TWI759620B - Method and apparatus for determining user's financial default risk and computer-readable storage medium and computing device - Google Patents

Method and apparatus for determining user's financial default risk and computer-readable storage medium and computing device Download PDF

Info

Publication number
TWI759620B
TWI759620B TW108128019A TW108128019A TWI759620B TW I759620 B TWI759620 B TW I759620B TW 108128019 A TW108128019 A TW 108128019A TW 108128019 A TW108128019 A TW 108128019A TW I759620 B TWI759620 B TW I759620B
Authority
TW
Taiwan
Prior art keywords
user
evaluated
credit
term
model
Prior art date
Application number
TW108128019A
Other languages
Chinese (zh)
Other versions
TW202016860A (en
Inventor
嵇方方
汲小溪
王維強
Original Assignee
開曼群島商創新先進技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 開曼群島商創新先進技術有限公司 filed Critical 開曼群島商創新先進技術有限公司
Publication of TW202016860A publication Critical patent/TW202016860A/en
Application granted granted Critical
Publication of TWI759620B publication Critical patent/TWI759620B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0609Buyer or seller confidence or verification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4016Transaction verification involving fraud or risk level assessment in transaction processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Technology Law (AREA)
  • Computer Security & Cryptography (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

本說明書的實施例提供一種確定用戶金融違約風險的方法和裝置,根據該方法的一個實施方式,分別利用基於循環神經網路的不同模型處理用戶的短期操作序列、長期行為資料集序列,來對用戶進行風險評估,並至少將兩種不同的處理結果進行綜合處理,以得到用戶金融違約風險結果。這樣,一方面,利用更加深度的時序資料,另一方面,藉由多個模型的輸出結果進行綜合確定最終結果。該實施方式可以提高確定用戶金融違約風險的有效性。 The embodiments of this specification provide a method and device for determining a user's financial default risk. According to an embodiment of the method, different models based on a recurrent neural network are used to process the user's short-term operation sequence and long-term behavior data set sequence, respectively. The user conducts risk assessment and comprehensively processes at least two different processing results to obtain the user's financial default risk result. In this way, on the one hand, more in-depth time series data is used, and on the other hand, the final result is determined by synthesizing the output results of multiple models. This implementation can improve the effectiveness of determining the user's financial default risk.

Description

確定用戶金融違約風險的方法及裝置與電腦可讀儲存媒體及計算設備 Method and apparatus for determining user's financial default risk, computer-readable storage medium and computing device

本說明書的一個或多個實施例涉及電腦技術領域,尤其涉及藉由電腦確定用戶金融違約風險的方法和裝置。 One or more embodiments of this specification relate to the field of computer technology, and in particular, to a method and apparatus for determining a user's risk of financial default by means of a computer.

隨著電腦和互聯網技術的發展,越來越多的業務透過計算平臺來實現,例如商品交易、錢款支付、金融借貸、保險理賠等等。然而,在許多業務的執行和處理中,有一些用戶操作行為對金融平臺或其他用戶而言有一定的金融風險,例如請求先享後付類服務,採用花唄、白條等透支服務,申請借貸等。這就需要對用戶的金融違約風險預先進行評估和判斷。 With the development of computer and Internet technology, more and more businesses are realized through computing platforms, such as commodity trading, money payment, financial lending, insurance claims and so on. However, in the execution and processing of many businesses, there are some user operations that pose certain financial risks to financial platforms or other users, such as requesting first-pay-after-pay services, using Huabei, Baitiao and other overdraft services, applying for loans Wait. This requires pre-assessment and judgment of the user's financial default risk.

常規技術中,為了防止和降低上述風險,往往透過用戶的身份、歷史交易行為等資訊對用戶的信用進行評估。然而,這些資訊通常是靜態資訊,無法體現用戶行為等資訊之間的關聯關係,並且對於新用戶,可能無法獲取相應資訊,從而無法確定信用風險。因此,需要更有效的方式,利用更多的網路資料以及更有效的評測方式,對用戶進行全面分析,提高對用戶金融違約風險評估的有效性。 In the conventional technology, in order to prevent and reduce the above risks, the user's credit is often evaluated through information such as the user's identity and historical transaction behavior. However, these information are usually static information, which cannot reflect the relationship between user behavior and other information, and for new users, it may not be possible to obtain the corresponding information, so that the credit risk cannot be determined. Therefore, a more effective method is needed, using more network data and more effective evaluation methods, to conduct a comprehensive analysis of users, and to improve the effectiveness of user financial default risk assessment.

本說明書的一個或多個實施例描述了一種確定用戶金融違約風險的方法和裝置,可以更有效地對用戶的信用風險進行分析和評估。 One or more embodiments of this specification describe a method and apparatus for determining a user's financial default risk, which can more effectively analyze and evaluate the user's credit risk.

根據第一方面,提供了一種確定用戶金融違約風險的方法,包括:獲取待評測用戶在第一時間段內的短期操作序列,以及第二時間段內的長期行為資料集序列,所述第二時間段大於所述第一時間段,所述短期操作序列包括按照時間順序排列之與所述待評測用戶的操作行為相關的多條操作資訊,所述長期行為資料集序列包括按照時間順序排列的多個行為資料集,各行為資料集分別對應預設的第三時間段,所述行為資料集包括與所述待評測用戶的交易行為相關的行為資訊;利用基於循環神經網路的第一模型來處理所述短期操作序列,以獲得第一輸出結果;利用基於循環神經網路的第二模型來處理所述長期行為資料集序列,以獲得第二輸出結果;至少對所述第一輸出結果和所述第二輸出結果進行預定處理,並根據處理結果來確定所述待評測用戶的金融違約風險。 According to a first aspect, a method for determining a user's financial default risk is provided, comprising: acquiring a short-term operation sequence of a user to be evaluated in a first time period, and a long-term behavior data set sequence in a second time period, the second The time period is greater than the first time period, the short-term operation sequence includes a plurality of pieces of operation information related to the operation behavior of the user to be evaluated, arranged in chronological order, and the long-term behavior data set sequence includes chronological order. a plurality of behavior data sets, each behavior data set corresponds to a preset third time period respectively, and the behavior data set includes behavior information related to the transaction behavior of the user to be evaluated; using the first model based on the recurrent neural network to process the short-term operation sequence to obtain a first output result; use a second model based on a recurrent neural network to process the long-term behavior data set sequence to obtain a second output result; at least for the first output result Predetermined processing is performed with the second output result, and the financial default risk of the user to be evaluated is determined according to the processing result.

在一些實施例中,所述操作資訊包括以下至少一項:瀏覽資訊、點擊資訊、登入的應用程式、登入的設備、地理位置資訊。 In some embodiments, the operation information includes at least one of the following: browsing information, click information, logged-in application, logged-in device, and geographic location information.

在一些實施例中,所述交易行為資訊包括以下至少一項:交易時間、交易對象、交易金額。 In some embodiments, the transaction behavior information includes at least one of the following: transaction time, transaction object, and transaction amount.

在一些實施例中,所述方法還包括:獲取所述待評測 用戶的屬性資訊;利用預測模型來處理所述屬性資訊,以得到第三輸出結果;以及所述至少對所述第一輸出結果和所述第二輸出結果進行預定處理,並根據處理結果來確定所述待評測用戶的金融違約風險包括:對所述第一輸出結果、所述第二輸出結果和所述第三輸出結果進行所述預定處理,並根據處理結果來確定所述待評測用戶的金融違約風險。 In some embodiments, the method further includes: obtaining the to-be-evaluated attribute information of the user; processing the attribute information using a prediction model to obtain a third output result; and performing predetermined processing on at least the first output result and the second output result, and determining according to the processing result The financial default risk of the user to be evaluated includes: performing the predetermined processing on the first output result, the second output result and the third output result, and determining the user to be evaluated according to the processing result. financial default risk.

在一些實施例中,所述預定處理包括以下至少一項:求平均值;取最大值;作為特徵輸入預設的邏輯回歸模型,以得到邏輯回歸結果。 In some embodiments, the predetermined processing includes at least one of the following: averaging; taking a maximum value; inputting a preset logistic regression model as a feature to obtain a logistic regression result.

在一些實施例中,所述第一模型/所述第二模型包括多層疊加的長短期記憶模型LSTM。 In some embodiments, the first model/the second model comprises a multi-layer stacked long short term memory model LSTM.

在一些實施例中,所述第一模型/所述第二模型的訓練樣本包括多個標注用戶,所述標注用戶至少具有預先標注的信用標籤。 In some embodiments, the training samples of the first model/the second model include a plurality of labeled users, and the labeled users have at least pre-labeled credit labels.

在一些實施例中,所述多個標注用戶包括第一標注用戶,所述第一標注用戶對應的第一信用標籤藉由以下方式確定:獲取所述第一標注用戶在預定時間段內的信用記錄;基於所述信用記錄來確定所述第一信用標籤。 In some embodiments, the plurality of tagging users include a first tagging user, and the first credit tag corresponding to the first tagging user is determined by obtaining the credit of the first tagging user within a predetermined period of time. record; determining the first credit tag based on the credit record.

在一些實施例中,所述基於所述信用記錄來確定所述第一信用標籤包括:從所述信用記錄中確定所述第一標注用戶的守信次數和失信次數;在所述失信次數和所述守信次數的比例超過預設比例閾值的情況下,確定所述第一信用標籤為失信用戶。 In some embodiments, the determining the first credit label based on the credit record comprises: determining from the credit record the number of times of trustworthiness and the number of times of untrustworthiness of the first marked user; In the case that the ratio of the times of keeping promises exceeds a preset ratio threshold, it is determined that the first credit tag is a dishonest user.

在一些實施例中,所述基於所述信用記錄來確定所述第一信用標籤包括:檢測所述第一標注用戶的失信次數是否為零;在所述失信次數非零的情況下,確定所述第一信用標籤為失信用戶。 In some embodiments, the determining the first credit label based on the credit record includes: detecting whether the number of untrustworthy users of the first marking user is zero; in the case that the number of untrustworthy times is non-zero, determining the The first credit label is described as a dishonest user.

