ID NO.2.
在本發明之另一方面,重組蛇α-神經毒素序列,其由選自SEQ ID NO.1的序列組成,其中該SEQ ID NO.1與SEQ ID NO.6具有至少69%的序列一致性和75%的序列相似性。 In another aspect of the present invention, a recombinant snake alpha-neurotoxin sequence consisting of a sequence selected from SEQ ID NO. 1, wherein the SEQ ID NO. 1 and SEQ ID NO. 6 have at least 69% sequence identity and 75% sequence similarity.
在一實施例中,上述重組蛇α-神經毒素序列係選自SEQ ID Nos.7-16。在一較佳實施例中,上述重組蛇α-神經毒素係選自SEQ ID NO.7。 In one embodiment, the above-mentioned recombinant snake α-neurotoxin sequence is selected from SEQ ID Nos. 7-16. In a preferred embodiment, the recombinant snake α-neurotoxin is selected from SEQ ID NO.7.
在一方面,本發明涉及一種重組蛇α-神經毒素的製備方法,其包含以下步驟:(a)在一細菌蛋白表達系統中表達如申請專利範圍第1項所述的重組DsbC-NTX嵌合蛋白;(b)以一金屬親和層析法純化該重組DsbC-NTX嵌合蛋白;(c)以一TEV蛋白酶切割純化後的該重組DsbC-NTX嵌合蛋白;以及(d)以一陽離子交換層析法再純化不含DsbC序列和連接蛋白序列的該重組蛇α-神經毒素。
In one aspect, the present invention relates to a method for preparing recombinant snake α-neurotoxin, which comprises the following steps: (a) expressing the recombinant DsbC-NTX chimera described in
在一實施例中,其中該細菌蛋白表達系統為使用一大腸桿菌BL21(DE3)菌株來產生該重組DsbC-NTX嵌合蛋白。 In one embodiment, wherein the bacterial protein expression system uses an E. coli BL21(DE3) strain to produce the recombinant DsbC-NTX chimeric protein.
在一實施例中,其中該金屬親和層析法為一Ni-NTA親和性層析法。在另一實施例中,其中該陽離子交換層析法為一磺丙基強陽離子交換層析法。 In one embodiment, the metal affinity chromatography method is a Ni-NTA affinity chromatography method. In another embodiment, wherein the cation exchange chromatography is a sulfopropyl strong cation exchange chromatography.
在上述方法中,該方法進一步包括將純化後的蛋白質通過一Q Sepharose Fast Flow管柱去除內毒素的步驟。 In the above method, the method further comprises passing the purified protein through a Q Steps to remove endotoxins on Sepharose Fast Flow columns.
在另一方面,本發明涉及一種重組蛇α-神經毒素用於產生一眼鏡蛇有效抗蛇毒血清的免疫原,其中該重組蛇α-神經毒素係由SEQ ID NO.1或SEQ ID NO.6的序列所組成;其中該SEQ ID NO.1的序列中X9=I或V;X12=K、T或Q;X13=D或I;X15=P或A;X28=A、G或N;X31=S或A;X32=I或S;X35=K或R;X38=D或E;X49=K或R;X50=T或P;X55=Q或K;X69=K、P或N;以及X70-71=RP或無;以及其中該SEQ ID NO.6的序列中X1=L或M;X2=E或I;X4=H或Y;X5=N、D或K;X9=S或L;X11=T、A、P或F;X13=T或I;X15-16=TG、KT或KV;X18=S或P;X20=G或無;X22=T或K;X28=R、W、S或Q;X30=R或S;X31=D或G;X35-37=YRT、TII或YRI;X45=S或K;X48=N、P或K;X50-52=IEI、VNL或VKI;X56和X57=T或R;X59=R或K;X62=N或R。 In another aspect, the present invention relates to a recombinant snake alpha-neurotoxin for the production of an immunogen for the production of a cobra effective antivenom, wherein the recombinant snake alpha-neurotoxin is represented by SEQ ID NO.1 or SEQ ID NO.6 In the sequence of SEQ ID NO.1, X 9 =I or V; X 12 =K, T or Q; X 13 =D or I; X 15 =P or A; X 28 =A, G or N; X31 =S or A; X32 =I or S; X35 =K or R; X38 =D or E; X49 =K or R; X50 =T or P; X55 =Q or K; X69 =K, P or N; and X70-71 =RP or none; and wherein in the sequence of SEQ ID NO. 6 , X1 = L or M; X2=E or I; X4 =H or Y; X 5 =N, D or K; X 9 =S or L; X 11 =T, A, P or F; X 13 =T or I; X 15-16 =TG, KT or KV; X 18 =S or P; X20 =G or none; X22 =T or K; X28 =R, W, S or Q; X30 =R or S; X31=D or G; X35-37 = YRT , TII or YRI ; X45=S or K; X48 =N, P or K; X50-52 =IEI, VNL or VKI; X56 and X57 =T or R; X59 =R or K; X 62 = N or R.
在一方面,上述之重組蛇α-神經毒素,其中該SEQ ID NO.1與SEQ ID NO.2具有至少80%的序列一致性和90%的序列相似性。在一實施例,其中該重組蛇α-神經毒素序列係選自SEQ ID NOs.2-5。在另一方面,其中該重組蛇α-神經毒素序列係選自SEQ ID NO.2。 In one aspect, the above-mentioned recombinant snake α-neurotoxin, wherein the SEQ ID NO. 1 and SEQ ID NO. 2 have at least 80% sequence identity and 90% sequence similarity. In one embodiment, the recombinant snake alpha-neurotoxin sequence is selected from SEQ ID NOs. 2-5. In another aspect, wherein the recombinant snake alpha-neurotoxin sequence is selected from SEQ ID NO.2.
在一實施例,其中該重組蛇α-神經毒素序列係選自SEQ ID NOs.7-16。在一較佳實施例中,其中該重組蛇α-神經毒素序列係選自SEQ ID NO.7。 In one embodiment, the recombinant snake alpha-neurotoxin sequence is selected from SEQ ID NOs. 7-16. In a preferred embodiment, the recombinant snake α-neurotoxin sequence is selected from SEQ ID NO.7.
實施例Example
通過下面的具體實施例,可以進一步證明本發明的實際應用範 圍。僅是本發明的優選實施例,而並不限制本發明的範圍。因此,根據本發明的範圍和本發明的說明書的內容進行的任何簡單的改變和修改仍然被本發明的範圍覆蓋。 The practical application range of the present invention can be further proved by the following specific examples around. It is only a preferred embodiment of the present invention, and does not limit the scope of the present invention. Therefore, any simple changes and modifications made in accordance with the scope of the present invention and the contents of the description of the present invention are still covered by the scope of the present invention.
同時考慮了蛇毒的相對醫學上重要性和相對含量,從亞洲眼鏡蛇毒中總共13種主要的α-神經毒素(4種LNTX和9種SNTX)選擇了一種第I型α-神經毒素和一種第II型的α-神經毒素作為設計融合DsbC蛋白進行可溶性表現(表1和表2)。 Considering both the relative medical importance and relative content of snake venoms, one type I α -neurotoxin and one type I α-neurotoxin were selected from a total of 13 major α-neurotoxins (4 LNTX and 9 SNTX) in Asian cobra venom Type II alpha-neurotoxins were soluble as designed fusion DsbC proteins (Tables 1 and 2).
表1.在亞洲眼鏡蛇毒液中鑑定出的長α-神經毒素(LNTXs)序列表。
表2. 亞洲眼鏡蛇毒中鑑定的長α-神經毒素(LNTX)的序列表
從結構與功能的分析結果都能證明重組NTX為一正確折疊的結構和具有生物活性形式,可模擬天然毒素。以重組NTXs進行免疫的兩隻兔子身上收集的抗血清還具備了強至中等的對抗N.atra、N.kaouthia和N.siamensis毒液的交叉中和能力。綜上所述,本發明揭示了一種具經濟效益、可擴展且穩健的生產平台,該平台通過使用重組毒素作為免疫原來改進用於生產對抗眼鏡蛇科抗蛇毒血清的製劑。 The results of structural and functional analysis can prove that recombinant NTX is a correctly folded structure and has a biologically active form, which can mimic natural toxins. Antisera collected from two rabbits immunized with recombinant NTXs also exhibited strong to moderate cross-neutralization ability against the venoms of N.atra, N.kaouthia, and N.siamensis. In summary, the present invention discloses a cost-effective, scalable and robust production platform that improves formulations for the production of anti-Cobra antivenoms by using recombinant toxins as immunogens.
