TWI755021B - Integrated thermal cycling system - Google Patents
Integrated thermal cycling system Download PDFInfo
- Publication number
- TWI755021B TWI755021B TW109127623A TW109127623A TWI755021B TW I755021 B TWI755021 B TW I755021B TW 109127623 A TW109127623 A TW 109127623A TW 109127623 A TW109127623 A TW 109127623A TW I755021 B TWI755021 B TW I755021B
- Authority
- TW
- Taiwan
- Prior art keywords
- organic rankine
- working fluid
- condenser
- absorption refrigeration
- evaporator
- Prior art date
Links
Images
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
本發明是有關一種熱循環系統,且尤其是有關於一種結合有機朗肯循環及吸收式製冷循環的複合式熱循環系統。The present invention relates to a thermal cycle system, and in particular to a composite thermal cycle system combining organic Rankine cycle and absorption refrigeration cycle.
有機朗肯循環為一種有效回收廢熱源並轉換成電能之技術,其源自於朗肯循環(或稱蒸氣朗肯循環),係利用高溫高壓態的工作流體,經由膨脹閥作功後再冷凝至低溫低壓的液態流體並依此循環運作,且通常以沸點較低的有機化合物作為工作流體。The organic Rankine cycle is a technology that effectively recovers waste heat sources and converts them into electrical energy. It is derived from the Rankine cycle (or vapor Rankine cycle), which uses the working fluid in a high temperature and high pressure state to work through an expansion valve and then condense it. Liquid fluids to low temperature and low pressure and circulate accordingly, and usually use organic compounds with lower boiling points as working fluids.
隨著環保意識抬頭,有機流體對環境的影響亦備受重視,部分可產生較高效率之冷媒例如R123、R134a等因而被禁止使用,而需另外尋找提升效率之方法。With the rise of environmental awareness, the impact of organic fluids on the environment has also been paid more attention. Some refrigerants that can produce higher efficiency, such as R123, R134a, etc., are therefore prohibited from being used, and it is necessary to find another way to improve efficiency.
有鑑於此,如何更進一步提升有機朗肯循環系統的熱效率,遂成為相關業者努力的目標。In view of this, how to further improve the thermal efficiency of the organic Rankine cycle system has become the goal of the relevant industry.
依據本發明之一實施方式提供一種複合式熱循環系統,其包含一有機朗肯次循環系統、一吸收式製冷次循環系統以及一冷卻次循環系統。有機朗肯次循環系統包含一有機朗肯冷凝器及一第一工作流體,第一工作流體流經有機朗肯冷凝器,並放出一熱能予有機朗肯冷凝器以進行液化。吸收式製冷次循環系統包含一第二工作流體、一吸收式製冷發生器、一吸收式製冷冷凝器、一吸收式製冷蒸發器及一吸收式製冷吸收器,第二工作流體包含一製冷劑及一吸收劑,吸收式製冷發生器加熱第二工作流體以汽化製冷劑,吸收式製冷冷凝器用以使汽化後之製冷劑降溫液化,吸收式製冷蒸發器加熱使降溫液化並經降壓後之製冷劑再度汽化,吸收式製冷吸收器連接吸收式製冷蒸發器,且用以使製冷劑及吸收劑結合再度成為第二工作流體。冷卻次循環系統包含一冷卻流體,冷卻流體流經吸收式製冷蒸發器及有機朗肯冷凝器以形成迴路,其中,冷卻流體流經有機朗肯冷凝器並吸收第一工作流體液化所放出之熱能,冷卻流體流經吸收式製冷蒸發器,並提供熱能中至少一部分使製冷劑汽化後,冷卻流體再流回有機朗肯冷凝器。According to an embodiment of the present invention, a compound thermal cycle system is provided, which includes an organic Rankine sub-cycle system, an absorption refrigeration sub-cycle system, and a cooling sub-cycle system. The organic Rankine sub-circulation system includes an organic Rankine condenser and a first working fluid. The first working fluid flows through the organic Rankine condenser and releases a heat energy to the organic Rankine condenser for liquefaction. The absorption refrigeration sub-circulation system includes a second working fluid, an absorption refrigeration generator, an absorption refrigeration condenser, an absorption refrigeration evaporator and an absorption refrigeration absorber, and the second working fluid includes a refrigerant and An absorbent, the absorption refrigerating generator heats the second working fluid to vaporize the refrigerant, the absorption refrigerating condenser is used to cool down and liquefy the vaporized refrigerant, and the absorption refrigerating evaporator heats to cool down and liquefy the refrigerant after depressurization The refrigerant is re-vaporized, and the absorption refrigeration absorber is connected to the absorption refrigeration evaporator, and is used to combine the refrigerant and the absorbent to become the second working fluid again. The cooling secondary circulation system includes a cooling fluid, and the cooling fluid flows through the absorption refrigeration evaporator and the organic Rankine condenser to form a loop, wherein the cooling fluid flows through the organic Rankine condenser and absorbs the heat energy released by the liquefaction of the first working fluid , the cooling fluid flows through the absorption refrigeration evaporator, and after providing at least a part of the thermal energy to vaporize the refrigerant, the cooling fluid flows back to the organic Rankine condenser.
