TWI759480B - Optical device fabrication method - Google Patents

Optical device fabrication method Download PDF

Info

Publication number
TWI759480B
TWI759480B TW107115768A TW107115768A TWI759480B TW I759480 B TWI759480 B TW I759480B TW 107115768 A TW107115768 A TW 107115768A TW 107115768 A TW107115768 A TW 107115768A TW I759480 B TWI759480 B TW I759480B
Authority
TW
Taiwan
Prior art keywords
optical device
optical
curved surface
wavelength
refractive
Prior art date
Application number
TW107115768A
Other languages
Chinese (zh)
Other versions
TW201909439A (en
Inventor
陳書履
那允中
Original Assignee
光引研創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光引研創股份有限公司 filed Critical 光引研創股份有限公司
Publication of TW201909439A publication Critical patent/TW201909439A/en
Application granted granted Critical
Publication of TWI759480B publication Critical patent/TWI759480B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Abstract

An optical device fabrication method includes removing semiconductor material from a semiconductor substrate to form a first curved surface and a second curved surface, forming a bonding material on the first curved surface, and selectively removing semiconductor material from at least one of the first and the second curved surfaces to form one or more subwavelength structures. The semiconductor substrate has a bandgap wavelength associated with a bandgap energy of the semiconductor material. The optical device refracts certain incident electromagnetic radiation and/or filters other electromagnetic radiation. The refracted radiation includes infrared wavelengths longer than the bandgap wavelength and the filtered radiation includes wavelengths shorter than the bandgap wavelength.

Description

製造光學裝置的方法 Method of manufacturing an optical device

本創作是關於利用一光學裝置來耦合光。 This creation is about coupling light using an optical device.

光在自由空間中傳播,或者光學介質耦合到將光訊號轉換為電訊號以用於處理的光偵測器。 Light propagates in free space, or an optical medium is coupled to a photodetector that converts optical signals into electrical signals for processing.

本發明的實施方案涉及用於導光、處理或檢測電磁輻射的光學裝置。更具體地,本實施方案涉及製作用於折射和/或濾除預定波段的電磁輻射的光學裝置。 Embodiments of the present invention relate to optical devices for directing light, processing or detecting electromagnetic radiation. More specifically, the present embodiments relate to the fabrication of optical devices for refraction and/or filtering of predetermined wavelength bands of electromagnetic radiation.

一般來說,本發明所描述之標的之一發明態樣可實現於一光學裝置的製造方法中;前述的製造方法包含:從半導體基板移除半導體材料以形成一第一曲面和一第二曲面,形成一接合材料於該第一曲面,以及選擇性的從第一和第二曲面移除半導體材料以形成一或多個次波長結構。半導體基板具有一帶隙波長,關聯於半導體材料的一帶隙能量。形成接合材料包含沉積接合材料於第一曲面。第二曲面形成在光學裝置並相對於第一曲表面。至少一次波長結構之至少一個維度的尺寸小於半導體基板的帶隙波長的。光學裝置被配置用於折射具有一第一波長範圍的電磁輻射,和/或過濾具 有一第二波長範圍的電磁輻射;第一波長範圍為大於帶隙波長的紅外波長,第二波長範圍小於帶隙波長。 Generally speaking, one aspect of the present invention can be implemented in a method of manufacturing an optical device; the aforementioned method of manufacturing includes: removing semiconductor material from a semiconductor substrate to form a first curved surface and a second curved surface , forming a bonding material on the first curved surface, and selectively removing semiconductor material from the first and second curved surfaces to form one or more sub-wavelength structures. The semiconductor substrate has a bandgap wavelength, which correlates to the bandgap energy of the semiconductor material. Forming the bonding material includes depositing the bonding material on the first curved surface. The second curved surface is formed on the optical device and is opposite to the first curved surface. The size of at least one dimension of the at least primary wavelength structure is smaller than the bandgap wavelength of the semiconductor substrate. Optical device configured to refract electromagnetic radiation having a first wavelength range, and/or filter There is a second wavelength range of electromagnetic radiation; the first wavelength range is infrared wavelengths greater than the bandgap wavelength, and the second wavelength range is less than the bandgap wavelength.

此實施方案及其它實施方案可各視情況包含下列特徵之一或多者。光學裝置的半導體材料的帶隙能量能夠是1.2電子伏特至1.7電子伏特。在一些實施方案中,第一波長範圍可以從800奈米至2000奈米。在一些實施方案中,第二波長範圍可以從400奈米至800奈米。 This and other implementations may each include one or more of the following features, as appropriate. The band gap energy of the semiconductor material of the optical device can be 1.2 electron volts to 1.7 electron volts. In some embodiments, the first wavelength range may be from 800 nanometers to 2000 nanometers. In some embodiments, the second wavelength range may be from 400 nm to 800 nm.

製造方法可以更包含相對於接合層配置一光學元件,光學元件將接收光學裝置折射的電磁輻射。光學元件可為一主動元件,被配置用於調整第一波長範圍和/或第二波長範圍。調整可包含吸收或發射對應於調整範圍的波長的電磁輻射。在一些實施方案中,光學元件被選自由一光偵測器、一感測器、一發光二極體及一雷射所構成的群組中。在一些實施方案中,光學元件包含矽鍺。 The manufacturing method may further include disposing an optical element relative to the bonding layer, and the optical element will receive the electromagnetic radiation refracted by the optical device. The optical element may be an active element configured to adjust the first wavelength range and/or the second wavelength range. Tuning may include absorbing or emitting electromagnetic radiation of wavelengths corresponding to the tuning range. In some implementations, the optical element is selected from the group consisting of a photodetector, a sensor, a light emitting diode, and a laser. In some implementations, the optical element comprises silicon germanium.

此實施方案及其它實施方案可各視情況也包含下列特徵之一或多者。可用於形成一光學元件的一或多個結構選自一光偵測器、一感測器、一發光二極體及一雷射所構成的群組中。 This and other implementations may each optionally also include one or more of the following features. One or more structures that can be used to form an optical element are selected from the group consisting of a photodetector, a sensor, a light emitting diode, and a laser.

在一些實施方案中,接合層具有對應於光學裝置的一焦距的一光學厚度。接合層能夠包含一接合材料,此接合材料選自氧化物、氮化物及金屬所構成的群組中。在一些實施方案中,形成接合層更包含藉由化學機械拋光平坦化接合層。 In some implementations, the bonding layer has an optical thickness corresponding to a focal length of the optical device. The bonding layer can include a bonding material selected from the group consisting of oxides, nitrides and metals. In some implementations, forming the bonding layer further includes planarizing the bonding layer by chemical mechanical polishing.

第二曲面可具有相同於第一曲面的曲率半徑。在一些實施方案中,第一曲面和第二曲面中的至少一者藉由一灰階光罩來形成。 The second curved surface may have the same radius of curvature as the first curved surface. In some implementations, at least one of the first curved surface and the second curved surface is formed by a grayscale mask.

從半導體基板移除半導體材料可包含蝕刻半導體基板。一或多個次波長結構能夠包含周期性排列的複數次波長結構。 Removing semiconductor material from the semiconductor substrate may include etching the semiconductor substrate. The one or more sub-wavelength structures can comprise periodically arranged plural sub-wavelength structures.

在一些情況下,光學裝置具有一等效折射率,其對應於施加的一電場動態地調整。光學裝置可以是一透鏡。 In some cases, the optical device has an equivalent refractive index that is dynamically adjusted in response to an applied electric field. The optical device may be a lens.

在一些實施方案中,光學裝置為一第一光學裝置,且接合層為一第一接合層,前述的製造方法進一步包含耦合一第二光學裝置至第一光學裝置。例如,第二接合層可藉由沉積接合材料在第二曲面而形成於第一光學裝置的第二曲面上,且第二光學裝置可耦接至第二接合層並相對於第一光學裝置。第一光學裝置和第二光學裝置被配置用於共同折射具有一第三波長範圍的電磁輻射和/或過濾具有一第四波長範圍的電磁輻射。在一些示例中,第三波長範圍為第一波長範圍的子範圍。在一些示例中,第四波長範圍為第二波長範圍的子範圍。 In some implementations, the optical device is a first optical device, and the bonding layer is a first bonding layer, and the aforementioned manufacturing method further includes coupling a second optical device to the first optical device. For example, the second bonding layer can be formed on the second curved surface of the first optical device by depositing a bonding material on the second curved surface, and the second optical device can be coupled to the second bonding layer and opposite the first optical device. The first optical device and the second optical device are configured to collectively refract electromagnetic radiation having a third wavelength range and/or filter electromagnetic radiation having a fourth wavelength range. In some examples, the third wavelength range is a sub-range of the first wavelength range. In some examples, the fourth wavelength range is a sub-range of the second wavelength range.

在一些實施方案中,第二光學裝置包含至少一曲面,其包含一或多個次波長結構。至少一次波長結構在一個維度的尺寸小於半導體基板的帶隙波長。在一些實施方案中,第二接合層具有一光學厚度,此厚度足以使第一光學裝置反射的電磁輻射能夠聚焦在第二光學裝置。 In some implementations, the second optical device includes at least one curved surface that includes one or more subwavelength structures. The size of the at least primary wavelength structure in one dimension is smaller than the bandgap wavelength of the semiconductor substrate. In some embodiments, the second bonding layer has an optical thickness sufficient to enable the electromagnetic radiation reflected by the first optical device to be focused on the second optical device.

本公開的實現提供了以下優點中的一個或多個。實施方案提供了用於大規模生產半導體透鏡的技術,相較於對可見光和紅外輻射透明的傳統玻璃透鏡,半導體透鏡可以吸收可見光和近紅外輻射。本發明的 半導體的透鏡可用於折射和/或吸收具有近紅外或紅外波長的電磁輻射。此外,在這裡描述的半導體透鏡可經製作而可吸收和/或折射選擇性入射的電磁輻射。與玻璃透鏡相比,本公開中描述的半導體透鏡具有更大的折射率。這種較大的折射率提供了在光學裝置內的較短傳輸路徑中導光、聚焦或散焦受折射的輻射的能力。 Implementations of the present disclosure provide one or more of the following advantages. Embodiments provide techniques for mass production of semiconductor lenses that can absorb visible and near-infrared radiation compared to conventional glass lenses that are transparent to visible and infrared radiation. of the present invention Lenses of semiconductors can be used to refract and/or absorb electromagnetic radiation having near-infrared or infrared wavelengths. Furthermore, the semiconductor lenses described herein can be fabricated to absorb and/or refract selectively incident electromagnetic radiation. The semiconductor lenses described in this disclosure have a larger refractive index than glass lenses. This larger index of refraction provides the ability to guide, focus or defocus refracted radiation in shorter transmission paths within the optical device.

此外,形成用於折射和濾光的光學裝置來作為一個光學組件可以降低與光學系統中的其它光學組件的整合的複雜性。形成用於折射和濾光的折射元件來作為一個光學組件可以降低製造成本。折射元件可以平面地形成在晶圓上以與光子積體電路整合。藉由改變相應的折射元件的週期性結構,可以在同一製程中形成具有不同濾光範圍的多個折射元件。折射元件可以與主動元件整合以調整折射元件的折射或濾波範圍。 Furthermore, forming the optical device for refraction and filtering as one optical component can reduce the complexity of integration with other optical components in the optical system. Forming the refractive element for refraction and filtering as an optical component can reduce manufacturing costs. The refractive elements can be formed planarly on the wafer for integration with photonic integrated circuits. By changing the periodic structure of the corresponding refractive elements, multiple refractive elements with different filter ranges can be formed in the same process. The refractive element can be integrated with the active element to adjust the refractive or filtering range of the refractive element.

一種或多種實施方案的詳細內容在附圖及下文的實施方案中進行說明。其它潛在特徵與優點將從實施方案、附圖及申請專利範圍中變得顯而易見。 The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other potential features and advantages will become apparent from the embodiments, drawings and claims.

100、200、210、400、600、610、620、700、710、810:光子積體電路 100, 200, 210, 400, 600, 610, 620, 700, 710, 810: Photonic Integrated Circuits

101、131a-131e、201、211、501、503、511、513、521、531、601、621、631、701、711、801、811:折射元件 101, 131a-131e, 201, 211, 501, 503, 511, 513, 521, 531, 601, 621, 631, 701, 711, 801, 811: Refractive elements

103:表面 103: Surface

105:週期性結構 105: Periodic Structure

107、203、213、703、713、803、813:光學介質 107, 203, 213, 703, 713, 803, 813: Optical Media

111、209、219、221、421、423、427:光 111, 209, 219, 221, 421, 423, 427: Light

113:聚焦光束 113: Focus beam

119:外部介質 119: External medium

120:光子積體電路 120: Photonic Integrated Circuits

121:透鏡部分 121: Lens part

123:週期性結構部分 123: Periodic Structure Section

125:第一組週期性結構 125: The first group of periodic structures

127:第二組週期性結構 127: Second group of periodic structures

140:多層折射元件 140: Multilayer Refractive Elements

141、143、145、151、153、155:層 141, 143, 145, 151, 153, 155: Layers

150:多層折射元件 150: Multilayer Refractive Elements

160:層疊折射元件 160: Laminated Refractive Elements

161、401:第一折射元件 161, 401: The first refractive element

163、403:第二折射元件 163, 403: Second refractive element

203、213:光學介質 203, 213: Optical Media

204、214:覆蓋元件 204, 214: Covering elements

205:基板 205: Substrate

207:主動元件 207: Active Components

208、218:入射光 208, 218: Incident light

215:外部介質元件 215: External dielectric components

331、332、334:週期性結構 331, 332, 334: Periodic Structures

301、303:a-n週期結構 301, 303: a-n periodic structure

305:二維週期性結構 305: Two-dimensional Periodic Structures

333:週期性結構 333: Periodic Structure

307:a-n二維矩形週期性結構 307:a-n two-dimensional rectangular periodic structure

308、310:層 308, 310: Layer

321:x方向 321:x direction

322:y方向 322: y direction

405:第三折射元件 405: Third Refractive Element

407:第四折射元件 407: Fourth Refractive Element

411:具有寬頻訊號的光 411: Light with Broadband Signals

500、503、510、520、530、633:光學元件 500, 503, 510, 520, 530, 633: Optical Components

523、533:側壁 523, 533: Sidewalls

602、612、635:第一摻雜區 602, 612, 635: first doped regions

604、614、637:第二摻雜區 604, 614, 637: second doped regions

616:第三摻雜區 616: the third doping region

622:a-n摻雜區域 622: a-n doped region

630:光子積體電路 630: Photonic Integrated Circuits

705、715、805、815:電壓源 705, 715, 805, 815: Voltage source

807、817:支撐元件 807, 817: Support elements

809、819:箭頭 809, 819: Arrow

902-906、1000-1008:步驟 902-906, 1000-1008: Steps

圖1A是作為光子積體電路一部分的光學裝置的示例的方塊圖。 1A is a block diagram of an example of an optical device that is part of a photonic integrated circuit.

圖1B、1C和1D示出了光學裝置的示例。 1B, 1C and 1D show examples of optical devices.

圖1E示出了層疊光學元件的示例。 Figure 1E shows an example of a laminated optical element.

圖2A和2B示出了用於過濾或會聚光的光學裝置的示例。 2A and 2B show examples of optical arrangements for filtering or concentrating light.

圖3A-3D示出了子結構的示例。 3A-3D illustrate examples of substructures.

圖4示出了具有用於過濾不同波長的光的光學裝置的光子積體電路的示例。 Figure 4 shows an example of a photonic integrated circuit with optical means for filtering light of different wavelengths.

圖5A-5D示出了具有應變引發曲率的折射元件的示例。 5A-5D illustrate examples of refractive elements with strain-induced curvature.

圖6A-6D示出了具摻雜區的折射元件的示例。 6A-6D illustrate examples of refractive elements with doped regions.

圖7A-7B示出了以壓電效應控制折射元件的示例。 7A-7B illustrate an example of controlling the refractive element with the piezoelectric effect.

圖8A-8B示出了以電容效應控制折射元件的示例。 8A-8B illustrate examples of controlling refractive elements with capacitive effects.