根據第二方面,提供一種確定用戶金融違約風險的裝置,包括:獲取單元,其被配置為獲取待評測用戶在第一時間段內的短期操作序列,以及第二時間段內的長期行為資料集序列,所述第二時間段大於所述第一時間段,所述短期操作序列包括按照時間順序排列之與所述待評測用戶的操作行為相關的多條操作資訊,所述長期行為資料集序列包括按照時間順序排列的多個行為資料集,各行為資料集分別對應預設的第三時間段,所述行為資料集包括與所述待評測用戶的交易行為相關的行為資訊;第一處理單元,其被配置為利用基於循環神經網路的第一模型來處理所述短期操作序列,以獲得第一輸出結果;第二處理單元,其被配置為利用基於循環神經網路的第二模型來處理所述長期行為資料集序列,以獲得第二輸出結果;確定單元,其被配置為至少對所述第一輸出結果和所述第二輸出結果進行預定處理,並根據處理結果來確定所述待評測用戶的金融違約風險。 According to a second aspect, an apparatus for determining a user's financial default risk is provided, comprising: an acquisition unit configured to acquire a short-term operation sequence of a user to be evaluated in a first time period, and a long-term behavior data set in a second time period sequence, the second time period is longer than the first time period, the short-term operation sequence includes a plurality of pieces of operation information related to the operation behavior of the user to be evaluated arranged in time sequence, and the long-term behavior data set sequence It includes a plurality of behavior data sets arranged in chronological order, each behavior data set corresponds to a preset third time period, and the behavior data set includes behavior information related to the transaction behavior of the user to be evaluated; the first processing unit , which is configured to process the short-term sequence of operations using a first model based on a recurrent neural network to obtain a first output result; a second processing unit is configured to use a second model based on a recurrent neural network to process the short-term operation sequence; processing the long-term behavior data set sequence to obtain a second output result; a determining unit configured to perform predetermined processing on at least the first output result and the second output result, and determine the The financial default risk of the user to be evaluated.

根據第三方面,提供了一種電腦可讀儲存媒體,其上儲存有電腦程式,當所述電腦程式在電腦中執行時,令電腦執行第一方面的方法。 According to a third aspect, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed in a computer, the computer is caused to execute the method of the first aspect.

根據第四方面,提供了一種計算設備,包括記憶體和處理器,其特徵在於,所述記憶體中儲存有可執行的程式碼,所述處理器執行所述可執行的程式碼時,實現第一方面的方法。 透過本說明書的實施例提供的確定用戶的金融違約風險的方法和裝置,分別利用基於循環神經網路的不同模型來處理用戶的短期操作序列、長期行為資料集序列,對用戶進行風險評估,並至少將兩種不同的處理結果進行綜合處理,以得到用戶金融違約風險結果。這樣,一方面,利用更加深度的時序資料,另一方面,透過多個模型的輸出結果進行綜合來確定最終結果。因而,可以提高確定用戶金融違約風險的有效性。According to a fourth aspect, a computing device is provided, including a memory and a processor, wherein the memory stores executable program codes, and when the processor executes the executable program codes, it realizes method of the first aspect. Through the method and device for determining a user's financial default risk provided by the embodiments of this specification, different models based on the recurrent neural network are used to process the user's short-term operation sequence and long-term behavior data set sequence, and perform risk assessment on the user. At least two different processing results are comprehensively processed to obtain the user's financial default risk result. In this way, on the one hand, more in-depth time series data is used, and on the other hand, the final result is determined by synthesizing the output results of multiple models. Thus, the effectiveness of determining the user's financial default risk can be improved.

下面結合附圖,對本說明書提供的方案進行描述。 圖1為本說明書揭露的一個實施例的實施場景示意圖。如圖1所示,用戶可以透過終端機(terminal)進行各種操作,例如瀏覽網頁,點擊頁面上的超連結等,還有可能透過網路,與後臺伺服器進行各種交流互動,例如進行多種與借貸相關的行為,如申請借款、還款、申請延期還款等。相應地,終端機可以透過日誌等來記錄用戶的操作資訊,後臺伺服器也可以記錄用戶進行的與後臺伺服器提供的服務相關的行為。例如,用戶透過支付寶下的“螞蟻花唄”申請了一筆借款,然後每月還款,這時網路平臺即為支付寶平臺,後臺伺服器就可以是支付寶平臺伺服器。可以理解的是,後臺伺服器可以是集中的伺服器,也可以分散式伺服器,還可以是互相完全獨立的多個伺服器,在此不做限定。 為了對用戶的信用風險進行評估,計算平臺可以從各個借貸平臺或終端機獲取相應的用戶資料,由計算平臺進行綜合分析,確定出用戶的金融違約風險。在說明書揭露的實施例中,計算平臺獲取相關用戶資料之後,可以利用機器學習和循環神經網路,採用多個神經網路模型相結合的構架,對這些資料進行全面分析,進而對金融風險進行評估。上述計算平臺可以是任何具有計算、處理能力的裝置、設備和系統,例如可以是伺服器,它既可以作為獨立的計算平臺,也可以集成到為某些服務(如借貸)提供支援的後臺伺服器中。 更具體地,計算平臺一方面可以獲取用戶短期(如24個小時)內的各種操作形成的操作序列,透過基於循環神經網路的第一模型來進行處理,以挖掘用戶短期操作行為對用戶信用的影響,得到第一輸出結果。另一方面,計算平臺還可以獲取用戶在若干個週期(例如1天)內的行為資料集,每個行為資料集可以包括用戶在相應週期內的行為統計結果,計算平臺可以利用基於循環神經網路的第二模型對這些行為資料集按照時間順序排列成的長期行為資料集序列進行處理,得到第二輸出結果。進一步地,計算平臺還可以至少對第一輸出結果和第二輸出結果進行綜合處理,從而進行最終的金融風險評估。下面描述計算平臺評估金融違約風險的具體過程。 圖2示出根據一個實施例的確定用戶金融違約風險的方法流程圖。該方法的執行主體可以是任何具有計算、處理能力的系統、設備、裝置、平臺或伺服器,例如圖1所示的計算平臺等。更具體地,例如可以是為借貸服務提供支援的借貸伺服器等。 如圖2示,該方法包括以下步驟:步驟21,獲取待評測用戶在第一時間段內的短期操作序列,以及第二時間段內的長期行為資料集序列,其中,第二時間段大於第一時間段,短期操作序列包括按照時間順序排列之與待評測用戶的操作行為相關的多條操作資訊,長期行為資料集序列包括按照時間順序排列的多個行為資料集,各行為資料集分別對應預設的第三時間段,每個行為資料集包括與待評測用戶的交易行為相關的行為資訊;步驟22,利用基於循環神經網路的第一模型來處理短期操作序列,以獲得第一輸出結果;步驟23,利用基於循環神經網路的第二模型來處理長期行為資料集序列,以獲得第二輸出結果;步驟24,至少對第一輸出結果和第二輸出結果進行預定處理,並根據處理結果來確定待評測用戶的金融違約風險。 首先,在步驟21,獲取待評測用戶在第一時間段內的短期操作序列,以及第二時間段內的長期行為資料集序列。這裡,第一時間段可以是相對較短的一個時間段,例如1天(24小時)、12個小時等。第二時間段可以是相對較長的一個時間段,例如1個月、3個月、1年等等。第二時間段可以遠大於第一時間段。如此,為了描述方便,可以將第一時間段對應短期,第二時間段對應長期。 短期操作序列可以包括按照時間順序排列之與待評測用戶的操作行為相關的多條操作資訊。操作資訊可以包括但不限於瀏覽資訊、點擊資訊、登入的應用程式、登入的設備、地理位置資訊、交易資訊等等中的一項或多項。瀏覽資訊例如可以包括瀏覽的頁面、頁面網址、網站功能變數名稱等。點擊資訊例如可以包括點擊的超連結、所點擊超連結對應的頁面、提交表單所點擊的按鈕等等。登入的設備例如可以是桌上型電腦、筆記型電腦、平板電腦、智慧手機等等。地理位置資訊可以根據登入的設備的定位資訊確定。例如,設備的定位資訊可以根據智慧手機上的SIM卡當前距離最近的通信基站、電腦接入網路的IP位址、設備上的軟/硬體定位裝置(如GPS定位系統)等等來確定。在一個實施中,上述操作資訊可以從用戶當前登入的設備的操作日誌中獲取。在另一個實施中,上述操作資訊還可以透過相同用戶ID登入的不同設備,在用戶ID登入期間的操作日誌獲取。在有一些實施中,上述操作資訊還可以透過根據大數據確定的相似用戶(或同一用戶)在不同平臺的用戶ID,在登入相應平臺期間的操作日誌獲取。在此不做限定。 短期操作序列可以將第一時間段內的各條操作資訊按照發生的時間順序排列。請參考表1,假設從操作日誌中獲取了如下操作資訊: 表1 操作日誌示意

