TWI758008B - Porous substrate structure and manufacturing method thereof - Google Patents

Porous substrate structure and manufacturing method thereof Download PDF

Info

Publication number
TWI758008B
TWI758008B TW109143994A TW109143994A TWI758008B TW I758008 B TWI758008 B TW I758008B TW 109143994 A TW109143994 A TW 109143994A TW 109143994 A TW109143994 A TW 109143994A TW I758008 B TWI758008 B TW I758008B
Authority
TW
Taiwan
Prior art keywords
layer
oxide layer
porous substrate
substrate structure
oxide
Prior art date
Application number
TW109143994A
Other languages
Chinese (zh)
Other versions
TW202223155A (en
Inventor
黃軍儒
紀岩勳
張秉宏
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW109143994A priority Critical patent/TWI758008B/en
Priority to CN202110053405.1A priority patent/CN114618323A/en
Priority to JP2021076235A priority patent/JP2022094280A/en
Application granted granted Critical
Publication of TWI758008B publication Critical patent/TWI758008B/en
Publication of TW202223155A publication Critical patent/TW202223155A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a porous substrate structure and a manufacturing method thereof. The porous substrate structure includes a substrate, an anodic aluminum oxide layer and a double metal oxide layer. The substrate has a plurality of pores. The anodic aluminum oxide layer is disposed on the substrate. The double metal oxide layer is disposed on the anodic aluminum oxide layer.

Description

多孔基材結構及其製造方法Porous substrate structure and method of making the same

本揭露是有關於一種多孔基材結構及其製造方法。The present disclosure relates to a porous substrate structure and a manufacturing method thereof.

由於鈀膜在氫氣質傳上的特殊性,因此目前大多將鈀膜形成於多孔基材的表面上進行濾氫處理。藉由氫分子在鈀膜的表面解離並穿透膜層,可將氫分子和其他氣體分子分離。一般來說,採用鈀膜的厚度來作為濾氫性能的指標。也就是說,為了增加鈀膜的氫氣滲透率,必須降低鈀膜的厚度,且必須使膜層的缺陷盡可能地減少以提高鈀膜的緻密度。Due to the particularity of palladium membranes in the transmission of hydrogen gas, palladium membranes are mostly formed on the surface of porous substrates for hydrogen filtration treatment. By dissociating hydrogen molecules on the surface of the palladium membrane and penetrating the membrane layer, hydrogen molecules can be separated from other gas molecules. In general, the thickness of the palladium membrane is used as an indicator of the hydrogen filtration performance. That is to say, in order to increase the hydrogen permeability of the palladium film, the thickness of the palladium film must be reduced, and the defects of the film layer must be reduced as much as possible to improve the density of the palladium film.

此外,藉由對多孔基材的表面進行修飾(例如形成修飾層),可減少具有所需緻密度的鈀膜厚度。然而,若多孔基材上修飾層厚度過大,可能造成修飾層附著力不足而自多孔基材剝離的問題。In addition, by modifying the surface of the porous substrate (eg, forming a modified layer), the thickness of the palladium film with the desired density can be reduced. However, if the thickness of the modified layer on the porous substrate is too large, the problem of insufficient adhesion of the modified layer and peeling from the porous substrate may occur.

本揭露提供一種多孔基材結構,其中基材與修飾層(雙金屬氧化物層)之間設置有陽極氧化鋁層。The present disclosure provides a porous substrate structure, wherein an anodized aluminum oxide layer is disposed between the substrate and the modification layer (bimetal oxide layer).

本揭露提供一種多孔基材結構的製造方法,其中陽極氧化鋁層形成於基材與修飾層(雙金屬氧化物層)之間。The present disclosure provides a method for manufacturing a porous substrate structure, wherein an anodic aluminum oxide layer is formed between the substrate and a modification layer (a double metal oxide layer).

本揭露的多孔基材結構包括基材、陽極氧化鋁層以及雙金屬氧化物層。所述基材具有多個孔洞。所述陽極氧化鋁層設置於所述基材上。所述雙金屬氧化物層設置於所述陽極氧化鋁層上。The porous substrate structure of the present disclosure includes a substrate, an anodized aluminum oxide layer, and a bimetallic oxide layer. The substrate has a plurality of holes. The anodic aluminum oxide layer is disposed on the substrate. The double metal oxide layer is disposed on the anodized aluminum oxide layer.

本揭露的多孔基材結構的製造方法包括以下步驟。於基材上形成陽極氧化鋁層,其中所述基材具有多個孔洞。於所述陽極氧化鋁層上形成雙金屬氧化物層。The manufacturing method of the porous substrate structure of the present disclosure includes the following steps. An anodized aluminum oxide layer is formed on a substrate, wherein the substrate has a plurality of pores. A bimetallic oxide layer is formed on the anodic aluminum oxide layer.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合附圖作詳細說明如下。In order to make the above-mentioned features and advantages of the present disclosure more obvious and easy to understand, the following embodiments are given and described in detail with reference to the accompanying drawings as follows.