圖9是製作光學裝置的示例的方塊圖。 FIG. 9 is a block diagram of an example of making an optical device.

圖10示出了製作光學裝置的流程圖的示例。 Figure 10 shows an example of a flow chart for fabricating an optical device.

在各個附圖中,相似的參考編號和名稱表示相似的元件。也應當理解,附圖所示的各個示例性實施方案僅為說明性表達,不一定按照比例進行繪製。 Like reference numbers and names refer to like elements throughout the various figures. It is also to be understood that the various exemplary embodiments shown in the drawings are illustrative only and have not necessarily been drawn to scale.

圖1A示出了光學裝置100的示例的方塊圖,光學裝置100包含折射元件101。折射元件101(也稱為「透鏡」)能夠用於將光耦合入光學裝置或耦合出光學裝置100。示例性的光學裝置100包含,但不限於,透鏡、光學濾波器、準直器。示例的透鏡包含透光透鏡、反射透鏡或其等的組合。光學裝置100能夠折射、濾波、準直、聚焦、散焦、發散、會聚和/或反射光束。 FIG. 1A shows a block diagram of an example of an optical device 100 that includes a refractive element 101 . A refractive element 101 (also referred to as a "lens") can be used to couple light into or out of the optical device 100 . Exemplary optical devices 100 include, but are not limited to, lenses, optical filters, collimators. Exemplary lenses include light transmissive lenses, reflective lenses, or combinations thereof. Optical device 100 is capable of refracting, filtering, collimating, focusing, defocusing, diverging, converging and/or reflecting light beams.

一般來說,光學裝置可具有一個或多個光學規格參數。在一些實施方案中,光學規格參數可為數值孔徑,其允許光學元件擷取特定角度內的光錐。例如,單模光纖可以具有0.14的數值孔徑。在 一些實施方案中,光學規格參數可為允許光學元件發射或接收光的特定尺寸。例如,光學偵測器可具有用於接收光的100μm2偵測區域。 In general, an optical device may have one or more optical specification parameters. In some implementations, the optical specification parameter may be numerical aperture, which allows the optical element to capture a cone of light within a specific angle. For example, a single mode fiber may have a numerical aperture of 0.14. In some implementations, an optical specification parameter may be a specific dimension that allows the optical element to emit or receive light. For example, an optical detector may have a 100 μm 2 detection area for receiving light.

光從一個光學元件傳輸到與其光學規格參數不匹配的另一個光學元件通常會導致光學功率的損失。為了降低損失,可以使用透鏡來降低兩個光學元件之光學參數規格的不匹配;例如,透鏡可用於匹配兩個光學單元之間的數值孔徑。在另一示例中,可以使用透鏡將光聚焦到具有較小面積的光學元件。再者,在光學系統中傳播的光可與多個波長相關聯,且可在光學元件之間使用濾波器以在多波長光中選擇一個或多個目標波長。透鏡或濾波器最好能與其它光學裝置整合以降低整合複雜度和製作成本;此外透鏡和濾光器最好整合到一個光學裝置中,以降低整合複雜性和製作成本。 The transmission of light from one optical element to another optical element that does not match its optical specifications usually results in a loss of optical power. To reduce losses, a lens can be used to reduce the mismatch in the optical parameter specifications of the two optical elements; for example, a lens can be used to match the numerical aperture between the two optical elements. In another example, a lens may be used to focus light onto an optical element having a smaller area. Furthermore, light propagating in an optical system can be associated with multiple wavelengths, and filters can be used between optical elements to select one or more target wavelengths among the multiple wavelengths of light. Preferably, the lens or filter can be integrated with other optical devices to reduce integration complexity and manufacturing cost; in addition, the lens and filter are preferably integrated into one optical device to reduce integration complexity and manufacturing cost.

光學裝置100包含折射元件101和光學介質107。一般來說,折射元件101被配置用於從外部介質119到光學介質107或從光學介質107到外部介質119折射光和/或濾光。在一個示例中,進入光學裝置100的入射光111具有兩個波長λ1和λ2,波長λ1的光被折射元件101濾除,波長λ2的光被折射元件折射和聚焦而形成進入光學介質107的聚焦光束。在此要注意的是,前述的示例不是限制性的,且折射元件101可經設計而選擇或過濾一個或多個其它波長,或經設計為執行其它光學功能,例如光束的散焦或準直光束。 The optical device 100 includes a refractive element 101 and an optical medium 107 . Generally, refractive element 101 is configured to refract and/or filter light from external medium 119 to optical medium 107 or from optical medium 107 to external medium 119 . In one example, the incident light 111 entering the optical device 100 has two wavelengths λ1 and λ2 , the light of the wavelength λ1 is filtered by the refractive element 101 , and the light of the wavelength λ2 is refracted and focused by the refractive element to form a focus entering the optical medium 107 beam. It is noted here that the foregoing examples are not limiting, and that refractive element 101 may be designed to select or filter one or more other wavelengths, or to perform other optical functions, such as defocusing or collimation of a beam of light beam.

折射元件101由一種或多種半導體材料構成。例如,折射元件101可由矽、鍺、錫或III-V族化合物製成。折射元件101具有帶隙能量,其取決於折射元件101所包含的半導體材料的帶隙能量。折射元件101具有帶隙波長,其取決於折射元件101的帶隙能量,例如,通過下式決定:λ=(hc)/E...(1);其中,λ為帶隙波長,h為普朗克常數,c為光速,E為帶隙能量。 The refractive element 101 is composed of one or more semiconductor materials. For example, the refractive element 101 may be made of silicon, germanium, tin or III-V compounds. The refractive element 101 has a band gap energy, which depends on the band gap energy of the semiconductor material contained in the refractive element 101 . The refractive element 101 has a bandgap wavelength, which depends on the bandgap energy of the refractive element 101, eg, determined by the following formula: λ=(hc)/E...(1); where λ is the bandgap wavelength and h is Planck's constant, c is the speed of light, and E is the band gap energy.

根據折射元件101的帶隙能量,折射元件101能夠過濾或折射特定波長範圍內的電磁輻射。例如,帶隙波長為700nm的折射元件101能夠吸收(或過濾)波長短於700nm的入射電磁輻射(例如,可見光波長),並發射(或折射)具有較700nm更長波長的入射電磁輻射(例如,紅外波長)。 Depending on the bandgap energy of the refractive element 101, the refractive element 101 is capable of filtering or refracting electromagnetic radiation within a specific wavelength range. For example, a refractive element 101 with a band gap wavelength of 700 nm can absorb (or filter) incident electromagnetic radiation with wavelengths shorter than 700 nm (eg, visible light wavelengths), and emit (or refract) incident electromagnetic radiation with wavelengths longer than 700 nm (eg, , infrared wavelengths).

一般來說,折射元件101包含一個或多個曲面(例如,曲面103)和/或子結構105。曲面103可具有預定的曲率半徑,且前述的曲率半徑可配置以根據司乃耳定律(Snell's law,或稱「折射定律」)或任意合適的數值分析模型而折射入射光。示例性的數值分析模型包含射線追蹤模型(ray tracing model)、高斯光束模型(Gaussian beam model)、光束傳播法(beam propagation method;簡稱BPM)模式或時域有限差分(finite-difference time-domain;簡稱FDTD)模型。 In general, refractive element 101 includes one or more curved surfaces (eg, curved surface 103 ) and/or substructures 105 . The curved surface 103 may have a predetermined radius of curvature, and the aforementioned radius of curvature may be configured to refract incident light according to Snell's law (or "refraction law") or any suitable numerical analysis model. Exemplary numerical analysis models include a ray tracing model, a Gaussian beam model, a beam propagation method (BPM) model, or a finite-difference time-domain; Referred to as FDTD) model.

一個或多個子結構105能夠包含一組一維、二維、三維或其等之組合的週期性子結構。在圖1A所示範例中,一組二維週期性子結構 形成於折射元件101中。如在本文中使用的,子結構105可包含光子晶體、光柵或週期性子結構,以影響耦合至週期性子結構的光之光學特性。其它示例的子結構將在圖3A至3D中更詳細地描述。 The one or more substructures 105 can comprise a set of periodic substructures in one dimension, two dimensions, three dimensions, or a combination thereof. In the example shown in Figure 1A, a set of two-dimensional periodic substructures formed in the refractive element 101 . As used herein, the substructures 105 may comprise photonic crystals, gratings, or periodic substructures to affect the optical properties of light coupled to the periodic substructures. Other example substructures are described in more detail in Figures 3A-3D.

在一些實施方案中,一組子結構105是週期性的(本文中稱為「週期性子結構」),且可經配置而根據導波模態共振效應(guided mode resonance effect)以折射光或濾光。在導波模態共振效應中,一組子結構由具有折射率高於折射元件101主體、光學介質107和外部介質119的材料形成,以在週期性結構中形成至少一導波模態。導波模態與週期性結構的繞射模態干涉以產生可用於作為濾波器的共振反應。在一些實施方案中,曲面103與共振反應之組合可將光折射到不同方向。 In some implementations, the set of substructures 105 is periodic (referred to herein as "periodic substructures"), and can be configured to refract light or filter light according to guided mode resonance effects Light. In the guided wave mode resonance effect, a set of substructures are formed of materials having a higher index of refraction than the body of the refractive element 101, the optical medium 107 and the external medium 119 to form at least one guided wave mode in a periodic structure. The guided wave mode interferes with the diffraction mode of the periodic structure to produce a resonant response that can be used as a filter. In some implementations, the combination of curved surface 103 and resonant reaction can refract light into different directions.

在一些實施方案中,一個或多個子結構105為次波長結構。次波長結構至少在一個維度的尺寸可小於折射元件101的帶隙波長。在一些實施方案中,一組子結構105以週期性圖案配置。在一些示例中,取決於導波模態共振效應的週期性結構的週期小於折射元件101的帶隙波長。其它示例的子波長結構將在圖1B中更詳細地描述。 In some embodiments, one or more of the substructures 105 are sub-wavelength structures. The subwavelength structures may be smaller in size than the bandgap wavelength of refractive element 101 in at least one dimension. In some embodiments, the set of substructures 105 are arranged in a periodic pattern. In some examples, the period of the periodic structure dependent on the guided wave modal resonance effect is smaller than the bandgap wavelength of the refractive element 101 . Other example sub-wavelength structures are described in more detail in Figure IB.

在一些方案中,一組子結構105可配置用於根據等效折射率改變效應(effective index change effect)折射光或濾光。在等效折射率改變效應中,該組子結構105的設計係沿著折射元件101的一軸線產生一個等效折射率分佈。例如,該組週期性結構105可讓洞孔的直 徑和/或週期沿著x軸和y軸的週期性作變化,以產生一個等效折射率分佈。在一些實施方案中,曲面103與等效折射率分佈的組合可將光折射到不同方向。在一些實施方案中,曲面103與等效折射率分佈的組合可導致折射光的聯合相位改變,進而產生光學聚焦器/散焦器。在一些實現方案中,基於等效折射率變化效應的子結構105具有週期性,且其週期可以是深次波長的尺寸。 In some aspects, a set of substructures 105 may be configured to refract or filter light according to an effective index change effect. In the equivalent refractive index changing effect, the design of the set of substructures 105 produces an equivalent refractive index profile along an axis of the refractive element 101 . For example, the set of periodic structures 105 may allow direct The diameter and/or period is varied along the x- and y-axis periodicity to produce an equivalent refractive index profile. In some implementations, the combination of the curved surface 103 and the equivalent refractive index profile can refract light into different directions. In some embodiments, the combination of the curved surface 103 and the equivalent refractive index profile can result in a combined phase change of the refracted light, thereby creating an optical focus/defocuser. In some implementations, the substructure 105 based on the effect of the equivalent refractive index change has a periodicity, and its periodicity may be deep subwavelength in size.

在一些實施方案中,為了減少或消除入射光111的偏振效應,一組週期性結構105可經設計而具有圍繞其光軸之90度旋轉的對稱性。在此示例中,前述的光軸沿著在折射元件101中心的z軸。 In some implementations, in order to reduce or eliminate polarization effects of incident light 111, a set of periodic structures 105 can be designed to have symmetry rotated about 90 degrees of their optical axis. In this example, the aforementioned optical axis is along the z-axis at the center of the refractive element 101 .

光學介質107可包含能夠傳輸、引導、偵測或產生光的任何材料。例如,光學介質107可以是矽、氧化物、氮化物或其組合之半導體基板。在其它示例中,光學介質107可為空氣。在其它示例中,光學介質107可包含吸收光的鍺光偵測器。在其它示例中,光學介質107可為多層垂直腔面發射型雷射(vertical-cavity surface-emitting laser;簡稱VCSEL)。 Optical medium 107 may comprise any material capable of transmitting, directing, detecting or generating light. For example, the optical medium 107 may be a semiconductor substrate of silicon, oxide, nitride, or combinations thereof. In other examples, the optical medium 107 may be air. In other examples, the optical medium 107 may include a germanium photodetector that absorbs light. In other examples, the optical medium 107 may be a multilayer vertical-cavity surface-emitting laser (VCSEL for short).

外部介質119可為能夠傳輸、引導、偵測或產生光的任何介質。例如,外部介質119可為光纖。在其它示例中,外部介質119可為光偵測器。在其它示例中,外部介質119可為光源。在其它示例中,外部介質119可為空氣。在其它示例中,外部介質119可為半導體基板,例如矽、氧化物、氮化物或其等之組合。在其它示例中, 由一層或多層氮化物、氧化物、空氣或有機材料構成之的覆蓋層(cladding layer)可形成在外部介質119和折射元件101之間。 External medium 119 can be any medium capable of transmitting, directing, detecting or generating light. For example, the external medium 119 may be an optical fiber. In other examples, the external medium 119 may be a photodetector. In other examples, the external medium 119 may be a light source. In other examples, the external medium 119 may be air. In other examples, the external medium 119 may be a semiconductor substrate, such as silicon, oxide, nitride, or a combination thereof. In other examples, A cladding layer composed of one or more layers of nitride, oxide, air, or organic material may be formed between the external medium 119 and the refractive element 101 .

在一些實施方案中,折射元件101和光學介質107可由不同的材料組成。例如,折射元件101可由矽組成,且光學介質107可由氧化物組成。在一些實施方案中,折射元件101和光學介質107可由相同材料組成。例如,折射元件101和光學介質107可由鍺或其它III-V族半導體材料組成。在一些實施方案中,折射元件101可由多層材料組成。圖1C和1D示出了多層折射元件的示例。光學介質107可由多層材料組成。例如,可沈積多層抗反射鍍膜以盡量降低折射元件101和光學介質107間的反射。在一些實施方案中,折射元件可具備濾波、聚焦/散焦或前述兩者的功能。 In some embodiments, refractive element 101 and optical medium 107 may be composed of different materials. For example, the refractive element 101 may be composed of silicon, and the optical medium 107 may be composed of oxide. In some embodiments, refractive element 101 and optical medium 107 may be composed of the same material. For example, refractive element 101 and optical medium 107 may be composed of germanium or other III-V semiconductor materials. In some embodiments, the refractive element 101 may be composed of multiple layers of materials. 1C and 1D show examples of multilayer refractive elements. Optical medium 107 may be composed of multiple layers of materials. For example, multilayer anti-reflection coatings may be deposited to minimize reflections between refractive element 101 and optical medium 107 . In some embodiments, the refractive element may function as filtering, focusing/defocusing, or both.

圖1B示出了折射元件131a-131e的示例,其等可分別作為光學裝置100中的折射元件101。任一折射元件131a-131e也可在本文中描述光學裝置或非本文中描述的光子積體電路中實現。 FIG. 1B shows examples of refractive elements 131 a - 131 e , which may be used as refractive elements 101 in optical device 100 , respectively. Any of the refractive elements 131a-131e may also be implemented in optical devices described herein or in photonic integrated circuits not described herein.