Figure 108128019-A0304-0001
在表1示出的操作日誌示意表格中,每一行代表一條操作資訊。相應的短期操作序列可以表示為[瀏覽商品頁面;點擊購物車頁面;……],還可以添加時間資訊,表示為[10點01:瀏覽商品頁面:10點20:點擊購物車頁面;……]。在一些實施例中,操作序列還可以用向量表示,例如[
Figure 02_image001
Figure 02_image003
Figure 02_image005
……],其中
Figure 02_image001
可以表示瀏覽商品頁面的操作向量,如[1,0,0,1……],
Figure 02_image003
可以表示點擊購物車頁面,如[0,1,0,0……],等等。在一個實施例中,還可以透過詞向量模型(如word2vec)將各條操作資訊藉由詞向量表示,在此不再贅述。如此,可以獲取到用戶在短期內的各種操作相關的具有時序特徵的資訊。 上述的長期行為資料集序列可以包括,按照時間順序排列的多個行為資料集。在第二時間段內,可以將預設的第三時間段(例如1天)作為一個週期。通常,第二時間段可以是第三時間段的整數倍。對於這樣的週期,可以獲取每個週期內與用戶的交易行為有關的各種資訊,將這樣的資訊整理為一個資料集。具體地,在一個實施例中,可以對用戶在上述週期內的交易行為資訊進行統計,形成資料集。 在一個實施例中,與用戶的交易行為相關的行為資訊可以包括,在購物平臺瀏覽商品、下單、所購買商品類型、商品價格、是否支付、付款金額等行為。 在另一個實施例中,與用戶的交易行為相關的行為資訊可以包括,是否透過金融借貸平臺進行借款、借款額度、是否還款等等。 在另一個實施例中,與用戶的交易行為相關的行為資訊可以包括,與其他用戶之間的轉帳行為、轉帳金額等等。 在更多實施例中,與用戶的交易行為相關的行為資訊還可以包括更多資訊,在此不再贅述。 進一步地,可以對每個週期內的用戶交易行為資訊進行統計,形成相應週期內的行為資料集。例如,{瀏覽商品頁面:5次;支付:1次……}。其中,5次、1次等還可以替換成與次數正相關的權重值。瀏覽商品頁面、支付等還可以替換成字元或詞向量。如此,對於多個週期的行為資料集,可以構成具有時序特徵的長期行為資料集序列。藉由長期行為資料集序列,可以體現用戶長期的交易行為習慣等。例如每個月從固定日期(如工資到賬的日期)購買行為較多,交易金額相對較大,逐漸衰減到無購買行為、或較少購買行為、交易金額相對較小等,直到下個月的上述固定日期再重複這樣的過程。 可以理解的是,在一些實現中,上述第一時間段、第二時間段都可以是,從當前時間開始向前回溯的時間段。 藉由以上描述可知,上述短期操作序列和長期行為資料集序列都是具有時序特徵的資料序列。對於這樣的序列,可以藉由循環神經網路模型來處理,進而從時序的角度對用戶的行為進行預測。 可以理解的是,循環神經網路(RNN,Recurrent Neural Networks)是一種時間遞迴神經網路,可用於處理序列資料。在RNN中,一個序列當前的輸出與其前面的輸出相關聯。具體地,RNN會對前面的資訊進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。如圖3示出的循環神經網路時序示意圖中,第t次的隱含層狀態可以表示為:St =f(U*Xt +W*St-1 ); 其中,Xt 為第t次輸入層的狀態,St-1 為第t-1次隱含層狀態,f為計算函數,W、U為權重。如此,RNN將之前的狀態循環回當前輸入,考慮了歷史輸入的影響,因而適合於具有時序的資料序列。 更進一步地,在一個實施例中,在RNN架構下,可以採用長短期記憶模型(LSTM,Long Short Term Memory)進行上述序列資料的處理。 如前所述,在RNN中當前隱含層狀態依賴於之前的狀態輸出,因此在處理時,需要將當前的隱含態的計算與前n次的計算關聯,即St = f(U*Xt + W1 *St-1 + W2 *St-2 + … + Wn *St-n )。隨著n的增大,計算量呈指數式增長,導致模型訓練的時間大幅增加。為此,提出LSTM模型來解決長期依賴的問題。 The solution provided in this specification will be described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram of an implementation scenario of an embodiment disclosed in this specification. As shown in Figure 1, the user can perform various operations through the terminal, such as browsing web pages, clicking on hyperlinks on the page, etc. It is also possible to conduct various exchanges and interactions with the background server through the network, such as performing various interactions with Lending-related behaviors, such as applying for a loan, repaying, applying for deferral of repayment, etc. Correspondingly, the terminal can record the user's operation information through logs, etc., and the background server can also record the user's behavior related to the service provided by the background server. For example, a user applies for a loan through "Ant Huabei" under Alipay, and then repays the loan every month. At this time, the online platform is the Alipay platform, and the background server can be the Alipay platform server. It can be understood that the background server may be a centralized server, a distributed server, or a plurality of servers that are completely independent of each other, which is not limited here. In order to evaluate the user's credit risk, the computing platform can obtain the corresponding user information from various lending platforms or terminals, and the computing platform can conduct a comprehensive analysis to determine the user's financial default risk. In the embodiment disclosed in the specification, after the computing platform obtains relevant user data, it can use machine learning and recurrent neural network, and adopt a framework combining multiple neural network models to conduct a comprehensive analysis of these data, and then conduct financial risk analysis. Evaluate. The above computing platform can be any device, equipment and system with computing and processing capabilities, such as a server, which can be used as an independent computing platform or integrated into a background server that provides support for certain services (such as lending). in the device. More specifically, on the one hand, the computing platform can obtain the operation sequence formed by various operations of the user in a short period of time (such as 24 hours), and process it through the first model based on the recurrent neural network to mine the short-term operation behavior of the user. to get the first output result. On the other hand, the computing platform can also obtain the user's behavior data sets in several periods (for example, one day), and each behavior data set can include the user's behavior statistical results in the corresponding period. The second model of the road processes the long-term behavior data set sequence formed by these behavior data sets in chronological order, and obtains the second output result. Further, the computing platform can also comprehensively process at least the first output result and the second output result, so as to perform a final financial risk assessment. The specific process by which the computing platform assesses the risk of financial default is described below. Figure 2 illustrates a flow chart of a method of determining a user's risk of financial default, according to one embodiment. The execution body of the method can be any system, device, device, platform or server with computing and processing capabilities, such as the computing platform shown in FIG. 1 . More specifically, for example, it may be a lending server that supports lending services. As shown in FIG. 2 , the method includes the following steps: Step 21: Acquire the short-term operation sequence of the user to be evaluated in the first time period and the long-term behavior data set sequence in the second time period, wherein the second time period is greater than the first time period. For a period of time, the short-term operation sequence includes multiple pieces of operation information related to the operation behavior of the user to be evaluated, arranged in chronological order, and the long-term behavior data set sequence includes multiple behavior data sets arranged in chronological order, and each behavior data set corresponds to In the preset third time period, each behavior data set includes behavior information related to the transaction behavior of the user to be evaluated; step 22, using the first model based on the recurrent neural network to process the short-term operation sequence to obtain the first output Results; Step 23, use the second model based on the recurrent neural network to process the long-term behavior data set sequence to obtain the second output result; Step 24, at least perform predetermined processing on the first output result and the second output result, and according to The results are processed to determine the financial default risk of the user to be evaluated. First, in step 21, the short-term operation sequence of the user to be evaluated in the first time period and the long-term behavior data set sequence in the second time period are acquired. Here, the first period of time may be a relatively short period of time, such as 1 day (24 hours), 12 hours, and the like. The second period of time may be a relatively long period of time, such as 1 month, 3 months, 1 year, and so on. The second period of time may be substantially greater than the first period of time. In this way, for the convenience of description, the first time period may correspond to a short term, and the second time period may correspond to a long term. The short-term operation sequence may include a plurality of pieces of operation information related to the operation behavior of the user to be evaluated, arranged in chronological order. Operational information may include, but is not limited to, one or more of browsing information, click information, logged-in applications, logged-in devices, geographic location information, transaction information, and the like. Browsing information may include, for example, pages browsed, page URLs, website function variable names, and the like. The click information may include, for example, the clicked hyperlink, the page corresponding to the clicked hyperlink, the clicked button for submitting the form, and the like. The logged-in device may be, for example, a desktop computer, a notebook computer, a tablet computer, a smart phone, and the like. Geolocation information can be determined from the location information of the logged in device. For example, the positioning information of the device can be determined according to the SIM card on the smart phone that is currently closest to the communication base station, the IP address of the computer accessing the network, the software/hardware positioning device (such as GPS positioning system) on the device, etc. . In one implementation, the above-mentioned operation information may be obtained from the operation log of the device currently logged in by the user. In another implementation, the above-mentioned operation information can also be obtained through the operation logs of different devices logged in with the same user ID during the login period of the user ID. In some implementations, the above-mentioned operation information can also be obtained through the user IDs of similar users (or the same user) on different platforms determined according to the big data, and the operation logs during login to the corresponding platform. This is not limited. The short-term operation sequence can arrange the pieces of operation information in the first time period according to the time sequence of occurrence. Please refer to Table 1, assuming the following operation information is obtained from the operation log: Table 1 Operation log representation
Figure 108128019-A0304-0001
In the operation log schematic table shown in Table 1, each row represents a piece of operation information. The corresponding short-term operation sequence can be expressed as [Browse the product page; click on the shopping cart page; ...], and time information can also be added, expressed as [10:01: browse the product page: 10:20: click on the shopping cart page; ... ]. In some embodiments, the sequence of operations can also be represented by a vector, such as [
Figure 02_image001
,
Figure 02_image003
,
Figure 02_image005
……],in
Figure 02_image001
It can represent the operation vector of browsing product pages, such as [1, 0, 0, 1...],
Figure 02_image003
It can represent a click on the shopping cart page, such as [0, 1, 0, 0...], and so on. In one embodiment, each piece of operation information can also be represented by a word vector through a word vector model (such as word2vec), which will not be repeated here. In this way, information with time-series characteristics related to various operations of the user in a short period of time can be obtained. The above-mentioned long-term behavior data set sequence may include a plurality of behavior data sets arranged in time sequence. In the second time period, a preset third time period (for example, 1 day) may be used as a period. Typically, the second time period may be an integer multiple of the third time period. For such a cycle, various information related to the user's transaction behavior in each cycle can be obtained, and such information can be organized into a data set. Specifically, in one embodiment, the user's transaction behavior information in the above-mentioned period may be counted to form a data set. In one embodiment, the behavior information related to the user's transaction behavior may include behaviors such as browsing products on the shopping platform, placing an order, the type of the purchased product, the price of the product, whether to pay, and the amount of payment. In another embodiment, the behavior information related to the user's transaction behavior may include whether to borrow money through the financial lending platform, the amount of the loan, whether to repay the loan, and the like. In another embodiment, the behavior information related to the user's transaction behavior may include the transfer behavior with other users, the transfer amount, and the like. In more embodiments, the behavior information related to the user's transaction behavior may further include more information, which will not be described herein again. Further, statistics on the user's transaction behavior information in each cycle can be performed to form a behavior data set in the corresponding cycle. For example, {View product page: 5 times; Pay: 1 time...}. Among them, 5 times, 1 time, etc. can also be replaced with weight values that are positively related to the times. Browsing product pages, paying, etc. can also be replaced with character or word vectors. In this way, for the behavior data sets of multiple periods, a long-term behavior data set sequence with time series characteristics can be formed. Through the long-term behavior data set sequence, the user's long-term transaction behavior habits can be reflected. For example, every month from a fixed date (such as the date of payment of wages), there are more purchases, and the transaction amount is relatively large, and gradually decays to no purchase behavior, or less purchase behavior, and the transaction amount is relatively small, etc., until the next month. This process is repeated for the above fixed dates. It can be understood that, in some implementations, the above-mentioned first time period and second time period may both be time periods that are traced back from the current time. It can be seen from the above description that the above-mentioned short-term operation sequence and long-term behavior data set sequence are data sequences with time series characteristics. For such a sequence, it can be processed by a recurrent neural network model, and then the user's behavior can be predicted from the perspective of time series. It can be understood that Recurrent Neural Networks (RNN) are a time-recurrent neural network that can be used to process sequential data. In an RNN, the current output of a sequence is related to its previous output. Specifically, the RNN will memorize the previous information and apply it to the calculation of the current output, that is, the nodes between the hidden layers are connected, and the input of the hidden layer includes not only the output of the input layer but also the hidden layer at the previous moment. Output. In the schematic diagram of the recurrent neural network shown in Figure 3, the hidden layer state of the t-th time can be expressed as: S t =f(U*X t +W*S t-1 ); where X t is the th The state of the t-th input layer, S t-1 is the t-1th hidden layer state, f is the calculation function, and W and U are the weights. In this way, the RNN loops the previous state back to the current input, considering the influence of historical input, and thus is suitable for data sequences with time series. Further, in an embodiment, under the RNN architecture, a long short term memory model (LSTM, Long Short Term Memory) can be used to process the above sequence data. As mentioned above, the current hidden layer state in RNN depends on the previous state output, so when processing, it is necessary to associate the calculation of the current hidden state with the previous n calculations, that is, S t = f(U* X t + W 1 *S t-1 + W 2 *S t-2 + … + W n *S tn ). As n increases, the amount of computation grows exponentially, resulting in a substantial increase in model training time. To this end, an LSTM model is proposed to solve the problem of long-term dependencies.