實施例1.α-神經毒素的設計、細菌表達和純化。Example 1. Design, bacterial expression and purification of alpha-neurotoxins.
材料和方法 Materials and Method
rDsbC-NTX嵌合體在大腸桿菌中的表達 Expression of rDsbC-NTX chimera in Escherichia coli
DsbC(Disulfide bond C)是原核雙硫鍵異構酶。天然雙硫鍵的形成對於蛋白質的正確折疊和穩定蛋白質的三級結構扮演重要的角色。DsbC是原核生物中Dsb家族的6種蛋白質之一。DsbC與不正確折疊的蛋白質相互作用以校正非天然的雙硫鍵。煙草蝕刻病毒(tobacco etch virus,TEV)蛋白酶是一種高度特異性的半胱胺基酸蛋白酶,可識別胺基酸序列Glu-Asn-Leu-Tyr-Phe-Gln-(Gly/Ser),並在Gln和Gly/Ser殘基之間切割。此外,TEV蛋白酶識別位點可耐受其C端的所有其他殘基(脯胺酸除外),這證實不需要在重組胜肽的N端加入任何可能影響活性的非天然殘基就能除去標幟分子。因此,TEV蛋白酶可用於去除融合蛋白中用來做為親和純化的標幟分子,例如:聚組氨酸。為了表達rDsbC-NTX嵌合蛋白,優化的dsbC基因序列(651個鹼基對)和編碼眼鏡蛇α-神經毒素的基因(cobrotoxin,186個鹼基對,P60770或alpha-elapitoxin-Nk2a,213個鹼基,P01391)被合成,並且透過39個核苷酸的連結序列(5'-catcatcaccaccaccacgagaacctgtactttcagggc-3')連結在一起,其中連結序列將會轉譯出組胺酸標幟分子(6x組氨酸)並接著轉譯出TEV蛋白水解位點(ENLYFQG)。然而,TEV蛋白水解位點的最後一個胺基酸可以以脯胺酸以外的任何其他胺基酸代替。用NdeI和BamHI限制酶作用後所得基因,並將此基因克隆到T7啟動子控制下的pET-9a質體中。 DsbC (Disulfide bond C) is a prokaryotic disulfide bond isomerase. The formation of native disulfide bonds plays an important role in the correct folding of proteins and in stabilizing the tertiary structure of proteins. DsbC is one of the six proteins of the Dsb family in prokaryotes. DsbC interacts with improperly folded proteins to correct non-native disulfide bonds. Tobacco etch virus (TEV) protease is a highly specific cysteine protease that recognizes the amino acid sequence Glu-Asn-Leu-Tyr-Phe-Gln-(Gly/Ser) and Cleavage between Gln and Gly/Ser residues. In addition, the TEV protease recognition site is tolerant to all other residues at its C-terminus (except proline), confirming that the removal of the tag does not require the addition of any non-native residues at the N-terminus of the recombinant peptide that might affect activity molecular. Therefore, TEV protease can be used to remove marker molecules such as polyhistidine in fusion proteins for affinity purification. To express the rDsbC-NTX chimeric protein, the optimized dsbC gene sequence (651 bp) and the gene encoding cobra alpha-neurotoxin (cobrotoxin, 186 bp, P60770 or alpha-elapitoxin-Nk2a, 213 bp) base, P01391) were synthesized and linked together by a 39-nucleotide linker sequence (5'-catcatcaccaccaccacgagaacctgtactttcagggc-3') that would translate a histidine marker molecule (6x histidine) and The TEV proteolytic site (ENLYFQG) was then translated. However, the last amino acid of the TEV proteolytic site can be replaced with any other amino acid other than proline. The resulting gene was treated with NdeI and BamHI restriction enzymes and cloned into pET-9a plastids under the control of the T7 promoter.
將得到名為pDsbC-His-SNTX和pDsbC-His-LNTX的質體轉形到BL21(DE3)或RosettaTM(DE3)細胞中並培養於2L標準燒瓶中,其中含有具有34mg/L康黴素的800mL LB生長培養基且將燒瓶置於37℃且每分鐘 轉速為180搖動進行異源性的表達。當細菌生長進入指數期(OD600=0.5-0.6)時加入1mM異丙基β-D-1-硫代半乳糖吡喃糖苷(IPTG)進行誘導蛋白質表現。誘導後三小時,將細胞沉澱並回溶於PBS,以一超高壓均質機(French press)在壓力為27Kpsi進行破菌(Constant Systems,Daventry,UK)。通過超速離心(32,000rpm,40min,4℃)收集澄清的含有rDsbC-NTX嵌合蛋白和細菌內源性細胞質蛋白的上清液,接著將該上清液進行過濾並進行下游純化。 The resulting plastids named pDsbC-His-SNTX and pDsbC-His-LNTX were transformed into BL21(DE3) or Rosetta (TM) (DE3) cells and cultured in 2L standard flasks containing 34mg/L Conmycin Heterologous expression was performed with 800 mL of LB growth medium and the flask was placed at 37°C with shaking at 180 rpm. Protein expression was induced by adding 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) when bacterial growth entered exponential phase (OD600=0.5-0.6). Three hours after induction, cells were pelleted and redissolved in PBS and disrupted with an ultra-high pressure homogenizer (French press) at 27 Kpsi (Constant Systems, Daventry, UK). The clarified supernatant containing the rDsbC-NTX chimeric protein and bacterial endogenous cytoplasmic proteins was collected by ultracentrifugation (32,000 rpm, 40 min, 4° C.), followed by filtration and downstream purification.
重組α-神經毒素的純化 Purification of recombinant alpha-neurotoxin
首先,在4℃下透過通過一固定金屬離子親和層析法(immobilized metal affinity chromatography,IMAC)可將rDsbC-NTX嵌合蛋白從可溶性細胞裂解物中分離出來。將裂解物放入具有Ni-NTA(Ni-nitrilotriacetic acid)瓊脂膠體(QIAGEN)的開放式的層析管柱中並以10倍管柱體積(CV)的洗滌緩衝液(PBS,40mM咪唑,pH=7.4)洗滌該管柱,然後用以3CV的洗脫緩衝液(PBS,500mM咪唑,pH=7.4)以重力進行沖提。將沖提出的洗脫液以PBS進行透析並且在16℃下以TEV(1:3,w/w)在含有0.1mM DTT的溶液中裂解過夜。第二天,將作用完的混合物以20mM磷酸鈉緩衝液(pH=5.8)進行3次透析。將透析後的混合物加入預先以20mM磷酸鈉緩衝液平衡過的Ni-NTA樹脂的層析管柱中以吸附具有攜帶聚組胺酸的TEV、DsbC蛋白片段和未被TEV酵素切割的原嵌合蛋白。 First, the rDsbC-NTX chimeric protein was isolated from soluble cell lysates by passing through an immobilized metal affinity chromatography (IMAC) at 4°C. The lysate was placed into an open chromatography column with Ni-NTA (Ni-nitrilotriacetic acid) agar colloid (QIAGEN) and washed with 10 column volumes (CV) of wash buffer (PBS, 40 mM imidazole, pH = 7.4) The column was washed and then eluted by gravity with 3 CV of elution buffer (PBS, 500 mM imidazole, pH = 7.4). The flushed eluate was dialyzed against PBS and lysed with TEV (1:3, w/w) in a solution containing 0.1 mM DTT at 16°C overnight. The next day, the finished mixture was dialyzed 3 times against 20 mM sodium phosphate buffer (pH=5.8). The dialyzed mixture was added to a chromatographic column of Ni-NTA resin equilibrated with 20 mM sodium phosphate buffer to adsorb TEV with polyhistidine, DsbC protein fragments and pro-chimeras that were not cleaved by TEV enzymes. protein.
