TWI755261B - 基因評估裝置以及方法 - Google Patents
基因評估裝置以及方法 Download PDFInfo
- Publication number
- TWI755261B TWI755261B TW110102734A TW110102734A TWI755261B TW I755261 B TWI755261 B TW I755261B TW 110102734 A TW110102734 A TW 110102734A TW 110102734 A TW110102734 A TW 110102734A TW I755261 B TWI755261 B TW I755261B
- Authority
- TW
- Taiwan
- Prior art keywords
- gene
- data
- feature
- generate
- disease
- Prior art date
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本發明提供一種基因評估裝置,其包括收發電路、記憶體以及處理器。記憶體用以儲存多個指令;處理器連接收發電路與記憶體,用以載入並執行多個指令以:控制收發電路以從多個資料庫接收多個候選基因的基因對應資訊,其中基因對應資訊相關於至少一疾病類型;利用由基因對應資訊所產生的至少一基因特徵以及疾病相關基因資料訓練至少一基因預測模型;以及利用至少一基因預測模型產生與疾病相關基因資料以及至少一疾病類型相關的多個機率數值,以進行與藥物開發相關的基因評估。此外,一種基因評估方法亦在此提出。
Description
本發明是有關於一種與基因相關的藥物開發技術,特別是有關於一種基因評估裝置以及方法。
近幾年來,基於高通量篩選(high throughput screening)方式的優化,使得許多疾病的治療出現曙光。由於藥物開發到產品化的過程相當複雜與冗長,企業需要投資大量時間、人力以及金錢。然而,就算投資了大量時間、人力以及金錢,藥物開發也往往不一定能成功。
藥物開發未成功的原因往往在於,藥物開發前期所選用的藥物靶點(drug target)可能不是特定疾病的關鍵點,且藥物開發流程上也因為在細胞與動物上驗證與實際人體上驗證有所不同,而導致藥物臨床實驗無效或效果不顯著。有鑑於此,要怎麼針對不同的疾病選擇適合開發藥物的藥物靶點,是本領域技術人員急欲解決的問題。
本發明實施例提供一種基因評估裝置,其包括收發電路、記憶體以及處理器。記憶體用以儲存多個指令;處理器連接收發電路與記憶體,用以載入並執行多個指令以:控制收發電路以從多個資料庫接收多個候選基因的基因對應資訊,其中基因對應資訊相關於至少一疾病類型;依據基因對應資訊產生至少一基因特徵以及疾病相關基因資料;利用至少一基因特徵以及疾病相關基因資料訓練至少一基因預測模型;以及利用至少一基因預測模型產生與疾病相關基因資料以及至少一疾病類型相關的多個機率數值,以依據多個機率數值進行與藥物開發相關的基因評估。
本發明實施例提供一種針對疾病的基因評估方法,所述方法包括下列步驟:從多個資料庫接收多個候選基因的基因對應資訊,其中基因對應資訊相關於至少一疾病類型;依據基因對應資訊,以利用圖神經網路演算法產生至少一基因特徵以及疾病相關基因資料;利用至少一基因特徵以及疾病相關基因資料訓練至少一基因預測模型;以及利用至少一基因預測模型產生與疾病相關基因資料以及至少一疾病類型相關的多個機率數值,以依據多個機率數值進行與藥物開發相關的基因評估。
基於上述,本發明實施例可將基因資料庫的資料進行與圖神經網路模型相關的運算,以找出可能造成特定疾病類型的基因。如此一來,可將可能造成特定疾病類型的基因作為藥物開發的藥物靶點,以針對這些基因進行藥物開發。
第1圖是根據本發明一些示範性實施例的基因評估裝置的方塊圖。參照第1圖,基因評估裝置100可包括收發電路110、記憶體120以及處理器130。基因評估裝置100例如是智慧型手機、平板電腦、筆記型電腦、桌上型電腦等電子裝置,並沒有特別的限制。收發電路110可以無線或有線的方式傳送及接收訊號,且還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作,藉以從外部的資料庫200(1)~200(N)傳送及接收訊號,其中N為任意的正整數。記憶體120可儲存多個指令。處理器130可連接收發電路110與記憶體120,並載入並執行這些指令。
在一些實施例中,收發電路110例如是傳送器電路、類比-數位(analog-to-digital,A/D)轉換器、數位-類比(digital-to-analog,D/A)轉換器、低噪音放大器、混頻器、濾波器、阻抗匹配器、傳輸線、功率放大器、一個或多個天線電路及本地儲存媒體元件的其中之一或其組合。
