TWI759672B - Decoding method and associated flash memory controller and electronic device - Google Patents

Decoding method and associated flash memory controller and electronic device Download PDF

Info

Publication number
TWI759672B
TWI759672B TW109100005A TW109100005A TWI759672B TW I759672 B TWI759672 B TW I759672B TW 109100005 A TW109100005 A TW 109100005A TW 109100005 A TW109100005 A TW 109100005A TW I759672 B TWI759672 B TW I759672B
Authority
TW
Taiwan
Prior art keywords
data
codeword
parity check
check matrix
flash memory
Prior art date
Application number
TW109100005A
Other languages
Chinese (zh)
Other versions
TW202014889A (en
Inventor
汪宇倫
Original Assignee
慧榮科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慧榮科技股份有限公司 filed Critical 慧榮科技股份有限公司
Priority to TW109100005A priority Critical patent/TWI759672B/en
Publication of TW202014889A publication Critical patent/TW202014889A/en
Application granted granted Critical
Publication of TWI759672B publication Critical patent/TWI759672B/en

Links

Images

Abstract

The present invention provides a decoding method, wherein the decoding method includes the steps of: reading a codeword from a flash memory module; and using a parity check matrix to decode the codeword, wherein the parity check matrix includes a plurality of circulant permutation matrixes, and an order of a parallel operation of the decoding step is less than a row number of any one of the circulant permutation matrixes.

Description

解碼方法及相關的快閃記憶體控制器與電子裝置Decoding method and associated flash memory controller and electronic device

本發明係有關於解碼方法,尤指一種應用在快閃記憶體控制器的解碼方法。The present invention relates to a decoding method, especially a decoding method applied to a flash memory controller.

在目前應用在快閃記憶體控制器的解碼方法中,當快閃記憶體控制器從一快閃記憶體模組讀取一碼字(codeword)之後,會將該碼字與一奇偶校驗矩陣(parity check matrix)相乘來進行解碼操作。具體來說,理論上該碼字與該奇偶校驗矩陣相乘之後應該會得到一個全部數值均為0的矩陣,因此,若是相乘的結果不全為0,則需要透過一些演算法來調整該碼字的內容直到調整後碼字與該奇偶校驗矩陣相乘後為0,以完成解碼操作。然而,上述的解碼操作通常會需要較高的平行運算,因此增加了硬體成本。In the current decoding method applied to the flash memory controller, after the flash memory controller reads a codeword from a flash memory module, the codeword is checked with a parity check. The matrix (parity check matrix) is multiplied to perform the decoding operation. Specifically, theoretically, after multiplying the codeword and the parity check matrix, a matrix with all values of 0 should be obtained. Therefore, if the multiplication result is not all 0, it needs to be adjusted through some algorithms. The content of the codeword is 0 until the adjusted codeword is multiplied by the parity check matrix to complete the decoding operation. However, the above-mentioned decoding operation usually requires high parallel operation, thus increasing the hardware cost.

因此,本發明的目的之一在於提出一種應用在快閃記憶體控制器中的解碼方法,其可以使用較低的平行運算來有效地完成解碼操作,以解決先前技術中的問題。Therefore, one of the objectives of the present invention is to provide a decoding method applied in a flash memory controller, which can efficiently complete the decoding operation with low parallel operation, so as to solve the problems in the prior art.

在本發明的一個實施例中,揭露一種解碼方法,其包含有:自一快閃記憶體模組中讀取一碼字;以及使用一奇偶校驗矩陣來對該碼字進行解碼,其中該奇偶校驗矩陣中的每一層包含了N個循環排列矩陣,且該解碼操作包含以下步驟:針對該N個群組中的任一群組,依序將該群組的M個部分分別與所對應之循環排列矩陣的M個部分相乘,以得到M個處理後資料;將該M個處理後資料儲存至一記憶體中之一區塊的M個不同位址中;自該N個區塊之每一個區塊讀取兩筆處理後資料,並組合後產生一第一資料以及一剩餘資料,其中該第一資料為用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列資料的一第一部份,其中N、M為大於一的正整數,且該剩餘資料為該兩筆處理後資料扣除該第一資料後的內容;對該第一資料進行平行運算並進行解碼,其中該平行運算的階數小於任一循環排列矩陣的列數量。In one embodiment of the present invention, a decoding method is disclosed, which includes: reading a codeword from a flash memory module; and decoding the codeword using a parity check matrix, wherein the Each layer in the parity check matrix includes N cyclic permutation matrices, and the decoding operation includes the following steps: for any group in the N groups, sequentially correspond to the M parts of the group with the corresponding Multiplying the M parts of the circular array matrix to obtain M processed data; storing the M processed data in M different addresses of a block in a memory; from the N blocks Each block reads two pieces of processed data, and combines them to generate a first data and a residual data, wherein the first data is used to calculate the first data corresponding to the multiplication of the codeword and the parity check matrix. A first part of a row of data, wherein N and M are positive integers greater than one, and the remaining data is the content after deducting the first data from the two processed data; perform parallel operations on the first data and Decoding is performed, wherein the order of the parallel operation is less than the number of columns of any circular permutation matrix.

在本發明的另一個實施例中,揭露了一種快閃記憶體控制器,其中該快閃記憶體控制器係用來存取一快閃記憶體模組,且該快閃記憶體控制器包含有一唯讀記憶體、一微處理器以及一解碼器。該唯讀記憶體係用來儲存一程式碼;該微處理器係用來執行該程式碼以控制對該快閃記憶體模組之存取;以及在該快閃記憶體控制器的操作中,該微處理器自該快閃記憶體模組中讀取一碼字,且該解碼器使用一奇偶校驗矩陣來對該碼字進行解碼,其中該奇偶校驗矩陣中的每一層包含了N個循環排列矩陣,且該微處理器使用以下步驟來進行解碼操作:針對該N個群組中的任一群組,依序將該群組的M個部分分別與所對應之循環排列矩陣的M個部分相乘,以得到M個處理後資料;將該M個處理後資料儲存至一記憶體中之一區塊的M個不同位址中;自該N個區塊之每一個區塊讀取兩筆處理後資料,並組合後產生一第一資料以及一剩餘資料,其中該第一資料為用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列資料的一第一部份,其中N、M為大於一的正整數,且該剩餘資料為該兩筆處理後資料扣除該第一資料後的內容;對該第一資料進行平行運算並進行解碼,其中該平行運算的階數小於任一循環排列矩陣的列數量。In another embodiment of the present invention, a flash memory controller is disclosed, wherein the flash memory controller is used to access a flash memory module, and the flash memory controller includes There is a ROM, a microprocessor and a decoder. The ROM system is used to store a code; the microprocessor is used to execute the code to control access to the flash memory module; and in operation of the flash memory controller, The microprocessor reads a codeword from the flash memory module, and the decoder decodes the codeword using a parity check matrix, wherein each layer of the parity check matrix includes N Circular arrangement matrices, and the microprocessor performs the decoding operation using the following steps: for any group in the N groups, sequentially, respectively, the M parts of the group and the corresponding M circulant arrangement matrices Partially multiply to obtain M processed data; store the M processed data in M different addresses of a block in a memory; read from each of the N blocks Two pieces of processed data are combined to generate a first data and a residual data, wherein the first data is used to calculate a first data corresponding to the first column of data after the codeword and the parity check matrix are multiplied. A part, wherein N and M are positive integers greater than one, and the remaining data is the content after deducting the first data from the two processed data; perform parallel operation and decoding on the first data, wherein the parallel The order of the operation is less than the number of columns of any circular array.