在LSTM模型中,藉由設置讓資訊選擇性透過的“遺忘門”來丟棄某些不再需要的資訊,如此對輸入的不必要的干擾資訊進行判斷和遮罩,進而更好地對資料序列進行分析處理。 In the LSTM model, some information that is no longer needed is discarded by setting a "forgetting gate" that allows information to selectively pass through, so as to judge and mask the input unnecessary interference information, so as to better understand the data sequence. Perform analytical processing.

請參考圖3,對於LSTM中的某個神經元A,用Xt-1、Xt、Xt+1分別表示t-1時刻、t時刻和t+1時刻的輸入,St-1、St、St+1分別表示t-1時刻、t時刻和t+1時刻該神經元的狀態,而Ct-1、Ct、Ct+1分別表示t-1時刻、t時刻和t+1時刻的輸出,其中:St=g(U*Xt+W*Ct-1+bs);Ct=f(V*St-1+bc);St+1=g(U*Xt+W*Ct+bs);Ct+1=f(V*St+bc);其中,U、W、V為權重。 Please refer to Figure 3, for a neuron A in LSTM, X t-1 , X t , X t+1 represent the input at time t-1, time t and time t+1 respectively, S t-1 , S t and S t+1 represent the state of the neuron at time t-1, time t and time t+1, respectively, while C t-1 , C t and C t+1 represent time t-1, time t and time t+1 respectively. Output at time t+1, where: S t =g(U*X t +W*C t-1 +b s );C t =f(V*S t-1 +b c );S t+1 =g(U*X t +W*C t +b s ); C t+1 =f(V*S t +b c ); where U, W, and V are weights.

可以看出的是,在LSTM模型中,每個神經元A的當前狀態由當前時刻的輸入和前一時刻的輸出共同決定,每個神經元A的當前輸出和前一時刻的狀態相關。透過LSTM模型對資料序列進行分析,可以有選擇地記憶資訊,挖掘出長距離的資料依賴。 It can be seen that in the LSTM model, the current state of each neuron A is jointly determined by the input at the current moment and the output at the previous moment, and the current output of each neuron A is related to the state at the previous moment. By analyzing the data sequence through the LSTM model, information can be selectively memorized and long-distance data dependencies can be mined.

在一個實施例中,還可以採用多層疊加的LSTM模型來處理多條資料按照時序構成的序列。 In one embodiment, a multi-layer superimposed LSTM model may also be used to process a sequence composed of multiple pieces of data according to time series.

在圖2示出的實施例中,藉由步驟22和步驟23分別對上述短期操作序列和長期行為資料集序列進行處理。可以 理解的是,步驟22和步驟23可以並存執行,也可以調換循序執行,本說明書實施例對此不做限定。 In the embodiment shown in FIG. 2 , the above-mentioned short-term operation sequence and long-term behavior data set sequence are processed through step 22 and step 23 respectively. Can It should be understood that, step 22 and step 23 may be executed concurrently, or may be executed sequentially, which is not limited in this embodiment of the present specification.

具體地,在步驟22中,利用第一循環神經網路來處理上述短期操作序列,獲得第一輸出結果。對於短期操作序列的各條資料,依次輸入LSTM模型。對每條資料而言,各個元素分別對應輸入層的各個神經元,每個神經元的當前輸出影響下一條資料登入該神經元後的輸出。 Specifically, in step 22, a first recurrent neural network is used to process the above-mentioned short-term operation sequence to obtain a first output result. For each piece of data in the short-term operation sequence, input the LSTM model in turn. For each piece of data, each element corresponds to each neuron in the input layer, and the current output of each neuron affects the output of the next piece of data after it is logged into the neuron.

圖4示出根據一個實施例的利用循環神經網路的處理短期操作序列的示意圖。如圖4所示,用序號1、2、3、4、5、6、7……表示短期操作序列的各條資料,例如序號1對應第1條操作資訊:瀏覽購物頁面a,序號2對應第2條操作資訊:付款30元,等等。在圖4的示例中,循環神經網路包括多層疊加的LSTM模型。作為示意,圖4僅示出了多層疊加的LSTM模型在t-1、t、t+1時刻的時序。在圖4中,t-1時刻,多層疊加的LSTM模型接受序號為3的一條操作資訊。該條操作資訊經過LSTM模型的處理,每層的輸出被記錄。在t時刻,LSTM模型接受序號為4的一條操作資訊。LSTM模型處理該條操作資訊時,同時考慮各層中t-1時刻的輸出記錄。以此類推,直至上述短期操作序列被完全處理。 Figure 4 shows a schematic diagram of processing a short-term sequence of operations using a recurrent neural network, according to one embodiment. As shown in Figure 4, serial numbers 1, 2, 3, 4, 5, 6, 7... represent each piece of information in the short-term operation sequence. For example, serial number 1 corresponds to the first operation information: browse shopping page a, serial number 2 corresponds to The second operation information: pay 30 yuan, and so on. In the example of Figure 4, the recurrent neural network includes a multi-layer stacked LSTM model. As an illustration, Figure 4 only shows the time series of the multi-layer stacked LSTM model at time t-1, t, and t+1. In Figure 4, at time t-1, the multi-layered LSTM model accepts a piece of operation information with a serial number of 3. The operation information is processed by the LSTM model, and the output of each layer is recorded. At time t, the LSTM model accepts a piece of operation information with sequence number 4. When the LSTM model processes this piece of operation information, it also considers the output records at time t-1 in each layer. And so on until the above short-term sequence of operations is fully processed.