藉此,冷卻流體自有機朗肯次循環系統取得熱能,將熱能給吸收式製冷次循環系統後使自身降至室溫以下,再回到有機朗肯次循環系統,使第一工作流體進一步降低冷凝溫度,而可有效提升有機朗肯次循環系統的熱效率及發電量。In this way, the cooling fluid obtains thermal energy from the organic Rankine sub-circulation system, reduces the heat energy to the absorption refrigeration sub-circulation system to reduce itself to below room temperature, and then returns to the organic Rankine sub-circulation system to further reduce the first working fluid. The condensing temperature can effectively improve the thermal efficiency and power generation of the organic Rankine cycle system.
依據前述實施方式之複合式熱循環系統,其中有機朗肯次循環系統更包含一有機朗肯蒸發器、一有機朗肯泵浦以及一有機朗肯膨脹器。有機朗肯蒸發器使液化後之第一工作流體高壓汽化,有機朗肯泵浦將經過有機朗肯冷凝器之第一工作流體送至有機朗肯蒸發器,有機朗肯膨脹器接收高壓汽化後之第一工作流體,以使高壓汽化後之第一工作流體降壓,同時有機朗肯膨脹器被驅動以產生一旋轉軸功。其中,有機朗肯冷凝器接收降壓後之第一工作流體,使其放出熱能,且第一工作流體流經有機朗肯冷凝器、有機朗肯泵浦、有機朗肯蒸發器及有機朗肯膨脹器以形成迴路。According to the compound thermal cycle system of the foregoing embodiment, the organic Rankine sub-cycle system further comprises an organic Rankine evaporator, an organic Rankine pump and an organic Rankine expander. The organic Rankine evaporator vaporizes the first working fluid after liquefaction at high pressure, and the organic Rankine pump sends the first working fluid through the organic Rankine condenser to the organic Rankine evaporator, and the organic Rankine expander receives the high pressure vaporization. The first working fluid is used to depressurize the first working fluid after high-pressure vaporization, and at the same time, the organic Rankine expander is driven to generate a rotating shaft work. The organic Rankine condenser receives the depressurized first working fluid to release heat energy, and the first working fluid flows through the organic Rankine condenser, the organic Rankine pump, the organic Rankine evaporator and the organic Rankine expander to form a circuit.
依據前述實施方式之複合式熱循環系統,其中有機朗肯次循環系統更包含一復熱器,其包含一第一高溫部及一第一低溫部,第一工作流體流經有機朗肯膨脹器降壓後,經過第一高溫部被吸收一餘熱,第一低溫部將餘熱提供給流入有機朗肯蒸發器前之第一工作流體進行預熱。According to the compound thermal cycle system of the foregoing embodiment, the organic Rankine sub-cycle system further includes a recuperator, which includes a first high temperature part and a first low temperature part, and the first working fluid flows through the organic Rankine expander After depressurization, a waste heat is absorbed by the first high temperature part, and the first low temperature part provides the waste heat to the first working fluid before flowing into the organic Rankine evaporator for preheating.
依據前述實施方式之複合式熱循環系統,其更包含一熱源,其先流經有機朗肯蒸發器後,再流經吸收式製冷發生器。The composite thermal cycle system according to the foregoing embodiment further includes a heat source, which first flows through the organic Rankine evaporator, and then flows through the absorption refrigeration generator.
