TWI754242B - Method, device for evaluating fingerprint quality based on images and electronic device - Google Patents
Method, device for evaluating fingerprint quality based on images and electronic device Download PDFInfo
- Publication number
- TWI754242B TWI754242B TW109108510A TW109108510A TWI754242B TW I754242 B TWI754242 B TW I754242B TW 109108510 A TW109108510 A TW 109108510A TW 109108510 A TW109108510 A TW 109108510A TW I754242 B TWI754242 B TW I754242B
- Authority
- TW
- Taiwan
- Prior art keywords
- fingerprint
- fingerprint image
- image
- component
- frequency
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
- G06V40/1359—Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1365—Matching; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Collating Specific Patterns (AREA)
Abstract
Description
本發明涉及影像處理技術領域,具體涉及一種基於圖像的指紋品質評估方法、裝置及電子設備。 The present invention relates to the technical field of image processing, in particular to an image-based fingerprint quality assessment method, device and electronic device.
現有技術中,主要依賴圖像對比度,或對圖像二值化處理檢測出圖像脊骨區域,或依賴圖像樣本數量,實現圖像的指紋品質評估。然而,依賴圖像對比度或對圖像二值化處理檢測出圖像脊骨區域實現圖像的指紋品質評估的方法,增加了計算的複雜度,依賴圖像樣本數量實現圖像的指紋品質評估需要藉由大量資料獲取和訓練獲取,使得指紋品質評估流程過於繁瑣。 In the prior art, the image quality evaluation is mainly realized by relying on the image contrast, or by detecting the image vertebral region by binarizing the image, or relying on the number of image samples. However, the method that relies on image contrast or image binarization to detect the image spine region to achieve image fingerprint quality evaluation increases the computational complexity, and depends on the number of image samples to achieve image fingerprint quality evaluation. It is necessary to obtain a large amount of data and training, which makes the fingerprint quality evaluation process too cumbersome.
鑒於以上內容,有必要提出一種基於圖像的指紋品質評估方法、裝置及電子設備以減少指紋品質評估的計算的複雜度,簡化指紋品質評估的流程。 In view of the above, it is necessary to propose an image-based fingerprint quality assessment method, device and electronic device to reduce the computational complexity of fingerprint quality assessment and simplify the process of fingerprint quality assessment.
本申請的第一方面提供一種基於圖像的指紋品質評估方法,所述方法包括:採集指紋圖像;去除所述指紋圖像中的直流分量; 對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖,並根據所述指紋圖像的頻譜圖計算出所述指紋圖像的頻譜能量圖;提取所述頻譜能量圖中的指紋頻率區域特徵;根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果。 A first aspect of the present application provides an image-based fingerprint quality assessment method, the method comprising: collecting a fingerprint image; removing a DC component in the fingerprint image; Perform frequency domain transformation on the fingerprint image with the DC component removed to obtain a spectrogram of the fingerprint image, and calculate a spectral energy map of the fingerprint image according to the spectrogram of the fingerprint image; extract the spectrum The fingerprint frequency region feature in the energy map; the fingerprint image is scored according to the fingerprint frequency region feature to obtain an evaluation result of the fingerprint image.
優選地,所述提取所述頻譜能量圖中的指紋頻率區域特徵包括:預設所述指紋圖像的頻域檢測區域;及提取所述頻譜能量圖在所述頻域檢測區域的指紋頻率區域特徵。 Preferably, the extracting the fingerprint frequency region feature in the spectral energy map comprises: presetting a frequency domain detection region of the fingerprint image; and extracting the fingerprint frequency region of the spectral energy map in the frequency domain detection region feature.
優選地,所述提取所述頻譜能量圖中的指紋頻率區域特徵包括:遍歷所述頻譜能量圖提取出所述頻譜能量圖中能量最大值點作為位置頻率點f0並進行歸一化,將所述頻域檢測區域設定為[f0-delta,f0+delta],其中,delta為調整參數且取值為0.1;及提取所述頻譜能量圖在所述頻域檢測區域的指紋頻率區域特徵。 Preferably, the extracting the fingerprint frequency region feature in the spectral energy map includes: traversing the spectral energy map to extract the energy maximum point in the spectral energy map as the position frequency point f0 and normalizing it. The frequency domain detection area is set as [f0-delta, f0+delta], where delta is an adjustment parameter and the value is 0.1; and the fingerprint frequency area feature of the spectral energy map in the frequency domain detection area is extracted.