下文列舉實施例並配合所附圖來進行詳細地說明,但所提供的實施例並非用以限制本揭露所涵蓋的範圍。此外,附圖僅以說明為目的,並未依照原尺寸作圖。為了方便理解,在下述說明中相同的元件將以相同的符號標示來說明。The following examples are described in detail with the accompanying drawings, but the provided examples are not intended to limit the scope of the present disclosure. In addition, the drawings are for illustrative purposes only, and are not drawn in full scale. In order to facilitate understanding, the same elements will be described with the same symbols in the following description.

關於本文中所提到「包含」、「包括」、「具有」等的用語均為開放性的用語,也就是指「包含但不限於」。The terms "including", "including", "having", etc. mentioned in this article are all open-ended terms, that is, "including but not limited to".

此外,在本文中,由「一數值至另一數值」表示的範圍是一種避免在說明書中逐一列舉所述範圍中的所有數值的概要性表示方式。因此,某一特定數值範圍的記載涵蓋了所述數值範圍內的任意數值,以及涵蓋由所述數值範圍內的任意數值界定出的較小數值範圍。Also, herein, a range represented by "one value to another value" is a general representation that avoids listing all the values in the range in the specification. Thus, the recitation of a particular numerical range includes any number within that numerical range as well as any smaller numerical range bounded by any number within that numerical range.

另外,文中所提到「上」、「下」等的方向性用語,僅是用以參考圖式的方向,並非用以限制本揭露。In addition, directional terms such as "upper" and "lower" mentioned in the text are only used to refer to the direction of the drawings, and are not used to limit the present disclosure.

圖1A至圖1D為本揭露的實施例的多孔基材結構的製造流程剖面示意圖。本揭露的實施例的多孔基材結構允許氣體穿透,以應用於例如分離氣體等的氣體處理(例如濾氫處理)。1A to 1D are schematic cross-sectional views of the manufacturing process of the porous substrate structure according to an embodiment of the disclosure. The porous substrate structures of embodiments of the present disclosure allow gas penetration for applications in gas treatment (eg, hydrogen filtration) such as separation of gases.

首先,請參照圖1A,提供基材100。在本實施例中,基材100的材料為多孔不鏽鋼,但本揭露不限於此。在其他實施例中,基材100的材料可為多孔陶瓷。基材100具有多個孔洞100a,以供氣體穿透。孔洞100a的孔徑例如介於1μm至30 μm之間。基材100可為管狀基材或片狀基材,本揭露不對此進行限定。First, referring to FIG. 1A , a substrate 100 is provided. In this embodiment, the material of the substrate 100 is porous stainless steel, but the present disclosure is not limited thereto. In other embodiments, the material of the substrate 100 may be porous ceramics. The substrate 100 has a plurality of holes 100a for gas to penetrate. The diameter of the hole 100a is, for example, between 1 μm and 30 μm. The substrate 100 may be a tubular substrate or a sheet substrate, which is not limited in the present disclosure.

接著,視實際需求,可於孔洞100a中填入填充粒子102。如此一來,當孔洞100a的孔徑相對較大時,將填充粒子102填充於孔洞100a中可使孔洞100a的孔徑縮小,可避免後續形成於基材100上的膜層陷入孔洞100a中,造成膜層的表面不平整或孔洞100a堵塞的問題。此外,將填充粒子102填充於孔洞100a中可改善孔洞100a的孔徑不均一的問題。Then, according to actual requirements, filling particles 102 may be filled in the holes 100a. In this way, when the pore size of the holes 100a is relatively large, filling the filling particles 102 in the holes 100a can reduce the pore size of the holes 100a, which can prevent the film layer formed on the substrate 100 from sinking into the holes 100a, causing the film The surface of the layer is uneven or the hole 100a is blocked. In addition, filling the filling particles 102 in the holes 100a can improve the problem of uneven pore size of the holes 100a.

填充粒子102的材料例如為氧化鋁、氧化矽、氧化鈣、氧化鈰、氧化鈦、氧化鉻、氧化錳、氧化鐵、氧化鎳、氧化銅、氧化鋅、氧化鋯或上述之組合。在填充粒子102不會將孔洞100a填滿的前提下,本揭露不對填充粒子102的粒徑進行限定。The material of the filling particles 102 is, for example, aluminum oxide, silicon oxide, calcium oxide, cerium oxide, titanium oxide, chromium oxide, manganese oxide, iron oxide, nickel oxide, copper oxide, zinc oxide, zirconium oxide, or a combination thereof. On the premise that the filling particles 102 will not fill the holes 100a, the present disclosure does not limit the particle size of the filling particles 102.