在本發明的另一個實施例中,揭露了一種電子裝置,其包含有一快閃記憶體模組以及一快閃記憶體控制器。在該電子裝置的操作中,該快閃記憶體控制器自該快閃記憶體模組中讀取一碼字,且該快閃記憶體控制器使用一奇偶校驗矩陣來對該碼字進行解碼,其中該奇偶校驗矩陣中的每一層包含了N個循環排列矩陣,且該快閃記憶體控制器使用以下步驟來進行解碼操作:針對該N個群組中的任一群組,依序將該群組的M個部分分別與所對應之循環排列矩陣的M個部分相乘,以得到M個處理後資料;將該M個處理後資料儲存至一記憶體中之一區塊的M個不同位址中;自該N個區塊之每一個區塊讀取兩筆處理後資料,並組合後產生一第一資料以及一剩餘資料,其中該第一資料為用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列資料的一第一部份,其中N、M為大於一的正整數,且該剩餘資料為該兩筆處理後資料扣除該第一資料後的內容;對該第一資料進行平行運算並進行解碼,其中該平行運算的階數小於任一循環排列矩陣的列數量。In another embodiment of the present invention, an electronic device is disclosed, which includes a flash memory module and a flash memory controller. In operation of the electronic device, the flash memory controller reads a codeword from the flash memory module, and the flash memory controller uses a parity check matrix to process the codeword decoding, wherein each layer in the parity check matrix includes N cyclic array matrices, and the flash memory controller uses the following steps to perform the decoding operation: for any group in the N groups, sequentially The M parts of the group are respectively multiplied by the M parts of the corresponding cyclic array matrix to obtain M processed data; the M processed data are stored in M parts of a block in a memory In different addresses; read two pieces of processed data from each of the N blocks, and combine them to generate a first data and a residual data, wherein the first data is used to calculate the code corresponding to the code A first part of the data in the first column after the word is multiplied by the parity check matrix, wherein N and M are positive integers greater than one, and the remaining data is the two processed data after deducting the first data content; perform parallel operation and decoding on the first data, wherein the order of the parallel operation is less than the number of columns of any cyclic array matrix.

請參考第1圖,第1圖為依據本發明一實施例之一種記憶裝置100的示意圖。記憶裝置100包含有一快閃記憶體(Flash Memory)模組120以及一快閃記憶體控制器110,且快閃記憶體控制器110用來存取快閃記憶體模組120。依據本實施例,快閃記憶體控制器110包含一微處理器112、一唯讀記憶體(Read Only Memory, ROM)112M、一控制邏輯114、一緩衝記憶體116、與一介面邏輯118。唯讀記憶體112M係用來儲存一程式碼112C,而微處理器112則用來執行程式碼112C以控制對快閃記憶體模組120之存取(Access)。控制邏輯114包含了一編碼器132、一解碼器134、一第一記憶體136以及一第二記憶體138。在本實施例中,編碼器132與解碼器134係用來進行準循環低密度奇偶校檢(Quasi-Cyclic Low Density Party-Check,QC-LDPC)碼的編解碼操作。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a memory device 100 according to an embodiment of the present invention. The memory device 100 includes a flash memory module 120 and a flash memory controller 110 , and the flash memory controller 110 is used for accessing the flash memory module 120 . According to this embodiment, the flash memory controller 110 includes a microprocessor 112 , a read only memory (ROM) 112M, a control logic 114 , a buffer memory 116 , and an interface logic 118 . The ROM 112M is used to store a code 112C, and the microprocessor 112 is used to execute the code 112C to control access to the flash memory module 120 . The control logic 114 includes an encoder 132 , a decoder 134 , a first memory 136 and a second memory 138 . In this embodiment, the encoder 132 and the decoder 134 are used for encoding and decoding operations of Quasi-Cyclic Low Density Party-Check (QC-LDPC) codes.

於典型狀況下,快閃記憶體模組120包含了多個快閃記憶體晶片,而每一個快閃記憶體晶片包含複數個區塊(Block),而該控制器(例如:透過微處理器112執行程式碼112C之快閃記憶體控制器110)對快閃記憶體模組120進行抹除等運作係以區塊為單位來進行。另外,一區塊可記錄特定數量的資料頁(Page),其中該控制器(例如:透過微處理器112執行程式碼112C之記憶體控制器110)對快閃記憶體模組120進行寫入資料之運作係以資料頁為單位來進行寫入。在本實施例中,快閃記憶體模組120為一立體NAND型快閃記憶體(3D NAND-type flash)。Typically, the flash memory module 120 includes a plurality of flash memory chips, and each flash memory chip includes a plurality of blocks, and the controller (eg, through a microprocessor) 112. The flash memory controller 110 executing the program code 112C) performs operations such as erasing the flash memory module 120 on a block-by-block basis. In addition, a block can record a specific number of pages of data, wherein the controller (eg, the memory controller 110 that executes the code 112C through the microprocessor 112 ) writes to the flash memory module 120 The operation of data is written in units of data pages. In this embodiment, the flash memory module 120 is a three-dimensional NAND-type flash memory (3D NAND-type flash).

實作上,透過微處理器112執行程式碼112C之快閃記憶體控制器110可利用其本身內部之元件來進行諸多控制運作,例如:利用控制邏輯114來控制快閃記憶體模組120之存取運作(尤其是對至少一區塊或至少一資料頁之存取運作)、利用緩衝記憶體116進行所需之緩衝處理、以及利用介面邏輯118來與一主裝置(Host Device)130溝通。緩衝記憶體116可以是靜態隨機存取記憶體(Static RAM, SRAM),但本發明不限於此。In practice, the flash memory controller 110 that executes the code 112C through the microprocessor 112 can use its own internal components to perform various control operations. For example, the control logic 114 is used to control the flash memory module 120. Access operations (especially access operations to at least one block or at least one data page), use the buffer memory 116 to perform required buffering, and use the interface logic 118 to communicate with a Host Device 130 . The buffer memory 116 may be a static random access memory (Static RAM, SRAM), but the invention is not limited thereto.