經過多層循環神經網路的處理,可以獲得第一輸出結果。該第一輸出結果是與短期操作序列中的各條操作資訊及其產生順序相關的一個中間結果。在一個實施例中,該第一輸出結果可以是一個用戶信用/風險分數。 此時,用於處理上述短期操作序列的循環神經網路可以以多個標注用戶作為樣本進行訓練。這多個標注用戶分別對應有歷史短期操作序列和預先標注的信用標籤。 其中,標注用戶的歷史短期操作序列和上述短期操作序列可以具有一致的時間切入點。這裡的時間切入點,可以理解為藉由本實施例的確定用戶的金融違約風險的時機。例如,對於某個借貸平臺(如“花唄”),上述短期操作序列是用戶在該平臺開通服務前24小時內的操作資訊按照時序排列得到的序列,則標注用戶可以是在該平臺已經開通服務的用戶,標注用戶的歷史短期操作序列是相應用戶在該平臺開通服務前24小時內的操作資訊按照時序排列得到的序列。該例子中的時間切入點是用戶在該平臺開通服務。 而標注用戶對應的信用標籤,可以是根據用戶在該平臺或其他平臺的信用情況標注的。可以獲取相應用戶在預定時間段內的信用記錄,並基於信用記錄確定相應的信用標籤。這裡的預定時間段例如可以是在相應平臺開通服務後的3個月、6個月、1年等。 可以理解的是,對用戶的標注資訊可以包括諸如“失信用戶”、“守信用戶”之類的標籤,該標籤也可以透過數值(如1、0)進行表示。用戶的標注資訊可以透人工確定,也可以透過電腦進行。 在一個實施例中,可以從用戶的信用記錄中確定該用戶的守信次數和失信次數,並在失信次數和守信次數的比例超過預設比例閾值(如1:1)的情況下,確定相應用戶的信用標籤為“失信用戶”。否則,確定相應用戶的信用標籤為“守信用戶”。 在另一個實施例中,可以檢測用戶的失信次數是否為零,在失信次數非零的情況下,確定相應用戶的信用標籤為“失信用戶”。否則,確定相應用戶的信用標籤為“守信用戶”。 值得說明的是,在本說明書實施例中,雖然可以透過電腦確定作為樣本的用戶的標注資訊,但卻不能直接利用該標注方法對用戶金融違約風險進行評測。這是因為,確定用戶標注資訊的方法簡單、粗略,往往對應兩個結果中的一個,來表示用戶的金融違約風險偏向,而本說明書實施例旨在提供一種確定用戶金融違約風險的方案,這種方案,具有普適性,可以較準確地進行風險評估,對於沒有信用記錄的新用戶、信用記錄較少的老用戶等,都可以給出較準確的風險度估計,而這是上述確定用戶標注資訊的方法不能實現的。 為了區分,將以上訓練的循環神經網路稱為第一循環神經網路。透過該步驟,可以挖掘出待評估用戶的短期操作資訊對用戶風險的影響。除了利用第一循環神經網路來處理待評測用戶的短期操作序列之外,另一方面,還透過步驟23,利用第二循環神經網路來處理長期行為資料集序列,獲得第二輸出結果。對於長期行為資料集序列中的各個行為資料集,可以依次輸入LSTM模型。對一個行為資料集而言,各個元素分別對應輸入層的各個神經元,每個神經元的當前輸出影響下一條資料登入該神經元後的輸出。 圖5示出根據一個實施例的利用第二循環神經網路來處理長期行為資料集序列的示意圖。如圖5所示,用序號按照日期3號、4號……表示各個短週期內的行為資料集,例如3號對應3號這天的行為資料集,4號對應4號這天的行為資料集,等等。作為示意,圖5僅示出了多層疊加的LSTM模型在t-1、t、t+1時刻的時序。在圖5中,t-1時刻,多層疊加的LSTM模型接受3號這天的行為資料集。該行為資料集經過LSTM模型的處理,每層的輸出被記錄。在t時刻,LSTM模型接受4號這天的行為資料集。LSTM模型處理該行為資料集時,同時考慮各層中t-1時刻的輸出記錄。以此類推,直至上述長期行為資料集序列被完全處理。 經過第二循環神經網路的處理,可以獲得第二輸出結果。該第二輸出結果是與長期行為資料集序列的各個行為資料集的時序相關的一個中間結果。在一個實施例中,該第二輸出結果可以是另一個用戶信用/風險分數。 可以理解的是,處理上述長期行為資料集序列的循環神經網路也可以用多個標注用戶來作為樣本進行訓練。這多個標注用戶分別對應有歷史長期行為資料集序列和預先標注的信用標籤。其中,標注用戶的歷史長期行為資料集序列和待評估用戶的長期行為資料集序列,也具有一致的時間切入點。例如,對於某個借貸平臺(如“花唄”),上述長期行為資料集序列是用戶在該平臺開通服務前1個月內的行為資訊,按照時序排列得到的序列,則標注用戶可以是在該平臺已經開通服務的用戶,標注用戶的歷史長期行為資料集序列是相應用戶在該平臺開通服務前1個月內的行為資訊按照時序排列得到的序列。這裡的時間切入點是用戶在該平臺開通服務。標注用戶對應的信用標籤的標注方法和步驟22中的標注方法一致,在此不再贅述。 藉由該步驟,可以挖掘出待評估用戶的長期行為資訊對用戶風險的影響。 進一步地,在步驟22、步驟23的基礎上,藉由步驟24,至少基於對第一輸出結果和第二輸出結果的預定處理,以根據處理結果確定待評測用戶的金融違約風險。可以理解的是,預定處理是預先儲存的處理方法。如圖6所示。金融違約風險可以透過分數、小數、類別、偏向等來表示,在此不做限定。 在一個實施例中,該處理方法可以是簡單規則,例如求和、求平均值、求最大值,等等。以求平均值為例,可以將第一輸出結果和第二輸出結果的平均值作為待評測用戶的金融違約風險的量值。可選地,還可以先判斷進行處理的結果(如第一輸出結果和第二輸出結果)是否包括異常值(如超出預定範圍,或者為空等),如果包括異常值,則排除異常值,取另一個值。如此,在待評測用戶的短期操作序列或者長期行為序列中的一個無法獲取等情況下,仍然可以得到待評測用戶的金融違約風險。 在一個實施例中,該處理方法還可以包括將上述輸出結果作為特徵輸入邏輯回歸模型(如LR模型),藉由該邏輯回歸模型在對第一輸出結果、第二輸出結果進行線性回歸的基礎上,進行一個邏輯運算,使得模型的輸出值落入預設區間(如0-1之間)。該邏輯回歸模型可以是預先訓練的模型,也可以是預先設定的模型,在此不做限定。其中,預先設定的模型可以是認為確定計算方法和參數的模型。 可以理解的是,短期操作資訊和長期行為資訊都是用戶獨特的縱向特徵,透過這種獨特的縱向特徵,對用戶金融違約風險的評價更加精准。同時,由於透過多個模型分別處理多種時序資料,對多個評估結果進行綜合,可避免單面評估,或一種資料無效對評估結果的影響。 根據一個可能的設計,上述方法還可以包括:獲取待評測用戶的屬性資訊,利用預先訓練的預測模型來處理該屬性資訊,得到第三輸出結果。這裡,屬性資訊可以是用於表示用戶屬性的資訊,例如性別、年齡、職業、收入、財產狀況等等。預測模型的訓練樣本可以包括多個標注用戶。這些標注用戶分別對應有屬性資訊資料集,以及信用標籤,在此不再贅述。其中,信用標籤的確定方法同前,在此不再贅述。該預測模型可以是透過梯度提升決策樹(GBDT)、全連接神經網路等等訓練的模型。以該預測模型是透過全連接神經網路訓練的模型為例,請參考圖7。利用全連接神經網路來處理該屬性資訊的過程如圖7所示,將一個待評測用戶的屬性資訊輸入全連接神經網路,全連接神經網路的每個隱含層的輸出與前一層的各個神經元的輸出有關。 此時,在步驟24,還可以對第一輸出結果、第二輸出結果和第三輸出結果一起進行上述預定處理,以根據處理結果確定待評測用戶的金融違約風險。由於用戶的屬性資訊具有比較泛化的特徵,可以對橫向評估用戶的信用度,評價角度更廣。 回顧以上過程,在對用戶進行金融違約風險評估時,針對用戶的縱向資料,分別利用不同的循環神經網路來處理用戶的短期操作序列,以及長期行為資料集序列,對用戶進行風險評估,並至少將兩種不同的處理結果進行綜合處理。這樣,一方面,利用更加深度的資料,另一方面,即使一個結果異常,也能透過另一個結果確定最終結果。因而,可以提高確定用戶金融違約風險的有效性。此外,還可以透過用戶的屬性資訊作為橫向資訊,對用戶的風險度進行評估,利用更多資料,進行全面分析,提高評估結果的準確度。 根據另一方面的實施例,還提供一種確定用戶的金融違約風險的裝置。圖8示出根據一個實施例的確定用戶的金融違約風險的裝置的示意性方塊圖。如圖8所示,針對確定用戶的金融違約風險的裝置800包括:獲取單元81,其被配置為獲取待評測用戶在第一時間段內的短期操作序列,以及第二時間段內的長期行為資料集序列,第二時間段大於所述第一時間段,短期操作序列包括按照時間順序排列之與待評測用戶的操作行為相關的多條操作資訊,長期行為資料集序列包括按照時間順序排列的多個行為資料集,各行為資料集分別對應預設的第三時間段,行為資料集包括與待評測用戶的交易行為相關的行為資訊;第一處理單元82,其被配置為利用基於循環神經網路的第一模型來處理短期操作序列,以獲得第一輸出結果;第二處理單元83,其被配置為利用基於循環神經網路的第二模型來處理長期行為資料集序列,以獲得第二輸出結果;確定單元84,其被配置為至少對第一輸出結果和第二輸出結果進行預定處理,並根據處理結果確定待評測用戶的金融違約風險。 在一個實施例中,上述操作資訊包括以下至少一項:瀏覽資訊、點擊資訊、登入的應用程式、登入的設備、地理位置資訊。 在一個實施例中,上述行為資訊包括以下至少一項:交易時間、交易對象、交易金額。 根據一個可能的設計,裝置800還可以包括第三處理單元(未示出),其被配置為: 獲取待評測用戶的屬性資訊; 利用預測模型來處理上述屬性資訊,以得到第三輸出結果。 此時,確定單元84進一步還可以被配置為: 對第一輸出結果、第二輸出結果和第三輸出結果進行上述預定處理,並根據處理結果來確定待評測用戶的金融違約風險。 在一個實施例中,上述預定處理可以包括以下至少一項: 求平均值; 取最大值; 作為特徵輸入預設的邏輯回歸模型,以得到邏輯回歸結果。 根據一種實施方式,第一模型/第二模型包括多層疊加的長短期記憶模型LSTM。 在一個實施例中,第一模型/第二模型的訓練樣本包括多個標注用戶,標注用戶至少具有預先標注的信用標籤。該信用標籤可以透過人工確定,也可以透過裝置800確定。 該信用標籤透過裝置800確定時,裝置800還可以包括標注單元(未示出)。為了描述方便,將多個標注用戶中的任一個標注用戶稱為第一標注用戶,標注單元可以透過以下方式確定第一標注用戶對應的第一信用標籤: 獲取第一標注用戶在預定時間段內的信用記錄; 基於信用記錄確定第一信用標籤。 在一個進一步的實施例中,標注單元可以從上述信用記錄中確定第一標注用戶的守信次數和失信次數;在失信次數和守信次數的比例超過預設比例閾值的情況下,確定第一信用標籤為失信用戶。The first output result can be obtained through the processing of the multi-layer recurrent neural network. The first output result is an intermediate result related to each piece of operation information in the short-term operation sequence and its generation order. In one embodiment, the first output may be a user credit/risk score. At this time, the recurrent neural network for processing the above-mentioned short-term operation sequence can be trained with multiple labeled users as samples. These multiple labeled users correspond to historical short-term operation sequences and pre-labeled credit labels, respectively. Wherein, the historical short-term operation sequence of the marked user and the above-mentioned short-term operation sequence may have a consistent time entry point. The time entry point here can be understood as the timing for determining the user's financial default risk in this embodiment. For example, for a lending platform (such as "Huabei"), the above short-term operation sequence is the sequence obtained by the user's operation information within 24 hours before the platform's service is activated. For users of the service, the historical short-term operation sequence of the marked user is the sequence obtained by the corresponding user's operation information within 24 hours before the service is activated on the platform. The time entry point in this example is that the user activates the service on the platform. The credit label corresponding to the marked user may be marked according to the user's credit status on the platform or other platforms. The credit records of the corresponding users within a predetermined period of time may be acquired, and the corresponding credit tags may be determined based on the credit records. The predetermined time period here may be, for example, 3 months, 6 months, 1 year, etc. after the corresponding platform starts the service. It can be understood that the labeling information for users may include labels such as "untrustworthy users" and "trustworthy users", and the labels may also be represented by numerical values (eg, 1, 0). The user's annotation information can be determined manually or through a computer. In one embodiment, the number of times of trustworthiness and the number of times of untrustworthiness of the user may be determined from the user's credit record, and when the ratio of the number of times of untrustworthiness to the number of times of trustworthiness exceeds a preset ratio threshold (eg 1:1), determine the corresponding user 's credit label is "Untrustworthy User". Otherwise, determine the credit label of the corresponding user as "trustworthy user". In another embodiment, it may be detected whether the number of times of untrustworthiness of the user is zero, and if the number of untrustworthy times of the user is non-zero, it is determined that the credit label of the corresponding user is "untrustworthy user". Otherwise, determine the credit label of the corresponding user as "trustworthy user". It is worth noting that, in the embodiment of this specification, although the labeling information of the user as the sample can be determined through a computer, the user's financial default risk cannot be evaluated directly by using this labeling method. This is because the method for determining the user's annotation information is simple and rough, and often corresponds to one of two results to represent the user's financial default risk bias, and the embodiments of this specification aim to provide a solution for determining the user's financial default risk. This scheme is universal and can conduct risk assessment more accurately. For new users without credit records, old users with less credit records, etc., more accurate risk estimates can be given. Information methods cannot be achieved. For distinction, the recurrent neural network trained above is referred to as the first recurrent neural network. Through this step, the impact of the short-term operation information of the user to be evaluated on the user's risk can be mined. In addition to using the first recurrent neural network to process the short-term operation sequence of the user to be evaluated, on the other hand, through step 23, the second recurrent neural network is also used to process the long-term behavior data set sequence to obtain the second output result. For each behavioral dataset in the long-term behavioral dataset sequence, the LSTM model can be input in turn. For a behavior data set, each element corresponds to each neuron in the input layer, and the current output of each neuron affects the output of the next data entry after the neuron is entered. 5 illustrates a schematic diagram of processing a sequence of long-term behavioral datasets using a second recurrent neural network, according to one embodiment. As shown in Figure 5, the serial number is used to represent the behavior data set in each short period according to the date No. 3, No. 4... For example, No. 3 corresponds to the behavior data set of the 3rd day, and No. 4 corresponds to the behavior data of the 4th day. set, etc. As an illustration, Figure 5 only shows the time series of the multi-layer stacked LSTM model at time t-1, t, and t+1. In Figure 5, at time t-1, the multi-layered LSTM model accepts the behavior data set on the 3rd day. The behavior dataset is processed by the LSTM model, and the output of each layer is recorded. At time t, the LSTM model accepts the behavior data set for the 4th day. When the LSTM model processes this behavioral dataset, it also considers the output records at time t-1 in each layer. And so on, until the above long-term behavior dataset sequence is completely processed. After processing by the second recurrent neural network, the second output result can be obtained. The second output is an intermediate result related to the timing of the individual behavioral datasets of the long-term behavioral dataset sequence. In one embodiment, the second output may be another user credit/risk score. It can be understood that the recurrent neural network processing the above-mentioned long-term behavior data set sequence can also be trained with multiple labeled users as samples. These multiple labeled users correspond to a sequence of historical long-term behavior data sets and pre-labeled credit labels, respectively. Among them, the historical long-term behavior data set sequence of the labeled user and the long-term behavior data set sequence of the user to be evaluated also have a consistent time entry point. For example, for a lending platform (such as "Huabei"), the above long-term behavior data set sequence is the user's behavior information within 1 month before the platform's service is opened, and the sequence is obtained by chronological order, then the marked user can be in the For users who have activated the service on the platform, the sequence of the historical long-term behavior data set of the marked user is the sequence obtained by the behavior information of the corresponding user within one month before the service is activated on the platform. The time entry point here is that the user activates the service on the platform. The labeling method for labeling the credit label corresponding to the user is the same as the labeling method in step 22, and details are not repeated here. Through this step, the impact of the long-term behavior information of the user to be evaluated on the user risk can be mined. Further, on the basis of step 22 and step 23, through step 24, at least based on the predetermined processing of the first output result and the second output result, to determine the financial default risk of the user to be evaluated according to the processing result. It is understood that the predetermined process is a pre-stored process method. As shown in Figure 6. Financial default risk can be represented by fractions, decimals, categories, biases, etc., which are not limited here. In one embodiment, the processing method may be a simple rule, such as summing, averaging, maximizing, and so on. Taking the average value as an example, the average value of the first output result and the second output result can be used as the magnitude of the financial default risk of the user to be evaluated. Optionally, it is also possible to first judge whether the processed results (such as the first output result and the second output result) include abnormal values (such as exceeding a predetermined range, or being empty, etc.), and if they include abnormal values, then exclude them. take another value. In this way, in the case that one of the short-term operation sequence or long-term behavior sequence of the user to be evaluated cannot be obtained, etc., the financial default risk of the user to be evaluated can still be obtained. In one embodiment, the processing method may further include inputting the above-mentioned output result as a feature into a logistic regression model (such as an LR model), and the logistic regression model is used to perform linear regression on the first output result and the second output result based on the linear regression model. , perform a logical operation so that the output value of the model falls within a preset interval (eg, between 0-1). The logistic regression model may be a pre-trained model or a pre-set model, which is not limited herein. The preset model may be a model that is considered to determine the calculation method and parameters. It is understandable that both short-term operation information and long-term behavior information are unique vertical characteristics of users. Through this unique vertical characteristics, the evaluation of users' financial default risk is more accurate. At the same time, since multiple time series data are processed separately through multiple models, and multiple evaluation results are synthesized, the impact of one-sided evaluation or invalid data on the evaluation results can be avoided. According to a possible design, the above method may further include: acquiring attribute information of the user to be evaluated, processing the attribute information by using a pre-trained prediction model, and obtaining a third output result. Here, the attribute information may be information representing user attributes, such as gender, age, occupation, income, property status, and the like. The training samples for the predictive model can include multiple labeled users. These labeled users respectively correspond to attribute information data sets and credit labels, which will not be repeated here. Wherein, the method for determining the credit label is the same as before, and will not be repeated here. The prediction model may be a model trained by gradient boosting decision tree (GBDT), fully connected neural network, or the like. Take the prediction model trained by the fully connected neural network as an example, please refer to Figure 7. The process of using the fully connected neural network to process the attribute information is shown in Figure 7. The attribute information of a user to be evaluated is input into the fully connected neural network, and the output of each hidden layer of the fully connected neural network is the same as that of the previous layer. output of each neuron. At this time, in step 24, the above-mentioned predetermined processing may also be performed on the first output result, the second output result and the third output result, so as to determine the financial default risk of the user to be evaluated according to the processing result. Because the user's attribute information has the characteristics of generalization, the user's credibility can be evaluated horizontally, and the evaluation angle is wider. Looking back on the above process, when assessing users' financial default risk, different recurrent neural networks are used to process users' short-term operation sequences and long-term behavior data sets sequences according to the users' longitudinal data, to conduct risk assessments on users, and At least two different processing results are comprehensively processed. In this way, on the one hand, using more in-depth data, on the other hand, even if one result is abnormal, another result can be used to determine the final result. Thus, the effectiveness of determining the user's financial default risk can be improved. In addition, the user's attribute information can be used as horizontal information to evaluate the user's risk, and more data can be used to conduct a comprehensive analysis to improve the accuracy of the evaluation results. According to another embodiment, there is also provided an apparatus for determining a user's risk of financial default. Figure 8 shows a schematic block diagram of an apparatus for determining a user's risk of financial default according to one embodiment. As shown in FIG. 8 , the apparatus 800 for determining a user's financial default risk includes: an acquisition unit 81, which is configured to acquire the short-term operation sequence of the user to be evaluated in the first time period, and the long-term behavior in the second time period Data set sequence, the second time period is greater than the first time period, the short-term operation sequence includes a plurality of pieces of operation information related to the operation behavior of the user to be evaluated, and the long-term behavior data set sequence includes the chronological order. a plurality of behavior data sets, each behavior data set corresponds to a preset third time period respectively, and the behavior data set includes behavior information related to the transaction behavior of the user to be evaluated; the first processing unit 82 is configured to utilize the circulatory neural network The first model of the network is used to process the short-term sequence of operations to obtain the first output result; the second processing unit 83 is configured to use the second model based on the recurrent neural network to process the sequence of long-term behavior data sets to obtain the first output. Two output results; the determination unit 84, which is configured to perform predetermined processing on at least the first output result and the second output result, and determine the financial default risk of the user to be evaluated according to the processing results. In one embodiment, the above-mentioned operation information includes at least one of the following: browsing information, click information, logged-in application program, logged-in device, and geographic location information. In one embodiment, the behavior information includes at least one of the following: transaction time, transaction object, and transaction amount. According to a possible design, the apparatus 800 may further include a third processing unit (not shown) configured to: Obtain the attribute information of the user to be evaluated; The above-mentioned attribute information is processed by the prediction model to obtain a third output result. At this time, the determining unit 84 may be further configured to: The above-mentioned predetermined processing is performed on the first output result, the second output result and the third output result, and the financial default risk of the user to be evaluated is determined according to the processing results. In one embodiment, the above predetermined processing may include at least one of the following: average; take the maximum value; Input a preset logistic regression model as a feature to get logistic regression results. According to one embodiment, the first model/second model comprises a multi-layer stacked long short-term memory model LSTM. In one embodiment, the training samples of the first model/second model include multiple labeled users, and the labeled users have at least pre-labeled credit labels. The credit tag can be determined manually or through the device 800 . When the credit tag is determined through the apparatus 800, the apparatus 800 may further include a marking unit (not shown). For the convenience of description, any one of the multiple labeling users is called the first labeling user, and the labeling unit can determine the first credit label corresponding to the first labeling user in the following manner: Obtain the credit record of the first marked user within a predetermined time period; The first credit tag is determined based on the credit history. In a further embodiment, the marking unit may determine the number of times of trustworthiness and the number of times of untrustworthiness of the first marking user from the above-mentioned credit records; in the case that the ratio of the number of untrustworthy times to the number of times of trustworthiness exceeds a preset ratio threshold, determine the first credit label For untrustworthy users.