在一些實施例中,資料庫200(1)~200(N)可以是儲存多個候選基因(gene)對應的各種資料的多個資料庫,例如是DisGeNet、GO、BioGrid、CTD或Reactome資料庫等目前常用的基因與蛋白質(gene/protein)資料庫。
在一些實施例中,記憶體120可例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合。
在一些實施例中,處理器130例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。
在一些實施例中,處理器130可以有線或無線的方式連接收發電路110與記憶體120。
對於有線方式而言,上述連接的方式可以是透過通用序列匯流排(universal serial bus,USB)、RS232、通用非同步接收器/傳送器(universal asynchronous receiver/transmitter,UART)、內部整合電路(I2C)、序列周邊介面(serial peripheral interface,SPI)、顯示埠(display port)、雷電埠(thunderbolt)或區域網路(local area network,LAN)介面連接的方式。
而對於無線方式而言,上述連接的方式可以是透過無線保真(wireless fidelity,Wi-Fi)模組、無線射頻識別(radio frequency identification,RFID)模組、藍芽模組、紅外線模組、近場通訊(near-field communication,NFC)模組或裝置對裝置(device-to-device,D2D)模組連接的方式。
第2圖是根據本發明一些示範性實施例的基因評估方法的流程圖。第2圖所示實施例的方法適用於第1圖的基因評估裝置100,但不以此為限。為方便及清楚說明起見,下述同時參照第1圖及第2圖,以基因評估裝置100中各元件之間的作動關係來說明第2圖所示基因評估方法的詳細步驟。
首先,於步驟S201中,處理器130可控制收發電路110以從資料庫200(1)~200(N)接收多個候選基因的基因對應資訊,其中基因對應資訊相關於至少一疾病類型。
換言之,處理器130可透過收發電路110在資料庫200(1)~200(N)搜尋這些候選基因的基因對應資訊,並透過收發電路110接收這些候選基因的基因對應資訊,其中這些候選基因的基因對應資訊與至少一疾病類型(例如,肺炎、流行性感冒或肺癌等)相對應。
在一些實施例中,上述疾病類型可以是由使用者預先選定的特定疾病類型。
在一些實施例中,上述基因對應資訊可包括基因關係資料、基因相關路徑特徵以及基因資料。基因關係資料可以是多個候選基因之間的關係資料(即,各候選基因之間的關係之資料)。基因相關路徑特徵可包括候選基因的生物路經(biological pathway)(例如,人類生物體內分子路徑)、候選基因在細胞的位置(例如,GO資料庫所儲存的GO_CC的資料)、候選基因的作用(GO資料庫所儲存的GO_BP的資料)以及候選基因的損失函數(loss of function)。基因資料可以是對應於多個候選基因中與至少一疾病類型相關的多個基因之資料(即,這些候選基因中與特定疾病類型相對應的基因的資料)。
接著,於步驟S203中,處理器130可依據基因對應資訊產生至少一基因特徵以及疾病相關基因資料。
詳細而言,處理器130可對基因對應資訊進行資料前處理(preprocessing)以產生至少一基因特徵以及疾病相關基因資料。
在一些實施例中,基因特徵可以是從基因對應資訊萃取出的特徵,其中此特徵與上述多個候選基因相關。此外,疾病相關基因資料可以是利用基因對應資訊產生的相關資料,其中此相關資料與上述疾病類型對應的基因相關。
接著,於步驟S205中,處理器130可利用至少一基因特徵以及疾病相關基因資料訓練至少一基因預測模型。
換言之,處理器130可利用至少一基因特徵以及疾病相關基因資料訓練與特定疾病類型對應的基因預測模型。
最後,於步驟S207中,處理器130可利用至少一基因預測模型產生與疾病相關基因資料以及至少一疾病類型相關的多個機率數值,以依據多個機率數值進行與藥物開發相關的基因評估。
換言之,處理器130可利用至少一基因預測模型產生多個機率數值,這些機率數值為疾病相關基因資料與至少一疾病類型之間的相關性所對應的數值。藉此,使用者可在進行藥物開發時依據這些數值進行基因評估。