在一實施例中,記憶裝置100可以是可攜式記憶裝置(例如:符合SD/MMC、CF、MS、XD標準之記憶卡),且主裝置130為一可與記憶裝置連接的電子裝置,例如手機、筆記型電腦、桌上型電腦…等等。而在另一實施例中,記憶裝置100可以是固態硬碟或符合通用快閃記憶體儲存(Universal Flash Storage,UFS)或嵌入式多媒體記憶卡(Embedded Multi Media Card,EMMC)規格之嵌入式儲存裝置,以設置在一電子裝置中,例如設置在手機、筆記型電腦、桌上型電腦之中,而此時主裝置130可以是該電子裝置的一處理器。In one embodiment, the memory device 100 may be a portable memory device (eg, a memory card conforming to SD/MMC, CF, MS, XD standards), and the host device 130 is an electronic device that can be connected to the memory device, Such as mobile phones, laptops, desktops...etc. In another embodiment, the memory device 100 may be a solid state drive or an embedded storage conforming to Universal Flash Storage (UFS) or Embedded Multi Media Card (EMMC) specifications The device is installed in an electronic device, such as a mobile phone, a notebook computer, a desktop computer, and the main device 130 may be a processor of the electronic device.

在快閃記憶體控制器110存取快閃記憶體模組120的過程中,當快閃記憶體控制器110需要將一資料寫入至快閃記憶體模組120時,編碼器132會將該資料與一生成矩陣(generator matrix)相乘以得到一編碼後資料,並將該編碼後資料寫入至快閃記憶體模組120,其中該編碼後資料包含了該資料以及所對應的校驗碼。另一方面,當快閃記憶體控制器110需要自快閃記憶體模組120讀取該資料時,解碼器134會自快閃記憶體模組120讀取該編碼後資料,並將該編碼後資料與一奇偶校驗矩陣(parity check matrix)相乘來進行解碼。在一實施例中,該奇偶校驗矩陣與該生成矩陣互相關聯,且該生成矩陣與該奇偶校驗矩陣的轉置矩陣相乘之後會為會得到一個全部數值均為0的矩陣,因此,由於該編碼後資料在寫入至快閃記憶體模組120的過程中可能會因為電壓漂移或是其他因素而使得部分內容發生錯誤,故解碼器134透過不斷調整所讀取之該編碼後資料,以使得調整後的該編碼後資料與該奇偶校驗矩陣相乘之後可以得到一個全部數值均為0的矩陣,以完成錯誤更正以及解碼操作。由於本發明係著重在解碼操作的部分,故以下敘述僅針對解碼器134的部分來進行描述。During the process of accessing the flash memory module 120 by the flash memory controller 110, when the flash memory controller 110 needs to write a data to the flash memory module 120, the encoder 132 will The data is multiplied by a generator matrix to obtain encoded data, and the encoded data is written into the flash memory module 120, wherein the encoded data includes the data and the corresponding calibration data code verification. On the other hand, when the flash memory controller 110 needs to read the data from the flash memory module 120, the decoder 134 will read the encoded data from the flash memory module 120, and encode the data The latter data is multiplied by a parity check matrix for decoding. In one embodiment, the parity check matrix and the generator matrix are correlated with each other, and after multiplying the generator matrix and the transposed matrix of the parity check matrix, a matrix with all values 0 will be obtained. Therefore, Since the encoded data may be in error due to voltage drift or other factors during the process of writing the encoded data to the flash memory module 120, the decoder 134 continuously adjusts the encoded data read by , so that after the adjusted encoded data is multiplied by the parity check matrix, a matrix whose all values are 0 can be obtained to complete error correction and decoding operations. Since the present invention focuses on the part of the decoding operation, the following description will only describe the part of the decoder 134 .

參考第2圖,其繪示了根據本發明一實施例之自快閃記憶體模組120所讀取之一碼字以及奇偶校驗矩陣H的示意圖。如第2圖所示,奇偶校驗矩陣H由多個循環排列矩陣(circulant permutation matrix)所構成,而在本實施例中係以8個循環排列矩陣為例來做後續的說明,但這並非是本發明的限制。每一個循環排列矩陣的大小為64*64,且每一列只有一個數值為“1”,其餘的數值均為“0”,下一列的內容為上一列向右移動1位元所產生,且圖示中括號內的內容為第1列中數值為“1”的位址。以第2圖所示之奇偶校驗矩陣H的第一層(layer)為例,循環排列矩陣CM0之第1列的第27個位元為“1”其餘為“0”、第2列的第28個位元為“1” 其餘為“0”、第3列的第29個位元為“1” 其餘為“0”…以此類推;循環排列矩陣CM1之第1列的第3個位元為“1”其餘為“0”、第2列的第4個位元為“1” 其餘為“0”、第3列的第5個位元為“1” 其餘為“0”…以此類推;循環排列矩陣CM2之第1列的第55個位元為“1”其餘為“0”、第2列的第56個位元為“1” 其餘為“0”、第3列的第57個位元為“1” 其餘為“0”…以此類推;循環排列矩陣CM3之第1列的第12個位元為“1”其餘為“0”、第2列的第13個位元為“1” 其餘為“0”、第3列的第14個位元為“1” 其餘為“0”…以此類推。Referring to FIG. 2 , it is a schematic diagram of a codeword and a parity check matrix H read from the flash memory module 120 according to an embodiment of the present invention. As shown in FIG. 2, the parity check matrix H is composed of a plurality of circulant permutation matrices. In this embodiment, 8 circulant permutation matrices are used as an example for the subsequent description, but this is not the case. is a limitation of the present invention. The size of each circular array matrix is 64*64, and only one value in each column is "1", the rest of the values are "0", the content of the next column is generated by shifting the previous column to the right by 1 bit, and the figure The content in the square brackets is the address of the value "1" in the first column. Taking the first layer (layer) of the parity check matrix H shown in Figure 2 as an example, the 27th bit of the first column of the circular arrangement matrix CM0 is "1" and the rest are "0", and the second column is "0". The 28th bit is "1", the rest are "0", the 29th bit in the third column is "1", the rest are "0"... and so on; The bit is "1" and the rest is "0", the fourth bit in the second column is "1", the rest is "0", the fifth bit in the third column is "1", and the rest is "0"... And so on; the 55th bit of the first column of the circular arrangement matrix CM2 is "1" and the rest are "0", the 56th bit of the second column is "1", the rest are "0", and the third column is "0". The 57th bit is "1", the rest are "0"... and so on; the 12th bit of the first column of the circular arrangement matrix CM3 is "1" and the rest are "0", and the 13th column of the second column is "1". The one bit is "1", the rest are "0", the 14th bit in the third column is "1", and the rest are "0"... and so on.