在另一個進一步的實施例中,標注單元可以檢測第一標注用戶的失信次數是否為零;在失信次數非零的情況下,確定第一信用標籤為失信用戶。 In another further embodiment, the labeling unit may detect whether the untrustworthy count of the first labeling user is zero; if the untrustworthy count is non-zero, determine that the first credit label is the untrustworthy user.

值得說明的是,圖8所示的裝置800是與圖2示出的方法實施例相對應的裝置實施例,圖2示出的方法實施例中的相應描述同樣適用於裝置800,在此不再贅述。 It should be noted that the apparatus 800 shown in FIG. 8 is an apparatus embodiment corresponding to the method embodiment shown in FIG. 2 , and the corresponding descriptions in the method embodiment shown in FIG. Repeat.

藉由以上裝置,充分利用用戶短期和長期操作的時序資料,藉由多個模型的輸出結果進行綜合確定最終結果。因而,可以提高確定用戶金融違約風險的有效性。 With the above device, the time series data of the user's short-term and long-term operations are fully utilized, and the final result is determined by synthesizing the output results of multiple models. Thus, the effectiveness of determining the user's financial default risk can be improved.

根據另一方面的實施例,還提供一種電腦可讀儲存媒體,其上儲存有電腦程式,當所述電腦程式在電腦中執行時,令電腦執行結合圖2所描述的方法。 According to another embodiment, there is also provided a computer-readable storage medium on which a computer program is stored, when the computer program is executed in a computer, the computer is caused to perform the method described in conjunction with FIG. 2 .

根據再一方面的實施例,還提供一種計算設備,包括記憶體和處理器,所述記憶體中儲存有可執行的程式碼,所述處理器執行所述可執行的程式碼時,實現結合圖2所述的方法。 According to yet another embodiment, a computing device is also provided, including a memory and a processor, wherein executable program codes are stored in the memory, and when the processor executes the executable program codes, a combination of The method described in Figure 2.

本領域技術人員應該可以意識到的是,在上述一個或多個示例中,本發明所描述的功能可以用硬體、軟體、固件或它們的任意組合來實施。當使用軟體實施時,可以將這些功能儲存在電腦可讀媒體中或者作為電腦可讀媒體上的一個或多個指令或程式碼進行傳輸。 It should be appreciated by those skilled in the art that, in one or more of the above examples, the functions described herein may be implemented in hardware, software, firmware, or any combination thereof. When implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.

以上所述的具體實施方式,對本發明的目的、技術方案和有益效果進行了進一步詳細說明,所應理解的是,以 上所述僅為本發明的具體實施方式而已,並不用於限定本發明的保護範圍,凡在本發明的技術方案的基礎之上,所做的任何修改、等效替換、改進等,均應包括在本發明的保護範圍之內。 The specific embodiments described above further describe the objectives, technical solutions and beneficial effects of the present invention in detail. It should be understood that the The above are only specific embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made on the basis of the technical solutions of the present invention shall be Included in the protection scope of the present invention.

21:步驟 21: Steps

22:步驟 22: Steps

23:步驟 23: Steps

24:步驟 24: Steps

800:確定用戶的金融違約風險的裝置 800: Means for determining a user's risk of financial default

81:獲取單元 81: Get Unit

82:第一處理單元 82: The first processing unit

83:第二處理單元 83: Second processing unit

84:確定單元 84: Determine unit

A:神經元 A: Neurons

C:輸出 C: output

U:權重 U: weight

W:權重 W: weight

X:輸入層狀態 X: Input layer state

t:時刻 t: time

1-7:資料 1-7: Information

為了更清楚地說明本發明的實施例的技術方案,下面將對實施例描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖僅僅是本發明的一些實施例,對於本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖獲得其它的附圖。 圖1示出本說明書揭露的一個實施例的實施場景示意圖; 圖2示出根據一個實施例的確定用戶的金融違約風險的方法流程圖; 圖3示出循環神經網路的一個神經元的時序狀態示意圖; 圖4示出利用基於循環神經網路的第一模型來處理短期操作序列的示意圖; 圖5示出利用基於循環神經網路的第二模型來處理長期行為資料集序列的示意圖; 圖6示出對第一輸出結果和第二輸出結果進行預定處理的示意圖; 圖7示出利用基於全連接神經網路的預測模型來處理屬性資訊的示意圖; 圖8示出根據一個實施例的確定用戶的金融違約風險的裝置的示意性方塊圖。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort. FIG. 1 shows a schematic diagram of an implementation scenario of an embodiment disclosed in this specification; Figure 2 illustrates a flow chart of a method of determining a user's risk of financial default according to one embodiment; Fig. 3 shows a schematic diagram of a time sequence state of a neuron of a recurrent neural network; 4 shows a schematic diagram of processing a short-term sequence of operations with a first model based on a recurrent neural network; 5 shows a schematic diagram of processing a sequence of long-term behavioral datasets with a second model based on a recurrent neural network; 6 shows a schematic diagram of performing predetermined processing on the first output result and the second output result; 7 shows a schematic diagram of processing attribute information using a prediction model based on a fully connected neural network; Figure 8 shows a schematic block diagram of an apparatus for determining a user's risk of financial default according to one embodiment.

