TWI759702B - Real estate appraisal system - Google Patents
Real estate appraisal system Download PDFInfo
- Publication number
- TWI759702B TWI759702B TW109109298A TW109109298A TWI759702B TW I759702 B TWI759702 B TW I759702B TW 109109298 A TW109109298 A TW 109109298A TW 109109298 A TW109109298 A TW 109109298A TW I759702 B TWI759702 B TW I759702B
- Authority
- TW
- Taiwan
- Prior art keywords
- appraisal
- model
- real estate
- data
- system host
- Prior art date
Links
- 238000012795 verification Methods 0.000 claims abstract description 29
- 238000007637 random forest analysis Methods 0.000 claims description 6
- 238000010845 search algorithm Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 230000002068 genetic effect Effects 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本揭露是有關於一種不動產鑑價系統,且特別是有關於一種自動更新鑑價模型的不動產鑑價系統。The present disclosure relates to a real estate appraisal system, and in particular, to a real estate appraisal system that automatically updates the appraisal model.
對一般民眾而言購屋所費不貲,因此成交前常會挑選幾個標的物件做條件、價格確認與比較。例如,民眾可透過實價登錄網站、房仲業者、物件屋主報價等多種管道確認價格合理性。然而此類工作耗時費力且詢價對象亦可能有隱惡揚善或高報價格之情況。為解決上述購屋問題,線上不動產鑑價系統開始被推出。然而,現有的線上不動產鑑價系統大多因為參考數據不足導致鑑價結果與實際價格有較大落差,因此如何能提供一個高精準度的不動產鑑價系統是本領域技術人員應致力的目標。For the general public, it is expensive to buy a house. Therefore, several target items are often selected for condition, price confirmation and comparison before the transaction. For example, the public can confirm the reasonableness of the price through various channels such as real-price login websites, real estate brokers, and property owners' quotations. However, this kind of work is time-consuming and labor-intensive, and the inquiries may also have hidden evils or high prices. In order to solve the above-mentioned problem of buying a house, an online real estate appraisal system has been launched. However, most of the existing online real estate appraisal systems have a large gap between the appraisal result and the actual price due to insufficient reference data. Therefore, how to provide a high-precision real estate appraisal system is the goal of those skilled in the art.
有鑑於此,本揭露提供一種不動產鑑價系統,能自動更新鑑價模型以提供更精確的鑑價結果。In view of this, the present disclosure provides a real estate appraisal system that can automatically update the appraisal model to provide more accurate appraisal results.
本揭露提出一種不動產鑑價系統,包括系統主機及應用程式主機耦接到系統主機。系統主機儲存鑑價模型,其中鑑價模型包括集成學習模型,集成學習模型包括第一模型及第二模型且集成學習模型接收輸入資料並產生輸出資料。系統主機在時間間隔接收多個更新資料並將更新資料輸入鑑價模型以進行效度驗證。當更新資料的輸出結果不通過效度驗證時,系統主機不調整鑑價模型的多個參數並根據更新資料重新建模鑑價模型。當重新建模的鑑價模型通過效度驗證時,系統主機將鑑價模型佈署到應用程式主機以提供鑑價操作。The present disclosure provides a real estate appraisal system, including a system host and an application host coupled to the system host. The system host stores the appraisal model, wherein the appraisal model includes an integrated learning model, the integrated learning model includes a first model and a second model, and the integrated learning model receives input data and generates output data. The system host receives multiple updates at time intervals and inputs the updates into the appraisal model for validity verification. When the output result of the updated data fails the validity verification, the system host does not adjust multiple parameters of the appraisal model and re-models the appraisal model according to the updated data. When the remodeled appraisal model passes the validity verification, the system host deploys the appraisal model to the application host to provide appraisal operations.