在本實施例中,自快閃記憶體模組120所讀取之碼字為256位元,且解碼器134會將碼字分割為4個群組CW0~CW3,其中每個群組CW0~CW3為64位元,並將群組CW0~CW3分別與奇偶校驗矩陣H的循環排列矩陣CM0~CM3相乘來進行解碼,在本實施例中,上述矩陣操作可視為將128*256的奇偶校驗矩陣H與256*1的碼字相乘以產生一128*1的矩陣相乘結果。In this embodiment, the codeword read from the flash memory module 120 is 256 bits, and the decoder 134 divides the codeword into 4 groups CW0-CW3, wherein each group CW0-CW3 CW3 is a 64-bit element, and the groups CW0~CW3 are multiplied by the cyclic array matrices CM0~CM3 of the parity check matrix H respectively for decoding. In this embodiment, the above matrix operation can be regarded as 128*256 parity. The check matrix H is multiplied by the 256*1 codeword to generate a 128*1 matrix multiplication result.

然而,在上述的運算中,若是直接將群組CW0~CW3分別與循環排列矩陣CM0~CM3相乘來進行後續的解碼,則解碼器134會需要進行階數為64的平行運算,因此會需要較多的電路以及記憶體面積,因此,在本發明之以下的實施例中,係透過特殊的記憶體存取及碼字處理方式來完成階數為16的平行運算,以進一步節省電路以及記憶體面積。However, in the above operation, if the groups CW0 to CW3 are directly multiplied by the circular array matrices CM0 to CM3 for subsequent decoding, the decoder 134 will need to perform a parallel operation with an order of 64, and therefore requires Therefore, in the following embodiments of the present invention, parallel operations with an order of 16 are completed through special memory access and codeword processing methods to further save circuits and memory. body area.

參考第3圖,每一個群組CW0~CW3再細分為4個部分,其中群組CW0包含了4個部分CW0[0]~CW0[3]、群組CW1包含了4個部分CW1[0]~CW1[3]、群組CW2包含了4個部分CW2[0]~CW2[3]、以及群組CW3包含了4個部分CW3[0]~CW3[3],其中每一個部分均為16位元。接著,解碼器134將群組CW0~CW3與分別與循環排列矩陣CM0~CM3相乘,以得到16筆處理後資料,並儲存至第一記憶體136的16個不同的位址中(例如,對應到16個不同的字元線)。具體來說,第3圖的第一子層SL0包含了4筆處理後資料,其分別為CW0[0]、CW1[0]、CW2[0]、CW3[0]分別於循環排列矩陣CM0~CM3的第一部分相乘的結果,其中CW0[0]與循環排列矩陣CM0相乘所產生的處理後資料係儲存在第一記憶體136的第2~3個位址、CW1[0]與循環排列矩陣CM1相乘所產生的處理後資料係儲存在第一記憶體136的第5~6個位址、CW2[0]與循環排列矩陣CM2相乘所產生的處理後資料係儲存在第一記憶體136的第9、12個位址、以及CW3[0]與循環排列矩陣CM3相乘所產生的處理後資料係儲存在第一記憶體136的第13~14個位址;第3圖的第二子層SL1包含了4筆處理後資料,其分別為CW0[1]、CW1[1]、CW2[1]、CW3[1]分別於循環排列矩陣CM0~CM3的第二部分相乘的結果,其中CW0[1]與循環排列矩陣CM0相乘所產生的處理後資料係儲存在第一記憶體136的第3~4個位址、CW1[1]與循環排列矩陣CM1相乘所產生的處理後資料係儲存在第一記憶體136的第6~7個位址、CW2[1]與循環排列矩陣CM2相乘所產生的處理後資料係儲存在第一記憶體136的第9~10個位址、以及CW3[1]與循環排列矩陣CM3相乘所產生的處理後資料係儲存在第一記憶體136的第14~15個位址;第3圖的第三子層SL2包含了4筆處理後資料,其分別為CW0[2]、CW1[2]、CW2[2]、CW3[2]分別於循環排列矩陣CM0~CM3的第三部分相乘的結果,其中CW0[2]與循環排列矩陣CM0相乘所產生的處理後資料係儲存在第一記憶體136的第1、4個位址、CW1[2]與循環排列矩陣CM1相乘所產生的處理後資料係儲存在第一記憶體136的第7~8個位址、CW2[2]與循環排列矩陣CM2相乘所產生的處理後資料係儲存在第一記憶體136的第10~11個位址、以及CW3[2]與循環排列矩陣CM3相乘所產生的處理後資料係儲存在第一記憶體136的第15~16個位址;第3圖的第四子層SL3包含了4筆處理後資料,其分別為CW0[3]、CW1[3]、CW2[3]、CW3[3]分別於循環排列矩陣CM0~CM3的第四部分相乘的結果,其中CW0[3]與循環排列矩陣CM0相乘所產生的處理後資料係儲存在第一記憶體136的第1~2個位址、CW1[3]與循環排列矩陣CM1相乘所產生的處理後資料係儲存在第一記憶體136的第5、8個位址、CW2[3]與循環排列矩陣CM2相乘所產生的處理後資料係儲存在第一記憶體136的第11~12個位址、以及CW3[3]與循環排列矩陣CM3相乘所產生的處理後資料係儲存在第一記憶體136的第13、16個位址。Referring to Figure 3, each group CW0~CW3 is subdivided into 4 parts, of which group CW0 includes 4 parts CW0[0]~CW0[3], and group CW1 includes 4 parts CW1[0] ~CW1[3], group CW2 contains 4 sections CW2[0]~CW2[3], and group CW3 contains 4 sections CW3[0]~CW3[3], each of which is 16 bits. Next, the decoder 134 multiplies the groups CW0-CW3 by the circular array matrices CM0-CM3, respectively, to obtain 16 pieces of processed data, which are stored in 16 different addresses in the first memory 136 (for example, corresponding to 16 different word lines). Specifically, the first sub-layer SL0 in Figure 3 contains 4 pieces of processed data, which are CW0[0], CW1[0], CW2[0], and CW3[0] in the cyclic arrangement matrix CM0~ The result of the multiplication of the first part of CM3, wherein the processed data generated by multiplying CW0[0] and the circular array matrix CM0 are stored in the second to third addresses of the first memory 136, CW1[0] and the circular array The processed data generated by the multiplication of the arrangement matrix CM1 is stored in the fifth to sixth addresses of the first memory 136, and the processed data generated by the multiplication of CW2[0] and the circular arrangement matrix CM2 is stored in the first memory 136. The 9th and 12th addresses of the memory 136, and the processed data generated by multiplying CW3[0] by the circular arrangement matrix CM3 are stored in the 13th to 14th addresses of the first memory 136; FIG. 3 The second sub-layer SL1 contains 4 pieces of processed data, which are CW0[1], CW1[1], CW2[1], and CW3[1] are multiplied by the second part of the circular arrangement matrix CM0~CM3 respectively , wherein the processed data generated by multiplying CW0[1] by the circular array matrix CM0 are stored in the 3rd to 4th addresses of the first memory 136, where CW1[1] is multiplied by the circular array matrix CM1. The generated processed data is stored in the 6th to 7th addresses of the first memory 136 , and the processed data generated by multiplying CW2[1] by the circular arrangement matrix CM2 is stored in the 9th address of the first memory 136 . ~10 addresses, and the processed data generated by multiplying CW3[1] and the circular array matrix CM3 are stored in the 14th~15th addresses of the first memory 136; the third sublayer SL2 in FIG. 3 It contains 4 pieces of processed data, which are the results of multiplying CW0[2], CW1[2], CW2[2], and CW3[2] in the third part of the circular array matrix CM0~CM3 respectively, where CW0[ 2] The processed data generated by multiplying the circular array CM0 is stored in the first and fourth addresses of the first memory 136, and the processed data generated by multiplying CW1[2] by the circular array CM1 The 7th to 8th addresses stored in the first memory 136, the processed data generated by multiplying CW2[2] and the circular arrangement matrix CM2 are stored in the 10th to 11th addresses of the first memory 136, And the processed data generated by multiplying CW3[2] and the cyclic array matrix CM3 are stored in the 15th to 16th addresses of the first memory 136; the fourth sublayer SL3 in FIG. 3 includes 4 processed data data, which are the results of multiplying CW0[3], CW1[3], CW2[3], and CW3[3] respectively in the fourth part of the cyclic array matrix CM0~CM3, where CW0[3] and the cyclic array matrix The processed data generated by the multiplication of CM0 is stored in the first to second addresses of the first memory 136, and the processed data generated by the multiplication of CW1[3] and the circular array matrix CM1 The processed data stored in the 5th and 8th addresses of the first memory 136, and the processed data generated by multiplying CW2[3] and the circular arrangement matrix CM2 are stored in the 11th to 12th addresses of the first memory 136 , and the processed data generated by multiplying CW3[3] and the circular arrangement matrix CM3 are stored in the 13th and 16th addresses of the first memory 136 .