另外,當孔洞100a的孔徑相對較小時,由於後續形成於基材100上的膜層不容易陷入孔洞100a中,因此可不需要將填充粒子102填充於孔洞100a中。In addition, when the pore size of the holes 100a is relatively small, since the film layer formed on the substrate 100 is not easily trapped in the holes 100a, the filling particles 102 do not need to be filled in the holes 100a.

接著,請參照圖1B,於基材100上形成鋁層104。鋁層104的厚度例如不超過3 μm。鋁層104的形成方法例如是真空蒸鍍或無電鍍。Next, referring to FIG. 1B , an aluminum layer 104 is formed on the substrate 100 . The thickness of the aluminum layer 104 is, for example, not more than 3 μm. The formation method of the aluminum layer 104 is, for example, vacuum evaporation or electroless plating.

然後,請參照圖1C,對鋁層104進行陽極處理,以形成陽極氧化鋁(anodic aluminum oxide,AAO)層106。在所述陽極處理之後,所形成的陽極氧化鋁層106中具有多個穿透陽極氧化鋁層106的孔洞106a,且這些孔洞106a暴露出基材100以及孔洞100a。以供氣體穿透。在本揭露的實施例中,由於鋁層104的厚度例如不超過3 μm,因此在進行陽極處理而形成陽極氧化鋁層106之後,孔洞106a能夠穿透陽極氧化鋁層106。當鋁層104的厚度超過3 μm時,所形成的孔洞106a無法穿透陽極氧化鋁層106。如此一來,氣體將無法穿透陽極氧化鋁層106以及基材100。Then, referring to FIG. 1C , the aluminum layer 104 is anodized to form an anodic aluminum oxide (AAO) layer 106 . After the anodic treatment, the formed anodic aluminum oxide layer 106 has a plurality of holes 106a penetrating the anodic aluminum oxide layer 106, and the holes 106a expose the substrate 100 and the holes 100a. for gas penetration. In the embodiment of the present disclosure, since the thickness of the aluminum layer 104 is not more than 3 μm, for example, after the anodized aluminum oxide layer 106 is formed by anodization, the holes 106 a can penetrate the anodized aluminum oxide layer 106 . When the thickness of the aluminum layer 104 exceeds 3 μm, the formed holes 106 a cannot penetrate the anodized aluminum layer 106 . As a result, the gas will not be able to penetrate the anodized aluminum layer 106 and the substrate 100 .

此外,在進行陽極處理之後,鋁層104轉變為具有平整的表面以及高孔隙率的陽極氧化鋁層106。因此,陽極氧化鋁層106可作為基材100的修飾層,以提高後續形成於其上的膜層的平整度。在本實施例中,當孔洞100a的孔徑相對較大時,由於有填充粒子102填充於孔洞100a中而避免了鋁層104陷入孔洞100a中,因此鋁層104可具有平整的表面且不會造成孔洞100a堵塞。如此一來,所形成的陽極氧化鋁層106可具有更高的表面平整度,且氣體可有效地穿透陽極氧化鋁層106以及基材100。Furthermore, after anodizing, the aluminum layer 104 is transformed into an anodized aluminum layer 106 with a flat surface and high porosity. Therefore, the anodized aluminum oxide layer 106 can be used as a modification layer of the substrate 100 to improve the flatness of the subsequent film layers formed thereon. In this embodiment, when the hole diameter of the hole 100a is relatively large, the aluminum layer 104 can be prevented from sinking into the hole 100a because the filling particles 102 are filled in the hole 100a. Therefore, the aluminum layer 104 can have a flat surface without causing The hole 100a is blocked. In this way, the formed anodic aluminum oxide layer 106 can have higher surface flatness, and the gas can effectively penetrate the anodic aluminum oxide layer 106 and the substrate 100 .