依據前述實施方式之複合式熱循環系統,其中冷卻次循環系統更包含一冷卻水塔及一冷卻泵浦,冷卻流體流經有機朗肯冷凝器後,流經冷卻水塔,再流經冷卻泵浦以送至吸收式製冷蒸發器,最後再回到有機朗肯冷凝器。According to the composite thermal cycle system of the aforementioned embodiment, the cooling secondary cycle system further comprises a cooling water tower and a cooling pump. After the cooling fluid flows through the organic Rankine condenser, it flows through the cooling water tower, and then flows through the cooling pump to It is sent to the absorption refrigeration evaporator and finally returned to the organic Rankine condenser.
依據本發明另一實施方式之一種複合式熱循環系統,其包含一有機朗肯次循環系統、一吸收式製冷次循環系統、一冷卻次循環系統以及至少一複合式復熱器。有機朗肯次循環系統包含一有機朗肯冷凝器及一第一工作流體,第一工作流體流經有機朗肯冷凝器,並放出一熱能予有機朗肯冷凝器以進行液化。吸收式製冷次循環系統包含一第二工作流體、一吸收式製冷發生器、一吸收式製冷冷凝器、一吸收式製冷蒸發器及一吸收式製冷吸收器,第二工作流體包含一製冷劑及一吸收劑,吸收式製冷發生器加熱第二工作流體以汽化製冷劑,吸收式製冷冷凝器用以使汽化後之製冷劑降溫液化,吸收式製冷蒸發器加熱使降溫液化並經降壓後之製冷劑再度汽化,吸收式製冷吸收器連接吸收式製冷蒸發器,且用以使製冷劑及吸收劑結合再度成為第二工作流體。冷卻次循環系統包含一冷卻流體,冷卻流體流經吸收式製冷蒸發器及有機朗肯冷凝器以形成迴路。前述至少一複合式復熱器,以第一工作流體預熱第二工作流體,或是以第二工作流體預熱第一工作流體。其中,冷卻流體流經有機朗肯冷凝器並吸收第一工作流體液化所放出之熱能,冷卻流體流經吸收式製冷蒸發器,並提供熱能中至少一部分使製冷劑汽化後,冷卻流體再流回有機朗肯冷凝器。According to another embodiment of the present invention, a composite thermal cycle system includes an organic Rankine sub-cycle system, an absorption refrigeration sub-cycle system, a cooling sub-cycle system, and at least one composite recuperator. The organic Rankine sub-circulation system includes an organic Rankine condenser and a first working fluid. The first working fluid flows through the organic Rankine condenser and releases a heat energy to the organic Rankine condenser for liquefaction. The absorption refrigeration sub-circulation system includes a second working fluid, an absorption refrigeration generator, an absorption refrigeration condenser, an absorption refrigeration evaporator and an absorption refrigeration absorber, and the second working fluid includes a refrigerant and An absorbent, the absorption refrigerating generator heats the second working fluid to vaporize the refrigerant, the absorption refrigerating condenser is used to cool down and liquefy the vaporized refrigerant, and the absorption refrigerating evaporator heats to cool down and liquefy the refrigerant after depressurization The refrigerant is re-vaporized, and the absorption refrigeration absorber is connected to the absorption refrigeration evaporator, and is used to combine the refrigerant and the absorbent to become the second working fluid again. The cooling secondary circulation system includes a cooling fluid, and the cooling fluid flows through the absorption refrigeration evaporator and the organic Rankine condenser to form a circuit. The aforementioned at least one compound recuperator preheats the second working fluid with the first working fluid, or preheats the first working fluid with the second working fluid. The cooling fluid flows through the organic Rankine condenser and absorbs the heat energy released by the liquefaction of the first working fluid, and the cooling fluid flows through the absorption refrigeration evaporator and provides at least a part of the heat energy to vaporize the refrigerant, and then the cooling fluid flows back to Organic Rankine Condenser.