第4~8圖所示為根據本發明一實施例之解碼器134對儲存在第一記憶體136中的多筆處理後資料進行操作的示意圖。在第4圖中,首先,第一記憶體136可以分為四個部分,其中該四個部分分別包含了第1~4個位址、第5~8個位址、第9~12個位址以及第13~16個位址(亦即,分別對應到循環排列矩陣CM0~CM3)。解碼器134會先自第一記憶體136的每一個部分取出第一筆有關於第一子層SL0的內容,亦即從第4圖所示之第一記憶體136的第2、5、12、13個位址取出第一筆有關於第一子層SL0的內容。接著,解碼器134將自第一記憶體136所取出的內容進行翻轉,並將翻轉後的內容儲存至第二記憶體138的四個不同的位址中。FIGS. 4-8 are schematic diagrams illustrating operations performed by the decoder 134 on multiple pieces of processed data stored in the first memory 136 according to an embodiment of the present invention. In FIG. 4, first, the first memory 136 can be divided into four parts, wherein the four parts respectively include the 1st to 4th addresses, the 5th to 8th addresses, and the 9th to 12th bits. address and the 13th to 16th addresses (that is, corresponding to the circular array matrices CM0 to CM3, respectively). The decoder 134 first fetches the first content related to the first sub-layer SL0 from each part of the first memory 136 , that is, from the second, fifth, and 12th parts of the first memory 136 shown in FIG. 4 . , 13 addresses to take out the first content about the first sublayer SL0. Next, the decoder 134 inverts the content retrieved from the first memory 136 , and stores the inverted content in four different addresses of the second memory 138 .

接著,在第5圖中,解碼器134會先自第一記憶體136的每一個部分取出第一筆有關於第二子層SL1的內容,亦即從第5圖所示之第一記憶體136的第3、6、9、14個位址取出第一筆有關於第二子層SL1的內容,並將自第一記憶體136所取出的內容進行翻轉;同時地,解碼器134也自第二記憶體138讀取先前在第4圖中所儲存的內容,並連同自第一記憶體136所取出並進行翻轉後的內容進行多工操作(組合操作),以產生一個完整第一子層SL0的內容以供後續進行階數為16的平行運算(圖示的每一列為16位元),且也產生一個由第二子層SL1與第四子層SL3所構成的64位元內容的剩餘資料,並儲存至第二記憶體138的四個不同的位址中。在本實施例中,第一子層SL0可以視為用來計算對應到該碼字(包含CW0~CW3)與奇偶校驗矩陣H相乘後之第一列(row)資料的一第一部份。Next, in FIG. 5 , the decoder 134 first retrieves the first content related to the second sub-layer SL1 from each part of the first memory 136 , that is, from the first memory shown in FIG. 5 . The 3rd, 6th, 9th, and 14th addresses of 136 fetch the first content related to the second sub-layer SL1, and flip the content fetched from the first memory 136; at the same time, the decoder 134 also automatically The second memory 138 reads the content previously stored in FIG. 4, and performs multiplexing (combining operation) together with the content retrieved from the first memory 136 and flipped to generate a complete first sub The content of layer SL0 is used for subsequent parallel operations of order 16 (each column in the figure is 16 bits), and a 64-bit content composed of the second sub-layer SL1 and the fourth sub-layer SL3 is also generated. The remaining data is stored in four different addresses of the second memory 138 . In this embodiment, the first sublayer SL0 can be regarded as a first part used to calculate the first row of data corresponding to the codeword (including CW0~CW3) multiplied by the parity check matrix H share.

接著,在第6圖中,解碼器134會先自第一記憶體136的每一個部分取出第一筆有關於第三子層SL2的內容,亦即從第6圖所示之第一記憶體136的第4、7、10、15個位址取出第一筆有關於第三子層SL2的內容,並將自第一記憶體136所取出的內容進行翻轉;同時地,解碼器134也自第二記憶體138讀取先前在第5圖中所儲存的內容,並連同自第一記憶體136所取出並進行翻轉後的內容進行多工操作(組合操作),以產生一個完整第二子層SL1的內容以供後續進行階數為16的平行運算,且也產生一個由第三子層SL2與第四子層SL3所構成的64位元內容的剩餘資料,並儲存至第二記憶體138的四個不同的位址中。在本實施例中,第二子層SL1可以視為用來計算對應到該碼字(包含CW0~CW3)與奇偶校驗矩陣H相乘後之第一列資料的一第二部份。Next, in FIG. 6 , the decoder 134 first retrieves the first content related to the third sub-layer SL2 from each part of the first memory 136 , that is, from the first memory shown in FIG. 6 . The 4th, 7th, 10th, and 15th addresses of 136 fetch the first content related to the third sub-layer SL2, and flip the content fetched from the first memory 136; at the same time, the decoder 134 also automatically The second memory 138 reads the content previously stored in FIG. 5, and performs a multiplexing operation (combination operation) together with the content retrieved from the first memory 136 and flipped to generate a complete second sub The content of layer SL1 is used for subsequent parallel operations with an order of 16, and also generates a remaining data of 64-bit content composed of the third sub-layer SL2 and the fourth sub-layer SL3, and stores it in the second memory. 138 in four different addresses. In this embodiment, the second sublayer SL1 can be regarded as a second part used to calculate the data corresponding to the first column of the codeword (including CW0-CW3) multiplied by the parity check matrix H.