接著,請參照圖1D,於陽極氧化鋁層106上形成雙金屬氧化物層108,以形成本揭露的實施例的多孔基材結構10。雙金屬氧化物層108中具有孔洞108a,以供氣體穿透。在本揭露的實施例中,雙金屬氧化物層108的材料包含雙金屬氧化物。在一實施例中,雙金屬氧化物可例如為鋰鋁氧化物。此外,在一些實施例中,雙金屬氧化物可為層狀雙金屬氧化物,其可由式1表示, [M II 1-xM III x]O y式1 其中M II為Mg 2+、Zn 2+、Fe 2+、Ni 2+、Co 2+、Cu 2+或Li +,M III為Al 3+、Cr 3+、Fe 3+或Sc 3+,x介於0.2至0.33之間,y介於0.7至2之間。此外,在本揭露的實施例中,雙金屬氧化物層108的形成方法例如先於陽極氧化鋁層106上形成雙金屬氫氧化物(layered double hydroxide,LDH)層(未繪示)。然後,對雙金屬氫氧化物層進行鍛燒處理,以得到雙金屬氧化物層。在陽極氧化鋁層106上形成雙金屬氫氧化物層的方法可例如為化學鍍、熱浸鍍、物理蒸鍍、化學蒸鍍、共沉法或水熱法,但不限定。雙金屬氫氧化物為雙金屬氧化物的前驅物,可經由高溫處理(例如鍛燒)轉化為雙金屬氧化物。此外,鍛燒處理的溫度約為300 oC至500 oC。 Next, referring to FIG. 1D , a double metal oxide layer 108 is formed on the anodic aluminum oxide layer 106 to form the porous substrate structure 10 of the embodiment of the present disclosure. There are holes 108a in the bimetal oxide layer 108 for gas to penetrate. In the embodiment of the present disclosure, the material of the double metal oxide layer 108 includes double metal oxide. In one embodiment, the bimetallic oxide may be, for example, lithium aluminum oxide. Furthermore, in some embodiments, the bimetallic oxide may be a layered bimetallic oxide, which may be represented by Formula 1, [M II 1-x M III x ]O y Formula 1 wherein M II is Mg 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , Cu 2+ or Li + , M III is Al 3+ , Cr 3+ , Fe 3+ or Sc 3+ , x is between 0.2 and 0.33, y is between 0.7 and 2. In addition, in the embodiment of the present disclosure, the method for forming the double metal oxide layer 108 is, for example, prior to forming a layered double hydroxide (LDH) layer (not shown) on the anodic aluminum oxide layer 106 . Then, the double metal hydroxide layer is calcined to obtain a double metal oxide layer. The method of forming the double metal hydroxide layer on the anodic aluminum oxide layer 106 may be, for example, but not limited to, electroless plating, hot dipping, physical evaporation, chemical evaporation, co-deposition method or hydrothermal method. Bimetallic hydroxides are precursors to bimetallic oxides that can be converted to bimetallic oxides via high temperature treatment (eg, calcination). In addition, the temperature of the calcination treatment is about 300 o C to 500 o C.

在本揭露的實施例中,雙金屬氧化物層108的厚度小於3 μm。詳細地說,由於基材100上形成有陽極氧化鋁層106,因此可用較薄之雙金屬氧化物層即達到修飾效果,因而提高雙金屬氧化物層108在基材100上的附著力。如此一來,雙金屬氧化物層108的厚度可降低至小於3 μm,以避免為了提高表面平整度而厚度過大造成附著力不足,進而導致雙金屬氧化物層108剝離的問題。當雙金屬氧化物層的厚度降低,亦可提升氣體的通過量。In an embodiment of the present disclosure, the thickness of the double metal oxide layer 108 is less than 3 μm. In detail, since the anodized aluminum oxide layer 106 is formed on the substrate 100 , a thinner bimetallic oxide layer can be used to achieve the modification effect, thereby improving the adhesion of the bimetallic oxide layer 108 on the substrate 100 . In this way, the thickness of the double metal oxide layer 108 can be reduced to less than 3 μm, so as to avoid the problem of insufficient adhesion due to excessive thickness in order to improve the surface flatness, thereby leading to the peeling off of the double metal oxide layer 108 . When the thickness of the bimetallic oxide layer is reduced, the gas throughput can also be increased.

此外,由於陽極氧化鋁層106具有平整的表面,因此形成於陽極氧化鋁層106上的雙金屬氧化物層108也可具有平整的表面。如此一來,雙金屬氧化物層108可作為基材100的修飾層,且使得後續所形成的膜層具有較少的缺陷而有較高的緻密度。In addition, since the anodized aluminum oxide layer 106 has a flat surface, the bimetallic oxide layer 108 formed on the anodized aluminum oxide layer 106 can also have a flat surface. In this way, the double metal oxide layer 108 can be used as a modification layer of the substrate 100 , so that the subsequently formed film layer has fewer defects and higher density.

在本揭露的實施例中,多孔基材結構10包括具有孔洞100a的基材100、具有孔洞106a的陽極氧化鋁層106以及具有孔洞108a的雙金屬氧化物層108。因此,多孔基材結構10可允許氣體穿透,以應用於例如分離氣體等的氣體處理(例如濾氫處理)。以下對多孔基材結構10的結構與氣體穿透特性作進一步的說明。In an embodiment of the present disclosure, the porous substrate structure 10 includes a substrate 100 having pores 100a, an anodized aluminum oxide layer 106 having pores 106a, and a bimetal oxide layer 108 having pores 108a. Accordingly, the porous substrate structure 10 may allow gas penetration for applications in gas processing (eg, hydrogen filtration processing), such as separation of gas and the like. The structure and gas permeation characteristics of the porous substrate structure 10 will be further described below.