藉由上述步驟,本發明實施例的基因評估裝置100在選定特定疾病類型時可即時地計算多個機率數值,其中這些機率數值可為多個候選基因中的多個基因所對應的相關性的數值,且這些基因可為與特定疾病類型相關的基因。藉此,可依據這些機率數值判斷這些候選基因中的哪個基因與特定疾病類型最有相關性。
以下說明本發明實施例的基因評估裝置100的各種使用情境。基因評估裝置100可利用從資料庫200(1)~200(N)所接收的多個候選基因的基因對應資訊產生多個基因的多個機率數值,藉以依據這些機率數值判斷哪個基因可與特定疾病類型最有相關性。
第3圖是根據本發明一些示範性實施例的基於圖神經網路進行基因評估的示意圖。第4圖是根據本發明一些示範性實施例的基於圖神經網路進行基因評估的流程圖。第4圖所示實施例的方法適用於第1圖的基因評估裝置100,但不以此為限。為方便及清楚說明起見,下述同時參照第1圖、第3圖以及第4圖,以第1圖的基因評估裝置100中各元件之間的作動關係以及第3圖的示意圖來說明第4圖所示基因評估方法的詳細步驟。
首先,於步驟S301中,處理器130可從資料庫200(1)~200(N)接收多個候選基因之間的基因關係資料、
至少一基因相關路徑特徵以及基因資料。
詳細而言,處理器130可控制收發裝置110從資料庫集中的資料庫200(1)~200(N)搜尋所需的基因對應資訊,其中基因對應資訊可包括多個候選基因之間的基因關係資料、至少一基因相關路徑特徵以及基因資料。
在一些實施例中,基因關係資料可以是多個候選基因之間的關係資料。基因相關路徑特徵可包括候選基因的生物路經、候選基因在細胞的位置、候選基因的作用以及候選基因的損失函數。基因資料可以是對應於多個候選基因中與至少一疾病類型相關的多個基因之資料。
接著,於步驟S303中,處理器130可對基因關係資料進行與蛋白質交互網路(protein-protein interaction network)相關之運算,以產生第一基因網路圖,並將至少一基因相關路徑特徵轉換為基因相關路徑表(table)(即,候選基因的特徵對應的表)。
舉例而言,步驟S303中產生的第一基因網路圖包括多個候選基因節點(node)G1~G6、G8、G12~G13,且候選基因節點G1~G6、G8、G12~G13之間以多個節點邊緣(edge)連接(即,候選基因節點G1~G6、G8、G12~G13之間具有多個節點邊緣)。
此外,步驟S303中產生的基因相關路徑表包括與候選基因節點G1~G6、G8、G12~G13對應的候選基因在細胞的位置cc1~cc6、cc8、cc12~cc13、候選基因的作用bp1~bp6、bp8、bp12~bp13、候選基因的生物路經pathway1~pathway6、pathway8、pathway12~pathway13以及候選基因的損失函數lof1~lof6、lof8、lof12~lof13。
換言之,由上述例子可得知,上述基因相關路徑表中的資料與第一基因網路圖中的候選基因節點相對應。
接著,於步驟S305中,處理器130可對第一基因網路圖以及基因相關路徑表進行與圖神經網路模型(graphic neural network model,GNN model)相關之運算,以產生至少一基因特徵。
換言之,處理器130可利用第一基因網路圖以及基因相關路徑表訓練一個圖神經網路模型,以利用圖神經網路模型產生至少一基因特徵。
在一些實施例中,處理器130可將第一基因網路圖轉換為上述多個候選基因之間的一個關係矩陣(relation matrix),並對此關係矩陣以及基因相關路徑表進行非監督學習圖神經網路模型(unsupervised-learning GNN model)之運算,以產生至少一基因特徵。
在進一步的實施例中,上述非監督學習圖神經網路模型可包括編碼器(encoder)以及判別器(discriminator)(即,由對抗正規化圖自編碼器(adversarially regularized variational graph auto-encoder,ARGA)的一部份組成)。
舉例而言,第5圖是根據本發明一些示範性實施例的圖神經網路模型的示意圖。同時參照第1圖與第5圖,處理器130可將上述關係矩陣以及基因相關路徑表輸入編碼器(即,由多個圖卷積層(graphic convolutional network layers,GCNConv layers)以及多個整流線性單位函數層(rectified linear unit layers,ReLU layers)組成),以產生一個特徵分布(feature distribution),並對此特徵分布進行邊緣預測(edge prediction)的計算,以計算出損失值loss1(即,依據上述節點邊緣對應的損失函數計算損失值)。