Claims (20)

一種確定用戶金融違約風險的方法,所述方法包含:透過待評測用戶在第一時間段內的至少一種操作日誌,提取所述待評測用戶在第一時間段內的短期操作序列:所述待評測用戶當前登入的設備、所述待評測用戶在所述第一時間段內登入的不同設備各自對應的操作日誌、所述待評測用戶在所述第一時間段內登入的不同平臺各自對應的操作日誌,所述短期操作序列包括按照時間順序排列的、與所述待評測用戶的操作行為相關的多條操作資訊,所述操作資訊包括以下至少一項:瀏覽資訊、點擊資訊、登入的應用、登入的設備、地理位置資訊;基於對所述待評測用戶在大於所述第一時間段內的第二時間段內,按照預設的第三時間段進行的交易行為的行為資訊的整理,提取所述待評測用戶在所述第二時間段內的長期行為資料集序列,其中,所述長期行為資料集序列中的各行為資料集分別對應各個第三時間段並按照時間順序排列;利用基於循環神經網路的第一模型來處理所述短期操作序列,以獲得第一輸出結果;利用基於循環神經網路的第二模型來處理所述長期行為資料集序列,以獲得第二輸出結果;至少對所述第一輸出結果和所述第二輸出結果進行預定處理,並根據處理結果來確定所述待評測用戶的金融違 約風險。 A method for determining a user's financial default risk, the method comprising: extracting a short-term operation sequence of the user to be evaluated in a first time period through at least one operation log of the user to be evaluated in a first time period: the user to be evaluated The device currently logged in by the user for evaluation, the respective operation logs corresponding to the different devices logged in by the user to be evaluated during the first time period, and the corresponding operation logs of the different platforms logged in by the user to be evaluated during the first time period An operation log, the short-term operation sequence includes a plurality of pieces of operation information related to the operation behavior of the user to be evaluated, arranged in chronological order, and the operation information includes at least one of the following: browsing information, click information, and logged in applications , logged-in equipment, geographic location information; based on the sorting out of the behavior information of the transaction behavior of the user to be evaluated in the second time period greater than the first time period according to the preset third time period, Extracting the long-term behavior data set sequence of the user to be evaluated in the second time period, wherein each behavior data set in the long-term behavior data set sequence corresponds to each third time period and is arranged in chronological order; using Process the short-term sequence of operations based on a first model of a recurrent neural network to obtain a first output; process the sequence of long-term behavioral datasets with a second model based on a recurrent neural network to obtain a second output ; perform predetermined processing on at least the first output result and the second output result, and determine the financial violation of the user to be evaluated according to the processing result about risk. 如請求項1所述的方法,其中,所述行為資訊包括以下至少一項:交易時間、交易對象、交易金額。 The method according to claim 1, wherein the behavior information includes at least one of the following: transaction time, transaction object, and transaction amount. 如請求項1所述的方法,其中,所述方法還包含:獲取所述待評測用戶的屬性資訊;利用預測模型來處理所述屬性資訊,以得到第三輸出結果;所述至少對所述第一輸出結果和所述第二輸出結果進行預定處理,並根據處理結果來確定所述待評測用戶的金融違約風險包括:對所述第一輸出結果、所述第二輸出結果和所述第三輸出結果進行所述預定處理,並根據處理結果來確定所述待評測用戶的金融違約風險。 The method according to claim 1, wherein the method further comprises: acquiring attribute information of the user to be evaluated; processing the attribute information with a prediction model to obtain a third output result; Performing predetermined processing on the first output result and the second output result, and determining the financial default risk of the user to be evaluated according to the processing result includes: processing the first output result, the second output result and the first output result. 3. The predetermined processing is performed on the output result, and the financial default risk of the user to be evaluated is determined according to the processing result. 如請求項1或3所述的方法,其中,所述預定處理包括以下至少一項:求平均值;取最大值;作為特徵輸入預設的邏輯回歸模型,得到邏輯回歸結果。 The method according to claim 1 or 3, wherein the predetermined processing includes at least one of the following: obtaining an average value; taking a maximum value; inputting a preset logistic regression model as a feature to obtain a logistic regression result. 如請求項1所述的方法,其中,所述第一模型/所述第 二模型包括多層疊加的長短期記憶模型LSTM。 The method of claim 1, wherein the first model/the first model The second model includes a multi-layer stacked long short-term memory model LSTM. 如請求項1所述的方法,其中,所述第一模型/所述第二模型的訓練樣本包括多個標注用戶,所述標注用戶至少具有預先標注的信用標籤。 The method of claim 1, wherein the training samples of the first model/the second model include a plurality of labeling users, and the labeling users at least have pre-labeled credit labels. 如請求項6所述的方法,其中,所述多個標注用戶包括第一標注用戶,所述第一標注用戶對應的第一信用標籤藉由以下方式確定:獲取所述第一標注用戶在預定時間段內的信用記錄;基於所述信用記錄來確定所述第一信用標籤。 The method according to claim 6, wherein the plurality of labeling users includes a first labeling user, and the first credit label corresponding to the first labeling user is determined by: a credit record over a time period; the first credit tag is determined based on the credit record. 如請求項7所述的方法,其中,所述基於所述信用記錄來確定所述第一信用標籤包括:從所述信用記錄中確定所述第一標注用戶的守信次數和失信次數;在所述失信次數和所述守信次數的比例超過預設比例閾值的情況下,確定所述第一信用標籤為失信用戶。 The method according to claim 7, wherein the determining the first credit label based on the credit record comprises: determining the number of times of trustworthiness and the number of times of untrustworthiness of the first label user from the credit record; In the case where the ratio of the number of times of untrustworthiness to the number of times of trustworthiness exceeds a preset ratio threshold, determine the first credit tag as a untrustworthy user. 如請求項7所述的方法,其中,所述基於所述信用記錄來確定所述第一信用標籤包括:檢測所述第一標注用戶的失信次數是否為零;在所述失信次數非零的情況下,確定所述第一信用標籤為失信用戶。 The method of claim 7, wherein the determining the first credit label based on the credit record comprises: detecting whether the number of untrustworthiness of the first marked user is zero; when the number of untrustworthy times is non-zero In this case, it is determined that the first credit tag is an untrustworthy user. 一種確定用戶金融違約風險的裝置,所述裝置包含:獲取單元,配置為透過待評測用戶在第一時間段內的以下至少一種操作日誌,提取所述待評測用戶在第一時間段內的短期操作序列:所述待評測用戶當前登入的設備、所述待評測用戶在所述第一時間段內登入的不同設備各自對應的操作日誌、所述待評測用戶在所述第一時間段內登入的不同平臺各自對應的操作日誌、所述短期操作序列包括按照時間順序排列的、與所述待評測用戶的操作行為相關的多條操作資訊,所述操作資訊包括以下至少一項:瀏海資訊、點擊資訊、登入的應用、登入的設備、地理位置資訊;並且,基於對所述待評測用戶在大於所述第一時間段內的第二時間段內,按照預設的第三時間段進行的交易行為的行為資訊的整理,提取所述待評測用戶在所述第二時間段內的長期行為資料集序列,其中,所述長期行為資料集序列中的各行為資料集分別對應各個第三時間段,並按照時間順序排列;第一處理單元,配置為利用基於循環神經網路的第一模型處理所述短期操作序列,獲得第一輸出結果;第二處理單元,配置為利用基於循環神經網路的第二模型處理所述長期行為資料集序列,獲得第二輸出結果;確定單元,配置為至少對所述第一輸出結果和所述第二輸出結果進行預定處理,並根據處理結果確定所述待評測用戶的金融違約風險。 An apparatus for determining a user's financial default risk, the apparatus comprising: an acquisition unit configured to extract the short-term short-term value of the user to be evaluated in a first time period through at least one of the following operation logs of the user to be evaluated in a first time period Operation sequence: the device currently logged in by the user to be evaluated, the respective operation logs of different devices logged in by the user to be evaluated within the first time period, the user to be evaluated logging in within the first time period The operation logs corresponding to the different platforms of the APP, and the short-term operation sequence includes a plurality of pieces of operation information related to the operation behavior of the user to be evaluated, arranged in chronological order, and the operation information includes at least one of the following: bangs information , click information, logged-in applications, logged-in devices, and geographic location information; and, based on the user to be evaluated in a second time period greater than the first time period, according to the preset third time period. to sort out the behavior information of the transaction behavior, and extract the long-term behavior data set sequence of the user to be evaluated in the second time period, wherein each behavior data set in the long-term behavior data set sequence corresponds to each third time periods, and are arranged in chronological order; a first processing unit, configured to process the short-term operation sequence by using a first model based on a recurrent neural network, and obtain a first output result; a second processing unit, configured to use a recurrent neural network-based The second model of the network processes the long-term behavior data set sequence to obtain a second output result; the determining unit is configured to perform predetermined processing on at least the first output result and the second output result, and determine according to the processing result The financial default risk of the user to be evaluated. 如請求項10所述的裝置,其中,所述行為資訊包括以下至少一項:交易時間、交易對象、交易金額。 The device according to claim 10, wherein the behavior information includes at least one of the following: transaction time, transaction object, and transaction amount. 如請求項10所述的裝置,其中,所述裝置還包括第三處理單元,配置為:獲取所述待評測用戶的屬性資訊;利用預測模型來處理所述屬性資訊,得到第三輸出結果;所述確定單元進一步被配置為:對所述第一輸出結果、所述第二輸出結果和所述第三輸出結果進行所述預定處理,並根據處理結果來確定所述待評測用戶的金融違約風險。 The device according to claim 10, wherein the device further comprises a third processing unit configured to: acquire attribute information of the user to be evaluated; process the attribute information by using a prediction model to obtain a third output result; The determining unit is further configured to: perform the predetermined processing on the first output result, the second output result and the third output result, and determine the financial default of the user to be evaluated according to the processing results risk. 如請求項10或12所述的裝置,其中,所述預定處理包括以下至少一項:求平均值;取最大值;作為特徵輸入預設的邏輯回歸模型,得到邏輯回歸結果。 The device according to claim 10 or 12, wherein the predetermined processing includes at least one of the following: obtaining an average value; taking a maximum value; inputting a preset logistic regression model as a feature to obtain a logistic regression result. 如請求項10所述的裝置,其中,所述第一模型/所述第二模型包括多層疊加的長短期記憶模型LSTM。 The apparatus of claim 10, wherein the first model/the second model comprises a multi-layer stacked long short-term memory model LSTM. 如請求項10所述的裝置,其中,所述第一模型/所述第二模型的訓練樣本包括多個標注用戶,所述標注用戶至少具有預先標注的信用標籤。 The apparatus of claim 10, wherein the training samples of the first model/the second model include a plurality of labeled users, and the labeled users have at least pre-labeled credit labels. 如請求項15所述的裝置,其中,所述多個標注用戶包括第一標注用戶,所述裝置還包括標注單元,其被配置為藉由以下方式確定所述第一標注用戶對應的第一信用標籤:獲取所述第一標注用戶在預定時間段內的信用記錄;基於所述信用記錄來確定所述第一信用標籤。 The device according to claim 15, wherein the plurality of labeling users includes a first labeling user, and the device further comprises a labeling unit configured to determine the first labeling user corresponding to the first labeling user in the following manner Credit label: obtain the credit record of the first marked user within a predetermined period of time; determine the first credit label based on the credit record. 如請求項16所述的裝置,其中,所述標注單元進一步被配置為:從所述信用記錄中確定所述第一標注用戶的守信次數和失信次數;在所述失信次數和所述守信次數的比例超過預設比例閾值的情況下,確定所述第一信用標籤為失信用戶。 The device according to claim 16, wherein the marking unit is further configured to: determine the number of times of trustworthiness and the number of times of untrustworthiness of the first marking user from the credit record; In the case that the ratio of the first credit tag exceeds the preset ratio threshold, it is determined that the first credit tag is a dishonest user. 如請求項16所述的裝置,其中,所述標注單元進一步被配置為:檢測所述第一標注用戶的失信次數是否為零;在所述失信次數非零的情況下,確定所述第一信用標籤為失信用戶。 The device according to claim 16, wherein the labeling unit is further configured to: detect whether the number of untrustworthiness of the first labeling user is zero; Credit labels for untrustworthy users. 一種電腦可讀儲存媒體,其上儲存有電腦程式,當所述電腦程式在電腦中執行時,令電腦執行請求項1-9中任一項的所述的方法。 A computer-readable storage medium on which a computer program is stored, and when the computer program is executed in a computer, causes the computer to execute the method of any one of claim 1-9. 一種計算設備,包含記憶體和處理器,其特徵在於,所述記憶體中儲存有可執行的程式碼,所述處理器執行所述可執行的程式碼時,實施請求項1-9中任一項所述的方法。 A computing device, comprising a memory and a processor, characterized in that, executable program codes are stored in the memory, and when the processor executes the executable program codes, any one of claim items 1-9 is implemented. one of the methods described.
TW108128019A 2018-10-30 2019-08-07 Method and apparatus for determining user's financial default risk and computer-readable storage medium and computing device TWI759620B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811278478.5 2018-10-30
CN201811278478.5A CN109615454A (en) 2018-10-30 2018-10-30 Determine the method and device of user's finance default risk