實施例:Example:

在多孔不鏽鋼管材(PSS,Pall Accusep filter, P/N: 7CC6L465236235SC02)表面的孔洞內填入氧化鋁粒子,其中氧化鋁粒子的平均粒徑為10 µm。接著,將填有氧化鋁粒子的不鏽鋼管管材置入真空蒸鍍機中進行表面蒸鍍。於腔體內的靶台上放置1 g鋁錠,以真空幫浦將腔體壓力抽至1×10 -4torr以下,開始旋轉待蒸鍍的不鏽鋼管材並加熱靶台,使其表面形成極薄(小於3 µm)的鋁層。接著,將鍍有鋁層的不鏽鋼管管材進行陽極處理,得到表面披覆有陽極氧化鋁層的不鏽鋼管管材。 The pores on the surface of the porous stainless steel pipe (PSS, Pall Accusep filter, P/N: 7CC6L465236235SC02) were filled with alumina particles, wherein the average particle size of the alumina particles was 10 µm. Next, the stainless steel pipe material filled with alumina particles was placed in a vacuum evaporation machine for surface evaporation. Place 1 g aluminum ingot on the target table in the chamber, pump the chamber pressure to below 1×10 -4 torr with a vacuum pump, start to rotate the stainless steel pipe to be evaporated and heat the target table to make the surface extremely thin (less than 3 µm) aluminum layer. Next, the stainless steel pipe material plated with the aluminum layer is anodized to obtain a stainless steel pipe material coated with an anodized aluminum layer on the surface.

將AlLi介金屬化合物(以AlLi介金屬化合物的總重量計,Li的含量約為18 wt.%至21 wt.%)粉末置入1000 mL的純水中,導入氮氣且曝氣攪拌,使大部分的AlLi介金屬化合物粉末與水反應而溶解。接著,過濾雜質,以得到澄清且含有Li +及Al 3+的鹼性溶液(pH值約為11.0至12.3)。 The AlLi intermetallic compound (based on the total weight of the AlLi intermetallic compound, the Li content is about 18 wt.% to 21 wt.%) powder is placed in 1000 mL of pure water, and nitrogen is introduced and aerated and stirred to make the large Part of the AlLi intermetallic compound powder reacts with water and dissolves. Next, the impurities were filtered to obtain a clear alkaline solution containing Li + and Al 3+ (pH about 11.0 to 12.3).

將表面披覆有陽極氧化鋁層的不鏽鋼管管材浸置於含有Li +及Al 3+的鹼性溶液中約2小時後進行乾燥,使得連續相的層狀含有鋰的鋁氫氧化物層披覆於陽極氧化鋁層上。接著,在500℃下對不鏽鋼管管材進行鍛燒兩小時,在陽極氧化鋁層上形成層狀鋰鋁氧化物層,其中鋰鋁氧化物層的厚度約為2.9 μm,得到本實施例的多孔基材結構。 The surface of the stainless steel pipe coated with anodized aluminum layer was immersed in an alkaline solution containing Li + and Al 3 + for about 2 hours, and then dried, so that the continuous phase layered aluminum hydroxide layer containing lithium was covered. Overlaid on the anodized aluminum layer. Next, the stainless steel pipe was calcined at 500° C. for two hours to form a layered lithium-aluminum oxide layer on the anodic aluminum oxide layer, wherein the thickness of the lithium-aluminum oxide layer was about 2.9 μm. Substrate structure.

比較例Comparative example

除了未形成陽極氧化鋁層之外,以與實施例相同的方式形成多孔基材結構,其中鋰鋁氧化物層的厚度約為6.4 μm。A porous substrate structure was formed in the same manner as in the Example except that the anodic aluminum oxide layer was not formed, wherein the thickness of the lithium aluminum oxide layer was about 6.4 μm.

圖2A為比較例的多孔基材結構截面影像圖。圖2B為本揭露的實施例的多孔基材結構截面影像圖。由圖2A與圖2B可清楚看出,當雙金屬氧化物層與基材之間設置有陽極氧化鋁層時,雙金屬氧化物層可在符合所需平整度(表面上的最大落差為2.8 μm)的條件下具有較薄的厚度,且因此可有效地避免修飾層(雙金屬氧化物層)自基材剝離。FIG. 2A is a cross-sectional image of a porous substrate structure of a comparative example. FIG. 2B is a cross-sectional image view of a porous substrate structure according to an embodiment of the disclosure. It can be clearly seen from FIG. 2A and FIG. 2B that when an anodized aluminum oxide layer is arranged between the double metal oxide layer and the substrate, the double metal oxide layer can meet the required flatness (the maximum drop on the surface is 2.8). μm) has a thinner thickness, and thus can effectively prevent the modification layer (double metal oxide layer) from peeling off the substrate.