相反,重組α-神經毒素主要存在於流出液和洗滌液的部分中,且將兩部分收集在一起並彙集在一起,並加入另一根裝有磺丙基強陽離子交換樹脂的色層分析管柱(GE Healthcare)。以3CV的洗滌緩衝液(25mM 碳酸氫銨,ABC)洗滌後,用3CV的洗脫緩衝液(25mM ABC緩衝液,500mM NaCl)洗脫出重組α-神經毒素,並以25mM ABC緩衝液於4℃下透析一晚。將透析後的的洗脫液加入預先以25mM ABC緩衝液平衡的Q Sepharose Fast Flow樹脂(GE Healthcare)以去除內毒素。收集流出物並且進行冷凍乾燥並在-20℃下保存直至使用。通過內毒素偵測套組(limulus amoebocyte lysate test)(Pyrotell®,Assoc.of Cape Cod,Falmouth,MA,USA)進行測試,最終重組毒素中的內毒素殘留量rSNTX為0.03-0.30Eu/mg以及rLNTX為0.35-3.50Eu/mg。 In contrast, the recombinant alpha-neurotoxin was mainly present in the effluent and wash fractions, and the two fractions were collected and pooled together and added to another chromatography tube containing sulfopropyl strong cation exchange resin Column (GE Healthcare). with 3CV of wash buffer (25mM After washing with ammonium bicarbonate, ABC), the recombinant alpha-neurotoxin was eluted with 3 CV of elution buffer (25 mM ABC buffer, 500 mM NaCl) and dialyzed against 25 mM ABC buffer overnight at 4°C. The dialyzed eluate was added to Q Sepharose Fast Flow resin (GE Healthcare) pre-equilibrated with 25 mM ABC buffer to remove endotoxins. The effluent was collected and lyophilized and stored at -20°C until use. The endotoxin residue rSNTX in the final recombinant toxin was 0.03-0.30Eu/mg and rLNTX was 0.35-3.50 Eu/mg.
結果 result
首先,對最近發表的文章進行了資料探勘,其中描述了眼鏡蛇屬和其身份的主要蛇毒數據以及相對含量,其中將蛋白質序列比對的結果總結在圖1。如圖1所示,亞洲眼鏡蛇毒中主要存在9種不同形式的I型α-神經毒素和10種不同形式的II型α-神經毒素。例如:N.kaouthia和N.siamemsis的毒液含有非常高含量的α-elaptoxin-Nk2a(分別為33.3%和22.4%,登陸號:P01391),這是迄今為止鑑定出的最豐富的LNTX。與N.sumatrana、N.naja和N.melanoleuca毒液中發現的次要含量LNTX相比具有超過80%一致性和90%的相似性。另一方面,N.atra毒液中含有高含量的cobrotoxin(~12%,登陸號:P60770),此為最豐富的SNTX,與其他眼鏡蛇品種的其餘SNTX相比,具有75%相似度。因此,分別合成兩種最豐富的神經毒素的基因並與被His-標籤和TEV蛋白水解位點(ENLYFQG)分開的dsbC基因進行融合並將克隆到pET-9a質體中,進一步,在大腸桿菌中進行表達。 First, data mining was performed on recently published articles describing the main snake venom data and relative content of Cobra genus and its identity, in which the results of the protein sequence alignment are summarized in Figure 1. As shown in Figure 1, there are mainly 9 different forms of type I α -neurotoxin and 10 different forms of type II α-neurotoxin in Asian cobra venom. For example: the venoms of N. kaouthia and N. siamemsis contain very high levels of α-elaptoxin-Nk2a (33.3% and 22.4%, respectively, accession number: P01391), the most abundant LNTX identified to date. More than 80% identity and 90% similarity to the minor content LNTX found in N. sumatrana, N. naja and N. melanoleuca venoms. On the other hand, the venom of N.atra contains a high content of cobrotoxin (~12%, accession number: P60770), which is the most abundant SNTX and is 75% similar to the remaining SNTX of other cobra species. Therefore, the genes for the two most abundant neurotoxins were synthesized separately and fused to the dsbC gene separated by a His-tag and a TEV proteolytic site (ENLYFQG) and cloned into pET-9a plastids. Further, in E. coli expressed in.
細胞破裂後,從澄清的上清液中收集重組融合蛋白,並使用固定 金屬親和色譜法(IMAC)進行分離。TEV切割後,通過N端測序數據確認rSNTX和rLNTX在N端帶有一個額外的甘氨酸殘基。rSNTX的前三個胺基酸序列為GLE,rLNTX的前三個胺基酸序列為GIR。此外,再次通過IMAC成功地將rSNTX和rLNTX與TEV、DsbC和原嵌合蛋白分離,並通過離子交換樹脂進一步純化,以去除從來自大腸桿菌的雜質和脂多醣(lipopolysaccharide)。以考馬斯亮藍(Coomassie blue)染色和等價的抗蛇毒血清進行西方墨點法檢測SDS-PAGE分離的還原型態的重組毒素的純度和免疫識別特性(圖2)。 After cell rupture, the recombinant fusion protein was collected from the clarified supernatant and fixed using Metal affinity chromatography (IMAC) was used for separation. After TEV cleavage, rSNTX and rLNTX were confirmed to carry an additional glycine residue at the N-terminus by N-terminal sequencing data. The first three amino acid sequences of rSNTX are GLE, and the first three amino acid sequences of rLNTX are GIR. In addition, rSNTX and rLNTX were successfully separated from TEV, DsbC and the original chimeric protein again by IMAC and further purified by ion exchange resin to remove impurities and lipopolysaccharide from E. coli. The purity and immunorecognition properties of the SDS-PAGE separated reduced form of the recombinant toxin were detected by Western blotting with Coomassie blue staining and equivalent antivenom (Figure 2).
同時,通過反相色層分析法分析了蛋白質的純度和疏水性,並觀察到天然毒素和相應的重組毒素具有接近的保留時間(retention time)。總括來說,不需要進行蛋白質再折疊,純化結束時即可獲得高純度具有可被抗蛇毒血清抗體辨識的重組抗短鏈/長鏈神經毒素,其中每公升細菌培養的產量為10mg/L(rSNTX)和2.5mg/L(rLNTX)。 Meanwhile, the purity and hydrophobicity of the protein were analyzed by reversed-phase chromatography, and it was observed that the natural toxin and the corresponding recombinant toxin had similar retention times. In summary, no protein refolding is required, and high-purity recombinant anti-short-chain/long-chain neurotoxins recognized by antivenom antibodies are obtained at the end of the purification, where the yield per liter of bacterial culture is 10 mg/L ( rSNTX) and 2.5 mg/L (rLNTX).
實施例2. 神經毒素的毒性和結構表徵。Example 2. Toxicity and structural characterization of neurotoxins.
材料和方法 Materials and Method
圓二色光譜 circular dichroism spectrum
使用圓二色光譜儀(JASCO J-815),在0.5mm路徑長度的石英管中,在20℃下,在190至260nm的波長範圍內讀取光譜。所有蛋白質樣品均在蒸餾水中以7-90μM的蛋白質濃度製備。減去空白組的數值後,根據以下公式從毫度(mdeg)計算橢圓率(Ellipticity,[θ],deg x cm2 x dmol-1)=(毫度×平均殘留重量)/(路徑長度(毫米)×蛋白質濃度(毫克/毫升)), 其中平均殘基重量=(分子量)/(殘基數-1)。α-螺旋和β-摺疊的含量由網絡服務器K2D3進行估算(Louis-Jeune C,et al.Proteins 2012,80,374-381,10.1002/prot.23188).。 Spectra were read in the wavelength range of 190 to 260 nm at 20°C in a 0.5 mm path length quartz tube using a circular dichroism spectrometer (JASCO J-815). All protein samples were prepared at protein concentrations of 7-90 μM in distilled water. After subtracting the value of the blank group, calculate the ellipticity from millidegrees (mdeg) according to the following formula (Ellipticity, [θ], deg x cm2 x dmol-1) = (millidegrees x average residual weight)/(path length (mm) ) × protein concentration (mg/ml)), Wherein average residue weight=(molecular weight)/(residue number-1). The content of α-helices and β-sheets was estimated by the web server K2D3 (Louis-Jeune C, et al. Proteins 2012, 80, 374-381, 10.1002/prot.23188).