接著,在第7圖中,解碼器134會先自第一記憶體136的每一個部分取出第一筆有關於第四子層SL3的內容,亦即從第7圖所示之第一記憶體136的第1、8、11、16個位址取出第一筆有關於第四子層SL3的內容,並將自第一記憶體136所取出的內容進行翻轉;同時地,解碼器134也自第二記憶體138讀取先前在第6圖中所儲存的內容,並連同自第一記憶體136所取出並進行翻轉後的內容進行多工操作(組合操作),以產生一個完整第三子層SL2的內容以供後續進行階數為16的平行運算,且也產生一個完全由第四子層SL3所構成的64位元內容的剩餘資料,並儲存至第二記憶體138的四個不同的位址中。在本實施例中,第三子層SL2可以視為用來計算對應到該碼字(包含CW0~CW3)與奇偶校驗矩陣H相乘後之第一列資料的一第三部份。Next, in FIG. 7 , the decoder 134 first retrieves the first content related to the fourth sub-layer SL3 from each part of the first memory 136 , that is, from the first memory shown in FIG. 7 . The 1st, 8th, 11th, and 16th addresses of 136 fetch the first content related to the fourth sub-layer SL3, and flip the content fetched from the first memory 136; at the same time, the decoder 134 also automatically The second memory 138 reads the content previously stored in FIG. 6, and performs a multiplexing operation (combination operation) together with the content retrieved from the first memory 136 and flipped to generate a complete third subsection The content of layer SL2 is used for subsequent parallel operations of order 16, and a residual data of 64-bit content composed entirely of the fourth sub-layer SL3 is also generated and stored in the second memory 138. Four different at the address. In this embodiment, the third sublayer SL2 can be regarded as a third part used to calculate the data corresponding to the first column of the codeword (including CW0-CW3) multiplied by the parity check matrix H.

接著,在第8圖中,解碼器134直接自第二記憶體138讀取先前在第7圖中所儲存之完全由第四子層SL3所構成的64位元內容,並進行階數為16的平行運算。在本實施例中,第四子層SL3可以視為用來計算對應到該碼字(包含CW0~CW3)與奇偶校驗矩陣H相乘後之第一列資料的一第四部份。上述平行運算係用來對該些資料進行最小總和解碼(min-sum decoding)操作,由於解碼器134進行準循環低密度奇偶校檢(QC-LDPC)碼的解碼方式以及相關的平行運算細節已為本領域具有通常知識者所熟知,故細節在此不予贅述。Next, in FIG. 8 , the decoder 134 directly reads the 64-bit content completely composed of the fourth sub-layer SL3 previously stored in FIG. 7 from the second memory 138 , and performs an order of 16. parallel operation. In this embodiment, the fourth sublayer SL3 can be regarded as a fourth part used to calculate the data corresponding to the first column of the codeword (including CW0-CW3) multiplied by the parity check matrix H. The above-mentioned parallel operation is used to perform a min-sum decoding operation on these data. Since the decoding method of the quasi-cyclic low-density parity check (QC-LDPC) code performed by the decoder 134 and the related parallel operation details have been It is well known to those with ordinary knowledge in the art, so the details are not repeated here.

透過以上實施例所揭露的內容,可以讓解碼器134在僅使用階數為16的平行運算便可完成相關的解碼操作,因此解碼器134內部的電路元件,例如桶式移位器(barrel shifter)在設計上也比較簡單,以節省硬體成本。另一方面,由於本實施例之第一記憶體136所儲存的每一筆資料均為16位元,因此在記憶體架構上可以設計為具有較深的深度,因此可以在儲存容量不變的情形下更加節省記憶體的晶片面積。Through the content disclosed in the above embodiments, the decoder 134 can complete the relevant decoding operations using only parallel operations with an order of 16. Therefore, the circuit elements inside the decoder 134, such as barrel shifters ) is also simpler in design to save hardware costs. On the other hand, since each piece of data stored in the first memory 136 of this embodiment is 16 bits, the memory structure can be designed to have a deeper depth, so that the storage capacity can be kept unchanged. This saves more memory chip area.

此外,在本發明的另一個實施例中,第5~8圖中所產生之完整第一子層SL0至第四子層SL3的內容可以再立刻回存至第一記憶體136中。具體來說,在第5圖中,由於先前第一記憶體136中第2、5、12、13個位址的資料已經被取出了,故解碼器136可以將所產生的完整第一子層SL0的內容回存至第一記憶體136中第2、5、12、13個位址中,以供後續使用;同理,在第6圖中,由於先前第一記憶體136中第3、6、9、14個位址的資料已經被取出了,故解碼器136可以將所產生的完整第二子層SL0的內容回存至第一記憶體136中第3、6、9、14個位址中,以供後續使用…以此類推。In addition, in another embodiment of the present invention, the contents of the complete first sub-layer SL0 to the fourth sub-layer SL3 generated in FIGS. 5 to 8 can be immediately restored to the first memory 136 . Specifically, in Fig. 5, since the data of the 2nd, 5th, 12th, and 13th addresses in the first memory 136 have been fetched, the decoder 136 can convert the generated complete first sub-layer The content of SL0 is stored back to the 2nd, 5th, 12th, and 13th addresses in the first memory 136 for subsequent use; similarly, in FIG. The data of the 6th, 9th, and 14th addresses have been fetched, so the decoder 136 can store the generated content of the complete second sublayer SL0 back to the 3rd, 6th, 9th, and 14th addresses in the first memory 136 address for later use...and so on.

簡要歸納本發明,在本發明之應用在快閃記憶體控制器中的解碼方法中,其可以透過記憶體的配置來使用較低階數的平行運算來有效地完成解碼操作,且由於採用了較低階數的平行運算,可以降低解碼器之內部電路元件的複雜度,且也可以在儲存容量不變的情形下節省記憶體的晶片面積。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。Summarizing the present invention briefly, in the decoding method of the present invention applied in a flash memory controller, the decoding operation can be efficiently completed by using a lower order parallel operation through the configuration of the memory, and since the The lower-order parallel operation can reduce the complexity of the internal circuit elements of the decoder, and can also save the chip area of the memory under the condition that the storage capacity remains unchanged. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:記憶裝置 110:快閃記憶體控制器 112:微處理器 112C:程式碼 112M:唯讀記憶體 114:控制邏輯 116:緩衝記憶體 118:介面邏輯 120:快閃記憶體模組 130:主裝置 132:編碼器 134:解碼器 136:第一記憶體 138:第二記憶體 H:奇偶校驗矩陣 CM0~CM3:循環排列矩陣 CW0~CW3:碼字群組 SL0:第一子層 SL1:第二子層 SL2:第三子層 SL3:第四子層100: Memory Device 110: Flash memory controller 112: Microprocessor 112C: Code 112M: read-only memory 114: Control logic 116: Buffer memory 118: Interface logic 120: Flash memory module 130: Main unit 132: Encoder 134: decoder 136: first memory 138:Second memory H: Parity check matrix CM0~CM3: Circular arrangement matrix CW0~CW3: codeword group SL0: first sublayer SL1: Second sublayer SL2: The third sublayer SL3: Fourth sublayer