此外,將本揭露的實施例的多孔基材結構與比較例的多孔基材結構(金屬氧化物層直接形成於基材上)進行氣體穿透率測試,結果如表1所示。In addition, the porous substrate structure of the embodiment of the present disclosure and the porous substrate structure of the comparative example (the metal oxide layer is directly formed on the substrate) were tested for gas permeability, and the results are shown in Table 1.

氣體穿透率測試:Gas Penetration Test:

將待量測的多孔基材結構置於測試腔體中,然後將氮氣通入測試腔體,並由壓力計來監控壓力數值。使用流量計來量測從測試腔體的開口端流出的氮氣,並計算在特定壓力下的氮氣通量。The porous substrate structure to be measured is placed in the test chamber, then nitrogen gas is passed into the test chamber, and the pressure value is monitored by a pressure gauge. A flow meter was used to measure the nitrogen flow from the open end of the test chamber and to calculate the nitrogen flux at a specific pressure.

表1   氮氣通量(m 3/m 2-hr-atm) 實施例 107 比較例 85 Table 1 Nitrogen flux (m 3 /m 2 -hr-atm) Example 107 Comparative example 85

由圖2A、圖2B與表1可以清楚看出,在本揭露的實施例中,由於多孔基材與修飾層(雙金屬氧化物層)之間設置有陽極氧化鋁層,因此修飾層(雙金屬氧化物層)在具有相同平整度的條件下可具有較薄的厚度,且同時具有較高的氣體通量,亦即本揭露的實施例的多孔基材結構可具有較高的氣體滲透率。It can be clearly seen from FIG. 2A , FIG. 2B and Table 1 that in the embodiments of the present disclosure, since an anodized aluminum oxide layer is disposed between the porous substrate and the modification layer (dual metal oxide layer), the modification layer (dual metal oxide layer) The metal oxide layer) can have a thinner thickness under the condition of the same flatness, and at the same time have a higher gas flux, that is, the porous substrate structure of the embodiment of the present disclosure can have a higher gas permeability .

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視所附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed above with examples, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present disclosure. The scope of protection of the present disclosure shall be determined by the scope of the appended patent application.

10:多孔基材結構 100:基材 100a、106a、108a:孔洞 102:填充粒子 104:鋁層 106:陽極氧化鋁層 108:雙金屬氧化物層 10: Porous substrate structure 100: Substrate 100a, 106a, 108a: holes 102: Fill Particles 104: Aluminum layer 106: Anodized aluminum layer 108: Double metal oxide layer

圖1A至圖1D為本揭露的實施例的多孔基材結構的製造流程剖面示意圖。 圖2A為雙金屬氧化物層直接形成於基材上的多孔基材結構的截面影像圖。 圖2B為本揭露的實施例的多孔基材結構的截面影像圖。 1A to 1D are schematic cross-sectional views of the manufacturing process of the porous substrate structure according to an embodiment of the disclosure. 2A is a cross-sectional image of a porous substrate structure in which a double metal oxide layer is directly formed on the substrate. 2B is a cross-sectional image view of the porous substrate structure of the disclosed embodiment.

10:多孔基材結構 10: Porous substrate structure

100:基材 100: Substrate

100a、106a、108a:孔洞 100a, 106a, 108a: holes

102:填充粒子 102: Fill Particles

106:陽極氧化鋁層 106: Anodized aluminum layer

108:雙金屬氧化物層 108: Double metal oxide layer

Claims (13)