藉此,處理器130可將特徵分布以及常態分布(normal distribution)輸入至判別器(即,由多個多層感測器(multilayer perceptron,MLP)進行與判別損失(discriminative loss)計算之模型)以計算出損失值loss2(即,依據特徵分布以及常態分布之間的相似度對應的損失函數計算損失值)。
藉此,處理器130可利用損失值loss1以及損失值loss2以進行梯度下降法(gradient descent)的計算,並對編碼器持續進行調整,直到此非監督學習圖神經網路模型收斂。如此一來,處理器130可經由收斂的非監督學習圖神經網路模型獲得新的特徵分布,其中新的特徵分布包括至少一基因特徵。
接著,同時參照第1圖、3圖以及第4圖,於步驟S307中,處理器130可利用基因資料產生多個標籤(labels)。
詳細而言,基因資料可包括多個候選基因中與至少一疾病類型相關的多個基因,且處理器130可依據這些基因產生多個標籤。
舉例而言,當使用者選擇一個特定疾病類型時,處理器130可依據此特定疾病類型對應的多個基因產生基因節點G2、G4、G6,並利用基因節點G2、G4、G6產生多個標籤(即,產生基因節點G2、G4、G6對應的標籤)。
接著,於步驟S309,處理器130可依據第一基因網路圖對基因資料進行與另一蛋白質交互網路相關之運算,以產生至少一第二基因網路圖。
在一些實施例中,處理器130可在第一基因網路圖中搜尋與上述多個基因相關的至少一候選基因,並對上述多個基因以及至少一搜尋的候選基因進行與另一蛋白質交互網路相關之運算,以產生至少一第二基因網路圖,其中各第二基因網路圖可對應於不同的疾病類型。
舉例而言,當使用者選擇一個特定疾病類型時,處理器130可依據特定疾病類型對應的基因節點G2、G4、G6從第一基因網路圖搜尋出候選基因節點G1、G3、G5、G8、G12~G13,其中候選基因節點G1、G3、G5、G8、G12~G13可連接基因節點G2、G4、G6對應的候選基因節點(即,由節點邊緣連接)。藉此,處理器130可對候選基因節點G1、G3、G5、G8、G12~G13以及基因節點G2、G4、G6進行與另一蛋白質交互網路相關之運算,以產生第二基因網路圖,其中第二基因網路圖可對應於上述特定疾病類型。
接著,於步驟S311中,處理器130可對至少一基因特徵、多個標籤以及至少一第二基因網路圖進行與另一圖神經網路模型相關之運算,以訓練基因預測模型。
換言之,處理器130可同時將上述至少一基因特徵、多個標籤以及至少一第二基因網路圖輸入另一圖神經網路模型以進行訓練,進而產生至少一基因預測模型。
在一些實施例中,處理器130可將至少一第二基因網路圖轉換為至少一關係矩陣,其中關係矩陣指示第二基因網路圖對應的多個基因之間的相關性。此外,處理器130可利用多個標籤對關係矩陣進行標示(即,嵌入標籤),並從至少一基因特徵選擇與第二基因網路圖中的所有基因節點對應的基因特徵。
藉此,處理器130可對已進行標示的至少一關係矩陣以及所選擇的基因特徵進行監督學習圖神經網路模型(supervised-learning GNN model)之運算,以產生至少一基因預測模型。
在進一步的實施例中,上述監督學習圖神經網路模型可包括編碼器以及分類器(classifier)(即,同樣由對抗正規化圖自編碼器的一部份組成)。
舉例而言,同時參照第1圖與第5圖,上述監督學習圖神經網路模型中的編碼器與第5圖的非監督學習圖神經網路模型的編碼器具有相似的結構,其中監督學習圖神經網路模型的編碼器是由多個樣條卷積層(spline convolutional layers,SplineConv layers)以及多個整流線性單位函數層組成的。此外,監督學習圖神經網路模型更包括一個線性分類器(linear classifier)。
再者,處理器130可將上述已進行標示的關係矩陣以及所選擇的基因特徵輸入編碼器以產生一個特徵分布,並將此特徵分布計輸入線性分類器,以計算監督學習圖神經網路模型的敏感度(sensitivity),進而依據敏感度持續調整編碼器,直到監督學習圖神經網路模型收斂。
如此一來,處理器130可經由收斂的監督學習圖神經網路模型獲得新的特徵分布,其中新的特徵分布包括至少一基因特徵。如此一來,處理器130可將收斂的非監督學習圖神經網路模型作為基因預測模型。
最後,同時參照第1圖、3圖以及第4圖,於步驟S313中,處理器130可利用基因預測模型產生與至少一第二基因網路圖以及至少一疾病類型相關的多個機率數值,以依據多個機率數值進行與藥物開發相關的基因評估。
詳細而言,當訓練與至少一疾病類型的至少一基因預測模型時,處理器130可利用至少一基因預測模型產生至少一第二基因網路圖中的基因節點所對應的多個機率數值。藉此,使用者可在進行藥物開發時依據這些數值進行基因評估。