結果 result
重組短/長鏈神經毒素的神經毒性可通過腹膜內注射測量其對小鼠的致死活性來做直接評估。將多種劑量的毒素在PBS中稀釋,然後腹膜內注射到不同組別的小鼠中(19-22克,體重,n=6),注射後48小時觀察其存活數目,計算存活率的結果並示於表3。根據相應治療劑量的存活率,rSNTX和rLNTX的致死劑量(LD50)平均值分別為0.25μg/g(0.19-0.33,95%信賴區間,C.I)和0.21μg/g(0.18-0.24,95%信賴區間,C.I),兩者均略高於相對應的天然毒素的LD50(SNTX為0.23μg/g,LNTX為0.15μg/g)。急性毒性顯示出兩種大腸桿菌衍生的短鏈/長鏈神經毒素都可以正確折疊並與拮抗AChRs後導致小鼠突然死亡。 The neurotoxicity of recombinant short/long chain neurotoxins can be directly assessed by measuring their lethal activity in mice by intraperitoneal injection. Various doses of the toxin were diluted in PBS, and then injected intraperitoneally into different groups of mice (19-22 g, body weight, n=6), and the number of survival was observed 48 hours after injection, and the results of the survival rate were calculated and calculated. shown in Table 3. The lethal dose (LD50) mean values of rSNTX and rLNTX were 0.25 μg/g (0.19-0.33, 95% confidence interval, C.I) and 0.21 μg/g (0.18-0.24, 95% confidence, respectively, according to the survival rate at the corresponding treatment doses) interval, C.I), both were slightly higher than the LD50 of the corresponding natural toxins (0.23 μg/g for SNTX and 0.15 μg/g for LNTX). Acute toxicity showed that both E. coli-derived short-chain/long-chain neurotoxins could fold correctly and cause sudden death in mice after antagonizing AChRs.
表3.用天然或重組NTXs攻擊的小鼠的存活率。
正如已經證明的,具有中和能力的單克隆抗體主要識別構型而非直線的cobrotoxin抗原決定位。在蛇毒中主要造成心臟驟停和細胞毒性的主要毒素,其中若使用大腸桿菌衍生的短鏈/長鏈NTXs作為免疫原之前,鑑定 它們的結構顯然很重要。首先,比較了重組毒素及其天然毒素的圓二色性(CD)光譜,揭示了短鏈NTX和長鏈NTX的兩種CD譜圖譜,前者在228.5和199.5nm處顯示出兩個正橢圓率,而後者的特徵是在211.5nm處具有很強的橢圓率。與相應的天然毒素相比,兩種大腸桿菌來源的NTX均顯示出相似的CD光譜,表明它們在二級結構中的一致性。更具體地說,天然和重組sNTX預測有54.5%和53.4%的反平行β鏈(anti-parallel β-strands),天然和重組LNTX預測有9.8%和9.2%的α-螺旋(α-helix)以及33.5%和34.7%的反平行β鏈(圖3)。另外,推測兩種重組毒素的半胱胺酸都可能是以氧化態形式存在,因為還原後結構被完全破壞了。 As has been demonstrated, neutralizing monoclonal antibodies recognize mainly conformational rather than linear cobrotoxin epitopes. The major toxins responsible for cardiac arrest and cytotoxicity in snake venoms, where E. coli-derived short/long chain NTXs were used as immunogens, were identified Their structure obviously matters. First, the circular dichroism (CD) spectra of the recombinant toxin and its native toxin were compared, revealing two CD spectra of short-chain NTX and long-chain NTX, the former showing two positive ellipticities at 228.5 and 199.5 nm , while the latter is characterized by a strong ellipticity at 211.5 nm. Compared with the corresponding native toxins, both E. coli-derived NTXs showed similar CD spectra, indicating their identity in secondary structures. More specifically, native and recombinant sNTX predicted 54.5% and 53.4% anti-parallel β-strands, and native and recombinant LNTX predicted 9.8% and 9.2% α-helix and 33.5% and 34.7% antiparallel beta strands (Figure 3). In addition, it is speculated that the cysteine of both recombinant toxins may exist in the oxidized form because the structure is completely destroyed after reduction.
總而言之,在眼鏡蛇毒液中鑑定出的兩種最豐富的NTX,包括:α-elapitoxin-Nk2a和cobrotoxin以具有生物活性形式重組產生並且呈現出典型的二級結構。由於神經毒素的手指形結構是透過雙硫鍵對(disulfide bonds,DB)連接,並且連接的完整性不僅對其毒性很重要,而且對於誘導結構依賴性的抗體也是必須的,因此值得投入更多的精力研究重組毒素是否具有類似天然的雙硫鍵。 In conclusion, the two most abundant NTXs identified in cobra venom, including: α-elapitoxin-Nk2a and cobrotoxin, were recombinantly produced in biologically active forms and exhibited typical secondary structures. Since the finger-shaped structures of neurotoxins are connected through disulfide bonds (DB), and the integrity of the connections is not only important for their toxicity but also necessary for the induction of structure-dependent antibodies, it is worth investing more in energy to study whether recombinant toxins have similar natural disulfide bonds.
實施例3. 重組神經毒素的結構分析。Example 3. Structural analysis of recombinant neurotoxins.
材料和方法 Materials and Method
雙硫鍵連接胜肽的酶消化和二甲基標記 Enzymatic digestion and dimethyl labeling of disulfide-linked peptides
確定神經毒素的雙硫鍵的程序是按照先前描述的Huang等人的方案進行的(Anal Chem 2014,86,8742-8750,10.1021/ac501931t)。簡而言之,將40μg神經毒素溶解在35.6μl的50mM乙酸鈉(pH=6.0)中,所述乙
酸鈉含有0.2%(w/v)RapiGestTM SF表面活性劑(Waters,MA,U.S.A)。之後,在室溫下用10mM N-乙基馬來酰亞胺(N-ethylmaleimide,NEM)處理蛋白質30分鐘,以阻斷任何游離的半胱氨酸。消化在37℃過夜進行,胰蛋白酶/蛋白質比例為1:50(w/w)。第二天,蛋白質消化物用100mM乙酸鈉(pH=5.0)稀釋兩次,然後通過添加甲醛D2到4%(w/v)和氰基硼氫化鈉到20mM進行二甲基標記。在室溫下作用30分鐘後,加入等體積的1M HCl至消化的混合物中,然後在37℃下孵育30分鐘,並以14,000rpm下離心5分鐘以去除RapiGestTMSF。小心收集澄清的含標記胜肽混合物的上清液,並通過ESI-Q-TOF質譜儀與UPLC系統(Waters,MA,U.S.A.)結合進行分析。
The procedure to determine the disulfide bonds of neurotoxins was performed according to the protocol of Huang et al. previously described (
二甲基標記和雙硫鍵連接的胜肽的LC-MS/MS分析 LC-MS/MS analysis of dimethyl-labeled and disulfide-linked peptides
與nanoACQUITY UPLC系統(Waters,MA,U.S.A.)連接的ESI-Q-TOF質譜儀(Synapt HDMS)用於雙硫鍵連接的胜肽分析。LC分離是在反相C18管柱(reverse phase C18 column)(75μm×100mm,1.7μm,Waters,MA,U.S.A.)和捕集管柱(trap column)(180μm×20mm,5μm,Waters,MA,U.S.A.)上進行的。含0.1%甲酸(FA)的蒸餾水和含0.1% FA的乙腈(J.T.Baker,Phillipsburg,NJ,U.S.A.),分別用作流動相A和B,梯度設置如下:在總共60分鐘的分離時間內,30分鐘內從1% B到50% B,30-40分鐘內從50% B到65% B,在5分鐘內到達65% B。全掃描設置為400-1600的m/z範圍,並且六個通道用於同時進行MS/MS檢測。使用RADAR 3.0(http://www.mass-solutions.com.tw/)進行RADAR搜索之前,先使用Proteome Discoverer 1.3將原始數據處理至波峰列表的文件中。使用神經毒素序列(P60770和P01391)進行搜索,參數設置如下。除KP和RP外,在離胺酸和精
胺酸的C末端的酵素切割最多允許兩個遺漏的切點(missed cleavages)。所有的胺都是氘標記的。對於a1和總質量,質量公差分別設置為±0.01Da和±0.2Da。信號強度截止設置為10%,最大鍊數定義為4。
An ESI-Q-TOF mass spectrometer (Synapt HDMS) coupled to a nanoACQUITY UPLC system (Waters, MA, USA) was used for disulfide-linked peptide analysis. LC separation was performed on a reverse phase C18 column (75 μm x 100 mm, 1.7 μm, Waters, MA, USA) and a trap column (180 μm x 20 mm, 5 μm, Waters, MA, USA) ) on. Distilled water with 0.1% formic acid (FA) and acetonitrile with 0.1% FA (JT Baker, Phillipsburg, NJ, USA) were used as mobile phases A and B, respectively, with gradient settings as follows: 30 min over a total separation time of 60
抗血清對毒素和毒液的免疫反應性 Immunoreactivity of antisera to toxins and venoms
按照先前描述的程序,通過間接酶聯免疫吸附測定(ELISA)檢測抗血清對毒素和毒液的反應性。簡而言之,將以含1%牛血清白蛋白的PBS緩衝液序列稀釋的血清加到塗有0.5μg毒素或毒液的96孔微量滴定板(Corning®,U.S.A.)。在室溫下作用2小時後,以含有0.05%(v/v)Tween 20的PBS緩衝液(PBST)洗滌四次,並與結合辣根過氧化物酶(horseradish peroxidase)的山羊抗小鼠或山羊抗兔IgG作用10分鐘,接著使用SureBlue ReserveTMTMB(3,3’,5,5’-tetramethylbenzidine)微孔過氧化物酶受質(KPL,Gaithersburg,MD,U.S.A.)顯影15分鐘。加入50μl硫酸(2N H2SO4)終止反應,並通過微量盤式分析儀(SUNRISE,TECAN)測量450nm處的吸光度(OD 450)。通過內插法從滴定曲線獲得ELISA內點滴度,並將其定義為保持O.D 450值為0.3的血清稀釋度的倒數。所有測量皆為三次重覆,結果以平均值±標準差(S.D)表示。 Antiserum reactivity to toxin and venom was tested by indirect enzyme-linked immunosorbent assay (ELISA) following previously described procedures. Briefly, serum serially diluted in PBS buffer containing 1% bovine serum albumin was added to 96-well microtiter plates (Corning®, USA) coated with 0.5 μg of toxin or venom. After 2 hours at room temperature, they were washed four times with PBS buffer containing 0.05% (v/v) Tween 20 (PBST) and mixed with goat anti-mouse or horseradish peroxidase conjugated Goat anti-rabbit IgG was incubated for 10 minutes, followed by development for 15 minutes using SureBlue Reserve ™ TMB (3,3',5,5'-tetramethylbenzidine) microwell peroxidase substrate (KPL, Gaithersburg, MD, USA). The reaction was stopped by adding 50 μl of sulfuric acid (2N H 2 SO 4 ), and the absorbance at 450 nm (OD 450 ) was measured by a microplate analyzer (SUNRISE, TECAN). ELISA intra-point titers were obtained from titration curves by interpolation and defined as the reciprocal of the serum dilution that maintained an OD450 value of 0.3. All measurements were repeated in triplicate and results are presented as mean ± standard deviation (SD).