第1圖為依據本發明一實施例之一種記憶裝置的示意圖。 第2圖為根據本發明一實施例之自快閃記憶體模組所讀取之一碼字以及奇偶校驗矩陣的示意圖。 第3圖為根據本發明一實施例之每一個群組CW0~CW3以及儲存在第一記憶體之每一個子層SL0~SL1的示意圖。 第4~8圖所示為根據本發明一實施例之解碼器對儲存在第一記憶體中的多筆處理後資料進行操作的示意圖。FIG. 1 is a schematic diagram of a memory device according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a codeword and a parity check matrix read from a flash memory module according to an embodiment of the present invention. FIG. 3 is a schematic diagram of each group CW0-CW3 and each sub-layer SL0-SL1 stored in the first memory according to an embodiment of the present invention. FIGS. 4 to 8 are schematic diagrams illustrating operations performed by a decoder according to an embodiment of the present invention on multiple pieces of processed data stored in the first memory.

100:記憶裝置 100: Memory Device

110:快閃記憶體控制器 110: Flash memory controller

112:微處理器 112: Microprocessor

112C:程式碼 112C: Code

112M:唯讀記憶體 112M: read-only memory

114:控制邏輯 114: Control logic

116:緩衝記憶體 116: Buffer memory

118:介面邏輯 118: Interface logic

120:快閃記憶體模組 120: Flash memory module

130:主裝置 130: Main unit

132:編碼器 132: Encoder

134:解碼器 134: decoder

136:第一記憶體 136: first memory

138:第二記憶體 138:Second memory

Claims (10)

一種解碼方法,包含有: 自一快閃記憶體模組中讀取一碼字;以及 使用一奇偶校驗矩陣(parity check matrix)來對該碼字進行解碼,其中該奇偶校驗矩陣包含了多個循環排列矩陣(circulant permutation matrix),且對該碼字進行解碼所使用之平行運算的階數低於任一循環排列矩陣的列數量。A decoding method, including: reading a codeword from a flash memory module; and use a parity check matrix to decode the codeword, wherein the parity check matrix includes a plurality of circulant permutation matrices, and the parallel operation used for decoding the codeword is of order lower than the number of columns of any cyclic permutation matrix. 如申請專利範圍第1項所述之解碼方法,其中該奇偶校驗矩陣中的每一層(layer)包含了N個循環排列矩陣,且使用該奇偶校驗矩陣來對該碼字進行解碼的步驟包含了: 將該碼字分割為N個群組; 針對該N個群組中的任一群組,依序將該群組的M個部分分別與所對應之循環排列矩陣的M個部分相乘,以得到M個處理後資料;以及 將該M個處理後資料儲存至一記憶體中之一區塊的M個不同位址中; 其中N、M為大於一的正整數。The decoding method as described in claim 1, wherein each layer (layer) in the parity check matrix includes N cyclic array matrices, and the step of decoding the codeword by using the parity check matrix Contains: dividing the codeword into N groups; For any one of the N groups, the M parts of the group are sequentially multiplied by the M parts of the corresponding circular arrangement matrix, respectively, to obtain M processed data; and storing the M processed data in M different addresses of a block in a memory; Among them, N and M are positive integers greater than one. 如申請專利範圍第2項所述之解碼方法,其中該N個群組的該M個處理後資料係儲存至該記憶體的N個區塊中,且使用該奇偶校驗矩陣來對該碼字進行解碼的步驟另包含了: 自該N個區塊之每一個區塊讀取兩筆處理後資料,並組合後產生一第一資料以及一剩餘資料,其中該第一資料為用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列(row)資料的一第一部份,且該剩餘資料為該兩筆處理後資料扣除該第一資料後的內容。The decoding method as described in claim 2, wherein the M processed data of the N groups are stored in N blocks of the memory, and the parity check matrix is used to decode the code The step of decoding the word also includes: Two pieces of processed data are read from each of the N blocks, and combined to generate a first data and a residual data, wherein the first data is used to calculate the corresponding codeword and the parity A first part of the data in the first row (row) after the multiplication of the test matrix, and the remaining data is the content after deducting the first data from the two processed data. 如申請專利範圍第3項所述之解碼方法,其中使用該奇偶校驗矩陣來對該碼字進行解碼的步驟另包含了: 自該N個區塊之每一個區塊再讀取另一筆處理後資料,並與該剩餘資料組合後產生一第二資料以及另一剩餘資料,其中該第二資料為用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列資料的一第二部份,該另一剩餘資料為該剩餘資料與該另一筆處理後資料扣除該第二資料後的內容,且該另一剩餘資料係被用來後續產生用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列資料的一第三部份。The decoding method as described in item 3 of the scope of the application, wherein the step of using the parity check matrix to decode the codeword further comprises: Another piece of processed data is read from each of the N blocks, and combined with the remaining data to generate a second data and another remaining data, wherein the second data is used to calculate the corresponding data to the a second part of the data in the first column after the codeword is multiplied by the parity check matrix, the other remaining data is the content of the remaining data and the other processed data after deducting the second data, and the Another residual data is used for subsequent generation to calculate a third portion corresponding to the first column of data after the codeword is multiplied by the parity check matrix. 如申請專利範圍第3項所述之解碼方法,其中使用該奇偶校驗矩陣來對該碼字進行解碼的步驟另包含了: 對該第一資料進行平行運算並進行解碼,其中該平行運算的階數為該循環排列矩陣的列數量除以N的商數。The decoding method as described in item 3 of the scope of the application, wherein the step of using the parity check matrix to decode the codeword further comprises: A parallel operation is performed on the first data and decoded, wherein the order of the parallel operation is a quotient of dividing the number of columns of the circular array matrix by N. 如申請專利範圍第3項所述之解碼方法,其中使用該奇偶校驗矩陣來對該碼字進行解碼的步驟另包含了: 將該第一資料分別儲存回該N個區塊中。The decoding method as described in item 3 of the scope of the application, wherein the step of using the parity check matrix to decode the codeword further comprises: The first data are respectively stored back into the N blocks. 一種快閃記憶體控制器,其中該快閃記憶體控制器係用來存取一快閃記憶體模組,且該快閃記憶體控制器包含有: 一唯讀記憶體,用來儲存一程式碼; 一微處理器,用來執行該程式碼以控制對該快閃記憶體模組之存取;以及 一解碼器; 其中該微處理器自該快閃記憶體模組中讀取一碼字,且該解碼器使用一奇偶校驗矩陣(parity check matrix)來對該碼字進行解碼,其中該奇偶校驗矩陣包含了多個循環排列矩陣(circulant permutation matrix),且對該碼字進行解碼所使用之平行運算的階數低於任一循環排列矩陣的列數量。A flash memory controller, wherein the flash memory controller is used to access a flash memory module, and the flash memory controller comprises: a ROM, used to store a code; a microprocessor for executing the code to control access to the flash memory module; and a decoder; The microprocessor reads a codeword from the flash memory module, and the decoder uses a parity check matrix to decode the codeword, wherein the parity check matrix includes A plurality of circular permutation matrices are formed, and the order of parallel operations used to decode the codeword is lower than the number of columns of any circular permutation matrix. 如申請專利範圍第7項所述之快閃記憶體控制器,其中該奇偶校驗矩陣中的每一層(layer)包含了N個循環排列矩陣,且該解碼器將該碼字分割為N個群組,且針對該N個群組中的任一群組,依序將該群組的M個部分分別與所對應之循環排列矩陣的M個部分相乘,以得到M個處理後資料;以及該解碼器將該M個處理後資料儲存至一記憶體中之一區塊的M個不同位址中,其中N、M為大於一的正整數。The flash memory controller as described in claim 7, wherein each layer in the parity check matrix includes N circulant matrices, and the decoder divides the codeword into N pieces group, and for any one of the N groups, sequentially multiply the M parts of the group by the M parts of the corresponding cyclic array matrix, respectively, to obtain M processed data; and the The decoder stores the M processed data into M different addresses of a block in a memory, wherein N and M are positive integers greater than one. 如申請專利範圍第8項所述之快閃記憶體控制器,其中該N個群組的該M個處理後資料係儲存至該記憶體的N個區塊中,且該解碼器自該N個區塊之每一個區塊讀取兩筆處理後資料,並組合後產生一第一資料以及一剩餘資料,其中該第一資料為用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列(row)資料的一第一部份,且該剩餘資料為該兩筆處理後資料扣除該第一資料後的內容。The flash memory controller as described in claim 8, wherein the M processed data of the N groups are stored in N blocks of the memory, and the decoder extracts from the N Each block of the blocks reads two pieces of processed data, and combines them to generate a first data and a residual data, wherein the first data is used to calculate the correlation between the codeword and the parity check matrix. A first part of the multiplied first row (row) data, and the remaining data is the content after deducting the first data from the two processed data. 如申請專利範圍第9項所述之快閃記憶體控制器,其中該解碼器自該N個區塊之每一個區塊再讀取另一筆處理後資料,並與該剩餘資料組合後產生一第二資料以及另一剩餘資料,其中該第二資料為用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列資料的一第二部份,該另一剩餘資料為該剩餘資料與該另一筆處理後資料扣除該第二資料後的內容,且該另一剩餘資料係為用來計算對應到該碼字與該奇偶校驗矩陣相乘後之第一列(row)資料的一第三部份。The flash memory controller as described in claim 9, wherein the decoder reads another piece of processed data from each of the N blocks, and combines with the remaining data to generate a The second data and another residual data, wherein the second data is used to calculate a second part corresponding to the first column of data after the codeword is multiplied by the parity check matrix, and the other residual data is The remaining data and the other processed data are the contents after deducting the second data, and the other remaining data is used to calculate the first row (row corresponding to the multiplication of the codeword and the parity check matrix) ) of a third part of the information.
TW109100005A 2018-04-20 2018-04-20 Decoding method and associated flash memory controller and electronic device TWI759672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109100005A TWI759672B (en) 2018-04-20 2018-04-20 Decoding method and associated flash memory controller and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109100005A TWI759672B (en) 2018-04-20 2018-04-20 Decoding method and associated flash memory controller and electronic device