在一些實施例中,處理器130可依據一個機率閾值以及上述多個積率數值判斷至少一第二基因網路圖中的哪些基因節點為可能造成上述至少一疾病類型的基因節點(即,判斷出至少一第二基因網路圖對應的多個基因中的哪些基因可能造成上述至少一疾病類型)。
在進一步的實施例中,處理器130可將可能造成上述至少一疾病類型的基因作為藥物開發的藥物靶點,以針對這些基因進行藥物開發。
藉由上述步驟,本發明實施例的基因評估裝置100可將基因資料庫的資料進行與圖神經網路模型相關的運算,以找出可能造成特定疾病類型的基因。如此一來,可將可能造成特定疾病類型的基因作為藥物開發的藥物靶點,以針對這些基因進行藥物開發。
綜上所述,本發明實施例的基因評估裝置可即時地針對特定疾病類型計算多個機率數值,其中這些機率數值可為多個候選基因中的多個基因所對應的相關性的數值,且這些基因可為與特定疾病類型相關的基因。藉此,可依據這些機率數值判斷這些候選基因中的哪個基因與特定疾病類型最有相關性。如此一來,本發明實施例的基因評估裝置可將可能造成特定疾病類型的基因作為藥物開發的藥物靶點,以針對這些基因進行藥物開發。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:基因評估裝置
110:收發電路
120:記憶體
130:處理器
140(1)~140(N):資料庫
G1、G3、G5、G8、G12~G13:候選基因節點
G2、G4、G6:基因節點
cc4、cc6:候選基因的細胞位置
bp4、bp6:候選基因的作用
pathway4、pathway6:候選基因的生物路徑
lof4、lof6:候選基因的損失函數
loss1、loss2:損失值
S201~S207、S301~S313:步驟
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
第1圖是根據本發明一些示範性實施例的基因評估裝置的方塊圖。
第2圖是根據本發明一些示範性實施例的基因評估方法的流程圖。
第3圖是根據本發明一些示範性實施例的基於圖神經網路進行基因評估的示意圖。
第4圖是根據本發明另一些示範性實施例的基因評估方法的流程圖。
第5圖是根據本發明一些示範性實施例的圖神經網路模型的示意圖。
S201~S207:步驟
Claims (6)
- 一種基因評估裝置,包括:一收發電路;一記憶體,用以儲存多個指令;及一處理器,連接該收發電路與該記憶體,用以載入並執行該些指令以:控制該收發電路以從多個資料庫接收多個候選基因的基因對應資訊,其中該基因對應資訊相關於至少一疾病類型,該基因對應資訊包括該些候選基因之間的基因關係資料以及至少一基因相關路徑特徵;對該基因關係資料進行與一蛋白質交互網路相關之運算,以產生第一基因網路圖,並將該至少一基因相關路徑特徵轉換為至少一基因相關路徑表;對該第一基因網路圖以及該至少一基因相關路徑表進行與一圖神經網路模型相關之運算,以產生至少一基因特徵以及疾病相關基因資料;利用該至少一基因特徵以及該疾病相關基因資料訓練至少一基因預測模型;以及利用該至少一基因預測模型產生與該疾病相關基因資料以及該至少一疾病類型相關的多個機率數值,以依據該些機率數值進行與藥物開發相關的基因評估,其中對該第一基因網路圖以及該至少一基因相關路徑表進行與該圖神經網路模型相關之運算,以產生該至少一基因特徵,更包括: 根據該第一基因網路圖以及該至少一基因相關路徑表產生一特徵分布,以及對該此特徵分布進行一邊緣預測計算,以產生一第一損失值;根據該特徵分布和一常態分布間相似度對應的一損失函數產生一第二損失值;以及對該第一損失值以及該第二損失值進行一梯度下降法計算,直到該圖神經網路模型收斂,以根據該收斂的該圖神經網路來產生該至少一基因特徵。
- 如請求項1所述之基因評估裝置,其中該基因對應資訊更包括基因資料,其中該基因資料對應於該些候選基因中與該至少一疾病類型相關的多個基因,且該處理器更用以:利用該基因資料產生多個標籤,並依據該第一基因網路圖對該基因資料進行與該蛋白質交互網路相關之運算,以產生至少一第二基因網路圖,藉以將該些標籤以及該至少一第二基因網路圖作為該疾病相關基因資料。
- 如請求項1所述之基因評估裝置,其中該處理器更用以:對該至少一基因特徵以及該疾病相關基因資料進行與一圖神經網路模型相關之運算,以訓練該至少一基因預測模型。