結果 result
在大腸桿菌細胞中產生正確折疊的蛋白質始終是一項艱鉅的任務,特別是對於富含DB的蛋白質,由於雙硫鍵橋的錯配或混亂,它們易於聚集並沉澱在內涵體中(inclusion bodies)。有趣的是,借助於DsbC和在特定細菌菌株中的表達,含有四到五對DB的兩個重組NTX都可以已可溶形式部分產生。 Producing properly folded proteins in E. coli cells has always been a difficult task, especially for DB-rich proteins, which tend to aggregate and precipitate in inclusion bodies due to mismatches or confusion of disulfide bridges ). Interestingly, with the help of DsbC and expression in specific bacterial strains, both recombinant NTXs containing four to five pairs of DB could be partially produced in soluble form.
利用二甲基標記結合LC-MS/MS和RADAR(通過a1離子識別快速分配雙硫鍵)算法的方法,該算法先前建立的用於分析富含DB的蛋白質的全半胱胺酸連接的方法,分別代表C26-C30和C3-C14C20-C41C45-C56C57C62排列的616.2392的雙硫鍵連接的胜肽(2+,m/z)和987.9949(6+,m/z)在天然LNTX和重組LNTX中均被觀察到,表明兩者均具有正確的DB模式。但是,通過檢測到670.3887(2+,m/z),在rLNTX中發現了一個較小的錯配,這是C41和C45之間的連接所致,這種混亂的結構可以部分解釋rLNTX的毒性較低(圖4)。 A method utilizing dimethyl labeling combined with LC-MS/MS and the RADAR (Rapid Assignment of Disulfide Bonds by a1 Ion Recognition) algorithm, a previously established method for the analysis of whole cysteine linkages of DB-rich proteins , representing 616.2392 disulfide - linked peptides ( 2+ , m / z ) and 987.9949 ( 6+,m/z) was observed in both native LNTX and recombinant LNTX, indicating that both have the correct DB pattern. However, by detecting 670.3887(2+,m/z), a minor mismatch was found in rLNTX , which is due to the connection between C41 and C45, and this chaotic structure may partly explain rLNTX were less toxic (Figure 4).
另一方面,通過檢測相應的雙硫鍵連接的胜肽909.39(6+,m/z)和899.94(6+,m/z),發現rSNTX及其相應的天然毒素都具有C3C17C24-C41C43-C54C55-C60排列(圖5)。 On the other hand, both rSNTX and its corresponding natural toxin were found to have C 3 C 17 C by detecting the corresponding disulfide-linked peptides 909.39 (6+, m/z) and 899.94 (6+, m/z) 24 - C41C43 - C54C55 - C60 arrangement ( Figure 5 ).
此外,重組和天然NTX的二維1H-1H NMR譜圖清楚地顯示了酰胺區幾乎重疊的交叉峰,表明所有殘基在空間上都位於相似的方向。根據這些結果,我們可以得出這樣的結論:長鍊和短鏈重組NTX都共享相似的DB鍵連接模式和空間結構,並代表了C3FITPDITSK-DC17PNGHVC24YTK-VDLGC41AATC44PTVK-TGVDIQC54C55STDNC60PFPTR的胰蛋白酶片段,其中八個半胱胺基酸都被氧化了。四個增強的a1離子(106.0628、120.0963、104.1446和106.1249)說明了該胜肽由四條鏈組成,其中半胱胺基酸(C),天冬胺基酸(D),纈胺酸(V)和蘇胺酸(T)作為第一個N末端胺基酸(圖6)。 In addition, the two-dimensional 1H - 1H NMR spectra of recombinant and native NTX clearly showed nearly overlapping cross-peaks in the amide regions, indicating that all residues were sterically located in similar orientations. From these results, we can conclude that both long-chain and short-chain recombinant NTX share similar DB bond linkage patterns and spatial structures, and represent C 3 FITPDITSK-DC 17 PNGHVC 24 YTK-VDLGC 41 AATC 44 PTVK- Trypsin fragment of TGVDIQC 54 C 55 STDNC 60 PFPTR in which all eight cysteines are oxidized. The four enhanced a1 ions (106.0628, 120.0963, 104.1446 and 106.1249) indicate that the peptide consists of four chains, among which cysteine (C), aspartate (D), valine (V) and threonine (T) as the first N-terminal amino acid (Figure 6).
實施例4. 保護免疫的小鼠免受致死性攻擊Example 4. Protection of immunized mice from lethal challenge
材料和方法 Materials and Method
動物實驗 Animal experiment
根據協議(NHRI-IACUC-105108A),將從BioLASCO Taiwan Co.,Ltd.購買的ICR(CD-1,體重19-21g)小鼠安置在國家衛生研究院(NHRI)動物中心。由NHRI機構動物護理和使用委員會批准。按照批准的方案,將新西蘭白兔(NZW)飼養在GeneTex公司的動物設施中。動物可隨意獲得食物和水。 ICR (CD-1, body weight 19-21 g) mice purchased from BioLASCO Taiwan Co., Ltd. were housed in the National Institutes of Health (NHRI) Animal Center according to the protocol (NHRI-IACUC-105108A). Approved by the NHRI Institutional Animal Care and Use Committee. New Zealand White rabbits (NZW) were housed in GeneTex's animal facility according to approved protocols. Animals had ad libitum access to food and water.
毒液致死性的測定 Determination of lethality of venom
毒液致死性的測定步驟按照先前描述的方案進行的。簡而言之,將200μL序列稀釋的毒液以腹膜內(i.p)注射至ICR小鼠(19-21g,n=6)。注射毒液後48小時記錄小鼠的存活率,毒性表示為LD50(μg/g,毒素量/小鼠體重),通過Trimmed Spearman-Karber法,在對應於試驗中導致一半小鼠死亡的量來計算得出致死率。 The assay procedure for venom lethality was performed according to the previously described protocol. Briefly, 200 μL of serially diluted venom was injected intraperitoneally (i.p) into ICR mice (19-21 g, n=6). The survival rate of mice was recorded 48 hours after the injection of venom, and the toxicity was expressed as LD50 (μg/g, the amount of toxin/mouse body weight), calculated by the Trimmed Spearman-Karber method, in the amount corresponding to the death of half of the mice in the experiment Get the fatality rate.