優選地,所述去除所述指紋圖像中的直流分量包括:藉由所述指紋圖像的每一圖元點的圖元值減去所述指紋圖像的圖元均值的方法去除指紋圖像中的直流分量。 Preferably, the removing the DC component in the fingerprint image comprises: removing the fingerprint image by a method of subtracting the mean value of the primitives of the fingerprint image from the primitive value of each primitive point of the fingerprint image DC component in the image.
優選地,所述藉由所述指紋圖像的每一圖元點的圖元值減去所述指紋圖像的圖元均值的方法去除指紋圖像中的直流分量包括:按照公式計算所述指紋圖像中的所有圖元點的圖元均值,其中h為所述指紋圖像在高度上的圖元點個數,w為所述指紋圖像在寬度上的圖元點個數,I(x,y)為所述指紋圖像中的圖元點;及將所述指紋圖像中的每個圖元點的圖元值減去所述指紋圖像的圖元均值以去除所述指紋圖像中的直流分量。 Preferably, the method for removing the DC component in the fingerprint image by subtracting the mean value of the primitives of the fingerprint image from the primitive value of each primitive point of the fingerprint image comprises: according to the formula Calculate the mean value of primitives of all primitives in the fingerprint image, where h is the number of primitives in the height of the fingerprint image, and w is the number of primitives in the width of the fingerprint image number, I(x, y) is the primitive point in the fingerprint image; and the primitive value of each primitive point in the fingerprint image is subtracted from the primitive mean value of the fingerprint image to obtain The DC component in the fingerprint image is removed.
優選地,所述去除所述指紋圖像中的直流分量包括: 藉由對所述指紋圖像進行高通濾波去除所述指紋圖像中的直流分量。 Preferably, the removing the DC component in the fingerprint image comprises: The DC component in the fingerprint image is removed by high-pass filtering the fingerprint image.
優選地,所述對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖包括:對去除直流分量的所述指紋圖像進行快速傅裡葉變換得到所述指紋圖像的頻譜圖。 Preferably, performing frequency domain transformation on the fingerprint image with the DC component removed to obtain the spectrogram of the fingerprint image includes: performing fast Fourier transform on the fingerprint image with the DC component removed to obtain the fingerprint Spectrogram of the image.
優選地,所述根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述指紋頻率區域特徵查找評分關係表確認與所述指紋頻率區域特徵對應的評分得到所述指紋圖像的評估結果,其中,所述評分關係表中定義多個不同的指紋頻率區域特徵與多個不同的評分的對應關係。 Preferably, the scoring of the fingerprint image according to the fingerprint frequency region feature to obtain the evaluation result of the fingerprint image includes: searching a scoring relationship table according to the fingerprint frequency region feature to confirm the relationship between the fingerprint frequency region feature and the fingerprint frequency region feature. The corresponding score obtains the evaluation result of the fingerprint image, wherein the score relationship table defines the corresponding relationship between a plurality of different fingerprint frequency region features and a plurality of different scores.
本申請的第二方面提供一種基於圖像的指紋品質評估裝置,所述裝置包括:採集模組,用於採集指紋圖像;直流去除模組,用於去除所述指紋圖像中的直流分量;頻域變換模組,用於對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖,並根據所述指紋圖像的頻譜圖計算出所述指紋圖像的頻譜能量圖;特徵提取模組,用於提取所述頻譜能量圖中的指紋頻率區域特徵;評分模組,用於根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果。 A second aspect of the present application provides an image-based fingerprint quality assessment device, the device includes: a collection module for collecting a fingerprint image; a DC removal module for removing a DC component in the fingerprint image frequency domain transformation module, for carrying out frequency domain transformation to the described fingerprint image of removing the DC component to obtain the spectrogram of the fingerprint image, and calculates the fingerprint image according to the spectrogram of the fingerprint image The feature extraction module is used to extract the fingerprint frequency region feature in the spectrum energy map; the scoring module is used to score the fingerprint image according to the fingerprint frequency region feature to obtain the fingerprint Image evaluation results.