依據前述第二實施方式之複合式熱循環系統,其中有機朗肯次循環系統更包含一有機朗肯蒸發器、一有機朗肯泵浦以及一有機朗肯膨脹器。有機朗肯蒸發器使液化後之第一工作流體高壓汽化。有機朗肯泵浦將經過有機朗肯冷凝器之第一工作流體送至有機朗肯蒸發器。有機朗肯膨脹器接收高壓汽化後之第一工作流體,以使高壓汽化後之第一工作流體降壓,同時有機朗肯膨脹器被驅動以產生一旋轉軸功。其中,有機朗肯冷凝器接收降壓後之第一工作流體,使其放出熱能,且第一工作流體流經有機朗肯泵浦、有機朗肯蒸發器、有機朗肯膨脹器及有機朗肯冷凝器以形成迴路。According to the compound thermal cycle system of the second embodiment, the organic Rankine sub-cycle system further comprises an organic Rankine evaporator, an organic Rankine pump and an organic Rankine expander. The organic Rankine evaporator vaporizes the liquefied first working fluid under high pressure. The organic Rankine pump sends the first working fluid passing through the organic Rankine condenser to the organic Rankine evaporator. The organic Rankine expander receives the high-pressure vaporized first working fluid to depressurize the high-pressure vaporized first working fluid, while the organic Rankine expander is driven to generate a rotating shaft work. The organic Rankine condenser receives the depressurized first working fluid to release heat energy, and the first working fluid flows through the organic Rankine pump, the organic Rankine evaporator, the organic Rankine expander and the organic Rankine condenser to form a loop.
依據前述第二實施方式之複合式熱循環系統,其中至少一複合式復熱器的數量為二,其中一複合式復熱器吸收第一工作流體流經有機朗肯膨脹器後所放出之一第一釋放熱,並預熱流入吸收式製冷發生器前之重新混合之第二工作流體;另一複合式復熱器吸收流經吸收式製冷發生器後汽化之製冷劑所放出之一第二釋放熱,並預熱流入有機朗肯蒸發器前之第一工作流體。According to the compound thermal cycle system according to the second embodiment, the number of at least one compound recuperator is two, and one compound recuperator absorbs one of the first working fluids discharged after flowing through the organic Rankine expander The first releases heat and preheats the remixed second working fluid before flowing into the absorption refrigeration generator; the other compound recuperator absorbs a second working fluid released by the vaporized refrigerant flowing through the absorption refrigeration generator. Heat is released and the first working fluid is preheated before flowing into the organic Rankine evaporator.