Publications (2)

Publication Number Publication Date
TW202016860A TW202016860A (en) 2020-05-01
TWI759620B true TWI759620B (en) 2022-04-01

Family

ID=66002128

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108128019A TWI759620B (en) 2018-10-30 2019-08-07 Method and apparatus for determining user's financial default risk and computer-readable storage medium and computing device

Country Status (3)

Country Link
CN (1) CN109615454A (en)
TW (1) TWI759620B (en)
WO (1) WO2020088007A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109615454A (en) * 2018-10-30 2019-04-12 阿里巴巴集团控股有限公司 Determine the method and device of user's finance default risk
CN110147940A (en) * 2019-04-26 2019-08-20 阿里巴巴集团控股有限公司 A kind of risk control processing method, equipment, medium and device
CN112115258B (en) * 2019-06-20 2023-09-26 腾讯科技(深圳)有限公司 Credit evaluation method and device for user, server and storage medium
CN110415102A (en) * 2019-06-28 2019-11-05 上海上湖信息技术有限公司 User credit methods of risk assessment and device, computer readable storage medium
CN110580268A (en) * 2019-08-05 2019-12-17 西北大学 Credit scoring integrated classification system and method based on deep learning
CN110515983A (en) * 2019-08-06 2019-11-29 阿里巴巴集团控股有限公司 A kind of user credibility assessment method, device and electronic equipment
CN111242771A (en) * 2020-01-13 2020-06-05 北京明略软件系统有限公司 User operation behavior processing method and device and computer-readable storage medium
CN111275350B (en) * 2020-02-08 2021-06-04 支付宝(杭州)信息技术有限公司 Method and device for updating event evaluation model
CN111429006A (en) * 2020-03-24 2020-07-17 北京明略软件系统有限公司 Financial risk index prediction model construction method and device and risk situation prediction method and device
US11379842B2 (en) * 2020-04-07 2022-07-05 Intuit Inc. Method and system for detecting fraudulent transactions using a fraud detection model trained based on dynamic time segments
CN111652430A (en) * 2020-05-29 2020-09-11 蚌埠学院 Internet financial platform default rate prediction method and system
JP2023533069A (en) * 2020-07-09 2023-08-01 フィーチャースペース・リミテッド Neural network architecture for transactional data processing
CN111815425A (en) * 2020-07-27 2020-10-23 上海观安信息技术股份有限公司 User credit risk grade judgment method and system based on entity embedding
CN112308294B (en) * 2020-10-10 2024-06-14 北京贝壳时代网络科技有限公司 Method and device for predicting default probability
CN112184427A (en) * 2020-10-16 2021-01-05 上海印闪网络科技有限公司 Method for analyzing loan risk based on operation behavior of user on-line loan recommendation application
CN112529695A (en) * 2020-12-23 2021-03-19 招联消费金融有限公司 Credit risk determination method, credit risk determination device, computer equipment and storage medium
CN112818868B (en) * 2021-02-03 2024-05-28 招联消费金融股份有限公司 Method and device for identifying illegal user based on behavior sequence characteristic data
CN112991077B (en) * 2021-02-18 2024-03-19 深圳无域科技技术有限公司 Financial risk control system and method
CN113781201B (en) * 2021-08-19 2023-02-03 支付宝(杭州)信息技术有限公司 Risk assessment method and device for electronic financial activity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529729A (en) * 2016-11-18 2017-03-22 同济大学 Method and system for forecasting default of credit card user based on BP_Adaboost model
US9760850B1 (en) * 2016-07-01 2017-09-12 Intraspexion Inc. Using classified text and deep learning algorithms to identify risk and provide early warning
CN107301864A (en) * 2017-08-16 2017-10-27 重庆邮电大学 A kind of two-way LSTM acoustic models of depth based on Maxout neurons
CN108416663A (en) * 2018-01-18 2018-08-17 阿里巴巴集团控股有限公司 The method and device of the financial default risk of assessment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150301510A1 (en) * 2014-04-22 2015-10-22 Siegmund Düll Controlling a Target System
US10572877B2 (en) * 2014-10-14 2020-02-25 Jpmorgan Chase Bank, N.A. Identifying potentially risky transactions
CN107316198B (en) * 2016-04-26 2020-05-29 阿里巴巴集团控股有限公司 Account risk identification method and device
CN108280757B (en) * 2017-02-13 2021-08-17 腾讯科技(深圳)有限公司 User credit evaluation method and device
CN108629413B (en) * 2017-03-15 2020-06-16 创新先进技术有限公司 Neural network model training and transaction behavior risk identification method and device
CN107886243A (en) * 2017-11-10 2018-04-06 阿里巴巴集团控股有限公司 Risk identification model construction and Risk Identification Method, device and equipment
CN108510280B (en) * 2018-03-23 2020-07-31 上海氪信信息技术有限公司 Financial fraud behavior prediction method based on mobile equipment behavior data
CN108596434B (en) * 2018-03-23 2019-08-02 卫盈联信息技术(深圳)有限公司 Fraud detection and methods of risk assessment, system, equipment and storage medium
CN109615454A (en) * 2018-10-30 2019-04-12 阿里巴巴集团控股有限公司 Determine the method and device of user's finance default risk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9760850B1 (en) * 2016-07-01 2017-09-12 Intraspexion Inc. Using classified text and deep learning algorithms to identify risk and provide early warning
CN106529729A (en) * 2016-11-18 2017-03-22 同济大学 Method and system for forecasting default of credit card user based on BP_Adaboost model
CN107301864A (en) * 2017-08-16 2017-10-27 重庆邮电大学 A kind of two-way LSTM acoustic models of depth based on Maxout neurons
CN108416663A (en) * 2018-01-18 2018-08-17 阿里巴巴集团控股有限公司 The method and device of the financial default risk of assessment

Also Published As

Publication number Publication date
TW202016860A (en) 2020-05-01
CN109615454A (en) 2019-04-12
WO2020088007A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
TWI759620B (en) Method and apparatus for determining user's financial default risk and computer-readable storage medium and computing device
Boone et al. Forecasting sales in the supply chain: Consumer analytics in the big data era
WO2020143409A1 (en) Method and device for predicting business indicators
CN109741146A (en) Products Show method, apparatus, equipment and storage medium based on user behavior
US20190019203A1 (en) Method for providing marketing management data for optimization of distribution and logistics and apparatus for the same
CA3096061C (en) Methods and systems for notifying users of new applications
CN113077317A (en) Item recommendation method, device and equipment based on user data and storage medium
US20200410465A1 (en) Payment-driven sourcing
US12051023B2 (en) Benchmarking of user experience quality
Chen et al. Common pitfalls in training and evaluating recommender systems
CN108550046A (en) A kind of resource and market recommendation method, apparatus and electronic equipment
US20210150604A1 (en) Systems and methods for customization of reviews
US11587148B2 (en) Item level data determination device, method, and non-transitory computer-readable media
CN112561565A (en) User demand identification method based on behavior log
US20230289830A1 (en) Product Availability Inference Using Merchant Data and Website Interaction
US11544053B2 (en) Methods and systems for generating application build recommendations
US12081613B2 (en) Systems and methods for decentralized detection of software platforms operating on website pages
CA3098792A1 (en) Systems and methods for customization of reviews
CN107357847B (en) Data processing method and device
US20230066770A1 (en) Cross-channel actionable insights
US11710137B2 (en) Method and system for identifying electronic devices of genuine customers of organizations
US10395312B2 (en) System and method for proactively offering financing offers to customers of E-commerce websites
JP2021136033A (en) Information processing device, information processing method and program
CN113902553A (en) Risk identification method and device based on knowledge graph, computer equipment and medium
Choi et al. Fast swaption pricing in gaussian term structure models