本申請的協力廠商面提供一種電子設備,所述電子設備包括處理器,所述處理器用於執行記憶體中存儲的電腦程式時實現所述基於圖像的指紋品質評估方法。 The third party aspect of the present application provides an electronic device, the electronic device includes a processor configured to implement the image-based fingerprint quality assessment method when executing a computer program stored in a memory.
本案對去除直流分量的指紋圖像進行頻域變換得到指紋圖像的頻譜能量圖,提取所述頻譜能量圖中的指紋頻率區域特徵,及根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果,從而快速評價指紋圖像的品質,減少指紋品質評估的計算的複雜度,簡化指紋品質評估的流程。 In this case, the frequency domain transformation is performed on the fingerprint image with the DC component removed to obtain the spectral energy map of the fingerprint image, the fingerprint frequency region features in the spectral energy map are extracted, and the fingerprint image is processed according to the fingerprint frequency region features. The evaluation result of the fingerprint image is obtained by scoring, so as to quickly evaluate the quality of the fingerprint image, reduce the computational complexity of fingerprint quality evaluation, and simplify the process of fingerprint quality evaluation.
30:基於圖像的指紋品質評估裝置 30: Image-based fingerprint quality assessment device
301:採集模組 301: Collection Module
302:直流去除模組 302: DC removal module
303:頻域變換模組 303: Frequency Domain Transform Module
304:特徵提取模組 304: Feature extraction module
305:評分模組 305: Scoring Module
6:電子設備 6: Electronic equipment
61:記憶體 61: Memory
62:處理器 62: Processor
63:電腦程式 63: Computer Programs
S11~S15:步驟 S11~S15: Steps
圖1為本發明一實施方式中基於圖像的指紋品質評估方法的流程圖。 FIG. 1 is a flowchart of an image-based fingerprint quality assessment method according to an embodiment of the present invention.
圖2為本發明一實施方式中基於圖像的指紋品質評估裝置的結構示意圖。 FIG. 2 is a schematic structural diagram of an image-based fingerprint quality assessment apparatus according to an embodiment of the present invention.
圖3為本發明一實施方式中電子設備的示意圖。 FIG. 3 is a schematic diagram of an electronic device in an embodiment of the present invention.
為了能夠更清楚地理解本發明的上述目的、特徵和優點,下面結合附圖和具體實施例對本發明進行詳細描述。需要說明的是,在不衝突的情況下,本申請的實施例及實施例中的特徵可以相互組合。 In order to more clearly understand the above objects, features and advantages of the present invention, the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. It should be noted that the embodiments of the present application and the features in the embodiments may be combined with each other in the case of no conflict.
在下面的描述中闡述了很多具體細節以便於充分理解本發明,所描述的實施例僅僅是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得的所有其他實施例,都屬於本發明保護的範圍。 In the following description, many specific details are set forth in order to facilitate a full understanding of the present invention, and the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
除非另有定義,本文所使用的所有的技術和科學術語與屬於本發明的技術領域的技術人員通常理解的含義相同。本文中在本發明的說明書中所使用的術語只是為了描述具體的實施例的目的,不是旨在於限制本發明。 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention.
優選地,本發明基於圖像的指紋品質評估方法應用在一個或者多個電子設備中。所述電子設備是一種能夠按照事先設定或存儲的指令,自動進 行數值計算和/或資訊處理的設備,其硬體包括但不限於微處理器、專用積體電路(Application Specific Integrated Circuit,ASIC)、可程式設計閘陣列(Field-Programmable Gate Array,FPGA)、數文書處理器(Digital Signal Processor,DSP)、嵌入式設備等。 Preferably, the image-based fingerprint quality assessment method of the present invention is applied in one or more electronic devices. The electronic device is a device that can automatically enter the Equipment for performing numerical computation and/or information processing, the hardware of which includes but is not limited to microprocessors, Application Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays (FPGAs), Digital Signal Processor (DSP), embedded devices, etc.