一種多孔基材結構,包括:基材,具有多個孔洞;陽極氧化鋁層,設置於所述基材上,其中所述陽極氧化鋁層的厚度不超過3μm;以及雙金屬氧化物層,設置於所述陽極氧化鋁層上,其中所述雙金屬氧化物層包含由式1表示的層狀雙金屬氧化物,[MII 1-xMIII x]Oy 式1其中MII為Mg2+、Zn2+、Fe2+、Ni2+、Co2+、Cu2+或Li+,MIII為Al3+、Cr3+、Fe3+或Sc3+,x介於0.2至0.33之間,y介於0.7至2之間。 A porous substrate structure, comprising: a substrate having a plurality of holes; an anodized aluminum oxide layer disposed on the substrate, wherein the thickness of the anodized aluminum oxide layer is not more than 3 μm; and a bimetallic oxide layer disposed On the anodic aluminum oxide layer, wherein the bimetallic oxide layer comprises a layered bimetallic oxide represented by Formula 1, [M II 1-x M III x ]O y Formula 1 wherein M II is Mg 2 + , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , Cu 2+ or Li + , M III is Al 3+ , Cr 3+ , Fe 3+ or Sc 3+ , x is between 0.2 and 0.33 , y is between 0.7 and 2. 如請求項1所述的多孔基材結構,其中所述雙金屬氧化物層的厚度小於3μm。 The porous substrate structure of claim 1, wherein the thickness of the double metal oxide layer is less than 3 μm. 如請求項1所述的多孔基材結構,更包括配置於所述多個孔洞的填充粒子,所述填充粒子的材料包括氧化鋁、氧化矽、氧化鈣、氧化鈰、氧化鈦、氧化鉻、氧化錳、氧化鐵、氧化鎳、氧化銅、氧化鋅、氧化鋯或上述之組合。 The porous substrate structure according to claim 1, further comprising filler particles disposed in the plurality of holes, the filler particles being made of alumina, silicon oxide, calcium oxide, cerium oxide, titanium oxide, chromium oxide, Manganese oxide, iron oxide, nickel oxide, copper oxide, zinc oxide, zirconium oxide or a combination of the above. 如請求項1所述的多孔基材結構,其中所述基材的材料包括不鏽鋼或陶瓷。 The porous substrate structure of claim 1, wherein the material of the substrate comprises stainless steel or ceramics. 一種多孔基材結構的製造方法,包括:於基材上形成陽極氧化鋁層,其中所述基材具有多個孔洞,其中所述陽極氧化鋁層的厚度不超過3μm;以及 於所述陽極氧化鋁層上形成雙金屬氧化物層,其中所述雙金屬氧化物層包含由式1表示的層狀雙金屬氧化物,[MII 1-xMIII x]Oy 式1其中MII為Mg2+、Zn2+、Fe2+、Ni2+、Co2+、Cu2+或Li+,MIII為Al3+、Cr3+、Fe3+或Sc3+,x介於0.2至0.33之間,y介於0.7至2之間。 A method for manufacturing a porous substrate structure, comprising: forming an anodized aluminum oxide layer on a substrate, wherein the substrate has a plurality of holes, wherein the thickness of the anodized aluminum oxide layer is not more than 3 μm; A double metal oxide layer is formed on the aluminum layer, wherein the double metal oxide layer comprises a layered double metal oxide represented by Formula 1, [M II 1-x M III x ]O y Formula 1 wherein M II is Mg 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , Cu 2+ or Li + , M III is Al 3+ , Cr 3+ , Fe 3+ or Sc 3+ , x from 0.2 to between 0.33 and y between 0.7 and 2. 如請求項5所述的多孔基材結構的製造方法,其中所述雙金屬氧化物層的厚度小於3μm。 The method for manufacturing a porous substrate structure according to claim 5, wherein the thickness of the double metal oxide layer is less than 3 μm. 如請求項5所述的多孔基材結構的製造方法,其中所述雙金屬氧化物層的形成方法包括:於所述陽極氧化鋁層上形成雙金屬氫氧化物層;以及對所述雙金屬氫氧化物層進行鍛燒處理。 The method for manufacturing a porous substrate structure according to claim 5, wherein the method for forming the double metal oxide layer comprises: forming a double metal hydroxide layer on the anodic aluminum oxide layer; The hydroxide layer is calcined. 如請求項7所述的多孔基材結構的製造方法,其中所述雙金屬氫氧化物層的形成方法包括化學鍍、熱浸鍍、物理蒸鍍、化學蒸鍍、共沉法或水熱法。 The method for manufacturing a porous substrate structure according to claim 7, wherein the method for forming the double metal hydroxide layer includes electroless plating, hot dipping, physical evaporation, chemical evaporation, co-precipitation or hydrothermal method . 如請求項7所述的多孔基材結構的製造方法,其中所述雙金屬氫氧化物層包含層狀雙金屬氫氧化物。 The method for producing a porous substrate structure according to claim 7, wherein the double metal hydroxide layer comprises a layered double metal hydroxide. 如請求項5所述的多孔基材結構的製造方法,其中所述陽極氧化鋁層的形成方法包括:於所述基材上形成鋁層;以及對所述鋁層進行陽極處理。 The method for manufacturing a porous substrate structure according to claim 5, wherein the method for forming the anodic aluminum oxide layer comprises: forming an aluminum layer on the substrate; and performing anodizing treatment on the aluminum layer. 如請求項10所述的多孔基材結構的製造方法,其中於所述基材上形成鋁層的方法包括真空蒸鍍或無電鍍。 The method for manufacturing a porous substrate structure according to claim 10, wherein the method for forming an aluminum layer on the substrate includes vacuum evaporation or electroless plating. 如請求項10所述的多孔基材結構的製造方法,其中在形成所述鋁層之前,更包括將填充粒子填充於所述多個孔洞中。 The method for manufacturing a porous substrate structure according to claim 10, wherein before forming the aluminum layer, the method further comprises filling the plurality of holes with filler particles. 如請求項5所述的多孔基材結構的製造方法,其中所述基材的材料包括不鏽鋼或陶瓷。 The method for producing a porous substrate structure according to claim 5, wherein the material of the substrate comprises stainless steel or ceramics.
TW109143994A 2020-12-14 2020-12-14 Porous substrate structure and manufacturing method thereof TWI758008B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109143994A TWI758008B (en) 2020-12-14 2020-12-14 Porous substrate structure and manufacturing method thereof
CN202110053405.1A CN114618323A (en) 2020-12-14 2021-01-15 Porous substrate structure and method of making same
JP2021076235A JP2022094280A (en) 2020-12-14 2021-04-28 Porous substrate structure, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109143994A TWI758008B (en) 2020-12-14 2020-12-14 Porous substrate structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI758008B true TWI758008B (en) 2022-03-11
TW202223155A TW202223155A (en) 2022-06-16