就概念而言,折射元件可被區分成透鏡部分121和子結構部分123。一般來說,入射到透鏡部分121的光,會在其具有預定曲率半徑的表面發生折射。在一些實施方案中,表面曲率可由製程中故意或非故意造成的應變來產生,且所產生之曲率半徑遠大於折射元件尺寸。在一些實施方案中,前述的表面可用灰階光罩進行圖案化和蝕刻來形成表面曲率。 Conceptually, the refractive element can be divided into a lens portion 121 and a substructure portion 123 . Generally, light incident on the lens portion 121 is refracted on its surface having a predetermined radius of curvature. In some embodiments, the surface curvature can be created by deliberate or unintentional strain in the process, and the resulting radius of curvature is much larger than the size of the refractive element. In some embodiments, the aforementioned surface can be patterned and etched with a grayscale mask to create surface curvature.

一般來說,子結構部分123包含一個或多個的一維、二維、三維子結構。子結構可建立一組或多組週期性子結構。例如,在圖1B中示出的子結構部分123包含第一組週期性子結構125和第二組週期性子結構127。第一組週期性子結構125可經設計而產生一個等效折射率改變效應,第二組週期性子結構127可經設計而產生一個導波模態共振效應。在一些實施方式中,第一組週期性子結構125和第二組週期性子結構127的疊加產生子結構部分123並用於折射和過濾入射光。 Generally, the substructure portion 123 includes one or more one-dimensional, two-dimensional, or three-dimensional substructures. Substructures can create one or more sets of periodic substructures. For example, the substructure portion 123 shown in FIG. 1B includes a first set of periodic substructures 125 and a second set of periodic substructures 127 . The first set of periodic substructures 125 can be designed to produce an equivalent refractive index change effect, and the second set of periodic substructures 127 can be designed to produce a guided wave mode resonance effect. In some embodiments, the superposition of the first set of periodic substructures 125 and the second set of periodic substructures 127 produces substructure portions 123 and serves to refract and filter incident light.

透鏡部分121和子結構部分123可經組合而形成折射元件。例如,折射元件131a可藉由蝕刻子結構部分至透鏡部分的底部形成,以在子結構部分和透鏡部分之間提供高折射率對比。在其它示例中,若透鏡部分具有一凸面,折射元件131b可先藉由蝕刻子結構,而讓子結構的峰部隨著透鏡部分的曲率變化。折射元件131b可在形成透鏡部分之後再蝕刻子結構來形成。在其它示例中,若透鏡部分具有一凸面,折射元件131c可藉由蝕刻一子結構,而讓子結構的峰部隨著透鏡部分的曲率變化。折射元件131c可在形成透鏡部分之後再蝕刻子結構的互補圖案來形成。 The lens portion 121 and the substructure portion 123 may be combined to form a refractive element. For example, the refractive element 131a may be formed by etching the substructure portion to the bottom of the lens portion to provide a high refractive index contrast between the substructure portion and the lens portion. In other examples, if the lens portion has a convex surface, the refractive element 131b may firstly etch the sub-structure so that the peak portion of the sub-structure changes with the curvature of the lens portion. The refractive element 131b may be formed by etching the substructure after forming the lens portion. In other examples, if the lens portion has a convex surface, the refractive element 131c can etch a sub-structure so that the peak portion of the sub-structure changes with the curvature of the lens portion. The refractive element 131c may be formed by etching the complementary pattern of the substructure after forming the lens portion.

在其它示例中,若透鏡部分為一凹面,折射元件131d可藉由蝕刻子結構而讓子結構的凹部隨著透鏡部分的曲率變化。折射元件131d可在形成透鏡部分之前,先蝕刻子結構來形成。在其它示例中,若透鏡部分為一凹面,折射元件131e可藉由蝕刻子結構而讓 子結構的峰部隨透鏡部分的曲率變化。折射元件131e可在形成透鏡部分之後,再蝕刻子結構來形成。 In other examples, if the lens portion is a concave surface, the refractive element 131d can make the concave portion of the sub-structure change with the curvature of the lens portion by etching the sub-structure. The refractive element 131d may be formed by etching the substructure prior to forming the lens portion. In other examples, if the lens portion is a concave surface, the refractive element 131e may be formed by etching the substructure. The peaks of the substructures vary with the curvature of the lens portion. The refractive element 131e may be formed by etching the substructure after forming the lens portion.

在一些實施方案中,為了對一個或多個入射光波長進行濾波、聚焦或散焦,一個或多個子結構可填充有一種或多種與折射元件之等效折射率不同的材料。例如,折射元件可以由矽組成,而該組子結構之空隙可至少部分地填入氧化物或氮化物。在其它實施方案中,為了對一個或多個入射光波長進行濾波、聚焦或散焦,一個或多個子結構的半徑可不同於其它一個或多個子結構的半徑。例如,週期性子結構125的半徑不同於週期性子結構127的半徑。在一些實施方案中,一組子結構是次波長結構,其至少在一個維度之尺寸小於透鏡的帶隙波長。例如,週期性子結構127中的子結構可為次波長結構,其直徑小於透鏡121的帶隙波長。在一些實施方案中,為了對入射光的一個或多個波長進行濾波、聚焦或散焦,該組週期性結構中的多個子結構可具有局部非均勻週期。 In some embodiments, in order to filter, focus, or defocus one or more wavelengths of incident light, one or more substructures may be filled with one or more materials that differ from the equivalent refractive index of the refractive element. For example, the refractive element may be composed of silicon, and the voids of the set of substructures may be at least partially filled with oxide or nitride. In other embodiments, the radius of one or more substructures may be different from the radius of the other one or more substructures in order to filter, focus, or defocus one or more wavelengths of incident light. For example, the radius of the periodic substructure 125 is different from the radius of the periodic substructure 127 . In some embodiments, the set of substructures are sub-wavelength structures that have dimensions in at least one dimension smaller than the bandgap wavelength of the lens. For example, the substructures in the periodic substructure 127 may be sub-wavelength structures with diameters smaller than the bandgap wavelength of the lens 121 . In some embodiments, the plurality of substructures in the set of periodic structures may have locally non-uniform periods in order to filter, focus, or defocus one or more wavelengths of incident light.

圖1C示出可在光學裝置100中實現的多層折射元件140。儘管圖中未標示,但多層折射元件140可包含曲面。多層折射元件140包含三個層141、143和145。在一些實施方案中,層141、143和145可由不同材料組成,例如介電質(例如:氧化物、氮化物、聚合物或空氣)、半導體(例如:矽,鍺或III-V族材料)或金屬(例如:鋁、鎢或其它金屬)。例如,一個或多個層141、143和145中之任一層可由吸收材料構成,例如鍺。在其它示例中,二個或多個層141、 143和145可由增益材料(gain material)所構成,例如III-V材料。子結構可在頂層145形成,而其它兩層141和143可對頂層145提供表面應力,以形成多層折射元件140的表面曲率。在一些其它實施方案中,多層折射元件140可有較少或是較多的層。在一些其它實施方案中,週期性子結構可形成在多於一層之上。 FIG. 1C shows a multilayer refractive element 140 that may be implemented in optical device 100 . Although not shown in the figures, the multilayer refractive element 140 may include curved surfaces. The multilayer refractive element 140 includes three layers 141 , 143 and 145 . In some embodiments, layers 141, 143, and 145 may be composed of different materials, such as dielectrics (eg, oxides, nitrides, polymers, or air), semiconductors (eg, silicon, germanium, or III-V materials) or metals (eg: aluminum, tungsten or other metals). For example, any of the one or more layers 141, 143, and 145 may be composed of an absorber material, such as germanium. In other examples, two or more layers 141, 143 and 145 may be composed of gain materials, such as III-V materials. The substructure can be formed on the top layer 145 , and the other two layers 141 and 143 can provide surface stress to the top layer 145 to form the surface curvature of the multilayer refractive element 140 . In some other implementations, the multilayer refractive element 140 may have fewer or more layers. In some other implementations, periodic substructures may be formed over more than one layer.

圖1D示出一個可在光子光學裝置100中實現的多層折射元件150。儘管圖中未標示,但多層折射元件150可包含曲面。多層折射元件150包含三層151、153和155。層151、153和155可由不同的材料組成,例如介電質(例如:氧化物、氮化物、聚合物或空氣)、半導體(例如:矽、鍺或III-V族材料)或金屬(例如:鋁、鎢或其它金屬)。例如,一層或多個層151、153和155可由吸收材料構成,例如鍺。在其它示例中,二個或多個層151、153和155可由增益材料所組成,例如III-V材料。在一些實施方案中,一個或多個子結構可形成在兩層151和155之間的層153之上。例如,層153可具有比層151和155更高之折射率,以在多層折射元件150中產生一個導波模態共振效應。在一些其它實施方案中,多層折射元件150可有較少或是較多的層。在其它實施方案中,子結構可形成在多於一層之上。 FIG. 1D shows a multilayer refractive element 150 that may be implemented in the photonic optical device 100 . Although not shown in the figures, the multilayer refractive element 150 may include curved surfaces. The multilayer refractive element 150 includes three layers 151 , 153 and 155 . Layers 151, 153 and 155 may be composed of different materials such as dielectrics (eg oxides, nitrides, polymers or air), semiconductors (eg silicon, germanium or III-V materials) or metals (eg: aluminum, tungsten or other metals). For example, one or more layers 151, 153 and 155 may be composed of an absorbing material, such as germanium. In other examples, two or more layers 151, 153, and 155 may be composed of gain materials, such as III-V materials. In some embodiments, one or more substructures may be formed over layer 153 between two layers 151 and 155 . For example, layer 153 may have a higher index of refraction than layers 151 and 155 to create a guided wave modal resonance effect in multilayer refractive element 150. In some other implementations, the multilayer refractive element 150 may have fewer or more layers. In other embodiments, the substructures may be formed over more than one layer.

圖1E示出層疊折射元件160。一般來說,層疊折射元件160能提供設計彈性。例如,層疊折射元件160可包含第一光學裝置161和第二光學裝置163,第二光學裝置163光學耦合至第一光學裝置161。 第一和/或第二光學裝置為一透鏡、濾光器或其等的組合。例如,第一光學裝置161可經設計以通過(過濾出)波長範圍介於930nm至945nm的光(或電磁輻射),第二光學裝置163可經設計而通過(過濾出)波長範圍介於935nm至950nm的光(或電磁輻射)。藉由將第一光學裝置161和第二光學裝置163疊加,即可提供通過波長範圍為935nm至945nm之較窄帶寬濾光器。第一光學裝置161和第二光學裝置163可使用本文中描述的折射元件來實現。在一些實施方案中,第一光學裝置161可在等效折率變化效應下操作以改變光束輪廓,第二光學裝置163可在導波模態共振效應下操作以選擇所需波長。在一些實現方案中,第二光學裝置163的等效折射率不同於第一光學裝置161的等效折射率。在一些實現方案中,第二光學裝置163的等效折射率相同於第一光學裝置161的等效折射率。在一些實現方案中,第二光學裝置163所包含第二組子結構不同於第一光學裝置161所包含的第一組子結構。在一些其它實施方案中,第二光學裝置163所包含的第二組子結構的尺寸相同於第一光學裝置161的第一組子結構。在一些實施方案中,折射元件可為濾波器,而其它折射元件可以是聚焦器或散焦器。 FIG. 1E shows a stacked refractive element 160 . In general, laminated refractive elements 160 can provide design flexibility. For example, the stacked refractive element 160 may include a first optical device 161 and a second optical device 163 optically coupled to the first optical device 161 . The first and/or second optical device is a lens, filter, or a combination thereof. For example, the first optical device 161 may be designed to pass (filter out) light (or electromagnetic radiation) having a wavelength range of 930 nm to 945 nm, and the second optical device 163 may be designed to pass (filter out) a wavelength range of 935 nm light (or electromagnetic radiation) to 950 nm. By stacking the first optical device 161 and the second optical device 163, a narrower bandwidth filter with a passing wavelength range of 935 nm to 945 nm can be provided. The first optical device 161 and the second optical device 163 may be implemented using the refractive elements described herein. In some implementations, the first optical device 161 can operate under the equivalent refractive index change effect to change the beam profile, and the second optical device 163 can operate under the guided wave modal resonance effect to select the desired wavelength. In some implementations, the equivalent refractive index of the second optical device 163 is different from the equivalent refractive index of the first optical device 161 . In some implementations, the equivalent refractive index of the second optical device 163 is the same as the equivalent refractive index of the first optical device 161 . In some implementations, the second set of substructures included in the second optical device 163 is different from the first set of substructures included in the first optical device 161 . In some other implementations, the second set of substructures included in the second optical device 163 are the same size as the first set of substructures in the first optical device 161 . In some embodiments, the refractive elements may be filters, while other refractive elements may be focusers or defocusers.

圖2A示出光學裝置200的方塊圖,光學裝置200整合了主動元件和折射元件。在此示例中,具有二波長λ1和λ2的入射光208入射光學裝置200,其中波長λ1光線穿透光學裝置200而成為光209,而波長 λ2光線被光學裝置200濾除。光209被聚焦到光偵測器以量測波長λ1的光功率。 Figure 2A shows a block diagram of an optical device 200 that integrates active and refractive elements. In this example, incident light 208 having two wavelengths λ1 and λ2 is incident on the optical device 200 , wherein the wavelength λ1 light penetrates the optical device 200 to become light 209 , and the wavelength The λ2 light is filtered out by the optical device 200 . Light 209 is focused to a photodetector to measure optical power at wavelength λ1.

該光學裝置200包含折射元件201、光學介質203、覆蓋元件204、基板205和主動元件207。折射元件201可由本文中所描述的折射元件來實現。例如,折射元件201可由圖1A所示之折射元件101實現。在此,折射元件201被配置用於聚焦入射光208至主動元件207。此外,折射元件201被配置用於濾除一個或多個包括波長λ2的光(或電磁輻射)。 The optical device 200 includes a refractive element 201 , an optical medium 203 , a cover element 204 , a substrate 205 and an active element 207 . The refractive element 201 may be implemented by the refractive elements described herein. For example, the refractive element 201 can be realized by the refractive element 101 shown in FIG. 1A . Here, refractive element 201 is configured to focus incident light 208 to active element 207 . Furthermore, the refractive element 201 is configured to filter out one or more light (or electromagnetic radiation) including wavelength λ2.

光學介質203可由讓光209穿透或部分穿透之材料所組成。在一些實施方案中,光學介質203的厚度可為折射元件101的焦距。在其它實施方案中,光學介質203的厚度可經設計而在主動元件207上產生特定尺寸的光點。 Optical medium 203 may be composed of materials that allow light 209 to penetrate or partially penetrate. In some implementations, the thickness of optical medium 203 may be the focal length of refractive element 101 . In other implementations, the thickness of the optical medium 203 can be designed to produce a light spot of a particular size on the active element 207 .

覆蓋元件204形成在折射元件201之上,以減少入射光208的反射和/或保護折射元件201。在一些實施方案中,覆蓋元件204的等效折射率低於折射元件201的等效折射率。在一些實施方式中,覆蓋元件204可由一層或多層的氮化物、氧化物、空氣,或有機材料組成。 A cover element 204 is formed over the refractive element 201 to reduce reflection of incident light 208 and/or protect the refractive element 201 . In some embodiments, the equivalent refractive index of cover element 204 is lower than the equivalent refractive index of refractive element 201 . In some embodiments, the capping element 204 may be composed of one or more layers of nitride, oxide, air, or organic materials.

基板205可為任何適合製造光子積體電路的基板。例如,基板205可為矽晶圓、矽覆絕緣體(SOI)晶圓、III-V族材料(例如砷化鎵或磷化銦)、可撓性有機基板、石英晶圓或玻璃晶圓。在其它實施方 案中,基板205可為沉積在積體電子電路上之被動材料層或主動材料層。 Substrate 205 may be any substrate suitable for fabricating photonic integrated circuits. For example, the substrate 205 may be a silicon wafer, a silicon-on-insulator (SOI) wafer, a III-V material (eg, gallium arsenide or indium phosphide), a flexible organic substrate, a quartz wafer, or a glass wafer. in other embodiments In this case, the substrate 205 may be a passive material layer or an active material layer deposited on an integrated electronic circuit.