請參照第1圖,其中,第1圖繪示依照本發明一第一實施例之一種複合式熱循環系統10之方塊圖。由第1圖可知,複合式熱循環系統10包含一有機朗肯次循環系統100、一吸收式製冷次循環系統200及一冷卻次循環系統300。有機朗肯次循環系統100包含一有機朗肯冷凝器110及一第一工作流體120,第一工作流體120流經有機朗肯冷凝器110,並放出一熱能(未繪示)予有機朗肯冷凝器110以進行液化。吸收式製冷次循環系統200包含一第二工作流體210、一吸收式製冷發生器220、一吸收式製冷冷凝器230、一吸收式製冷蒸發器240及一吸收式製冷吸收器290,第二工作流體210包含一製冷劑211及一吸收劑212,吸收式製冷發生器220加熱第二工作流體210以使製冷劑211汽化而與吸收劑212分離,吸收式製冷冷凝器230用以使汽化後之製冷劑211降溫液化,經吸收膨脹閥260降壓後之製冷劑211於吸收式製冷蒸發器240吸收外部熱源而汽化,吸收式製冷吸收器290連接吸收式製冷蒸發器240,用以使製冷劑211及吸收劑212結合並再度成為濃度較高之第二工作流體210。冷卻次循環系統300包含一冷卻流體310,冷卻流體310流經吸收式製冷蒸發器240及有機朗肯冷凝器110以形成迴路,其中,冷卻流體310流經有機朗肯冷凝器110並吸收第一工作流體120液化所放出之熱能,接著冷卻流體310可先流經冷卻水塔320將一部分的熱能散出以降至環境溫度左右,再流經吸收式製冷蒸發器240,並提供熱能中至少一部分使製冷劑211汽化後,冷卻流體310再流回有機朗肯冷凝器110。Please refer to FIG. 1, wherein FIG. 1 shows a block diagram of a compound
藉此,冷卻流體310自有機朗肯次循環系統100取得熱能,將熱能給吸收式製冷次循環系統200後使自身降至室溫以下,再回到有機朗肯次循環系統100,使第一工作流體120進一步降低冷凝溫度,而可有效提升有機朗肯次循環系統100的熱效率及發電量。In this way, the
仔細而言,有機朗肯次循環系統100更包含一有機朗肯蒸發器140、一有機朗肯泵浦130以及一有機朗肯膨脹器150。第一工作流體120流經有機朗肯冷凝器110液化後,由有機朗肯泵浦130以例如是加壓方式送至有機朗肯蒸發器140,接著,有機朗肯蒸發器140使液化後之第一工作流體120高壓汽化,高壓汽化後之第一工作流體120進入有機朗肯膨脹器150開始膨脹降壓並產生一旋轉軸功,旋轉軸功透過連結器帶動有機朗肯發電機160發電。其中,有機朗肯冷凝器110接收降壓後(即經過有機朗肯膨脹器150)之第一工作流體120,使其放出熱能。換句話說,第一工作流體120可流經有機朗肯冷凝器110、有機朗肯泵浦130、有機朗肯蒸發器140及有機朗肯膨脹器150以形成迴路。有機朗肯發電機160係連接於有機朗肯膨脹器150,第一工作流體120可推動有機朗肯膨脹器150例如:渦卷、單螺桿、雙螺桿及渦輪等旋轉元件以產生旋轉軸功,進而透過有機朗肯發電機160將旋轉軸功轉換成電能。第一工作流體120可為純冷媒,例如R123、R134a、R245fa、R1234yf或混合冷媒,混合冷媒例如為R245fa/R134a混合流體或R245fa/R1234yf混合流體,然本發明不以此為限。Specifically, the organic Rankine
吸收式製冷次循環系統200可更包含一吸收減壓閥280、吸收膨脹閥260、一吸收式製冷熱交換器270以及一吸收式製冷泵浦250。製冷劑211與吸收劑212分別具有不同沸點(製冷劑211的沸點較吸收劑212低)並充分混合,混合流體之組成可例如為氨加水或是水加溴化鋰等,當吸收式製冷發生器220使製冷劑211汽化分離後,吸收劑212流入吸收減壓閥280,且吸收減壓閥280使吸收劑212降壓。吸收式製冷吸收器290將經過吸收式製冷蒸發器240之製冷劑211及經過吸收減壓閥280之吸收劑212重新混合成濃度較高之第二工作流體210。吸收式製冷熱交換器270包含一第二高溫部271及一第二低溫部272,透過吸收式製冷熱交換器270的第二高溫部271吸收未經吸收減壓閥280降壓之吸收劑212的一廢熱(未繪示),第二低溫部272在重新混合之第二工作流體210流入吸收式製冷發生器220前,提供廢熱以預熱重新混合之第二工作流體210。吸收式製冷泵浦250將重新混合之第二工作流體210送至吸收式製冷發生器220。其中,經過吸收式製冷冷凝器230後之製冷劑211流經吸收式製冷蒸發器240以進行汽化(吸收來自冷卻流體310的熱能並使冷卻流體310降溫),且製冷劑211流經吸收式製冷發生器220、吸收式製冷冷凝器230、吸收式製冷蒸發器240、吸收式製冷吸收器290及吸收式製冷泵浦250以形成迴路。The absorption refrigeration
冷卻次循環系統300更包含一冷卻水塔320及一冷卻泵浦330,冷卻流體310流經有機朗肯冷凝器110並吸收第一工作流體120液化所放出之熱能後,流經冷卻水塔320進行初步冷卻以釋放一部分的熱能,使其降溫至接近環境溫度後,再流經冷卻泵浦330以送至吸收式製冷蒸發器240,並將熱能之一部分傳遞給製冷劑211以使製冷劑211汽化,並將冷卻流體310進一步降溫(低於環境溫度),最後再回到有機朗肯冷凝器110以完成循環。The cooling