所述電子設備可以是桌上型電腦、筆記型電腦、平板電腦及雲端伺服器等計算設備。所述設備可以與使用者藉由鍵盤、滑鼠、遙控器、觸控板或聲控設備等方式進行人機交互。 The electronic device may be a computing device such as a desktop computer, a notebook computer, a tablet computer, and a cloud server. The device can interact with the user by means of a keyboard, a mouse, a remote control, a touch pad or a voice control device.
圖1是本發明一實施方式中基於圖像的指紋品質評估方法的流程圖。根據不同的需求,所述流程圖中步驟的順序可以改變,某些步驟可以省略。 FIG. 1 is a flowchart of an image-based fingerprint quality assessment method according to an embodiment of the present invention. According to different requirements, the order of the steps in the flowchart can be changed, and some steps can be omitted.
參閱圖1所示,所述基於圖像的指紋品質評估方法具體包括以下步驟: Referring to Figure 1, the image-based fingerprint quality assessment method specifically includes the following steps:
步驟S11,採集指紋圖像。 Step S11, collecting a fingerprint image.
本實施方式中,藉由指紋感測器採集指紋圖像。所述指紋感測器為光學指紋感測器、半導體電容指紋感測器、半導體熱敏指紋感測器、半導體壓感指紋感測器、超聲波指紋感測器和射頻指紋感測器中的至少一種。 In this embodiment, a fingerprint image is collected by a fingerprint sensor. The fingerprint sensor is at least one of an optical fingerprint sensor, a semiconductor capacitive fingerprint sensor, a semiconductor thermal fingerprint sensor, a semiconductor pressure sensitive fingerprint sensor, an ultrasonic fingerprint sensor and a radio frequency fingerprint sensor. A sort of.
步驟S12,去除所述指紋圖像中的直流分量。 Step S12, remove the DC component in the fingerprint image.
本實施方式中,所述去除所述指紋圖像中的直流分量包括:藉由指紋圖像的每一圖元點的圖元值減去所述指紋圖像的圖元均值的方法去除指紋圖像中的直流分量。在具體實施方式中,首先按照公式計算所述指紋圖像中的所有圖元點的圖元均值,其中h為所述指紋圖像在高度上的圖元點個數,w為所述指紋圖像在寬度上的圖元點個數,I(x,y)為所述指紋圖像中的圖元點;然後將所述指紋圖像中的每個圖元點的圖元值減去所述指紋圖像的圖元均值,如此去除所述指紋圖像中的直流分量。 In this embodiment, the removing the DC component in the fingerprint image includes: removing the fingerprint image by subtracting the average value of the image elements of the fingerprint image from the image element value of each image element point of the fingerprint image. DC component in the image. In the specific implementation, first according to the formula Calculate the mean value of primitives of all primitives in the fingerprint image, where h is the number of primitives in the height of the fingerprint image, and w is the number of primitives in the width of the fingerprint image number, I(x, y) is the primitive point in the fingerprint image; then subtract the primitive value of each primitive point in the fingerprint image from the primitive mean value of the fingerprint image, This removes the DC component in the fingerprint image.
在另一實施方式中,所述去除所述指紋圖像中的直流分量包括:藉由對所述指紋圖像進行高通濾波去除所述指紋圖像中的直流分量。在其他實施方式中,所述去除所述指紋圖像中的直流分量包括:藉由所述指紋圖像減去所 述指紋圖像的均值濾波後的圖像以去除所述指紋圖像中的直流分量。本實施方式中,藉由去除指紋圖像中的直流分量可以保證指紋圖像中的指紋頻率資訊佔據頻域能量譜地主要成分。本案中,所有不同形式地去除指紋圖像地直流分量的方案均屬於本案所保護地範疇。 In another embodiment, the removing the DC component in the fingerprint image comprises: removing the DC component in the fingerprint image by performing high-pass filtering on the fingerprint image. In other implementations, the removing the DC component in the fingerprint image comprises: subtracting the DC component from the fingerprint image mean filtered image of the fingerprint image to remove the DC component in the fingerprint image. In this embodiment, by removing the DC component in the fingerprint image, it can be ensured that the fingerprint frequency information in the fingerprint image occupies the main component of the frequency domain energy spectrum. In this case, all schemes for removing the DC component of the fingerprint image in different forms belong to the scope of protection in this case.