主動元件207可以是傳送、調變、切換或吸收光的光學元件。在此示例中,主動元件207為光偵測器,並被配置用於吸收一部分的光209,進而測量波長λ1光線的光功率。在其它實施方案中,主動元件207可為一層或多層的矽、鍺、錫,或III-V族化合物所構成。 Active element 207 may be an optical element that transmits, modulates, switches or absorbs light. In this example, the active element 207 is a photodetector and is configured to absorb a portion of the light 209, thereby measuring the optical power of light of wavelength λ1. In other embodiments, the active device 207 may be formed of one or more layers of silicon, germanium, tin, or III-V compounds.

圖2B示出用於導光的光學裝置210。在此示例中,入射光218具有入射至光學裝置210的兩個波長λ1和λ2,其中波長λ1光線穿透光學裝置210,而波長λ2光線被光學裝置210濾除。光219被聚焦到一光學介質中,並離開光學裝置210而成為光221。光221可被引導到另一個光學裝置或另一個光學系統以進行更進一步的處理。 Figure 2B shows an optical device 210 for directing light. In this example, incident light 218 has two wavelengths λ1 and λ2 incident on optical device 210 , where wavelength λ1 light penetrates optical device 210 and wavelength λ2 light is filtered out by optical device 210 . Light 219 is focused into an optical medium and exits optical device 210 as light 221. Light 221 may be directed to another optical device or another optical system for further processing.

光學裝置210包含至少一折射元件211、光學介質213、覆蓋元件214和外部介質元件215。折射元件211可由本文中描述的折射元件來實現。例如,折射元件211可以使用如圖1D示出的折射元件150來實現。在此,折射元件211被配置用於聚焦入射光218。再者,折射元件211也能夠被配置用於濾除一個或多個包含波長λ2的光(或電磁輻射)。 The optical device 210 includes at least one refractive element 211 , an optical medium 213 , a cover element 214 and an external medium element 215 . The refractive element 211 may be implemented by the refractive elements described herein. For example, the refractive element 211 may be implemented using the refractive element 150 as shown in FIG. 1D . Here, refractive element 211 is configured to focus incident light 218 . Furthermore, the refractive element 211 can also be configured to filter out one or more light (or electromagnetic radiation) comprising wavelength λ2.

光學介質213可使用本文中描述的光學介質來實現。例如,光學介質213可使用圖2A描述的光學介質203來實現。覆蓋元件214可使用本文中描述之覆蓋元件,例如圖2A之覆蓋元件204來實現。外部 介質215可使用本文中描述之外部介質來實現。例如,外部介質215可使用圖1A描述的外部介質119實現。在其它實施方案中,覆蓋元件214的等效折射率高於折射元件211的等效折射率。 Optical medium 213 may be implemented using the optical medium described herein. For example, the optical medium 213 may be implemented using the optical medium 203 depicted in FIG. 2A. Cover element 214 may be implemented using cover elements described herein, such as cover element 204 of Figure 2A. external Medium 215 may be implemented using external media described herein. For example, the external medium 215 may be implemented using the external medium 119 described in FIG. 1A . In other embodiments, the equivalent refractive index of cover element 214 is higher than the equivalent refractive index of refractive element 211 .

圖3A示出在xy平面上的一組週期性結構331。該組週期性結構331是形成在折射元件的子結構的示例。圖3A的揭露內容可適用於本文中描述的任一折射元件。該組週期性結構331包含一個沿著x方向的一維週期性結構301a-n和303a-n的陣列,其中n大於1的整數。該組週期性結構可以是一維光柵或一維光子晶體。在部分實施例中,該組週期結構301a-n和303a-n可以由不同材料所構成。該組週期性結構可為一維光柵或一維光子晶體。在其它實施方案中,該組週期結構301a-n和303a-n可由不同的材料構成。例如,週期性結構301a-n可以由矽構成,而週期性結構303a-n可由氧化物所構成。在其它實施方案中,週期性結構303a-n可包含一層半透明的金屬,例如ITO,並產生表面電漿效應。301a、303a、301b、303b...301n和303n的排列可組成折射元件的週期性結構。 Figure 3A shows a set of periodic structures 331 in the xy plane. The set of periodic structures 331 is an example of a substructure formed in a refractive element. The disclosure of FIG. 3A is applicable to any of the refractive elements described herein. The set of periodic structures 331 comprises an array of one-dimensional periodic structures 301a-n and 303a-n along the x-direction, where n is an integer greater than one. The set of periodic structures can be one-dimensional gratings or one-dimensional photonic crystals. In some embodiments, the set of periodic structures 301a-n and 303a-n may be composed of different materials. The set of periodic structures may be one-dimensional gratings or one-dimensional photonic crystals. In other embodiments, the set of periodic structures 301a-n and 303a-n may be composed of different materials. For example, the periodic structures 301a-n may be composed of silicon, while the periodic structures 303a-n may be composed of oxide. In other embodiments, the periodic structures 303a-n may comprise a layer of translucent metal, such as ITO, and produce a surface plasmonic effect. The arrangement of 301a, 303a, 301b, 303b . . . 301n and 303n may constitute a periodic structure of the refractive element.

圖3B示出一組週期性結構332在xy平面上的示例。該組週期性結構332為在折射元件的子結構部分可形成子結構的範例。圖3B的描述可應用於本文中所描述的任一折射元件。該組週期結構332包含一個二維週期性結構305a和層305b。在其它實施方案中,週期性結構305a可對應於光柵的峰部。在其它實施方案中,週期性結構305a可對應於光柵的凹部。二維週期性結構305a的排列構成了折 射單元的週期性結構。在其它實施方案中,層305b可為氧化物,週期性結構305a可為矽。 FIG. 3B shows an example of a set of periodic structures 332 in the xy plane. The set of periodic structures 332 are examples of substructures that can be formed in the substructure portion of the refractive element. The description of Figure 3B is applicable to any of the refractive elements described herein. The set of periodic structures 332 includes a two-dimensional periodic structure 305a and layers 305b. In other implementations, the periodic structure 305a may correspond to the peaks of the grating. In other implementations, the periodic structures 305a may correspond to recesses of a grating. The arrangement of the two-dimensional periodic structures 305a constitutes the The periodic structure of the radiating element. In other implementations, layer 305b may be oxide and periodic structure 305a may be silicon.

圖3C示出一組週期性結構333在xy平面上的示例。該組週期性結構333為在折射元件的子結構部分可形成子結構的範例。圖3C的描述可應用於本文中所描述的任一折射元件中。該組週期結構333包含沿著x方向排列的二維矩形週期性結構307a至307n的陣列,和沿著y方向排列的307a至307k的陣列。在其它實施方式中,週期性結構307a可為光柵或光子晶體的峰部。在其它實施方式中,週期性結構307a可為光柵或光子晶體的凹部。在其它實施方案中,週期性結構307a和層308可由相同的材料構成,例如矽。在其它實施方案中,週期性結構307a和層308可由不同的材料構成。例如週期性結構307a可由矽構成,而層308可由氧化物或氮化物構成。在其它實施方案中,週期性結構307a可為正方形、圓形、非正方形或不同幾何結構的組合。週期結構307a-n和307a-k在xy平面上的排列形成折射元件的週期性結構。在其它實施方案中,週期性結構的週期沿著x方向321與沿著y方向322和層308內沿著x方向與沿著y方向的干涉圖案(於導波模態共振效應下)大致上匹配。 Figure 3C shows an example of a set of periodic structures 333 in the xy plane. The set of periodic structures 333 is an example of a substructure that can be formed in the substructure portion of the refractive element. The description of Figure 3C is applicable to any of the refractive elements described herein. The set of periodic structures 333 includes an array of two-dimensional rectangular periodic structures 307a to 307n arranged along the x-direction, and an array of 307a to 307k arranged along the y-direction. In other embodiments, the periodic structure 307a may be a grating or a peak portion of a photonic crystal. In other embodiments, the periodic structure 307a may be a grating or a recess of a photonic crystal. In other embodiments, periodic structure 307a and layer 308 may be composed of the same material, such as silicon. In other embodiments, periodic structure 307a and layer 308 may be composed of different materials. For example, the periodic structure 307a may be composed of silicon, and the layer 308 may be composed of oxide or nitride. In other implementations, the periodic structures 307a may be square, circular, non-square, or a combination of different geometric structures. The arrangement of periodic structures 307a-n and 307a-k in the xy plane forms the periodic structure of the refractive element. In other embodiments, the periodicity of the periodic structure along the x-direction 321 and along the y-direction 322 and the interference pattern along the x-direction and along the y-direction within layer 308 (under guided wave mode resonance effects) are approximately match.

圖3D示出週期性結構334在xy平面上的示例。該組週期性結構334為在折射元件的子結構部分可形成子結構的範例。圖3D的描述可應用於本文中所描述的任一折射元件。該組週期性結構334包含二維的任意形狀週期性結構309a至309n的陣列,其中n是大於1的整 數。在其它實施方案中,任意形狀的週期性結構309a可為光柵或光子晶體的峰部。在其它實施方案中,任意形狀的週期性結構309a可為光柵或光子晶體的凹部。在其它實施方案中,任意形狀的週期性結構309a與層310可由不同的材料組成。例如,任意形狀的週期性結構309a可由二氧化矽構成,層310可由矽構成。在其它實施方案中,任意形狀於週期性結構309a中可為三角形、圓形、橢圓形,或不同形狀的組合。在xy平面上之任意形狀的週期性結構309a-n構成了折射元件的週期性結構。在其它實施方案中,任意形狀的週期結構309a至309n中任一者之特定形狀與其相對距離可利用數值分析來確定。例如,有限差分時域分析程序可用於設計每個任意形狀的週期性結構309a至309n的形狀。 Figure 3D shows an example of a periodic structure 334 on the xy plane. The set of periodic structures 334 are examples of substructures that can be formed in the substructure portion of the refractive element. The description of Figure 3D is applicable to any of the refractive elements described herein. The set of periodic structures 334 includes a two-dimensional array of arbitrary-shaped periodic structures 309a to 309n, where n is an integer greater than 1 number. In other embodiments, the arbitrarily shaped periodic structure 309a may be a grating or the peaks of a photonic crystal. In other embodiments, the arbitrarily shaped periodic structures 309a may be gratings or recesses of photonic crystals. In other embodiments, the arbitrarily shaped periodic structure 309a and layer 310 may be composed of different materials. For example, the arbitrarily shaped periodic structure 309a may be composed of silicon dioxide and the layer 310 may be composed of silicon. In other embodiments, the arbitrary shape in periodic structure 309a can be triangular, circular, elliptical, or a combination of different shapes. The periodic structures 309a-n of arbitrary shape in the xy plane constitute the periodic structure of the refractive element. In other implementations, the specific shape and relative distance of any of the arbitrarily shaped periodic structures 309a-309n can be determined using numerical analysis. For example, a finite difference time domain analysis program can be used to design the shape of each of the arbitrarily shaped periodic structures 309a to 309n.

圖4示出光子積體電路400的示例,其具有用於過濾不同波長的光的多個折射元件。簡言之,折射元件可形成在單一基板上,且每個折射元件可用來過濾其對應的波長範圍,並用於波長分工多工(wavelength-division multiplexing;簡稱WDM)或影像/光譜感測應用,以監視多個波長範圍之光學功率。附加地或選擇性地,每個折射元件可經設計而以所需方式來折射對應波長範圍的光(或電磁輻射)。 FIG. 4 shows an example of a photonic integrated circuit 400 with multiple refractive elements for filtering light of different wavelengths. In short, refractive elements can be formed on a single substrate, and each refractive element can be used to filter its corresponding wavelength range and used for wavelength-division multiplexing (WDM) or imaging/spectral sensing applications, to monitor optical power over multiple wavelength ranges. Additionally or alternatively, each refractive element may be designed to refract light (or electromagnetic radiation) of the corresponding wavelength range in a desired manner.

在本示例中,光子積體電路400包含第一折射元件401、第二折射元件403、第三折射元件405和第四折射元件407,並可以藉由半導體製程,例如微影和蝕刻來製作。第一折射元件401被配置用於折 射並傳遞包含λ1,但不含λ2、λ3或λ4的波長範圍的光(或電磁輻射)。第二折射元件403用來折射並傳遞包含λ2,但不含λ1、λ3或λ4的波長範圍的光(或電磁輻射)。第三折射元件405用來折射並傳遞包含λ3,但不含λ1、λ2或λ4的波長範圍的光(或電磁輻射)。第四折射元件407用來折射並傳遞包含λ4,但不含λ1、λ2或λ3的波長範圍的光(或電磁輻射)。當一個包含波長λ1、λ2、λ3和λ4的寬頻訊號的光411入射到光子積體電路400上,第一折射元件401、第二折射元件403、第三折射元件405的和第四折射元件407分別過濾出各個波長光線,以便進一步處理。在不同的實施方案中,可形成不同數目的折射元件在光子積體電路中,且其中的每個折射元件可以不與此範例般折射和/或濾除特定波長範圍。在其它實施方式中,入射光411具有寬頻信號,其中λ1覆蓋紅光光譜、λ2覆蓋綠光光譜、λ3覆蓋藍色光譜,λ4覆蓋紅外光譜。在其它實施方案中,光子積體電路400被看作是可與CMOS影像感測器直接進行單晶片整合的光譜過濾器,以減少後續整合的複雜性和製造成本。多個折射元件可經設計而擁有不同的光子晶體結構,並微調特定目標光譜的波長範圍,然後使用相同的半導體微影步驟加以製成。藉由上述方式,感測器可與更多濾光器整合及具有更細密頻譜濾光,這意味著更精細的光譜分辨率以用於擷取更逼真的影像。 In this example, the photonic integrated circuit 400 includes a first refraction element 401, a second refraction element 403, a third refraction element 405 and a fourth refraction element 407, and can be fabricated by semiconductor processes such as lithography and etching. The first refractive element 401 is configured to fold It emits and transmits light (or electromagnetic radiation) in the wavelength range including λ1, but not λ2, λ3 or λ4. The second refractive element 403 is used to refract and transmit light (or electromagnetic radiation) in the wavelength range including λ2, but not λ1, λ3 or λ4. The third refractive element 405 is used to refract and transmit light (or electromagnetic radiation) in the wavelength range including λ3, but not λ1, λ2 or λ4. The fourth refractive element 407 serves to refract and transmit light (or electromagnetic radiation) in the wavelength range including λ4, but not λ1, λ2 or λ3. When a light 411 containing broadband signals with wavelengths λ1, λ2, λ3 and λ4 is incident on the photonic integrated circuit 400, the first refraction element 401, the second refraction element 403, the third refraction element 405 and the fourth refraction element 407 Each wavelength of light is filtered out separately for further processing. In various implementations, different numbers of refractive elements may be formed in a photonic integrated circuit, and each of the refractive elements may not refract and/or filter out a particular wavelength range as in this example. In other embodiments, the incident light 411 has a broadband signal, wherein λ1 covers the red spectrum, λ2 covers the green spectrum, λ3 covers the blue spectrum, and λ4 covers the infrared spectrum. In other embodiments, the photonic integrated circuit 400 is viewed as a spectral filter that can be directly integrated with a CMOS image sensor on a single wafer to reduce the complexity and manufacturing cost of subsequent integration. Multiple refractive elements can be designed to have different photonic crystal structures and fine-tuned wavelength ranges for specific target spectra, and then fabricated using the same semiconductor lithography steps. In this way, the sensor can be integrated with more filters and have finer spectral filtering, which means finer spectral resolution for capturing more realistic images.

圖5A示出因晶格不匹配或熱膨脹係數不匹配而產生壓縮應力而造成表面曲率的折射元件500的示例。折射元件500包含折射元件501 和光學介質503。一般來說,當光學介質503具有比折射元件501更小的晶格尺寸,所產生的壓縮應a變會讓折射元件501的表面成為凸曲面。例如,光學介質503可由氧化物構成,折射元件501可由矽構成。在一些實施方案中,凸曲面可用來部份聚焦入射光。 5A shows an example of a refractive element 500 with surface curvature due to compressive stress due to lattice mismatch or thermal expansion coefficient mismatch. Refractive element 500 includes refraction element 501 and optical medium 503. Generally speaking, when the optical medium 503 has a smaller lattice size than the refractive element 501, the resulting compressive strain a will make the surface of the refractive element 501 a convex curved surface. For example, the optical medium 503 may be composed of oxide, and the refractive element 501 may be composed of silicon. In some implementations, a convex curved surface can be used to partially focus incident light.