依據前述實施方式之複合式熱循環系統10,其更包含一熱源400,先流經有機朗肯蒸發器140,提供一高溫熱能(未繪示)予有機朗肯蒸發器140並使第一工作流體120汽化,再流經吸收式製冷發生器220,將高溫熱能之剩餘部分提供給吸收式製冷發生器220,其剛好足以使第二工作流體210中沸點較低的製冷劑211汽化,而與沸點較高之吸收劑212分離。The composite
請參閱第2圖,其中第2圖繪示依照本發明一第二實施例之一種複合式熱循環系統10a之方塊圖。複合式熱循環系統10a的配置與第1圖之複合式熱循環系統10類似,包含一有機朗肯次循環系統100a、一吸收式製冷次循環系統200a及一冷卻次循環系統300a。有機朗肯次循環系統100a與第1圖的有機朗肯次循環系統100類似,包含第一工作流體120a、有機朗肯冷凝器110a、有機朗肯泵浦130a、有機朗肯蒸發器140a及有機朗肯膨脹器150a;吸收式製冷次循環系統200a與第1圖的吸收式製冷次循環系統200類似,包含第二工作流體210a、吸收式製冷發生器220a、吸收式製冷冷凝器230a、吸收膨脹閥260a、吸收式製冷蒸發器240a、吸收式製冷吸收器290a、吸收減壓閥280a、吸收式製冷泵浦250a及吸收式製冷熱交換器270a,第二工作流體210a則同樣包含製冷劑211a及吸收劑212a;冷卻次循環系統300a與第1圖的冷卻次循環系統300類似,包含冷卻流體310a、冷卻水塔320a及冷卻泵浦330a。差異在於,有機朗肯次循環系統100a更包含一復熱器170a,其包含一第一高溫部171a及一第一低溫部172a,高壓汽化之第一工作流體120a流經有機朗肯膨脹器150a降壓(同時伴隨降溫效果)後,再經過第一高溫部171a並被吸收一餘熱(未繪示),如此可使第一工作流體120a先進行一定程度的降溫再流入有機朗肯冷凝器110a;餘熱可透過第一低溫部172a提供給流入有機朗肯蒸發器140a前之第一工作流體120a,以對第一工作流體120a進行預熱。Please refer to FIG. 2, wherein FIG. 2 is a block diagram of a compound
請參照第3圖,其中第3圖繪示依照本發明一第三實施例之一種複合式熱循環系統10b之方塊圖。複合式熱循環系統10b的配置與第1圖之複合式熱循環系統10類似,包含一有機朗肯次循環系統100b、一吸收式製冷次循環系統200b及一冷卻次循環系統300b。有機朗肯次循環系統100b與第1圖的有機朗肯次循環系統100類似,包含第一工作流體120b、有機朗肯冷凝器110b、有機朗肯泵浦130b、有機朗肯蒸發器140b及有機朗肯膨脹器150b;吸收式製冷次循環系統200b與第1圖的吸收式製冷次循環系統200類似,包含第二工作流體210b、吸收式製冷發生器220b、吸收式製冷冷凝器230b、吸收膨脹閥260b、吸收式製冷蒸發器240b、吸收式製冷吸收器290b、吸收減壓閥280b、吸收式製冷泵浦250b及吸收式製冷熱交換器270b,第二工作流體210b則同樣包含製冷劑211b及吸收劑212b;冷卻次循環系統300b與第1圖的冷卻次循環系統300類似,包含冷卻流體310b、冷卻水塔320b及冷卻泵浦330b。但複合式熱循環系統10b更包含至少一複合式復熱器510b、520b。至少一複合式復熱器510b、520b以第一工作流體120b預熱第二工作流體210b,或以第二工作流體210b預熱第一工作流體120b,而能讓熱能的運用更有效率。Please refer to FIG. 3, wherein FIG. 3 is a block diagram of a compound
在第三實施例中,複合式復熱器510b、520b的數量可為二,複合式復熱器510b吸收第一工作流體120b流經有機朗肯膨脹器150b後所放出之一第一釋放熱(未繪示),並預熱流入吸收式製冷發生器220b前之重新混合之第二工作流體210b,而能以第一工作流體120b預熱第二工作流體210b;另一複合式復熱器520b吸收流經吸收式製冷發生器220b後汽化之製冷劑211b所放出之一第二釋放熱(未繪示),並預熱流入有機朗肯蒸發器140b前之第一工作流體120b,而能以第二工作流體210b預熱第一工作流體120b。複合式復熱器510b、520b藉有機朗肯次循環系統100b及吸收式製冷次循環系統200b之間的溫度差以進行熱交換,可依實際需求配置於複合式熱循環系統10b中任何能有效提升系統熱效率的位置,並不以此限制本發明。In the third embodiment, the number of the
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of the appended patent application.