基於上述,本揭露的不動產鑑價系統利用集成學習模型作為鑑價模型。系統主機例如每月接收更新資料並將更新資料輸入鑑價模型以進行效度驗證。若效度驗證沒有通過時系統主機暫時不調整鑑價模型的多個參數而先根據更新資料重新建模鑑價模型。若重新建模的鑑價模型通過效度驗證時系統主機就能將鑑價模型佈署到應用程式主機以提供鑑價操作。Based on the above, the real estate appraisal system of the present disclosure utilizes the ensemble learning model as the appraisal model. The system host receives updates, such as monthly, and enters the updates into the appraisal model for validity verification. If the validity verification fails, the system host does not temporarily adjust multiple parameters of the appraisal model, but first re-models the appraisal model according to the updated data. If the remodeled appraisal model passes the validity verification, the system host can deploy the appraisal model to the application host to provide appraisal operations.
圖1為根據本揭露一實施例的不動產鑑價系統的方塊圖。FIG. 1 is a block diagram of a real estate appraisal system according to an embodiment of the present disclosure.
請參照圖1,本揭露一實施例的不動產鑑價系統100包括系統主機110及應用程式主機120。應用程式主機120透過有線或無線網路耦接到系統主機110。Referring to FIG. 1 , a real
在一實施例中,系統主機110儲存鑑價模型,其中鑑價模型包括集成學習模型。集成學習模型包括第一模型及第二模型。第一模型例如是隨機森林模型且第二模型例如是極限梯度提升(eXtreme Gradient Boosting,XgBoost)模型。集成學習模型接收輸入資料並產生輸出資料。集成學習模型中的多個模型輸出可組成線性回歸(Linear Regression)的堆疊(stacking)模型。輸入資料可包括授信資料、實價登錄資料、興趣點資料(Point of Interest,POI)及經濟指標資料等與不動產相關的資料且輸出資料例如是不動產鑑價結果。系統主機110在時間間隔(例如,每一個月)接收多個更新資料並將更新資料輸入鑑價模型以進行效度驗證。當更新資料的輸出結果不通過效度驗證時,系統主機110不調整鑑價模型的多個參數並根據更新資料重新建模鑑價模型。當重新建模的鑑價模型通過效度驗證時,系統主機110將鑑價模型佈署到應用程式主機120以提供鑑價操作,並更新此鑑價模型應用程式介面(Application Program Interface,API)的模型檔以供前台呼叫最新鑑價結果。當更新資料的輸出結果不通過重新建模的鑑價模型的效度驗證時,系統主機110更新對應鑑價模型的多個參數並將這些參數套用到鑑價模型。In one embodiment, the
在一實施例中,系統主機110可根據網格搜尋演算法或基因演算法更新對應鑑價模型的多個參數。以網格搜尋(Grid Search)演算法為例,網格搜尋演算法可在所有候選的參數組合中透過迴圈方式嘗試每一種可能性,並以表現最好的參數組合作為最終結果。在一實施例中,隨機森林模型及極限梯度提升模型都可利用網格搜尋演算法自動尋找鑑價模型的最佳參數組合。表一為網格搜尋的模型、參數及參數說明。In one embodiment, the
表一
另一方面,系統主機110也可根據基因演算法更新對應鑑價模型的多個參數。利用基因演算法在決定最適參數的效率遠大於網格搜尋。On the other hand, the
在一實施例中,更新資料包括多個不動產資料,當這些不動產資料輸入鑑價模型產生的輸出結果與些不動產資料對應的多個預定鑑價結果的差異小於等於門檻值,則輸出結果通過效度驗證。當輸出結果與預定鑑價結果的差異大於門檻值,則輸出結果不通過效度驗證。In one embodiment, the update data includes a plurality of real estate data, and when the difference between the output results generated by the real estate data input into the appraisal model and the plurality of predetermined appraisal results corresponding to the real estate data is less than or equal to a threshold value, the output results pass the validation. degree verification. When the difference between the output result and the predetermined appraisal result is greater than the threshold value, the output result does not pass the validity verification.