- 一種針對疾病的基因評估方法,包括:從多個資料庫接收多個候選基因的基因對應資訊,其中該基因對應資訊相關於至少一疾病類型,該基因對應資訊包括該些候選基因之間的基因關係資料以及至少一基因相關路徑特徵;對該基因關係資料進行與一蛋白質交互網路相關之運算,以產生第一基因網路圖,並將該至少一基因相關路徑特徵轉換為至少一基因相關路徑表;根據該第一基因網路圖以及該至少一基因相關路徑表利用一圖神經網路模型產生至少一基因特徵以及疾病相關基因資料;利用該至少一基因特徵以及該疾病相關基因資料訓練至少一基因預測模型;以及利用該至少一基因預測模型產生該疾病相關基因資料與該至少一疾病類型相關的多個機率數值,以依據該些機率數值進行與藥物開發相關的基因評估,其中根據該第一基因網路圖以及該至少一基因相關路徑表利用一圖神經網路模型產生至少一基因特徵,更包括:根據該第一基因網路圖以及該至少一基因相關路徑表產生一特徵分布,以及對該此特徵分布進行一邊緣預測計算,以產生一第一損失值;根據該特徵分布和一常態分布間相似度對應的一損失函數產生一第二損失值;以及 對該第一損失值以及該第二損失值進行一梯度下降法計算,直到該圖神經網路模型收斂,以根據該收斂的該圖神經網路來產生該至少一基因特徵。
- 如請求項4所述之基因評估方法,其中該基因對應資訊更包括基因資料,其中該基因資料對應於該些候選基因中與該至少一疾病類型相關的多個基因,且依據該基因對應資訊,以利用該圖神經網路演算法產生該至少一基因特徵以及該疾病相關基因資料的步驟更包括:利用該基因資料產生多個標籤,並依據該第一基因網路圖對該基因資料進行與該蛋白質交互網路相關之運算,以產生至少一第二基因網路圖,藉以將該些標籤以及該至少一第二基因網路圖作為該疾病相關基因資料。
- 如請求項4所述之基因評估方法,其中利用該至少一基因特徵以及該疾病相關基因資料訓練該至少一基因預測模型的步驟更包括:對該至少一基因特徵以及該疾病相關基因資料進行與一圖神經網路模型相關之運算,以訓練該至少一基因預測模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110102734A TWI755261B (zh) | 2021-01-25 | 2021-01-25 | 基因評估裝置以及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110102734A TWI755261B (zh) | 2021-01-25 | 2021-01-25 | 基因評估裝置以及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI755261B true TWI755261B (zh) | 2022-02-11 |
TW202230390A TW202230390A (zh) | 2022-08-01 |
Family
ID=81329527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110102734A TWI755261B (zh) | 2021-01-25 | 2021-01-25 | 基因評估裝置以及方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI755261B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109906486A (zh) * | 2016-10-03 | 2019-06-18 | 伊鲁米那股份有限公司 | 使用共识基因库和基于网络的数据结构的表型/疾病特异性基因排序 |
CN112183837A (zh) * | 2020-09-22 | 2021-01-05 | 曲阜师范大学 | 一种基于自编码模型的miRNA与疾病关联关系预测方法 |
-
2021
- 2021-01-25 TW TW110102734A patent/TWI755261B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109906486A (zh) * | 2016-10-03 | 2019-06-18 | 伊鲁米那股份有限公司 | 使用共识基因库和基于网络的数据结构的表型/疾病特异性基因排序 |
CN112183837A (zh) * | 2020-09-22 | 2021-01-05 | 曲阜师范大学 | 一种基于自编码模型的miRNA与疾病关联关系预测方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202230390A (zh) | 2022-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Disease prediction via graph neural networks | |