步驟S13,對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖,並根據所述指紋圖像的頻譜圖計算出所述指紋圖像的頻譜能量圖。 Step S13, performing frequency domain transformation on the fingerprint image with the DC component removed to obtain a spectrogram of the fingerprint image, and calculating a spectral energy map of the fingerprint image according to the spectrogram of the fingerprint image.
本實施方式中,所述對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖包括:對去除直流分量的所述指紋圖像進行快速傅裡葉變換(Fast Fourier Transform,FFT)得到所述指紋圖像的頻譜圖。在另一實施方式中,所述對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖包括:對去除直流分量的所述指紋圖像進行小波變換方法得到所述指紋圖像的頻譜圖。本案中,所有不同形式地對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖的方案均屬於本案所保護地範疇。 In this embodiment, the performing frequency domain transformation on the fingerprint image with the DC component removed to obtain the spectrogram of the fingerprint image includes: performing Fast Fourier Transform (Fast Fourier Transform) on the fingerprint image with the DC component removed. Fourier Transform, FFT) to obtain the spectrogram of the fingerprint image. In another embodiment, the performing frequency domain transformation on the fingerprint image with the DC component removed to obtain the spectrogram of the fingerprint image includes: performing a wavelet transform method on the fingerprint image with the DC component removed to obtain the obtained fingerprint image. The spectrogram of the fingerprint image. In this case, all schemes for obtaining the spectrogram of the fingerprint image by performing frequency domain transformation on the fingerprint image with the DC component removed in different forms belong to the protection category of this case.
本實施方式中,所述根據所述圖像的頻譜圖計算出所述指紋圖像的頻譜能量圖包括:根據公式E(x,y)=F(x,y)˙F(x,y)計算出所述指紋圖像的頻譜能量圖,其中,所述(x,y)為所述指紋圖像中的圖元點的座標,F(x,y)為所述指紋圖像中的頻譜圖,E(x,y)為所述指紋圖像中的頻譜能量圖。 In this embodiment, the calculating the spectral energy map of the fingerprint image according to the spectrogram of the image includes: according to the formula E ( x , y )= F ( x , y )˙ F ( x , y ) Calculate the spectral energy map of the fingerprint image, wherein the (x, y) is the coordinates of the primitive points in the fingerprint image, and F(x, y) is the frequency spectrum in the fingerprint image Figure, E(x, y) is the spectral energy map in the fingerprint image.
步驟S14,提取所述頻譜能量圖中的指紋頻率區域特徵。 Step S14, extracting the fingerprint frequency region features in the spectral energy map.
本實施方式中,所述提取所述頻譜能量圖中的指紋頻率區域特徵包括:預設所述指紋圖像的頻域檢測區域;及提取所述頻譜能量圖在所述頻域檢測區域的指紋頻率區域特徵。在具體實施方式中,所述預設所述指紋圖像的頻域檢測區域包括:採集標準指紋圖像,藉由影像處理工具查看標準指紋圖像的頻率分佈位置,設定檢測標準指紋圖像的位置頻率點為f0,並設定標準指紋圖像的指紋頻帶區域範圍為一個橢圓形區域;將標準指紋圖像的頻域圖像的頻率資訊歸一化,且歸一化後的頻域圖像的中心代表頻域圖像的0頻率,遠離頻域圖 像的中心的區域為高頻區域;將所述頻域檢測區域設定為[f1-delta,f1+delta],其中,f1為歸一化後的標準指紋圖像的位置頻率點,delta為調整參數且取值為0.1。本實施方式中,調整參數delta可以依據人類指紋脊穀頻率不可能無限大或無限小而是有一定的分佈範圍的原理進行設定。當調整參數delta設定為0.1時所確定的頻域檢測區域以囊括99%以上的使用群體。 In this embodiment, the extracting the fingerprint frequency region feature in the spectral energy map includes: presetting a frequency domain detection region of the fingerprint image; and extracting the fingerprint of the spectral energy map in the frequency domain detection region Frequency Region Features. In a specific embodiment, the preset frequency domain detection area of the fingerprint image includes: collecting a standard fingerprint image, checking the frequency distribution position of the standard fingerprint image by an image processing tool, and setting the detection standard fingerprint image. The position frequency point is f0, and the fingerprint frequency band area of the standard fingerprint image is set as an oval area; the frequency information of the frequency domain image of the standard fingerprint image is normalized, and the normalized frequency domain image The center of the frequency domain image represents the 0 frequency, away from the frequency domain image The area in the center of the image is a high-frequency area; the frequency domain detection area is set to [f1-delta, f1+delta], where f1 is the position frequency point of the normalized standard fingerprint image, and delta is the adjustment parameter and the value is 0.1. In this embodiment, the adjustment parameter delta can be set according to the principle that the frequency of the ridge and valley of the human fingerprint cannot be infinitely large or infinitely small, but has a certain distribution range. When the adjustment parameter delta is set to 0.1, the frequency domain detection area is determined to cover more than 99% of the user population.