舉例來說,系統主機110可計算對應輸出結果的平均絕對誤差百分比(Mean Absolute Percentage Error,MAPE)及命中率。當平均絕對誤差百分比小於等於預定百分比(例如,15%)且誤差在第一百分比(例如,10%)內的命中率大於等於第二預定百分比(例如,50%)且誤差在第二百分比(例如,20%)內的命中率大於等於第三預定百分比(例如,80%),則輸出結果通過效度驗證。透過平均絕對誤差百分比及命中率的雙重驗證,可大幅增加效度驗證的準確性。For example, the
平均絕對誤差百分比是用來衡量實際值與預測值之間差距與實際值的比值,誤差取絕對值,高估或低估幅度相等,誤差也不會彼此抵銷。平均絕對誤差百分比的計算公式為,其中y為鑑價結果實際值且ŷ為鑑價結果預測值且n為樣本數。命中率是指在特定誤差範圍內,預測值落於該區間的機率,命中率越高,表示預測值接近實際值的機率越高。命中率的計算公式為,,其中y為鑑價結果實際值且ŷ為鑑價結果預測值且為信心水準且N為測試樣本數且n為命中區間樣本數。The mean absolute error percentage is used to measure the ratio of the difference between the actual value and the predicted value to the actual value. The formula for calculating the mean absolute error percentage is , where y is the actual value of the appraisal result and ŷ is the predicted value of the appraisal result and n is the number of samples. The hit rate refers to the probability that the predicted value falls within this range within a specific error range. The higher the hit rate, the higher the probability that the predicted value is close to the actual value. The formula for calculating the hit rate is , , where y is the actual value of the appraisal result and ŷ is the predicted value of the appraisal result and is the confidence level and N is the number of test samples and n is the number of hit interval samples.
綜上所述,本揭露的不動產鑑價系統利用集成學習模型作為鑑價模型。系統主機例如每月接收更新資料並將更新資料輸入鑑價模型以進行效度驗證。若效度驗證沒有通過時系統主機暫時不調整鑑價模型的多個參數而先根據更新資料重新建模鑑價模型。若重新建模的鑑價模型通過效度驗證時系統主機就能將鑑價模型佈署到應用程式主機以提供鑑價操作。若重新建模的鑑價模型仍無法通過效度驗證則根據網格搜尋演算法或基因演算法更新鑑價模型的參數以提高其通過效度驗證的機會。To sum up, the real estate appraisal system of the present disclosure utilizes the ensemble learning model as the appraisal model. The system host receives updates, such as monthly, and enters the updates into the appraisal model for validity verification. If the validity verification fails, the system host does not temporarily adjust multiple parameters of the appraisal model, but first re-models the appraisal model according to the updated data. If the remodeled appraisal model passes the validity verification, the system host can deploy the appraisal model to the application host to provide appraisal operations. If the re-modeled appraisal model still fails to pass the validity verification, the parameters of the appraisal model are updated according to the grid search algorithm or the genetic algorithm to improve the chance of passing the validity verification.
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed above with examples, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present disclosure. The scope of protection of the present disclosure shall be determined by the scope of the appended patent application.
100:不動產鑑價系統 110:系統主機 120:應用程式主機100: Real estate appraisal system 110: System host 120: Application Host
圖1為根據本揭露一實施例的不動產鑑價系統的方塊圖。FIG. 1 is a block diagram of a real estate appraisal system according to an embodiment of the present disclosure.