結果 result
為了研究大腸桿菌來源的毒素是否具有免疫原性,並足以引起抗多種眼鏡蛇毒致死的中和能力,在致死的挑戰試驗之前用等量的解毒重組神經毒素或混合毒液對每組小鼠(n=12)進行免疫。使用LNTX或SNTX作為包覆表面的抗原,通過間接ELISA評估特異性抗體的產生。血清分析結果顯示出經過三次免疫後,產生了平均抗體力價超過31,622(免疫前抗體力價:11.7)的強大抗體應答(圖7A),這意味著與抗體產生相關的最重要的抗原表位保留在重組毒素中。此外,在致命劑量的毒液挑戰後,以混合毒液或雙重形式的重組神經毒素免疫的小鼠組別中觀察到了相當的存活率百分比(83-100%),這表明免疫原僅由短鏈和長鏈NTX可做為開發通用抗蛇毒 素的潛在候選者(圖7B-D)。 To investigate whether the E. coli-derived toxin is immunogenic and sufficient to elicit lethal neutralization against multiple cobra venoms, each group of mice (n =12) Immunization. Specific antibody production was assessed by indirect ELISA using LNTX or SNTX as the surface-coated antigen. Serological analysis showed that after three immunizations, a robust antibody response with an average antibody titer of over 31,622 (pre-immunity titer: 11.7) was generated (Figure 7A), implying the most important epitopes associated with antibody production Retained in recombinant toxin. In addition, comparable survival percentages (83-100%) were observed in groups of mice immunized with either mixed venom or dual forms of recombinant neurotoxin following lethal dose venom challenge, suggesting that the immunogen is composed of only short-chain and Long-chain NTX can be used as a general antivenom for development potential candidates for alpha-nuclein (Fig. 7B-D).
實施例5. 兔超免疫血清對眼鏡蛇毒的中和能力Example 5. Neutralizing ability of rabbit hyperimmune serum to cobra venom
材料和方法 Materials and Method
體內中和試驗 In vivo neutralization assay
將兔子血清通過HiTrap® Protein A管柱(GE Healthcare)以純化免疫球蛋白G(IgG)。以緩衝液充分洗滌後,用0.1M甘氨酸(pH=2.7)洗脫結合的IgG,並用1.0M Tris-HCl pH 8.9快速中和。將來自同一組的兩隻兔子的IgG混和後進行透析、濃縮,並儲存於-20℃直至使用。為了評估衍生自免疫兔子血漿的IgG對毒液致死性的中和效能,六隻ICR小鼠的組別用含有確定劑量毒液和各種稀釋IgG的混合物進行挑戰試驗。將混合物在37℃下預先作用30分鐘,然後在4,000g離心10分鐘以去除沉澱物。然後,將400μL上清液經腹膜內注射到小鼠並記錄其48小時的存活率。抗蛇毒血清平均的有效劑量(ED50)通過Trimmed Spearman-Karber法計算。其中定義為在毒液攻擊下有一半小鼠存活的劑量,其中劑量顯示為毒液(mg)與抗蛇毒血清(g)的重量比。抗蛇毒素的有效性也用中和力(P)表示。由於抗蛇毒血清的產物中蛋白質濃度各不相同,因此將效力進一步標準化並表示為每克抗蛇毒血清蛋白中和的毒液毫克數。 Rabbit serum was passed through a HiTrap® Protein A column (GE Healthcare) to purify immunoglobulin G (IgG). After extensive washing with buffer, bound IgG was eluted with 0.1M glycine (pH=2.7) and rapidly neutralized with 1.0M Tris-HCl pH 8.9. IgG from two rabbits from the same group was pooled, dialyzed, concentrated, and stored at -20°C until use. To evaluate the neutralizing potency of IgG derived from immunized rabbit plasma on venom lethality, groups of six ICR mice were challenged with mixtures containing defined doses of venom and various dilutions of IgG. The mixture was preconditioned at 37°C for 30 minutes and then centrifuged at 4,000 g for 10 minutes to remove the precipitate. Then, 400 μL of the supernatant was injected intraperitoneally into the mice and their 48-hour survival was recorded. The mean effective dose (ED50) of antivenom was calculated by the Trimmed Spearman-Karber method. where defined as the dose at which half of the mice survive venom challenge, where the dose is shown as the weight ratio of venom (mg) to antivenom (g). The effectiveness of antivenoms is also expressed in terms of neutralizing power (P). Since the protein concentration in the product of antivenoms varies, the potency was further normalized and expressed as milligrams of venom neutralized per gram of antivenom protein.
免疫接種 Immunization
對於小鼠實驗,肌內注射(i.m)之前,先在Freund’s佐劑中配製50μg用戊二醛(0.25%(v/v))解毒的毒液或毒素。每兩週間隔,以不完全Freund’s佐劑配製相同量的抗原連續兩次加強免疫,最終免疫後的2週,透 過尾靜脈出血收集血液。 For mouse experiments, 50 μg of venom or toxin detoxified with glutaraldehyde (0.25% (v/v)) was formulated in Freund's adjuvant prior to intramuscular injection (i.m). Two consecutive booster immunizations with the same amount of antigen in incomplete Freund's adjuvant were administered at two-week intervals, and 2 weeks after the final immunization, the Blood was collected via tail vein bleeding.
按照上述解毒程序,用1mg混合毒液(NAV和NKV,各250μg)或285μg重組毒素(225μg rL和60μg rS)對NZW兔子進行免疫5次。將獲得的血清去補體(在56℃下30分鐘),然後在-20℃下保存直至使用。 NZW rabbits were immunized 5 times with 1 mg of mixed venom (NAV and NKV, 250 μg each) or 285 μg of recombinant toxin (225 μg rL and 60 μg rS) following the detoxification procedure described above. The serum obtained was decomplemented (30 minutes at 56°C) and then stored at -20°C until use.
統計分析 Statistical Analysis
以單因子獨立變異數分析(One-way analysis of variance),然後進行Fisher’s最小顯著差異性法(Fisher’s least-significant difference test)法,以比較存活率的差異。對抗蛇毒血清中和效力的統計分析是通過單因子獨立變異數分析(One-way analysis of variance),然後以Bonferroni’s多重比較法(Bonferroni’s multiple comparisons test)進行檢測。進行未配對的雙尾t檢驗以比較抗體力價的差異。p值<0.05的結果被認為是顯著的。所有統計分析均使用GraphPad Prism軟件進行。 Differences in survival were compared by One-way analysis of variance followed by Fisher's least-significant difference test. Statistical analysis of antivenin neutralization efficacy was performed by One-way analysis of variance followed by Bonferroni's multiple comparisons test. An unpaired two-tailed t-test was performed to compare differences in antibody titers. Results with p-value < 0.05 were considered significant. All statistical analyses were performed using GraphPad Prism software.
結果 result
這項研究的目的之一是證明利用重組毒素生產的抗眼鏡蛇科的蛇毒血清並且其具有更擴大中和效果的概念,其中的優點是不需要透過毒液的獲取和蛇的養殖。為此,用混合的毒液或重組毒素對兔群進行免疫來獲得抗蛇毒血清,然後進一步評估它們對亞洲三種醫學上重要的有毒眼鏡蛇的毒液的中和能力。同樣,使用單一種毒素或整個毒液作為覆蓋表面的抗原,通過間接ELISA根據對抗體力價反應進行定量(表4)。 One of the aims of this study was to demonstrate the concept of an anti-cobra snake venom produced using recombinant toxins and which has a more extended neutralizing effect, which has the advantage of not requiring venom acquisition and snake farming. To this end, rabbit populations were immunized with mixed venom or recombinant toxins to obtain antivenoms, which were then further evaluated for their ability to neutralize the venom of three medically important venomous cobras in Asia. Again, quantification was performed by indirect ELISA based on response to antibody valence using either a single toxin or the entire venom as antigen covering the surface (Table 4).
表4. 兔血清中的抗體力價
用混合毒液或重組毒素免疫NZW兔組(n=2)5次。通過間接ELISA評估抗血清對粗萃蛇毒(NAV和NAK)或單一毒素(a:Cobrotoxin,b:Alpha-elapitoxin-Nk2a)的免疫反應性,並表示為力價±SD的平均值。在每一列中,力價最高的前兩個以粗體顯示。免疫前的血清用作陰性對照,其力價定義為非特異性信號,所有實驗均重複三次。 The NZW rabbit group (n=2) was immunized 5 times with mixed venom or recombinant toxin. Immunoreactivity of antisera against crude snake venom (NAV and NAK) or single toxins (a: Cobrotoxin, b: Alpha-elapitoxin-Nk2a) was assessed by indirect ELISA and expressed as the mean of titers±SD. In each column, the top two with the highest power prices are shown in bold. Serum before immunization was used as a negative control, and its titer was defined as a non-specific signal, and all experiments were repeated three times.