圖5B示出因晶格不匹配或熱膨脹係數不匹配而產生拉伸應力而造成表面曲率的折射元件510。折射元件510包含折射元件511和光學介質513。一般來說,若光學介質513具有比折射元件511更大的晶格尺寸,因而產生的拉伸應變會讓折射元件511的表面成為凹面。例如,光學介質513可由鍺構成,折射元件511可由矽構成。在其它實施方案中,凹表面可以用來部份散焦入射光。 Figure 5B shows a refractive element 510 with surface curvature due to lattice mismatch or thermal expansion coefficient mismatch resulting in tensile stress. The refractive element 510 includes a refractive element 511 and an optical medium 513 . Generally, if the optical medium 513 has a larger lattice size than the refractive element 511, the resulting tensile strain will make the surface of the refractive element 511 concave. For example, the optical medium 513 may be composed of germanium, and the refractive element 511 may be composed of silicon. In other embodiments, concave surfaces can be used to partially defocus incident light.

圖5C示出因側壁上的壓縮應力而具有表面曲率的折射元件520。折射元件520包含折射元件521和至少包圍折射元件521圓周一部分的側壁523。在壓縮應變作用下,折射元件521的表面成為凸曲面。例如,側壁523可由熱氧化物或緻密氮化物構成,折射元件521可由矽所構成。在其它實施方案中,凸表面可用來部份聚焦入射光。 Figure 5C shows refractive element 520 with surface curvature due to compressive stress on the sidewalls. The refractive element 520 includes a refractive element 521 and a sidewall 523 surrounding at least a portion of the circumference of the refractive element 521 . Under the action of compressive strain, the surface of the refractive element 521 becomes a convex curved surface. For example, the sidewalls 523 may be formed of thermal oxide or dense nitride, and the refractive element 521 may be formed of silicon. In other embodiments, convex surfaces can be used to partially focus incident light.

圖5D示出因側壁上的拉伸應力而具有表面曲率的折射元件530。折射元件530包含折射元件531和至少包圍折射元件531圓周一部分的側壁533。在拉伸應變作用下,折射元件531的表面成為凹曲面。例如,側壁533可由多孔隙氧化物或氮化物構成,折射元件531可由矽構成。在其它實施方案中,凹表面可用於部份散焦入射光。 Figure 5D shows refractive element 530 with surface curvature due to tensile stress on the sidewalls. The refractive element 530 includes a refractive element 531 and a side wall 533 surrounding at least a portion of the circumference of the refractive element 531 . Under the action of tensile strain, the surface of the refractive element 531 becomes a concave curved surface. For example, the sidewall 533 may be composed of porous oxide or nitride, and the refractive element 531 may be composed of silicon. In other embodiments, concave surfaces can be used to partially defocus incident light.

圖6A示出光子積體電路600的示例。光子積體電路600包含調變元件,調變元件具有兩個摻雜區並藉由至少部分嵌入折射元件或與折射元件整合而耦合至折射元件。折射元件的等效折射率可以藉由摻雜區域的自由載子濃度變化而改變(藉由空乏或是注入自由載子)。透過調變折射元件的等效折射率,其過濾的光的波長範圍或其對應的折射屬性可隨著改變。在一些實現方案中,調變元件可經配置用於改變至少一部分離開折射元件的光的方向或者聚焦深度,或者改變藉由折射元件的一組週期性結構過濾後的光的一個或多個波長範圍。光子積體電路600包含折射元件601,且折射元件可包含在本文中描述的任何折射元件所使用之週期性結構。在一些實施方案中,折射元件601可具有曲面。此外,折射元件601包含第一摻雜區602和第二摻雜區域604。例如,第一摻雜區602可為p型摻雜區,第二摻雜區604可為n型摻雜區,其等可在折射元件601中形成PN接面。在其它實施方案中,施加逆向偏壓至PN接面可將其中的載子空乏,而對應地改變等效折射率。在其它實施方案中,施加正向偏壓至PN接面可增加其中的載子,這也會對應地改變等效折射率。 FIG. 6A shows an example of a photonic integrated circuit 600 . The photonic integrated circuit 600 includes a modulating element having two doped regions coupled to the refractive element by at least partially embedding or integrating with the refractive element. The equivalent refractive index of the refractive element can be changed (by depletion or injection of free carriers) by varying the free carrier concentration of the doped region. By modulating the equivalent refractive index of the refractive element, the wavelength range of the light it filters or its corresponding refractive properties can vary. In some implementations, the modulating element may be configured to change the direction or depth of focus of at least a portion of the light exiting the refractive element, or to change one or more wavelengths of light filtered by a set of periodic structures of the refractive element scope. The photonic integrated circuit 600 includes a refractive element 601, and the refractive element may include a periodic structure used with any of the refractive elements described herein. In some implementations, the refractive element 601 may have a curved surface. Furthermore, the refractive element 601 includes a first doped region 602 and a second doped region 604 . For example, the first doped region 602 can be a p-type doped region, the second doped region 604 can be an n-type doped region, etc., which can form a PN junction in the refractive element 601 . In other embodiments, applying a reverse bias voltage to the PN junction can deplete the carriers therein and correspondingly change the equivalent refractive index. In other embodiments, applying a forward bias to the PN junction increases the carriers therein, which correspondingly changes the equivalent refractive index.

圖6B示出光子積體電路610的示例。光子積體電路610包含調變元件,調變元件具有三個摻雜區,調變元件可藉由至少部分嵌入折射元件或與折射元件整合而耦合至折射元件。大致來說,在折射元件內,摻雜區域數目的增加可對應地增加空乏區的數目,進而 增加可調變等效折射率的總量。光子積體電路610包含折射元件611,且折射元件611可包含在本文中描述的任何折射元件所使用之週期性結構。在一些實施方案中,折射元件611可以具有曲面。在此示例中,折射元件611包含第一摻雜區612、第二摻雜區614和第三摻雜區域616。例如,第一摻雜區域612可為p型摻雜區,第二摻雜區614可為n型摻雜區,第三摻雜區域616可為p型摻雜區,第一至第三摻雜區在折射元件611中形成PNP接面。在其它示例中,第一摻雜區域612可為p型摻雜區,第二摻雜區614可為本質區,第三摻雜區616可為n型摻雜區,其等在折射元件611中形成P-I-N接面。在其它實現方案中,施加逆向偏壓至PN接面可將其中的載子耗盡,進而改變其等效折射率。在其它實施方案中,施加正向偏壓至PN接面可增加其中的載子,進而改變其等效折射率。 FIG. 6B shows an example of a photonic integrated circuit 610 . The photonic integrated circuit 610 includes a modulating element having three doped regions, and the modulating element can be coupled to the refractive element by being at least partially embedded in or integrated with the refractive element. Roughly speaking, within a refractive element, an increase in the number of doped regions can correspondingly increase the number of depletion regions, thereby increasing the number of depletion regions. Increase the total amount of tunable equivalent refractive index. The photonic integrated circuit 610 includes a refractive element 611, and the refractive element 611 may include a periodic structure used with any of the refractive elements described herein. In some embodiments, the refractive element 611 may have a curved surface. In this example, the refractive element 611 includes a first doped region 612 , a second doped region 614 and a third doped region 616 . For example, the first doped region 612 can be a p-type doped region, the second doped region 614 can be an n-type doped region, the third doped region 616 can be a p-type doped region, the first to third doped regions The impurity regions form PNP junctions in the refractive element 611 . In other examples, the first doped region 612 can be a p-type doped region, the second doped region 614 can be an intrinsic region, the third doped region 616 can be an n-type doped region, etc. in the refractive element 611 A P-I-N junction is formed. In other implementations, applying a reverse bias to the PN junction can deplete the carriers therein, thereby changing its equivalent refractive index. In other embodiments, applying a forward bias to the PN junction increases the carriers therein, thereby changing its equivalent refractive index.

圖6C示出光子積體電路620。光子積體電路620包含調變元件,調變元件具有相互交叉配置的摻雜區。大致來說,相互交叉配置的摻雜區用於當折射元件的直徑遠大於PN接面建立的空乏區之時。藉由在折射元件中形成相互交叉配置的摻雜區,可大幅地改變等效折射率。光子整合電路620包含折射元件621,折射元件可以包含在本文中描述的任何折射元件所使用之一組週期性結構。在其它實施方案中,折射元件621可包含曲面。此外,折射元件621包含相互交叉配置的摻雜區622a至622n,其中n為整數。在一個示例中,相互交叉配置的摻雜區622a至622n可具有交替排列的p型摻 雜區和n型摻雜區,以在折射元件621內形成pnpnp...接面。在其它示例中,相互交叉配置的摻雜區622a至622n可具有交替排列的p型摻雜區,本質區(i)和n型摻雜區,以在折射元件621中形成一pinpinp-...接面。在其它實施方案中,施加逆向偏壓至pn或pin接面可將其中的載子耗盡,進而改變等效折射率。在部分實施方案中,施加正向偏壓至pn或pin接面可增加其中的載子,進而改變等效折射率。 FIG. 6C shows a photonic integrated circuit 620 . The photonic integrated circuit 620 includes a modulating element, and the modulating element has doped regions arranged to cross each other. Roughly speaking, the interdigitated doped regions are used when the diameter of the refractive element is much larger than the depletion region created by the PN junction. The equivalent refractive index can be greatly changed by forming doped regions in the refractive element that are arranged to cross each other. Photon integration circuit 620 includes refractive element 621, which may comprise a set of periodic structures used with any of the refractive elements described herein. In other implementations, the refractive element 621 may comprise a curved surface. In addition, the refractive element 621 includes doped regions 622a to 622n which are arranged to cross each other, wherein n is an integer. In one example, the interdigitated doped regions 622a to 622n may have alternating p-type doping impurity regions and n-type doped regions to form pnpnp... junctions within the refractive element 621. In other examples, the interdigitated doped regions 622a to 622n may have alternately arranged p-type doped regions, intrinsic regions (i) and n-type doped regions to form a pinpinp-.. . junction. In other embodiments, applying a reverse bias to a pn or pin junction can deplete the carriers therein, thereby changing the equivalent refractive index. In some embodiments, applying a forward bias to a pn or pin junction increases the carriers therein, thereby changing the equivalent refractive index.

圖6D示出光子積體電路630的示例。光子積體電路630包含整合在調變元件中的光學介質,調變元件包含具有複數摻雜區。光學介質的等效折射率可藉由耗盡或者注入自由載子來調變。光學介質的等效折射率的調變改變了離開折射元件的光的折射特性。光子積體電路630包含形成在光學介質633上的折射元件631,折射元件可包含在本文中描述的任何折射元件所使用之一組週期性結構。在一些實施方案中,折射元件631可具有一曲面。光學介質633可包含第一摻雜區635和第二摻雜區637。例如,第一摻雜區635可為p摻雜區,第二摻雜區637可為n摻雜區,且其等在光學介質633內形成PN接面。在一些實施方案中,施加反向偏壓至PN接面可將其中的載子耗盡,進而改變等效折射率。在一些實施方式中,施加正向偏壓至PN接面可增加載子,進而改變等效折射率。 FIG. 6D shows an example of a photonic integrated circuit 630 . The photonic integrated circuit 630 includes an optical medium integrated in a modulating element, and the modulating element includes a plurality of doped regions. The equivalent refractive index of an optical medium can be modulated by depletion or injection of free carriers. Modulation of the equivalent refractive index of the optical medium changes the refractive properties of light exiting the refractive element. Photonic integrated circuit 630 includes refractive elements 631 formed on optical medium 633, which may include a set of periodic structures used with any of the refractive elements described herein. In some implementations, the refractive element 631 may have a curved surface. The optical medium 633 may include a first doped region 635 and a second doped region 637 . For example, the first doped region 635 can be a p-doped region, the second doped region 637 can be an n-doped region, and the like form a PN junction within the optical medium 633 . In some implementations, applying a reverse bias to the PN junction can deplete the carriers therein, thereby changing the equivalent refractive index. In some embodiments, applying a forward bias to the PN junction can increase carriers, thereby changing the equivalent refractive index.

圖7A示出由壓電效應控制的折射元件所構成的光子積體電路700。一般來說,在壓電材料中,施加偏壓會施與應力而改變壓電材料 的形狀。在這樣的示例中,光子積體電路700包含光學介質703、形在光學介質703上的折射元件701,以及耦接至折射元件的電壓源705。折射元件701可包含一組週期性結構,其可藉由本文中描述的任一折射元件來實現。在一些實施方案中,折射元件701可包含一個曲面。再者,折射元件701可包含壓電材料。在一些實施方案中,電壓源705之電壓會產生機械力而改變折射元件701中的表面的預定曲率半徑。在一些實施方案中,電壓源705的電壓會產生機械力而讓折射元件701中光子晶體結構的半徑或週期改變。 FIG. 7A shows a photonic integrated circuit 700 composed of refractive elements controlled by the piezoelectric effect. In general, in piezoelectric materials, applying a bias voltage imparts stress that alters the piezoelectric material shape. In such an example, the photonic integrated circuit 700 includes an optical medium 703, a refractive element 701 formed on the optical medium 703, and a voltage source 705 coupled to the refractive element. The refractive element 701 may comprise a set of periodic structures, which may be implemented by any of the refractive elements described herein. In some implementations, refractive element 701 may comprise a curved surface. Furthermore, the refractive element 701 may comprise a piezoelectric material. In some implementations, the voltage of the voltage source 705 produces a mechanical force that changes the predetermined radius of curvature of the surface in the refractive element 701 . In some embodiments, the voltage of the voltage source 705 produces a mechanical force that causes the radius or period of the photonic crystal structure in the refractive element 701 to change.

圖7B示出由壓電效應控制的折射元件所構成的光子積體電路710。在此示例中,光子積體電路710包含光學介質713、形成在光學介質713上的折射元件711,以及耦接至光學介質的電壓源715。折射元件711可以包含一組週期性結構,其可藉由本文中描述的任一折射元件來實現。在一些實施方案中,折射元件711可包含曲面。光學介質713可包括壓電材料。在一些實施方案中,電壓源715的電壓會產生一機械力予該光學介質713,使形成在光學介質713頂部的折射元件711的表面的預定曲率半徑發生改變。在其它實施方案中,電壓源715的電壓會產生一機械力予光學介質713,以讓該光學介質713內部沿著z軸傳播之光的路徑長度發生改變。 FIG. 7B shows a photonic integrated circuit 710 composed of refractive elements controlled by the piezoelectric effect. In this example, the photonic integrated circuit 710 includes an optical medium 713, a refractive element 711 formed on the optical medium 713, and a voltage source 715 coupled to the optical medium. The refractive element 711 may comprise a set of periodic structures, which may be implemented by any of the refractive elements described herein. In some implementations, refractive element 711 may comprise a curved surface. Optical medium 713 may include piezoelectric material. In some implementations, the voltage of the voltage source 715 generates a mechanical force on the optical medium 713 that changes the predetermined radius of curvature of the surface of the refractive element 711 formed on top of the optical medium 713 . In other embodiments, the voltage of the voltage source 715 produces a mechanical force on the optical medium 713 to change the path length of light propagating along the z-axis within the optical medium 713.