10,10a,10b:複合式熱循環系統
100,100a,100b:有機朗肯次循環系統
110,110a,110b:有機朗肯冷凝器
120,120a,120b:第一工作流體
130,130a,130b:有機朗肯泵浦
140,140a,140b:有機朗肯蒸發器
150,150a,150b:有機朗肯膨脹器
160:有機朗肯發電機
170a:復熱器
171a:第一高溫部
172a:第一低溫部
200,200a,200b:吸收式製冷次循環系統
210,210a,210b:第二工作流體
211,211a,211b:製冷劑
212,212a,212b:吸收劑
220,220a,220b:吸收式製冷發生器
230,230a,230b:吸收式製冷冷凝器
240,240a,240b:吸收式製冷蒸發器
250,250a,250b:吸收式製冷泵浦
260,260a,260b:吸收膨脹閥
270,270a,270b:吸收式製冷熱交換器
271:第二高溫部
272:第二低溫部
280,280a,280b:吸收減壓閥
290,290a,290b:吸收式製冷吸收器
300,300a,300b:冷卻次循環系統
310,310a,310b:冷卻流體
320,320a,320b:冷卻水塔
330,330a,330b:冷卻泵浦
400:熱源
510b,520b:複合式復熱器
10, 10a, 10b: Compound
第1圖繪示依照本發明一第一實施例之一種複合式熱循環系統之方塊圖; 第2圖繪示依照本發明一第二實施例之一種複合式熱循環系統之方塊圖;以及 第3圖繪示依照本發明一第三實施例之一種複合式熱循環系統之方塊圖。 FIG. 1 shows a block diagram of a compound thermal cycle system according to a first embodiment of the present invention; FIG. 2 shows a block diagram of a compound thermal cycle system according to a second embodiment of the present invention; and FIG. 3 shows a block diagram of a compound thermal cycle system according to a third embodiment of the present invention.
10:複合式熱循環系統 10: Composite thermal cycle system
100:有機朗肯次循環系統 100: Organic Rankine Cycle System
110:有機朗肯冷凝器 110: Organic Rankine Condenser
120:第一工作流體 120: The first working fluid
130:有機朗肯泵浦 130: Organic Rankine Pump
140:有機朗肯蒸發器 140: Organic Rankine Evaporator
150:有機朗肯膨脹器 150: Organic Rankine Expander
160:有機朗肯發電機 160: Organic Rankine Generator
200:吸收式製冷次循環系統 200: Absorption refrigeration secondary circulation system
210:第二工作流體 210: Second working fluid
211:製冷劑 211: Refrigerant
212:吸收劑 212: Absorbent
220:吸收式製冷發生器 220: Absorption Refrigeration Generator
230:吸收式製冷冷凝器 230: Absorption refrigeration condenser
240:吸收式製冷蒸發器 240: Absorption refrigeration evaporator
250:吸收式製冷泵浦 250: Absorption refrigeration pump
260:吸收膨脹閥 260: Absorption expansion valve
270:吸收式製冷熱交換器 270: Absorption Refrigeration Heat Exchanger
271:第二高溫部 271: Second high temperature section
272:第二低溫部 272: Second Cryogenic Section
280:吸收減壓閥 280: Absorption pressure reducing valve
290:吸收式製冷吸收器 290: Absorption refrigeration absorber
300:冷卻次循環系統 300: cooling secondary circulation system
310:冷卻流體 310: Cooling Fluid
320:冷卻水塔 320: Cooling water tower
330:冷卻泵浦 330: Cooling Pump
400:熱源 400: heat source
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109127623A TWI755021B (en) | 2020-08-13 | 2020-08-13 | Integrated thermal cycling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109127623A TWI755021B (en) | 2020-08-13 | 2020-08-13 | Integrated thermal cycling system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI755021B true TWI755021B (en) | 2022-02-11 |
TW202206695A TW202206695A (en) | 2022-02-16 |
Family
ID=81323313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109127623A TWI755021B (en) | 2020-08-13 | 2020-08-13 | Integrated thermal cycling system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI755021B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1303378C (en) * | 2005-09-08 | 2007-03-07 | 上海交通大学 | Combined circulating device capable of realizing absorption type cycle and organic matter Rankine cycle |
CN102536363A (en) * | 2010-11-19 | 2012-07-04 | 通用电气公司 | Rankine cycle integrated with organic rankine cycle and absorption chiller cycle |
US20140373542A1 (en) * | 2012-03-15 | 2014-12-25 | Cyclect Electrical Engineering | Organic rankine cycle system |
TWM524449U (en) * | 2015-12-09 | 2016-06-21 | 國立高雄應用科技大學 | An improved organic rankine cycle system |