在一實施方式中,所述提取所述頻譜能量圖中的指紋頻率區域特徵包括:遍歷所述頻譜能量圖提取出所述頻譜能量圖中能量最大值點作為所述位置頻率點f0並進行歸一化,將所述頻域檢測區域設定為[f0-delta,f0+delta],從而即時得到所述頻域檢測區域,其中,delta為調整參數且取值為0.1;及提取所述頻譜能量圖在所述頻域檢測區域的指紋頻率區域特徵。 In one embodiment, the extracting the fingerprint frequency region feature in the spectral energy map includes: traversing the spectral energy map to extract the energy maximum point in the spectral energy map as the position frequency point f0 and normalizing it. To be normalized, the frequency domain detection area is set as [f0-delta, f0+delta], so as to obtain the frequency domain detection area in real time, where delta is an adjustment parameter and takes a value of 0.1; and the spectral energy is extracted Figure 2. The fingerprint frequency region features of the detection region in the frequency domain.
本實施方式中,所述指紋頻率區域特徵為表示頻率強度與分佈的特徵。本實施方式中,所述指紋頻率區域特徵包括均值、標準差、方差、極大/極小值差異、熵中的至少一者。本案中,所述指紋圖像的指紋頻率區域特徵不局限於均值、標準差、方差、極大/極小值差異、熵,只要是表徵指紋圖像中的頻率強度與分佈的特徵均屬於本案所保護地範疇。 In this embodiment, the fingerprint frequency region feature is a feature representing frequency intensity and distribution. In this embodiment, the fingerprint frequency region feature includes at least one of mean, standard deviation, variance, maximum/minimum difference, and entropy. In this case, the fingerprint frequency region features of the fingerprint image are not limited to the mean, standard deviation, variance, maximum/minimum value difference, and entropy, as long as the features that characterize the frequency intensity and distribution in the fingerprint image belong to the protection of this case area.
步驟S15,根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果。 Step S15, scoring the fingerprint image according to the fingerprint frequency region feature to obtain an evaluation result of the fingerprint image.
本實施方式中,所述根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述指紋頻率區域特徵查找評分關係表確認與所述指紋頻率區域特徵對應的評分得到所述指紋圖像的評估結果,其中,所述評分關係表中定義多個不同的指紋頻率區域特徵與多個不同的評分的對應關係。例如,所述指紋頻率區域特徵為標準差,所述評分關係表中定義多個不同的標準差與多個不同的評分的對應關係,所述根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述標準差查找評分關係表確認與所述標準差對應的評分得到所述指紋圖像的評估結果。再例如,所述指紋頻率區域特徵為均值,所述評分關係表中定義多個 不同的均值與多個不同的評分的對應關係,所述根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述均值查找評分關係表確認與所述均值對應的評分得到所述指紋圖像的評估結果。 In this embodiment, the scoring of the fingerprint image according to the fingerprint frequency region feature to obtain the evaluation result of the fingerprint image includes: searching a scoring relationship table according to the fingerprint frequency region feature to confirm the relationship between the fingerprint frequency and the fingerprint frequency The evaluation result of the fingerprint image is obtained from the scores corresponding to the regional features, wherein the score relationship table defines the corresponding relationship between a plurality of different fingerprint frequency region features and a plurality of different scores. For example, the fingerprint frequency region feature is a standard deviation, and the score relationship table defines a correspondence between a plurality of different standard deviations and a plurality of different scores, and the fingerprint image is evaluated according to the fingerprint frequency region feature. The scoring to obtain the evaluation result of the fingerprint image includes: searching a scoring relationship table according to the standard deviation to confirm that the score corresponding to the standard deviation obtains the evaluation result of the fingerprint image. For another example, the fingerprint frequency region feature is an average value, and the score relationship table defines a plurality of Correspondence between different mean values and a plurality of different scores, the scoring of the fingerprint image according to the fingerprint frequency region feature to obtain the evaluation result of the fingerprint image includes: looking up the score relationship table according to the mean value to confirm The score corresponding to the mean value obtains the evaluation result of the fingerprint image.