正如預期的那樣,二價抗血清擅長中和兩種同源毒液的致死力,力價分別為8.3和4.7(表5);此外,它還顯示出適度的中和能力,可抵抗N.siamensis的毒液,而目前被N.siamensis咬傷沒有可用於適當治療的抗蛇毒血清。與二價抗血清相比,重組毒素產生的抗血清不僅具有相當的中和能力,可以抵抗N.kaouthia和N.siamensis的毒液(分別為P=3.4和6.5),而且對於N.atra具有更好的中和能力(P=13.4),這意味著重組毒素產生的抗血清具有廣譜特性並且有潛力發展為廣譜中和的抗蛇毒血清(broad-neutralizing spectrum)。 As expected, the bivalent antiserum excelled at neutralizing the lethality of the two homologous venoms with valences of 8.3 and 4.7, respectively (Table 5); in addition, it showed moderate neutralization ability against N. siamensis venom, and there is currently no antivenom available for proper treatment of N. siamensis bites. Compared with the bivalent antiserum, the antiserum produced by the recombinant toxin not only had comparable neutralizing ability against the venoms of N. Good neutralizing ability (P=13.4), which means that the antiserum produced by the recombinant toxin has broad-spectrum properties and has the potential to develop into a broad-neutralizing spectrum.
表5. 兔子IgG對中和N.atra、N.kaouthia和N.siamensis的毒液的致死作用的中和能力。
將兩隻以相同免疫原免疫的兔子中的抗體純化出來並且混合、收集,並且 預先以已知挑戰劑量的每一種蛇毒在37℃下與作用30分鐘,然後將其注射到小鼠體中。通過Trimmed Spearman-Karber法估算平均有效劑量(ED50),並根據Morais等人的方法計算中和效能(P),(J.Venom.Anim.Toxins incl.Trop.Dis.V.16,n.2,p.191-193,2010.) Antibodies from two rabbits immunized with the same immunogen were purified and pooled, collected, and A known challenge dose of each snake venom was pre-acted at 37°C for 30 minutes and then injected into mice. The mean effective dose (ED50) was estimated by the Trimmed Spearman-Karber method, and the neutralizing potency (P) was calculated according to the method of Morais et al., (J. Venom.Anim.Toxins incl.Trop.Dis.V.16,n.2 , p.191-193, 2010.)
<110> 財團法人國家衛生研究院 <110> National Institutes of Health
<120> 一種以重組毒素製作抗蛇毒血清方法 <120> A method for producing antivenom with recombinant toxin
<150> 62854980 <150> 62854980
<151> 2019-05-31 <151> 2019-05-31
<160> 21 <160> 21
<170> PatentIn version 3.5 <170> PatentIn version 3.5
<210> 1 <210> 1
<211> 71 <211> 71
<212> PRT <212> PRT
<213> 孟加拉眼鏡蛇(Naja kaouthia) <213> Bengal cobra (Naja kaouthia)
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (9)..(9) <222> (9)..(9)
<223> X9為Ile或Val <223> X9 is Ile or Val
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (12)..(12) <222> (12)..(12)
<223> X12為Lys、Thr或Gln <223> X12 is Lys, Thr or Gln
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (13)..(13) <222> (13)..(13)
<223> X13為Asp或Ile <223> X13 is Asp or Ile
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (15)..(15) <222> (15)..(15)
<223> X15為Pro或Ala <223> X15 is Pro or Ala
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (28)..(28) <222> (28)..(28)
<223> X28為Ala、Gly或Asn <223> X28 is Ala, Gly or Asn
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (31)..(31) <222> (31)..(31)
<223> X31為Ser或Ala <223> X31 is Ser or Ala
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (32)..(32) <222> (32)..(32)
<223> X32為Ile或Ser <223> X32 is Ile or Ser
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (35)..(35) <222> (35)..(35)
<223> X35為Lys或Arg <223> X35 is Lys or Arg
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (38)..(38) <222> (38)..(38)
<223> X38為Asp或Glu <223> X38 is Asp or Glu
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (49)..(49) <222> (49)..(49)
<223> X49為Lys或Arg <223> X49 is Lys or Arg
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (50)..(50) <222> (50)..(50)
<223> X50為Thr或Pro <223> X50 is Thr or Pro
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (55)..(55) <222> (55)..(55)
<223> X55為Gln或Lys <223> X55 is Gln or Lys
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (69)..(69) <222> (69)..(69)
<223> X69為Lys、Pro或Asn <223> X69 is Lys, Pro or Asn
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (70)..(71) <222> (70)..(71)
<223> X70-71為ArgPro或無 <223> X70-71 is ArgPro or none
<400> 1 <400> 1
<210> 2 <210> 2
<211> 71 <211> 71
<212> PRT <212> PRT
<213> 孟加拉眼鏡蛇(Naja kaouthia) <213> Bengal cobra (Naja kaouthia)
<400> 2 <400> 2
<210> 3 <210> 3
<211> 69 <211> 69
<212> PRT <212> PRT
<213> 南洋眼鏡蛇(Naja sputatrix) <213> Naja sputatrix
<400> 3 <400> 3
<210> 4 <210> 4
<211> 71 <211> 71
<212> PRT <212> PRT
<213> 印度眼鏡蛇(Naja naja) <213> Indian Cobra (Naja naja)
<400> 4 <400> 4
<210> 5 <210> 5
<211> 71 <211> 71
<212> PRT <212> PRT
<213> 森林眼鏡蛇(Naja melanoleuca) <213> Forest cobra (Naja melanoleuca)
<400> 5 <400> 5
<210> 6 <210> 6
<211> 62 <211> 62
<212> PRT <212> PRT
<213> 中華眼鏡蛇(Naja atra) <213> Chinese Cobra (Naja atra)
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (1)..(1) <222> (1)..(1)
<223> X1為Leu或Met <223> X1 is Leu or Met
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (2)..(2) <222> (2)..(2)
<223> X2為Glu或Ile <223> X2 is Glu or Ile
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (4)..(4) <222> (4)..(4)
<223> X4為His或Tyr <223> X4 is His or Tyr
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (5)..(5) <222> (5)..(5)
<223> X5為Asn、Asp或Lys <223> X5 is Asn, Asp or Lys
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (9)..(9) <222> (9)..(9)
<223> X9為Ser或Leu <223> X9 is Ser or Leu
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (11)..(11) <222> (11)..(11)
<223> X11為Thr、Ala、Pro或Phe <223> X11 is Thr, Ala, Pro or Phe
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (13)..(13) <222> (13)..(13)
<223> X13為Thr或Ile <223> X13 is Thr or Ile
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (15)..(16) <222> (15)..(16)
<223> X15-16為ThrGly、LysThr或LysVal <223> X15-16 is ThrGly, LysThr or LysVal
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (18)..(18) <222> (18)..(18)
<223> X18為Ser或Pro <223> X18 is Ser or Pro
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (20)..(20) <222> (20)..(20)
<223> X20為Gly或無 <223> X20 is Gly or none
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (22)..(22) <222> (22)..(22)
<223> X22為Thr或Lys <223> X22 is Thr or Lys
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (28)..(28) <222> (28)..(28)
<223> X28為Arg、Trp、Ser或Gln <223> X28 is Arg, Trp, Ser or Gln
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (30)..(30) <222> (30)..(30)
<223> X30為Arg或Ser <223> X30 is Arg or Ser
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (31)..(31) <222> (31)..(31)
<223> X31為Asp或Gly <223> X31 is Asp or Gly
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (35)..(37) <222> (35)..(37)
<223> X35-37為TyrArgThr、ThrIleIle或TyrArgIle <223> X35-37 is TyrArgThr, ThrIleIle or TyrArgIle
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (45)..(45) <222> (45)..(45)
<223> X45為Ser或Lys <223> X45 is Ser or Lys
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (48)..(48) <222> (48)..(48)
<223> X48為Asn、Pro或Lys <223> X48 is Asn, Pro or Lys
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (50)..(52) <222> (50)..(52)
<223> X50-52為IleGluIle、ValAsnLeu或ValLysIle <223> X50-52 is IleGluIle, ValAsnLeu or ValLysIle