Muhlestein et al. | Predicting inpatient length of stay after brain tumor surgery: developing machine learning ensembles to improve predictive performance | |
CN105913121B (zh) | 神经网络训练方法和设备以及识别方法和设备 | |
Ma et al. | Integrate multi-omic data using affinity network fusion (ANF) for cancer patient clustering | |
Poolsawad et al. | Balancing class for performance of classification with a clinical dataset | |
WO2021089013A1 (zh) | 空间图卷积网络的训练方法、电子设备及存储介质 | |
CN106021990B (zh) | 一种将生物基因以特定的性状进行分类与自我识别的方法 | |
Meng et al. | Tongue images classification based on constrained high dispersal network | |
US20210174906A1 (en) | Systems And Methods For Prioritizing The Selection Of Targeted Genes Associated With Diseases For Drug Discovery Based On Human Data | |
CN104794527A (zh) | 基于卷积神经网络的分类模型构建方法和设备 | |
Teng et al. | Customer credit scoring based on HMM/GMDH hybrid model | |
García et al. | Mapping microarray gene expression data into dissimilarity spaces for tumor classification | |
Kamal et al. | Evolutionary framework for coding area selection from cancer data | |
CN112925857A (zh) | 基于谓语类型预测关联的数字信息驱动的系统和方法 | |
Rattan et al. | Artificial intelligence and machine learning: what you always wanted to know but were afraid to ask | |
Zhao et al. | Whale optimized mixed kernel function of support vector machine for colorectal cancer diagnosis | |
WO2023051369A1 (zh) | 一种神经网络的获取方法、数据处理方法以及相关设备 | |
Hoang et al. | Splice sites detection using chaos game representation and neural network | |
CN108986918A (zh) | 辅助诊断方法、装置、终端设备和计算机存储介质 | |
CN113948160A (zh) | 一种药物筛选方法、设备及存储介质 | |
TWI755261B (zh) | 基因評估裝置以及方法 | |
Islam et al. | Detection of renal cell hydronephrosis in ultrasound kidney images: a study on the efficacy of deep convolutional neural networks | |
Pandey et al. | Residual neural networks for heterogeneous smart device localization in IoT networks | |
CN115938593A (zh) | 病历信息的处理方法、装置、设备及计算机可读存储介质 | |
Mwanga et al. | Enhanced deep convolutional neural network for sars-cov-2 variants classification |