圖8A示出由一電容效應控制的折射元件所構成之光子積體電路800。一般來說,藉由微電機系統(Micro-Electro-Mechanical System;簡稱MEMS)會讓其折射元件和光學介質之間產生靜電 力,進而導致折射元件相對於光學介質的發生位移。在此示例中,光子積體電路800包含光學介質803、折射元件801、支撐元件807和電壓源805,電壓源805耦接至折射元件801和光學介質803。折射元件801可包含曲面或一組週期性結構,並可由本文所描述的任一折射元件來實現。此外,折射元件801和光學介質803可作為電容器的兩端電極,並藉由電壓源805施加外部電場而於折射元件801和光學介質803之間產生靜電力。在一個示例中,正電荷可累積在折射元件801的底部,負電荷可累積在光學介質803的頂部,如此可形成靜電力來改變折射元件801和光學介質803之間的相對距離。由於支撐元件807至少可支撐折射元件801之兩端,靜電力可讓折射元件相對於光學介質的位置產生如箭頭809所示的變化。在一些實施方案中,距離的變化可被用來調整聚焦光束離開折射元件801的光路。在一些實施方案中,藉由電壓源805施加外部電場可改變折射元件801的光子晶體的半徑、週期或其表面之預定曲率半徑。 FIG. 8A shows a photonic integrated circuit 800 composed of a refractive element controlled by a capacitive effect. Generally speaking, static electricity is generated between the refracting element and the optical medium by the Micro-Electro-Mechanical System (MEMS) force, which in turn causes displacement of the refractive element relative to the optical medium. In this example, the photonic integrated circuit 800 includes an optical medium 803 , a refractive element 801 , a support element 807 , and a voltage source 805 coupled to the refractive element 801 and the optical medium 803 . The refractive element 801 may comprise a curved surface or a set of periodic structures, and may be implemented by any of the refractive elements described herein. In addition, the refractive element 801 and the optical medium 803 can be used as electrodes at both ends of the capacitor, and an electrostatic force is generated between the refractive element 801 and the optical medium 803 by applying an external electric field through the voltage source 805 . In one example, positive charges can accumulate on the bottom of refractive element 801 and negative charges can accumulate on the top of optical medium 803 , which can create electrostatic forces to change the relative distance between refractive element 801 and optical medium 803 . Since the supporting element 807 can support at least two ends of the refractive element 801 , the electrostatic force can make the position of the refractive element relative to the optical medium change as shown by the arrow 809 . In some embodiments, the change in distance can be used to adjust the optical path of the focused beam exiting the refractive element 801 . In some implementations, the application of an external electric field by the voltage source 805 can change the radius, period, or predetermined radius of curvature of the surface of the photonic crystal of the refractive element 801 .

圖8B示出由電容效應控制的折射元件所構成的光子積體電路810。一般來說,藉由微電機系統可讓其折射元件和光學介質之間產生靜電力,進而導致折射元件之入射光的光軸方向發生變化。在此示例中,光子積體電路810包含光學介質813、折射元件811、支撐元件817,以及電壓源815,電壓源815耦接於折射元件811和光學介質813。折射元件811可包含曲面或一組週期性結構,並可藉由 本文中描述的任一折射元件來實現。在一個示例中,正電荷可累積在折射元件811的的底部端,負電荷可累積在光學介質813的頂部端且靠近折射元件811的底部端,如此可形成靜電力以改變折射元件811和光學介質813之間的距離。由於支撐元件817僅支撐折射元件811的一端,折射元件811可被當作是一個懸臂。靜電力可讓折射元件在相對入射光光軸的方位產生如箭頭819所示的變化。在一些實施方案中,在前述方向上的變化可用於調節入射光進入折射元件811的入射角。在一些實施方案中,在前述方向上的變化可用於調節從光學介質813進入折射元件811之光信號的入射角度。 FIG. 8B shows a photonic integrated circuit 810 composed of refractive elements controlled by capacitive effects. Generally speaking, electrostatic force can be generated between the refracting element and the optical medium by the micro-electromechanical system, thereby causing the direction of the optical axis of the incident light of the refracting element to change. In this example, the photonic integrated circuit 810 includes an optical medium 813 , a refractive element 811 , a support element 817 , and a voltage source 815 coupled to the refractive element 811 and the optical medium 813 . The refractive element 811 can include a curved surface or a set of periodic structures, and can be implemented with any of the refractive elements described herein. In one example, positive charges can accumulate at the bottom end of the refractive element 811 and negative charges can accumulate at the top end of the optical medium 813 near the bottom end of the refractive element 811, which can create electrostatic forces to alter the refractive element 811 and the optical Distance between media 813. Since the supporting element 817 supports only one end of the refractive element 811, the refractive element 811 can be regarded as a cantilever. Electrostatic forces can cause a change in the orientation of the refractive element relative to the optical axis of the incident light, as indicated by arrow 819. In some embodiments, changes in the aforementioned directions can be used to adjust the angle of incidence of incident light into refractive element 811 . In some embodiments, changes in the aforementioned directions can be used to adjust the angle of incidence of the light signal entering the refractive element 811 from the optical medium 813 .

圖9示出製作折射元件的流程圖的示例。流程900可用於製作光學器件100、200、210或其它在此揭示的光學器件。所製作的光學器件能夠形成貼設或整合在其它光學器件上的光學器件。 Figure 9 shows an example of a flow chart for making a refractive element. Process 900 may be used to fabricate optical devices 100, 200, 210, or other optical devices disclosed herein. The fabricated optical device can form an optical device attached to or integrated on other optical devices.

程序900包含在基板902上形成第一曲面904。基板902可為半導體晶圓或SOI晶圓。第一曲面904可藉由在基板移除或是添加半導體材料而形成。半導體材料可先沈積在基板902上再由微影成像製程而圖案化。此外,也可在基板902上移除半導體材料而形成第一曲面。例如,可利用蝕刻以自基板902上移除半導體材料。蝕刻包含乾蝕刻、溼蝕刻或是其他適合的蝕刻製程,以製作此第一曲面904。例如可使用灰階光罩以蝕刻基板902,進而形成此第一曲面904。。例如,可藉由受控的微影成像對基板902進行蝕刻,並控制紫外劑量來改變蝕刻深度。 Process 900 includes forming a first curved surface 904 on a substrate 902 . The substrate 902 may be a semiconductor wafer or an SOI wafer. The first curved surface 904 can be formed by removing or adding semiconductor material to the substrate. The semiconductor material may be deposited on the substrate 902 and then patterned by a lithographic imaging process. In addition, the semiconductor material can also be removed from the substrate 902 to form the first curved surface. For example, etching may be used to remove semiconductor material from the substrate 902 . The etching includes dry etching, wet etching or other suitable etching processes to form the first curved surface 904 . For example, a grayscale mask can be used to etch the substrate 902 to form the first curved surface 904 . . For example, the substrate 902 can be etched by controlled lithography, and the UV dose can be controlled to vary the etch depth.

基板902的半導體材料922可具有預定的帶隙能量。半導體922的帶隙能量有於助光學器件穿透(或折射)具有第一波長範圍的入射電磁輻射,並吸收具有第二波長範圍的電磁輻射。在一些實施方案中,第一波長範圍超過於700nm(例如,紅外輻射)。例如,半導體922可具有在1.2至1.7電子伏特(eV)之間的帶隙能量。 The semiconductor material 922 of the substrate 902 may have a predetermined band gap energy. The bandgap energy of semiconductor 922 helps the optical device to transmit (or refract) incident electromagnetic radiation having a first wavelength range and absorb electromagnetic radiation having a second wavelength range. In some embodiments, the first wavelength range exceeds 700 nm (eg, infrared radiation). For example, semiconductor 922 may have a bandgap energy between 1.2 and 1.7 electron volts (eV).

在一些示例中,半導體922可使波長超過940nm的電磁輻射穿透。在一些實施方案中,第二波長範圍低於800nm。例如,半導體922可具有介於400nm和800nm之間的帶隙波長。帶隙波長可通過前述式(1)來計算。 In some examples, semiconductor 922 is transparent to electromagnetic radiation having wavelengths in excess of 940 nm. In some embodiments, the second wavelength range is below 800 nm. For example, semiconductor 922 may have a bandgap wavelength between 400 nm and 800 nm. The band gap wavelength can be calculated by the aforementioned formula (1).

接合層924沉積在第一曲面904上(參見結構908)。接合層可為圖1A示出的形成光學介質107的至少一部分。可藉由薄膜沉積技術(例如化學氣相沉積、電漿增強化學氣相沉積、濺射)或任何其它適合的薄膜沉積技術將接合層沉積在第一曲層上。接合層可為半導體材料、氧化物、氮化物、金屬或其等的組合。接合層可供半導體材料922折射的所有波長的光(或電磁輻射)穿透,或可吸收部分前述波長的光(或電磁輻射)。 A bonding layer 924 is deposited on the first curved surface 904 (see structure 908). The bonding layer may form at least a portion of the optical medium 107 shown in FIG. 1A . The bonding layer may be deposited on the first curved layer by thin film deposition techniques such as chemical vapor deposition, plasma enhanced chemical vapor deposition, sputtering, or any other suitable thin film deposition technique. The bonding layer may be a semiconductor material, oxide, nitride, metal, or a combination thereof. The bonding layer may be transparent to all wavelengths of light (or electromagnetic radiation) refracted by the semiconductor material 922, or may absorb some of the aforementioned wavelengths of light (or electromagnetic radiation).

在一些實施方案中,接合層924具有對應於光學裝置的焦距的光學厚度。例如,接合層(例如,圖2A中的光學介質203)的光學厚度可以足夠讓折射元件(例如,201)折射的光(或電磁輻射)聚焦到特定點(例如,主動元件207)。接合層924的光學厚度取決於接合層924 的厚度和折射率。接合層的厚度可取決於第一曲面(和/或第二曲面)的曲率半徑。這樣,接合層便可設定為具有特定厚度。 In some embodiments, the bonding layer 924 has an optical thickness corresponding to the focal length of the optical device. For example, the optical thickness of the bonding layer (eg, optical medium 203 in FIG. 2A ) may be sufficient to focus light (or electromagnetic radiation) refracted by a refractive element (eg, 201 ) to a particular point (eg, active element 207 ). The optical thickness of the bonding layer 924 depends on the bonding layer 924 thickness and refractive index. The thickness of the bonding layer may depend on the radius of curvature of the first curved surface (and/or the second curved surface). In this way, the bonding layer can be set to have a specific thickness.

可藉由沉積技術以沉積具有預定厚度的層而讓接合層具有預定厚度。為了調節接合層的厚度,也可例如藉由化學機械拋光對接合層進行平面化或拋光。例如,接合層可用墊和磨料和/或腐蝕性化學漿料進行摩擦而達到所需的厚度。取決於元件的初始厚度和接合層所需的厚度,摩擦過程可以特定速度並在特定時間段內進行。此外,可藉由平坦化程序使接合層表面的任何不規則形貌得以均勻。接合層表面上的不規則形貌可能導致電磁輻射無意地折射或散射入或是出光學器件。經過均勻化的接合層能夠提升在光學裝置的橫截面上的電磁輻射的折射和/或濾波的一致性。 The bonding layer may have a predetermined thickness by depositing a layer having a predetermined thickness by deposition techniques. In order to adjust the thickness of the bonding layer, the bonding layer can also be planarized or polished, eg by chemical mechanical polishing. For example, the bonding layer can be rubbed with a pad and abrasive and/or aggressive chemical slurries to the desired thickness. Depending on the initial thickness of the element and the desired thickness of the bonding layer, the rubbing process can take place at a certain speed and for a certain period of time. In addition, any irregularities in the surface of the bonding layer can be made uniform by the planarization process. Irregular topographies on the surface of the bonding layer can cause unintentional refraction or scattering of electromagnetic radiation into or out of the optical device. A homogenized bonding layer can improve the uniformity of refraction and/or filtering of electromagnetic radiation across the cross-section of the optical device.

在一些實施方案中,第二曲面934形成在半導體材料922上,並與第一曲面904相對。前述用於形成第一曲面的技術也可用於形成第二曲面。第一和第二曲面可以是對稱的,或者兩者可具有不同的形狀。第一和第二表面能夠具有相同的曲率半徑,或者兩者可具有不同的曲率半徑。在一些實施方案中,光學裝置被製作以用於目標焦距。在一些示例中,所形成的第二曲面用於與第一曲面配合提供目標焦距。在一些示例中,所形成的第二曲面用於與第一曲面和接合層共同提供目標焦距。 In some embodiments, the second curved surface 934 is formed on the semiconductor material 922 and is opposite the first curved surface 904 . The techniques described above for forming the first curved surface can also be used to form the second curved surface. The first and second curved surfaces may be symmetrical, or both may have different shapes. The first and second surfaces can have the same radius of curvature, or both can have different radii of curvature. In some embodiments, the optics are fabricated for the target focal length. In some examples, the second curved surface is formed to cooperate with the first curved surface to provide the target focal length. In some examples, the second curved surface is formed to provide a target focal length in conjunction with the first curved surface and the bonding layer.

上述方式形成之光學裝置910包含由半導體材料922形成的折射元件930和接合層924。折射元件930由第一曲面和第二曲面形成;或者,折射元件可以只具有一個曲面(例如,折射元件101)。 The optical device 910 formed in the above-described manner includes a refractive element 930 formed of a semiconductor material 922 and a bonding layer 924 . The refractive element 930 is formed of a first curved surface and a second curved surface; alternatively, the refractive element may have only one curved surface (eg, refractive element 101).

折射元件930可以從接合層924分離以形成單獨的透鏡,並可例如接著貼設到光子積體電路。例如,若接合層924由氧化物和/或氮化物構成,則可以藉由濕式蝕刻技術從光學裝置蝕刻,例如,藉由氫氟酸(HF)、氟化銨(NH 4 F)或其等的組合的濕式蝕刻。 The refractive element 930 can be separated from the bonding layer 924 to form a separate lens, and can then be attached to a photonic integrated circuit, for example. For example, if the bonding layer 924 is composed of oxides and/or nitrides, it can be etched from the optical device by wet etching techniques, eg, by hydrofluoric acid (HF), ammonium fluoride (NH4F), or the like etc. Combination of wet etching.

在一些實施方案中,折射元件可包含一個或多個子結構,例如圖1B示出的子結構123。在一些實施方案中,子結構可形成於另一半導體基板上,並接合到折射元件和/或接合層。例如,子結構部分123可以藉由蝕刻半導體基板來形成,並且可接合到折射元件(例如,透鏡部分121)。 In some implementations, a refractive element may comprise one or more substructures, such as substructure 123 shown in Figure IB. In some embodiments, the substructure can be formed on another semiconductor substrate and bonded to the refractive element and/or bonding layer. For example, the substructure portion 123 may be formed by etching a semiconductor substrate, and may be bonded to a refractive element (eg, the lens portion 121).

在一些實施方案中,子結構形成在折射元件上。子結構可藉由選擇性地蝕刻第一曲面904和/或第二曲面934中的一個或兩個來形成。子結構可為未填充結構,或者子結構中可填充有與基板922的半導體材料不相同的材料。在一些示例中,一組子結構填充有折射率高於基板922的折射率材料,如此可在光學器件中提供導波模態。子結構也可藉由薄膜沉積來形成。例如,光罩可用於在相應的曲面上沉積週期性圖案、光柵或光子晶體以形成一組子結構。沉積的子結構可具有與折射元件930相同的材料,或者子結構可由與折射元件930不同的材料構成。例如,子結構可以由半導體材料 (例如,矽)或氮化物、氧化物或其等的組合構成。在一些示例中,可使用多於一個光罩來為子結構沉積不同的材料。例如,第一光罩可用於沉積半導體材料,第二光罩可用於沉積氮化物材料。半導體和氮化物基板可形成交替的光柵。所形成一個或多個子結構在一個維度的尺寸至少小於折射元件930的帶隙波長。 In some embodiments, the substructure is formed on the refractive element. The substructures may be formed by selectively etching one or both of the first curved surface 904 and/or the second curved surface 934 . The substructures may be unfilled structures, or the substructures may be filled with a different material than the semiconductor material of the substrate 922 . In some examples, a set of substructures is filled with a material with a higher index of refraction than the substrate 922, which can provide a guided wave mode in the optical device. Substructures can also be formed by thin film deposition. For example, a photomask can be used to deposit periodic patterns, gratings or photonic crystals on corresponding curved surfaces to form a set of substructures. The deposited substructure may be of the same material as refractive element 930 , or the substructure may be composed of a different material than refractive element 930 . For example, the substructure can be made of semiconductor material (eg, silicon) or a combination of nitrides, oxides, or the like. In some examples, more than one reticle may be used to deposit different materials for the substructures. For example, a first reticle can be used to deposit semiconductor materials and a second reticle can be used to deposit nitride materials. The semiconductor and nitride substrates can form alternating gratings. The one or more substructures formed have a dimension in one dimension that is at least smaller than the bandgap wavelength of the refractive element 930 .