Family

ID=81710647

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143994A TWI758008B (en) 2020-12-14 2020-12-14 Porous substrate structure and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2022094280A (en)
CN (1) CN114618323A (en)
TW (1) TWI758008B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200927275A (en) * 2007-12-21 2009-07-01 Ind Tech Res Inst Hydrogen filtration membrane structure and manufacturing method thereof
TW201326461A (en) * 2011-12-30 2013-07-01 Ind Tech Res Inst Method for modifying porous substrate and modified porous substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393325A (en) * 1990-08-10 1995-02-28 Bend Research, Inc. Composite hydrogen separation metal membrane
JPH1085568A (en) * 1996-09-10 1998-04-07 Tonen Corp Gas separator
JP2000189772A (en) * 1998-12-24 2000-07-11 Kyocera Corp Separation filter of hydrogen gas and its production
WO2003076050A1 (en) * 2002-03-05 2003-09-18 Eltron Research, Inc. Hydrogen transport membranes
US7018446B2 (en) * 2003-09-24 2006-03-28 Siemens Westinghouse Power Corporation Metal gas separation membrane
US20100219079A1 (en) * 2006-05-07 2010-09-02 Synkera Technologies, Inc. Methods for making membranes based on anodic aluminum oxide structures
CN103182249B (en) * 2011-12-30 2016-10-05 财团法人工业技术研究院 Method for modifying porous substrate and modified porous substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200927275A (en) * 2007-12-21 2009-07-01 Ind Tech Res Inst Hydrogen filtration membrane structure and manufacturing method thereof
TW201326461A (en) * 2011-12-30 2013-07-01 Ind Tech Res Inst Method for modifying porous substrate and modified porous substrate

Also Published As

Publication number Publication date
JP2022094280A (en) 2022-06-24
CN114618323A (en) 2022-06-14
TW202223155A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP5778656B2 (en) Method for modifying porous substrate and modified porous substrate
JP5199332B2 (en) Method for producing palladium alloy composite membrane for hydrogen gas separation
FR2550953A1 (en) PROCESS FOR PRODUCING PERMEABLE MINERAL MEMBRANES
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
JP2008237945A (en) Hydrogen-separating membrane
JP2007000858A (en) Hydrogen permeation member and its manufacturing method
KR100832302B1 (en) Fabrication method of pd alloy membrane using in-situ dry vacuum process for hydrogen gas separation
TWI758008B (en) Porous substrate structure and manufacturing method thereof
TWI449808B (en) Method for modifying porous substrate and modified porous substrate
Kuzniatsova et al. Synthesis of thin, oriented zeolite a membranes on a macroporous support
US11583810B2 (en) Porous substrate structure and manufacturing method thereof
TWI442966B (en) Methods of fabricating porous media and inorganic selective film
CN109248544B (en) Gas filtering structure and gas filtering method
KR101775025B1 (en) Manufacturing method for dense hydrogen separation membrane by sputter system
Li et al. Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes
Chi et al. Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling
JP4411409B2 (en) Method for manufacturing hydrogen permeation device
CN114182205A (en) Nano multilayer structure metal hydrogen absorption film and preparation method and application thereof
TWI651264B (en) Gas filtration structure and method for filtering gas
JP2007229562A (en) Hydrogen separation membrane and its manufacturing method
KR20200077999A (en) Method for Manufacturing Ultrafine Graphene Membrane Having Nano Pores
KR102233189B1 (en) Gas Separation Membrane and Method for Perparation theref
US11229886B2 (en) ERI-structure zeolite membrane and membrane structure
KR102233697B1 (en) Gas Separation Membrane and Method for Perparation thereof
Akis Preparation of Pd-Ag/PSS Composite Membranes for Hydrogen Separation