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (56)..(56) <222> (56)..(56)
<223> X56為Thr或Arg <223> X56 is Thr or Arg
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (57)..(57) <222> (57)..(57)
<223> X57為Thr或Arg <223> X57 is Thr or Arg
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (59)..(59) <222> (59)..(59)
<223> X59為Arg或Lys <223> X59 is Arg or Lys
<220> <220>
<221> MISC_FEATURE <221> MISC_FEATURE
<222> (62)..(62) <222> (62)..(62)
<223> X62為Asn或Arg <223> X62 is Asn or Arg
<400> 6 <400> 6
<210> 7 <210> 7
<211> 62 <211> 62
<212> PRT <212> PRT
<213> 中華眼鏡蛇(Naja atra) <213> Chinese Cobra (Naja atra)
<400> 7 <400> 7
<210> 8 <210> 8
<211> 62 <211> 62
<212> PRT <212> PRT
<213> 孟加拉眼鏡蛇(Naja kaouthia) <213> Bengal cobra (Naja kaouthia)
<400> 8 <400> 8
<210> 9 <210> 9
<211> 61 <211> 61
<212> PRT <212> PRT
<213> 孟加拉眼鏡蛇(Naja kaouthia) <213> Bengal cobra (Naja kaouthia)
<400> 9 <400> 9
<210> 10 <210> 10
<211> 61 <211> 61
<212> PRT <212> PRT
<213> 中亞眼鏡蛇(Naja oxiana) <213> Central Asian cobra (Naja oxiana)
<400> 10 <400> 10
<210> 11 <210> 11
<211> 61 <211> 61
<212> PRT <212> PRT
<213> 孟加拉眼鏡蛇(Naja kaouthia) <213> Bengal cobra (Naja kaouthia)
<400> 11 <400> 11
<210> 12 <210> 12
<211> 61 <211> 61
<212> PRT <212> PRT
<213> 菲律賓眼鏡蛇(Naja philippinensis) <213> Philippine cobra (Naja philippinensis)
<400> 12 <400> 12
<210> 13 <210> 13
<211> 62 <211> 62
<212> PRT <212> PRT
<213> 南洋眼鏡蛇(Naja sputatrix) <213> Naja sputatrix
<400> 13 <400> 13
<210> 14 <210> 14
<211> 62 <211> 62
<212> PRT <212> PRT
<213> 南洋眼鏡蛇(Naja sputatrix) <213> Naja sputatrix
<400> 14 <400> 14
<210> 15 <210> 15
<211> 61 <211> 61
<212> PRT <212> PRT
<213> 埃及眼鏡蛇(Naja haje) <213> Egyptian Cobra (Naja haje)
<400> 15 <400> 15
<210> 16 <210> 16
<211> 61 <211> 61
<212> PRT <212> PRT
<213> 森林眼鏡蛇(Naja melanoleuca) <213> Forest cobra (Naja melanoleuca)
<400> 16 <400> 16
<210> 17 <210> 17
<211> 236 <211> 236
<212> PRT <212> PRT
<213> 大腸桿菌 <213> Escherichia coli
<400> 17 <400> 17
<210> 18 <210> 18
<211> 7 <211> 7
<212> PRT <212> PRT
<213> 人工合成序列 <213> Synthetic sequences
<220> <220>
<223> TEV蛋白水解位點序列 <223> TEV proteolytic site sequence
<220> <220>
<221> misc_feature <221> misc_feature
<222> (7)..(7) <222> (7)..(7)
<223> X7非為Pro <223> X7 is not Pro
<400> 18 <400> 18
<210> 19 <210> 19
<211> 39 <211> 39
<212> DNA <212> DNA
<213> 人工合成序列 <213> Synthetic sequences
<220> <220>
<223> 連接蛋白序列 <223> Connexin sequence
<400> 19 <400> 19
<210> 20 <210> 20
<211> 72 <211> 72
<212> PRT <212> PRT
<213> 人工合成序列 <213> Synthetic sequences
<400> 20 <400> 20
<210> 21 <210> 21
<211> 63 <211> 63
<212> PRT <212> PRT
<213> 人工合成序列 <213> Synthetic sequences
<400> 21 <400> 21
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962854980P | 2019-05-31 | 2019-05-31 | |
US62854,980 | 2019-05-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202100540A TW202100540A (en) | 2021-01-01 |
TWI759750B true TWI759750B (en) | 2022-04-01 |
Family
ID=75234809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109118075A TWI759750B (en) | 2019-05-31 | 2020-05-29 | Preparation of antivenom using recombinant toxins thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI759750B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201725213A (en) * | 2016-01-15 | 2017-07-16 | 國立清華大學 | Method of antivenom serum production by disulfide scrambling and product thereof |
-
2020
- 2020-05-29 TW TW109118075A patent/TWI759750B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201725213A (en) * | 2016-01-15 | 2017-07-16 | 國立清華大學 | Method of antivenom serum production by disulfide scrambling and product thereof |
Non-Patent Citations (1)
Title |
---|
E. N. Lyukmanova et al :The In Vitro Production of ThreeFinger Neurotoxins from Snake Venoms with a High Abundance of Disulfide Bonds.Problems and Their Solutions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY Vol. 36 No. 2 2010. * |
Also Published As
Publication number | Publication date |
---|---|
TW202100540A (en) | 2021-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9757450B2 (en) | Fusion protein comprising diphtheria toxin non-toxic mutant CRM197 or fragment thereof | |
US20130266575A1 (en) | OprF/I AGENTS AND USE THEREOF IN HOSPITALIZED AND OTHER PATIENTS | |
Jiang et al. | Affinity purification of egg yolk immunoglobulins (IgY) using a human mycoplasma protein | |
CN113018427A (en) | Multivalent fusion protein vaccine based on neutralizing epitope of new coronavirus | |
Lorenzo et al. | The immunogenicity of Echinococcus granulosus antigen 5 is determined by its post-translational modifications | |
CN109863164B (en) | Preparation of Horseradish Peroxidase-IGG Fusion Protein | |
TWI759750B (en) | Preparation of antivenom using recombinant toxins thereof | |
Zhao et al. | Prokaryotic expression, refolding, and purification of fragment 450–650 of the spike protein of SARS-coronavirus | |
CN114163504A (en) | SARS-CoV-2S protein RBD zone neutralizing epitope peptide and its application | |
WO2023246853A1 (en) | Sars-cov-2-fighting humanized multivalent binding protein and use thereof | |
CN110904059B (en) | Anthocyanin synthetase epitope peptide, antibody and application thereof | |
Piao et al. | Production of soluble truncated spike protein of porcine epidemic diarrhea virus from inclusion bodies of Escherichia coli through refolding | |
Guatimosim et al. | Induction of neutralizing antibodies against Tityus serrulatus toxins by immunization with a recombinant nontoxic protein | |
AU2022323847A1 (en) | Hypoallergenic peanut allergens, production and use thereof | |
US20160362480A1 (en) | Novel oprf/i fusion proteins, their preparation and use | |
Karyagina et al. | Development of a platform for producing recombinant protein components of epitope vaccines for the prevention of COVID-19 | |
Wang et al. | Development of antibody-based assays for omega-conotoxin MVIIA | |
KR102259974B1 (en) | Method for producing target antigen-specific antibody using recombinant antigen | |
Mir et al. | Cloning, expression and N-terminal formylation of ESAT-6 of Mycobacterium tuberculosis H37Rv | |
Gomes et al. | The co-purification of a lectin (BJcuL) with phospholipases A2 from Bothrops jararacussu snake venom by immunoaffinity chromatography with antibodies to crotoxin | |
JP2020511516A (en) | Method for purifying recombinant antibody fragment | |
CN113930408B (en) | Bamboo leaf green PLA2 protein specific short peptide, anti-bamboo leaf green PLA2 protein antibody and snake bite detection kit | |
LU501601B1 (en) | CODING SEQUENCE OF RECOMBINANT PROTEIN, RECOMBINANT PROTEIN, AND PREPARATION METHOD OF MONOCLONAL ANTIBODY (mAb) FOR RECOMBINANT PROTEIN | |
Chang et al. | Analysis of a conformation-independent epitope and a conformational epitope in a protein: a study on cobrotoxin from Taiwan cobra venom | |
WO2022057696A2 (en) | Recombinant protein coding sequence, recombinant protein, and method for preparing monoclonal antibodies |