如在圖2所述,光學裝置可以附接到光學元件或整合至光學元件。光學元件可以相對於接合層924設置,而讓光學裝置接收由光學元件折射的電磁輻射。光學元件可相對於折射元件930設置,而讓光學元件將電磁輻射傳輸到光學裝置中。光學元件可經配置用於改變光學裝置折射的第一波長範圍的光(或電磁輻射),和/或光學裝置吸收的第二波長範圍的光(或電磁輻射)。 As described in Figure 2, the optical device may be attached to or integrated with the optical element. The optical elements may be positioned relative to the bonding layer 924 to allow the optical device to receive electromagnetic radiation refracted by the optical elements. The optical element may be positioned relative to the refractive element 930, allowing the optical element to transmit electromagnetic radiation into the optical device. The optical element may be configured to alter the light (or electromagnetic radiation) of the first wavelength range that is refracted by the optical device, and/or the light (or electromagnetic radiation) that is absorbed by the optical device of the second wavelength range.

貼接至光學裝置的光學元件也可以是主動光學元件。主動光學元件可為用於傳輸、調製、開關或吸收光的主動光學元件。例如,主動光學元件可為光偵測器,其被配置用於吸收由光學裝置折射的光的至少一部分,進而量測一個或多個波長的光的光學功率。主動光學元件的其它示例包含但不限於傳感器、發光二極體和雷射。主動光學元件可由一層或多層矽、鍺、錫或III-V族化合物組成。 The optical element attached to the optical device may also be an active optical element. Active optical elements may be active optical elements used to transmit, modulate, switch, or absorb light. For example, the active optical element may be a photodetector configured to absorb at least a portion of the light refracted by the optical device, thereby measuring the optical power of the light at one or more wavelengths. Other examples of active optics include, but are not limited to, sensors, light emitting diodes, and lasers. Active optical elements may be composed of one or more layers of silicon, germanium, tin, or III-V compounds.

附接到光學裝置的光學元件可為第二光學裝置。第一和第二光學元件的組合能給入射電磁輻射的折射和/或濾波提供更大的靈活 性。例如,第一光學裝置可折射具有第一波長範圍的入射電磁輻射和/或過濾具有第二波長範圍的電磁輻射。 The optical element attached to the optical device may be the second optical device. The combination of the first and second optical elements can provide greater flexibility in the refraction and/or filtering of incident electromagnetic radiation sex. For example, the first optical device may refract incident electromagnetic radiation having a first wavelength range and/or filter electromagnetic radiation having a second wavelength range.

第一光學裝置和第二光學裝置可以經配置用於共同折射具有第三波長範圍的入射電磁輻射和/或過濾具有第四波長範圍的電磁輻射。第三波長範圍可為第一波長範圍的子範圍。第四波長範圍可為第二波長範圍的子範圍。第一光學裝置和第二光學裝置可分別具有折射元件。折射元件可具有一個或多個曲面和/或一個或多個子結構。一個或多個子結構可包含週期性配置的一組子結構。一組子結構可以是次波長結構。第一和/或第二光學元件的至少一個子波長結構至少沿著一個維度的尺寸(例如,直徑)小於第一和/或第二光學裝置的折射元件的帶隙波長。例如,第二折射元件可具有次波長結構,且次波長結構至少沿著一個維度的尺寸小於第一折射元件的帶隙波長。 The first optical device and the second optical device may be configured to collectively refract incident electromagnetic radiation having a third wavelength range and/or filter electromagnetic radiation having a fourth wavelength range. The third wavelength range may be a sub-range of the first wavelength range. The fourth wavelength range may be a sub-range of the second wavelength range. The first optical device and the second optical device may each have refractive elements. The refractive element may have one or more curved surfaces and/or one or more substructures. The one or more substructures may comprise a periodically configured set of substructures. A set of sub-structures may be sub-wavelength structures. At least one sub-wavelength structure of the first and/or second optical element has a dimension (eg, diameter) along at least one dimension that is smaller than the bandgap wavelength of the refractive element of the first and/or second optical device. For example, the second refractive element may have a sub-wavelength structure that is smaller in size along at least one dimension than the bandgap wavelength of the first refractive element.

在製作第一光學裝置之時,可以整合光學元件與第一光學裝置。例如,在步驟912中,光學元件926接合到結構912的接合層924。結構908包含折射元件,折射元件具有第一曲面。在接合光學元件926之後,可以進一步製作結構912以形成具有兩個曲面的折射元件(例如,折射元件930)。或者,光學元件可以在完成光學裝置的製作之後的任何時間貼合到光學裝置。例如,在步驟914中,接合光學單元926和光學裝置910。當光學裝置或主動元件上具有曲率,主動元件可以藉由各種接合技術以與光學裝置接合,包括混 合金屬/電介質晶圓接合技術、金屬共晶接合技術、氧化物-氧化物接合技術,或使用聚合物或其它接合劑和黏性材料接合主動單元和光學元件。 When fabricating the first optical device, the optical element and the first optical device can be integrated. For example, in step 912 , optical element 926 is bonded to bonding layer 924 of structure 912 . Structure 908 includes a refractive element having a first curved surface. After bonding optical element 926, structure 912 can be further fabricated to form a refractive element (eg, refractive element 930) having two curved surfaces. Alternatively, the optical element may be attached to the optical device at any time after fabrication of the optical device is completed. For example, in step 914, optical unit 926 and optical device 910 are joined. When the optical device or active element has curvature, the active element can be bonded to the optical device by various bonding techniques, including hybrid Alloy metal/dielectric wafer bonding technology, metal eutectic bonding technology, oxide-oxide bonding technology, or use polymer or other adhesives and adhesive materials to bond active elements and optical components.

光學元件926可為主動光學元件或第二光學裝置。光學元件926可為半導體基板,且其上可形成一部分的光學介質107。光學元件926也可為用於製造另一光學元件或裝置的半導體基板。例如,光學元件926可以是載體晶圓,且其上可以製作第二光學裝置。 Optical element 926 may be an active optical element or a second optical device. The optical element 926 may be a semiconductor substrate on which a portion of the optical medium 107 may be formed. Optical element 926 may also be a semiconductor substrate used to fabricate another optical element or device. For example, optical element 926 may be a carrier wafer on which a second optical device may be fabricated.

光學元件926可與折射元件930或接合層924耦合。在一些實施方案中,光學元件926藉由第二接合元件耦合(或接合)到光學裝置。例如,第二接合層可形成在光學裝置910的第二曲面934上,且第二光學元件可耦合到與第一光學裝置910相對的第二接合層。第二接合層可具有足夠的光學厚度,以讓由第一光學裝置折射後的電磁輻得以射聚焦到第二光學裝置。第二接合層也可經設計使以讓第一光學裝置折射後的電磁輻射得以聚焦在第二光學裝置的特定點上。例如,第二接合層可將第一光學裝置折射後的電磁輻射引導到第二光學裝置上的特定點,其中次波長結構位於第二光學裝置的特定點上。 Optical element 926 may be coupled with refractive element 930 or bonding layer 924 . In some implementations, the optical element 926 is coupled (or bonded) to the optical device by a second bonding element. For example, a second bonding layer can be formed on the second curved surface 934 of the optical device 910 , and the second optical element can be coupled to the second bonding layer opposite the first optical device 910 . The second bonding layer may have sufficient optical thickness to allow the electromagnetic radiation refracted by the first optical device to be focused to the second optical device. The second bonding layer can also be designed so that the electromagnetic radiation refracted by the first optical device is focused on a specific point on the second optical device. For example, the second bonding layer can direct electromagnetic radiation refracted by the first optical device to specific points on the second optical device, wherein the sub-wavelength structures are located at specific points on the second optical device.

在一些實施方案中,光學元件926嵌入折射元件930內。在一些示例中,光學元件926可嵌入折射元件930的一個或一個以上的子結構內。例如,一個或一個以上的子結構可填充有半導體材料,前述的半導體材料為提供感測、傳輸或吸收預定波長範圍的功能。 例如,可以將矽鍺填充至一個或多個子結構來用作光偵測器,以測量由光學裝置折射的一個或多個波長的光功率。矽鍺的成分可以從僅少量的鍺到100%的鍺。依據鍺的百分比,矽鍺的帶隙能量得以改變,而供用於檢測不同的波長。 In some embodiments, optical element 926 is embedded within refractive element 930. In some examples, optical element 926 may be embedded within one or more substructures of refractive element 930 . For example, one or more of the substructures may be filled with a semiconductor material that functions to sense, transmit, or absorb a predetermined range of wavelengths. For example, silicon germanium can be filled into one or more substructures for use as photodetectors to measure optical power at one or more wavelengths refracted by the optical device. The composition of silicon germanium can range from only a small amount of germanium to 100% germanium. Depending on the percentage of germanium, the bandgap energy of silicon germanium can be changed for detection of different wavelengths.

第一和/或第二曲面的曲率可藉由製作技術形成和/或由製程引起的應變來產生,如在圖5所述。第一和/或第二曲面的曲率也可藉由施加外部電場(調節載子濃度),施加機械力(藉由壓電效應)或使用MEM來動態地調整。圖6A至8B提供了動態地調整曲面的曲率的示例技術。 The curvature of the first and/or second curved surfaces may be created by fabrication techniques and/or by process induced strain, as described in FIG. 5 . The curvature of the first and/or second curved surfaces can also be dynamically adjusted by applying an external electric field (adjusting the carrier concentration), applying a mechanical force (via the piezoelectric effect) or using MEMs. 6A-8B provide example techniques for dynamically adjusting the curvature of a curved surface.

光子積體電路可包含本公開中揭示的一個或多個光學裝置。具有多個光學裝置的光子積體電路可用於例如影像傳感應用。圖4提供了具有多個折射元件的示例性光子積體電路,用於過濾不同波長的光。類似地,可以形成具有多個光學裝置的光子積體電路。每個光學裝置可具有一個或多個折射元件和/或一個或多個子結構,以過濾和/或折射不同波長的光。不同的光學裝置可具有不同尺寸或形式的折射元件。可藉由應用不同的光罩、沉積不同的材料、沉積不同厚度的層,和/或蝕刻不同圖案的光子晶體圖案、光柵或其它週期性子結構來製作不同的光學裝置。例如,兩個或更多個區域中的折射元件可具有相同或不同的曲率半徑。在一些實施方案中,光子積體電路的一個或一個以上的光學裝置可僅包含子結構,而不具有折射元件。子結構可以由不同的週期、尺寸、材料 形成。子結構可以形成在單個基板上。基板可為平面,或整體上具有曲率。在一些示例中,光子積體電路可以形成像素,並且每個光學裝置可以形成能夠透射特定波長範圍的子像素。 Photonic integrated circuits may include one or more of the optical devices disclosed in this disclosure. Photonic integrated circuits with multiple optical devices can be used, for example, in image sensing applications. Figure 4 provides an exemplary photonic integrated circuit with multiple refractive elements for filtering different wavelengths of light. Similarly, photonic integrated circuits with multiple optical devices can be formed. Each optical device may have one or more refractive elements and/or one or more substructures to filter and/or refract light of different wavelengths. Different optical devices may have different sizes or forms of refractive elements. Different optical devices can be fabricated by applying different masks, depositing different materials, depositing layers of different thicknesses, and/or etching different patterns of photonic crystal patterns, gratings, or other periodic substructures. For example, the refractive elements in two or more regions may have the same or different radii of curvature. In some implementations, one or more optical devices of a photonic integrated circuit may include only substructures without refractive elements. Substructures can be made of different periods, sizes, materials form. The substructures can be formed on a single substrate. The substrate may be planar, or have curvature as a whole. In some examples, the photonic integrated circuit may form a pixel, and each optical device may form a sub-pixel capable of transmitting a specific wavelength range.

圖10示出了製作光學裝置的示例性製程1000的流程圖。製程1000可用於製造圖1中的光學裝置910。製程1000可依所示順序執行,或者它也可以與所示順序不相同的順序執行。製程1000中的一些步驟是可選的。製程1000可由包含數據處理設備的系統執行,例如控制執行製作步驟的一個或多個設備的一個或多個計算機。 10 shows a flowchart of an exemplary process 1000 for fabricating an optical device. Process 1000 may be used to fabricate optical device 910 in FIG. 1 . Process 1000 may be performed in the order shown, or it may be performed in a different order than shown. Some steps in process 1000 are optional. Process 1000 may be performed by a system including data processing equipment, such as one or more computers controlling one or more equipment that performs fabrication steps.

可以使用一種或多種微影、蝕刻和/或薄膜沉積技術來執行製程1000。舉例而言,微影技術,例如投影微影、電子束微影、接觸微影或任何其它合適的微影技術,可用於形成光學裝置。蝕刻技術,例如乾式蝕刻、濕式蝕刻或任何其它合適的蝕刻技術,可用於製作光學裝置的部件。薄膜沉積技術,例如化學氣相沉積、電漿增強化學氣相沉積、濺射或任何其它合適的薄膜沉積技術可用於在光學裝置上沉積一層或多層材料。 Process 1000 may be performed using one or more lithography, etching, and/or thin film deposition techniques. For example, lithography techniques, such as projection lithography, electron beam lithography, contact lithography, or any other suitable lithography technique, may be used to form optical devices. Etching techniques, such as dry etching, wet etching, or any other suitable etching technique, can be used to fabricate components of the optical device. Thin film deposition techniques such as chemical vapor deposition, plasma enhanced chemical vapor deposition, sputtering, or any other suitable thin film deposition technique may be used to deposit one or more layers of material on the optical device.

根據製程1000,從半導體基板移除半導體材料以形成第一曲面(1002)。第一曲面形成光學裝置的折射元件(例如,圖9中的折射元件930)的表面。例如,可以蝕刻基板902以形成第一曲面904。可依據預定的曲率半徑形成第一曲面。曲率半徑可取決於半導體材料的折射率和/或光學裝置所需的等效折射率。半導體基板的示例包含,但不限於,矽晶圓或矽覆絕緣體晶圓。可以使用灰階光 罩來形成第一曲面。第一曲面也可以由製程引起的應變來形成。第一曲面的曲率還可以藉由施加外部電場、施加機械力和/或使用MEMS來動態地調整。 According to process 1000, semiconductor material is removed from a semiconductor substrate to form a first curved surface (1002). The first curved surface forms the surface of a refractive element of the optical device (eg, refractive element 930 in Figure 9). For example, the substrate 902 may be etched to form the first curved surface 904 . The first curved surface may be formed according to a predetermined radius of curvature. The radius of curvature may depend on the refractive index of the semiconductor material and/or the equivalent refractive index required by the optical device. Examples of semiconductor substrates include, but are not limited to, silicon wafers or silicon-on-insulator wafers. Grayscale light can be used cover to form the first curved surface. The first curved surface may also be formed by process induced strain. The curvature of the first curved surface can also be dynamically adjusted by applying an external electric field, applying mechanical force, and/or using MEMS.

接合層形成在第一層(1004)上。例如,可藉由薄膜沉積技術將接合層沉積在第一層上。例如,接合層924沉積在圖9中的結構908的第一曲面904上。接合層的光學厚度可對應於光學器件的折射元件的焦點。例如,可設定接合層的折射率和/或厚度,使得光學裝置將折射的電磁輻射聚焦(或散焦)在預定的點中。 A bonding layer is formed on the first layer (1004). For example, a bonding layer can be deposited on the first layer by thin film deposition techniques. For example, bonding layer 924 is deposited on first curved surface 904 of structure 908 in FIG. 9 . The optical thickness of the bonding layer may correspond to the focal point of the refractive element of the optical device. For example, the refractive index and/or thickness of the bonding layer can be set such that the optical device focuses (or defocuss) the refracted electromagnetic radiation in a predetermined point.

從半導體基板去除半導體材料以形成第二曲面(1006)。例如,蝕刻結構908中的半導體材料922以在光學裝置910中形成第二曲面934。第二曲面與第一曲面可以相同或不相同的技術形成。第二曲面可藉由灰階光罩或藉由製程引起的應變而形成。可依預定的曲率半徑形成第二曲面。曲率半徑可取決於半導體材料的折射率和/或光學裝置的所需等效折射率。藉由施加外部電場、施加機械力和/或使用MEMS,可以動態地調整第二曲面的曲率。 Semiconductor material is removed from the semiconductor substrate to form a second curved surface (1006). For example, semiconductor material 922 in structure 908 is etched to form second curved surface 934 in optical device 910 . The second curved surface and the first curved surface may be formed by the same or different techniques. The second curved surface can be formed by a grayscale mask or by process induced strain. The second curved surface can be formed according to a predetermined radius of curvature. The radius of curvature may depend on the refractive index of the semiconductor material and/or the desired equivalent refractive index of the optical device. The curvature of the second curved surface can be dynamically adjusted by applying an external electric field, applying mechanical force, and/or using MEMS.