Publications (2)

Publication Number Publication Date
TW202014889A TW202014889A (en) 2020-04-16
TWI759672B true TWI759672B (en) 2022-04-01

Family

ID=71130578

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100005A TWI759672B (en) 2018-04-20 2018-04-20 Decoding method and associated flash memory controller and electronic device

Country Status (1)

Country Link
TW (1) TWI759672B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI284460B (en) * 2001-06-15 2007-07-21 Qualcomm Flarion Tech Methods and apparatus for decoding LDPC codes
TW200739334A (en) * 2006-01-20 2007-10-16 Marvell World Trade Ltd Flash memory with coding and signal processing
US20100275089A1 (en) * 2009-04-27 2010-10-28 The Hong Kong University Of Science And Technology Iterative decoding of punctured low-density parity check codes by selection of decoding matrices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI284460B (en) * 2001-06-15 2007-07-21 Qualcomm Flarion Tech Methods and apparatus for decoding LDPC codes
TW200739334A (en) * 2006-01-20 2007-10-16 Marvell World Trade Ltd Flash memory with coding and signal processing
US20100275089A1 (en) * 2009-04-27 2010-10-28 The Hong Kong University Of Science And Technology Iterative decoding of punctured low-density parity check codes by selection of decoding matrices

Also Published As

Publication number Publication date
TW202014889A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US11422885B2 (en) Tiered error correction code (ECC) operations in memory
US8812942B2 (en) Interleaving apparatuses and memory controllers having the same
US11050438B2 (en) Memory controller
CN110858128B (en) Data storage device and method for sharing memory in controller
KR20100124087A (en) Memory controller, memory system including the same and method of operating the same
CN113064547B (en) Data access method and device for protection of check matrix with local sequence information
KR20160090054A (en) Flash memory system and operating method thereof
US10484014B2 (en) Controller, semiconductor memory system and operating method thereof
TWI536749B (en) Decoding method, memory storage device and memory controlling circuit unit
US9268629B2 (en) Dual mapping between program states and data patterns
US11082068B2 (en) Error correction circuit, memory controller having error correction circuit, and memory system having memory controller
CN108665940B (en) ECC encoding circuit, decoding circuit and memory controller
TWI759672B (en) Decoding method and associated flash memory controller and electronic device
TWI651730B (en) Method for performing data management in memory device, and associated memory device and controller thereof
TWI684856B (en) Decoding method and associated flash memory controller and electronic device
US10855316B2 (en) Error correction code (ECC) operations in memory
KR101679495B1 (en) Mapping between program states and data patterns
KR20220049856A (en) Memory system and contrller
US20160364292A1 (en) Efficient encoder based on modified ru algorithm
TWI677878B (en) Encoder and associated encoding method and flash memory controller
US20220284978A1 (en) Memory controller and method of operating the same
TWI711279B (en) Encoder and associated encoding method and flash memory controller
TWI782341B (en) Flash memory controller and encoding circuit within flash memory controller
TW202401250A (en) Encoder and associated flash memory controller