100:不動產鑑價系統100: Real estate appraisal system
110:系統主機110: System host
120:應用程式主機120: Application Host
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109109298A TWI759702B (en) | 2020-03-20 | 2020-03-20 | Real estate appraisal system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109109298A TWI759702B (en) | 2020-03-20 | 2020-03-20 | Real estate appraisal system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202137125A TW202137125A (en) | 2021-10-01 |
TWI759702B true TWI759702B (en) | 2022-04-01 |
Family
ID=79601335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109109298A TWI759702B (en) | 2020-03-20 | 2020-03-20 | Real estate appraisal system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI759702B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9605704B1 (en) * | 2008-01-09 | 2017-03-28 | Zillow, Inc. | Automatically determining a current value for a home |
US10192275B2 (en) * | 2015-03-30 | 2019-01-29 | Creed Smith | Automated real estate valuation system |
TWM579794U (en) * | 2019-02-26 | 2019-06-21 | 第一商業銀行股份有限公司 | Building appraisal system |
TW201935371A (en) * | 2018-02-01 | 2019-09-01 | 安富財經科技股份有限公司 | Automatic valuation system for real estate capable of effectively responding to fluctuations in house prices and providing objective valuation results immediately |
TWM596940U (en) * | 2020-03-20 | 2020-06-11 | 兆豐國際商業銀行股份有限公司 | Real estate appraisal system |
-
2020
- 2020-03-20 TW TW109109298A patent/TWI759702B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9605704B1 (en) * | 2008-01-09 | 2017-03-28 | Zillow, Inc. | Automatically determining a current value for a home |
US10192275B2 (en) * | 2015-03-30 | 2019-01-29 | Creed Smith | Automated real estate valuation system |
TW201935371A (en) * | 2018-02-01 | 2019-09-01 | 安富財經科技股份有限公司 | Automatic valuation system for real estate capable of effectively responding to fluctuations in house prices and providing objective valuation results immediately |
TWM579794U (en) * | 2019-02-26 | 2019-06-21 | 第一商業銀行股份有限公司 | Building appraisal system |
TWM596940U (en) * | 2020-03-20 | 2020-06-11 | 兆豐國際商業銀行股份有限公司 | Real estate appraisal system |
Also Published As
Publication number | Publication date |
---|---|
TW202137125A (en) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11748379B1 (en) | Systems and methods for generating and implementing knowledge graphs for knowledge representation and analysis | |
WO2019100967A1 (en) | Method and device for identifying social group having abnormal transaction activity | |
Kelly et al. | Learning and climate feedbacks: Optimal climate insurance and fat tails | |
CN113282960B (en) | Privacy calculation method, device, system and equipment based on federal learning | |
Kenett et al. | Dependency network and node influence: Application to the study of financial markets | |
Chan et al. | Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation | |
Mei et al. | A bootstrap test for constant coefficients in geographically weighted regression models | |
US9990639B1 (en) | Automatic detection of fraudulent real estate listings | |
Andersen et al. | The Economic impact of public agricultural research and development in the United States | |
Portnov et al. | On the suitability of income inequality measures for regional analysis: Some evidence from simulation analysis and bootstrapping tests | |
Strupczewski et al. | On seasonal approach to flood frequency modelling. Part I: Two‐component distribution revisited | |
CN114706992B (en) | Event information processing system based on knowledge graph | |
CN108255788A (en) | A kind of method and device for the confidence level for assessing data | |
CN108038713A (en) | Room rate predictor method and device | |
Joshi et al. | Statistical downscaling of precipitation and temperature using sparse Bayesian learning, multiple linear regression and genetic programming frameworks | |
De Lellis et al. | Modeling human migration under environmental change: a case study of the effect of sea level rise in Bangladesh | |
CN111355725A (en) | Method and device for detecting network intrusion data | |
Kuronen et al. | Correcting for nondetection in estimating forest characteristics from single-scan terrestrial laser measurements | |
CN109977131A (en) | A kind of house type matching system | |
TWI759702B (en) | Real estate appraisal system | |
TWM596940U (en) | Real estate appraisal system | |
CN104850624B (en) | The nearly similarity estimating method for repeating record | |
Bédard et al. | Development of a geophysic model output statistics module for improving short‐term numerical wind predictions over complex sites | |
Ng et al. | Comparing the regression slopes of independent groups | |
Milocco et al. | A method to predict the response to directional selection using a Kalman filter |