第一曲面可對稱於第二曲表,或者第一曲面和第二曲面可具有不同的形狀。第一和第二曲面可具有相同或不相同的焦距。第一和第二曲面形成光學裝置的折射元件的兩個表面。在一些實施方案中,折射元件經設定使具有預定焦距。在一些示例中,第一和/或第二曲面的曲率半徑取決於折射元件的焦距。 The first curved surface may be symmetrical to the second curved surface, or the first curved surface and the second curved surface may have different shapes. The first and second curved surfaces may or may not have the same focal length. The first and second curved surfaces form two surfaces of a refractive element of the optical device. In some implementations, the refractive element is set to have a predetermined focal length. In some examples, the radius of curvature of the first and/or second curved surfaces depends on the focal length of the refractive element.

從第一和/或第二曲面選擇性地去除半導體材料以形成子結構(1008)。例如,藉由蝕刻折射元件101的選定區域,以在折射元件101上形成子結構105。一組子結構可呈周期性地配置。兩個或更多個子結構可具有不同的形狀和/或尺寸。例如,週期性子結構125具有與週期性子結構127不同的尺寸。一個或多個子結構可具有至少一個次波長維度。次波長維度小於形成折射元件的半導體材料的帶隙波長。例如,子結構127可以具有次波長直徑。一個或多個子結構可填充有與折射元件的半導體材料不相同的材料。對於導波模態共振效應,填充材料的折射率可高於折射元件的折射率。 Semiconductor material is selectively removed from the first and/or second curved surfaces to form substructures (1008). For example, the substructure 105 is formed on the refractive element 101 by etching selected areas of the refractive element 101 . A set of substructures may be configured periodically. The two or more substructures may have different shapes and/or sizes. For example, periodic substructure 125 has a different size than periodic substructure 127 . One or more of the substructures may have at least one sub-wavelength dimension. The sub-wavelength dimension is smaller than the bandgap wavelength of the semiconductor material forming the refractive element. For example, the substructures 127 may have sub-wavelength diameters. One or more of the substructures may be filled with a different material than the semiconductor material of the refractive element. For guided wave modal resonance effects, the index of refraction of the filler material may be higher than the index of refraction of the refractive element.

100:光子積體電路 100: Photonic Integrated Circuits

101:折射元件 101: Refractive element

103:表面 103: Surface

105:週期性結構 105: Periodic Structure

107:光學介質 107: Optical Media

111:光 111: Light

113:聚焦光束 113: Focus beam

119:外部介質 119: External medium

Claims (20)

一種製造光學裝置的方法,包含:從一半導體基板移除半導體材料以形成該光學裝置的一第一曲面,該半導體基板具有一帶隙波長,該帶隙波長關聯於該半導體材料的一帶隙能量;形成一接合層於該第一曲面,其中形成該接合層包含沉積接合材料於該第一曲面;從該半導體基板移除半導體材料以形成該光學裝置的一第二曲面,該第二曲面相對於該光學裝置的該第一曲面;以及選擇性的從該光學裝置的該第一曲面及該第二曲面中的一者移除半導體材料以形成一或多個次波長結構,其中該等次波長結構中的至少一者具有小於該半導體基板的該帶隙波長的至少一尺寸,其中該光學裝置被配置用於折射在一第一波長範圍的入射電磁輻射,和/或過濾在一第二波長範圍的電磁輻射,該第一波長範圍是大於該帶隙波長的紅外波長,該第二波長範圍小於該帶隙波長;其中該半導體材料的帶隙能量為1.2電子伏特至1.7電子伏特。 A method of fabricating an optical device, comprising: removing semiconductor material from a semiconductor substrate to form a first curved surface of the optical device, the semiconductor substrate having a bandgap wavelength, the bandgap wavelength being associated with a bandgap energy of the semiconductor material; forming a bonding layer on the first curved surface, wherein forming the bonding layer includes depositing bonding material on the first curved surface; removing the semiconductor material from the semiconductor substrate to form a second curved surface of the optical device, the second curved surface is opposite to the first curved surface of the optical device; and selectively removing semiconductor material from one of the first curved surface and the second curved surface of the optical device to form one or more sub-wavelength structures, wherein the sub-wavelength At least one of the structures has at least one dimension smaller than the bandgap wavelength of the semiconductor substrate, wherein the optical device is configured to refract incident electromagnetic radiation at a first wavelength range, and/or filter a second wavelength range of electromagnetic radiation, the first wavelength range is infrared wavelengths greater than the bandgap wavelength, and the second wavelength range is less than the bandgap wavelength; wherein the semiconductor material has a bandgap energy of 1.2 electron volts to 1.7 electron volts. 如請求項第1項所述的方法,其中該第一波長範圍從800奈米至2000奈米。 The method of claim 1, wherein the first wavelength ranges from 800 nm to 2000 nm. 如請求項第1項所述的方法,其中該第二波長範圍從400奈米至800奈米。 The method of claim 1, wherein the second wavelength ranges from 400 nm to 800 nm. 如請求項第1項所述的方法,其中該光學裝置為一透鏡。 The method of claim 1, wherein the optical device is a lens. 如請求項第1項所述的方法,更包含設置相對於該接合層的一光學元件,使該光學元件接收由該光學裝置折射的電磁輻射。 The method of claim 1, further comprising disposing an optical element relative to the bonding layer so that the optical element receives electromagnetic radiation refracted by the optical device. 如請求項第5項所述的方法,其中該光學元件為一主動元件,被配置用於調整第一波長範圍和/或第二波長範圍,其中調整包含吸收或發射對應於調整波長範圍內的電磁輻射。 The method of claim 5, wherein the optical element is an active element configured to adjust the first wavelength range and/or the second wavelength range, wherein the adjustment comprises absorption or emission corresponding to adjusting the wavelength in the wavelength range Electromagnetic radiation. 如請求項第5項所述的方法,其中該光學元件選自一光偵測器、一感測器、一發光二極體及一雷射所組成的群組。 The method of claim 5, wherein the optical element is selected from the group consisting of a photodetector, a sensor, a light emitting diode and a laser. 如請求項第5項所述的方法,其中該光學元件包含矽鍺。 The method of claim 5, wherein the optical element comprises silicon germanium. 如請求項第1項所述的方法,更包含:在該光學裝置的該第二曲面形成一或多個結構,所述的一或多個結構形成一光學元件,該光學元件選自一光偵測器、一感測器、一發光二極體及一雷射所組成的群組。 The method of claim 1, further comprising: forming one or more structures on the second curved surface of the optical device, the one or more structures forming an optical element, the optical element being selected from a light A group consisting of a detector, a sensor, a light emitting diode and a laser. 如請求項第1項所述的方法,其中該光學裝置為一第一光學裝置,該接合層為一第一接合層,該方法更包含:藉由沉積結合材料於該第二曲面,以在該光學裝置的該第二曲面形成一第二接合層;以及耦接一第二光學裝置至該第二接合層並相對於該第一光學裝置;其中,該第一光學裝置及該第二光學裝置被配置以共同折射具有一第三波長範圍的入射電磁輻射,和/或過濾具有一第四波長範圍的電磁輻射,其中該第三波長範圍為該第一波長範圍的一子範圍,和/或該第四波長範圍為該第二波長範圍的一子範圍。 The method of claim 1, wherein the optical device is a first optical device, the bonding layer is a first bonding layer, and the method further comprises: depositing a bonding material on the second curved surface to The second curved surface of the optical device forms a second bonding layer; and a second optical device is coupled to the second bonding layer and is opposite to the first optical device; wherein, the first optical device and the second optical device The device is configured to collectively refract incident electromagnetic radiation having a third wavelength range, and/or filter electromagnetic radiation having a fourth wavelength range, wherein the third wavelength range is a sub-range of the first wavelength range, and/or Or the fourth wavelength range is a sub-range of the second wavelength range. 如請求項第10項所述的方法,其中該第二光學裝置包含至少一曲面,包含一或多個次波長結構,其中至少一次波長結構具有小於該半導體結構的帶隙波長的至少一尺寸。 The method of claim 10, wherein the second optical device includes at least one curved surface including one or more sub-wavelength structures, wherein the at least sub-wavelength structures have at least one dimension that is smaller than a bandgap wavelength of the semiconductor structure. 如請求項第10項所述的方法,其中該第二接合層具有一光學厚度,該光學厚度足以使該第一光學裝置折射的電磁輻射聚焦於該第二光學裝置。 The method of claim 10, wherein the second bonding layer has an optical thickness sufficient to focus electromagnetic radiation refracted by the first optical device to the second optical device. 如請求項第1項所述的方法,其中該第二曲面具有相同於該第一曲面的曲率半徑。 The method of claim 1, wherein the second curved surface has the same radius of curvature as the first curved surface. 如請求項第1項所述的方法,其中該第一曲面及該第二曲面中的至少一者利用一灰階光罩來形成。 The method of claim 1, wherein at least one of the first curved surface and the second curved surface is formed using a grayscale mask. 如請求項第1項所述的方法,其中從該半導體基板移除該半導體材料包含蝕刻該半導體基板。 The method of claim 1, wherein removing the semiconductor material from the semiconductor substrate comprises etching the semiconductor substrate. 如請求項第1項所述的方法,其中所述的一或多個次波長結構包含多數週期排列之次波長結構。 The method of claim 1, wherein the one or more subwavelength structures comprise a plurality of periodically arranged subwavelength structures. 如請求項第1項所述的方法,其中該接合層包含一接合材料,選自一氧化物、一氮化物和一金屬所構成的群組。 The method of claim 1, wherein the bonding layer comprises a bonding material selected from the group consisting of an oxide, a nitride and a metal. 如請求項第1項所述的方法,其中形成該接合層更包含藉由化學機械拋光平坦化該接合層。 The method of claim 1, wherein forming the bonding layer further comprises planarizing the bonding layer by chemical mechanical polishing. 如請求項第1項所述的方法,其中該光學裝置具有一等效折射率,該等效折射率可回應施加的電場而動態調整。 The method of claim 1, wherein the optical device has an equivalent refractive index that is dynamically adjustable in response to an applied electric field. 如請求項第1項所述的方法,其中該接合層具有對應於該光學裝置的一焦距之一光學厚度。 The method of claim 1, wherein the bonding layer has an optical thickness corresponding to a focal length of the optical device.
TW107115768A 2017-05-09 2018-05-09 Optical device fabrication method TWI759480B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762503922P 2017-05-09 2017-05-09
US62/503,922 2017-05-09

Publications (2)

Publication Number Publication Date
TW201909439A TW201909439A (en) 2019-03-01
TWI759480B true TWI759480B (en) 2022-04-01

Family

ID=64104957

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107115768A TWI759480B (en) 2017-05-09 2018-05-09 Optical device fabrication method

Country Status (3)

Country Link
CN (1) CN110945654A (en)
TW (1) TWI759480B (en)
WO (1) WO2018208964A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220137259A1 (en) * 2019-03-29 2022-05-05 Sony Group Corporation Metalens portion, electronic device and method
CN111477703B (en) * 2020-04-14 2022-01-18 北京工业大学 Large-aperture high-speed photoelectric detector
US11704929B2 (en) 2020-07-06 2023-07-18 Visera Technologies Company Limited Optical structure and method of fabricating the same
US11923392B2 (en) * 2021-01-04 2024-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Enhanced design for image sensing technology

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315521A (en) * 2002-04-23 2003-11-06 Konica Minolta Holdings Inc Optical element, substrate, metallic mold therefor, optical pickup device, method for working optical element, substrate worked with the method and electron beam lithographic equipment
JP2007058100A (en) * 2005-08-26 2007-03-08 Ricoh Co Ltd Optical element, light source unit, optical scanner, and image forming apparatus
US20080259981A1 (en) * 2007-04-19 2008-10-23 Shih-Yuan Wang Photonic device including semiconductor structure having doped region with array of subwavelength recesses
CN102066968A (en) * 2008-06-16 2011-05-18 皇家飞利浦电子股份有限公司 Spectral detector with angular resolution using refractive and reflective structures
CN102460253A (en) * 2009-04-17 2012-05-16 希尔莱特有限责任公司 Evanescent electromagnetic wave conversion apparatus and methods
US20130128334A1 (en) * 2011-11-18 2013-05-23 Vuzix Corporation Beam Steering Device
EP2899573A2 (en) * 2014-01-27 2015-07-29 Forelux Inc. Photonic apparatus with periodic structures

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727863B2 (en) * 2001-10-26 2004-04-27 The Hong Kong University Of Science And Technology Planar band gap materials
US7598527B2 (en) * 2004-01-20 2009-10-06 Binoptics Corporation Monitoring photodetector for integrated photonic devices
US7622367B1 (en) * 2004-06-04 2009-11-24 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
WO2007146860A1 (en) * 2006-06-12 2007-12-21 3M Innovative Properties Company Led device with re-emitting semiconductor construction and optical element
KR101706915B1 (en) * 2009-05-12 2017-02-15 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
JP5569153B2 (en) * 2009-09-02 2014-08-13 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
CN104898269B (en) * 2014-01-27 2019-10-25 光引研创股份有限公司 Optical devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315521A (en) * 2002-04-23 2003-11-06 Konica Minolta Holdings Inc Optical element, substrate, metallic mold therefor, optical pickup device, method for working optical element, substrate worked with the method and electron beam lithographic equipment
JP2007058100A (en) * 2005-08-26 2007-03-08 Ricoh Co Ltd Optical element, light source unit, optical scanner, and image forming apparatus
US20080259981A1 (en) * 2007-04-19 2008-10-23 Shih-Yuan Wang Photonic device including semiconductor structure having doped region with array of subwavelength recesses
CN102066968A (en) * 2008-06-16 2011-05-18 皇家飞利浦电子股份有限公司 Spectral detector with angular resolution using refractive and reflective structures
CN102460253A (en) * 2009-04-17 2012-05-16 希尔莱特有限责任公司 Evanescent electromagnetic wave conversion apparatus and methods
US20130128334A1 (en) * 2011-11-18 2013-05-23 Vuzix Corporation Beam Steering Device
EP2899573A2 (en) * 2014-01-27 2015-07-29 Forelux Inc. Photonic apparatus with periodic structures
US20150212242A1 (en) * 2014-01-27 2015-07-30 Forelux Inc. Photonic apparatus with periodic structures

Also Published As

Publication number Publication date
CN110945654A (en) 2020-03-31
TW201909439A (en) 2019-03-01
WO2018208964A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
EP2899573B1 (en) Photonic apparatus comprising photonic integrated circuit with periodic structures
TWI759480B (en) Optical device fabrication method
US20220299760A1 (en) Device components formed of geometric structures
US10677965B2 (en) Optical apparatus for non-visible light applications
US7489846B2 (en) Photonic crystal sensors
KR101593506B1 (en) Sub-wavelength grating-based optical elements
US9116039B2 (en) Sensor including dielectric metamaterial microarray
JP5406387B2 (en) Optical device
EP2803123B1 (en) Integrated sub-wavelength grating system
US9726794B2 (en) High index contrast grating structure for light manipulation and related method
KR20200129034A (en) Meta lens and optical apparatus including the same
CN104898269B (en) Optical devices
JP2018533812A (en) Structured silicon based thermal emitter
JP6809717B2 (en) Solid photodetector
US10795234B2 (en) MEMS actuated high index optical antennas and metafilms for light manipulation and control
JP2017049487A (en) Optical element and manufacturing method thereof
Dubey Passive and Active Optical Components for Optoelectronics Based on Porous Silicon
Chang et al. Silicon-based micro and subwavelength optical elements and applications
Dubey Optical Components for Optoelectronics Based on Porous Silicon