-
2020
- 2020-08-13 TW TW109127623A patent/TWI755021B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1303378C (en) * | 2005-09-08 | 2007-03-07 | 上海交通大学 | Combined circulating device capable of realizing absorption type cycle and organic matter Rankine cycle |
CN102536363A (en) * | 2010-11-19 | 2012-07-04 | 通用电气公司 | Rankine cycle integrated with organic rankine cycle and absorption chiller cycle |
JP2012163093A (en) * | 2010-11-19 | 2012-08-30 | General Electric Co <Ge> | Rankine cycle integrated with organic rankine cycle and absorption chiller cycle |
US20140373542A1 (en) * | 2012-03-15 | 2014-12-25 | Cyclect Electrical Engineering | Organic rankine cycle system |
TWM524449U (en) * | 2015-12-09 | 2016-06-21 | 國立高雄應用科技大學 | An improved organic rankine cycle system |
Also Published As
Publication number | Publication date |
---|---|
TW202206695A (en) | 2022-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110131116B (en) | ORC magnetic suspension power generation system utilizing medium-low temperature geothermal residual pressure in gradient mode | |
CA2755034C (en) | Rankine cycle integrated with absorption chiller | |
CA2972907C (en) | Multi-pressure organic rankine cycle | |
US20130087301A1 (en) | Thermoelectric energy storage system and method for storing thermoelectric energy | |
JP2007520662A (en) | Fluid for organic Rankine cycle | |
CA2758654A1 (en) | Rankine cycle integrated with organic rankine cycle and absorption chiller cycle | |
CN108005743A (en) | A kind of cold synergy of contraction with pressure without pump organic Rankine cycle power generation system | |
WO2016148008A1 (en) | Intake air cooling method, intake air cooling device executing said method, and waste heat recovery facility and gas turbine plant each comprising said intake air cooling device | |
US20110265501A1 (en) | System and a method of energy recovery from low temperature sources of heat | |
CN110068170B (en) | An Oilfield Waste Heat Utilization System Based on Absorption Refrigeration | |
US8464531B2 (en) | Method and device for converting thermal energy into electricity, high potential heat and cold | |
ES2890330T3 (en) | Hybrid absorption-compression refrigerator and a related method of providing cooling effect | |
CN111306835B (en) | Ammonia water working medium cooling, heating and power supply system using medium and low temperature heat source and its working method | |
TWI755021B (en) | Integrated thermal cycling system | |
CN100570241C (en) | Double-effect lithium bromide absorption refrigeration device for waste heat utilization of flue gas | |
GB2455579A (en) | Heat pump comprising an inverter drive compressor | |
EP0945691B1 (en) | Absorption refrigeration system with condensate solution coupling | |
CN111636940A (en) | Method and device used for doing work in a cascaded gravity field | |
CN100390476C (en) | Power-cold co-supply cross-quiescent positive and negative coupling thermodynamic cycle system and method | |
JP2016176461A (en) | Binary power generator | |
CN114370354A (en) | A waste heat recovery system and method suitable for variable working conditions of an engine | |
JP2004069276A (en) | Waste heat recovering cooling system | |
US20210301721A1 (en) | Combined System of Intercooled Recuperative Gas Turbine and refrigerant Compound Bottoming Cycle | |
JPH09144507A (en) | Power generating system | |
KR20120079589A (en) | Absorption type cooler and heater |