本實施方式中,所述根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述指紋頻率區域特徵利用深度學習演算法計算得到所述指紋圖像的評分。 In this embodiment, scoring the fingerprint image according to the fingerprint frequency region feature to obtain the evaluation result of the fingerprint image includes: calculating and obtaining the fingerprint according to the fingerprint frequency region feature using a deep learning algorithm image rating.
本案對去除直流分量的指紋圖像進行頻域變換得到指紋圖像的頻譜能量圖,提取所述頻譜能量圖中的指紋頻率區域特徵,及根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果,從而快速評價指紋圖像的品質,減少指紋品質評估的計算的複雜度,簡化指紋品質評估的流程。 In this case, the frequency domain transformation is performed on the fingerprint image with the DC component removed to obtain the spectral energy map of the fingerprint image, the fingerprint frequency region features in the spectral energy map are extracted, and the fingerprint image is processed according to the fingerprint frequency region features. The evaluation result of the fingerprint image is obtained by scoring, so as to quickly evaluate the quality of the fingerprint image, reduce the computational complexity of fingerprint quality evaluation, and simplify the process of fingerprint quality evaluation.
圖2為本發明一實施方式中基於圖像的指紋品質評估裝置30的結構圖。在一些實施例中,所述基於圖像的指紋品質評估裝置30運行於電子設備中。所述基於圖像的指紋品質評估裝置30可以包括多個由程式碼段所組成的功能模組。所述基於圖像的指紋品質評估裝置30中的各個程式段的程式碼可以存儲於記憶體中,並由至少一個處理器所執行,以執行指紋品質評估功能。
FIG. 2 is a structural diagram of an image-based fingerprint
本實施例中,所述基於圖像的指紋品質評估裝置30根據其所執行的功能,可以被劃分為多個功能模組。參閱圖2所示,所述基於圖像的指紋品質評估裝置30可以包括採集模組301、直流去除模組302、頻域變換模組303、特徵提取模組304及評分模組305。本發明所稱的模組是指一種能夠被至少一個處理器所執行並且能夠完成固定功能的一系列電腦程式段,其存儲在記憶體中。所述在一些實施例中,關於各模組的功能將在後續的實施例中詳述。
In this embodiment, the image-based fingerprint
所述採集模組301用於採集指紋圖像。
The
本實施方式中,所述採集模組301藉由指紋感測器採集指紋圖像。所述指紋感測器為光學指紋感測器、半導體電容指紋感測器、半導體熱敏指紋
感測器、半導體壓感指紋感測器、超聲波指紋感測器和射頻指紋感測器中的至少一種。
In this embodiment, the
所述直流去除模組302去除所述指紋圖像中的直流分量。
The
本實施方式中,所述直流去除模組302去除所述指紋圖像中的直流分量包括:藉由指紋圖像的每一圖元點的圖元值減去所述指紋圖像的圖元均值的方法去除指紋圖像中的直流分量。在具體實施方式中,所述直流去除模組302按照公式計算所述指紋圖像中的所有圖元點的圖元均值,其中h為所述指紋圖像在高度上的圖元點個數,w為所述指紋圖像在寬度上的圖元點個數,I(x,y)為所述指紋圖像中的圖元點;及將所述指紋圖像中的每個圖元點的圖元值減去所述指紋圖像的圖元均值,如此去除所述指紋圖像中的直流分量。
In this embodiment, the
在另一實施方式中,所述直流去除模組302去除所述指紋圖像中的直流分量包括:藉由對所述指紋圖像進行高通濾波去除所述指紋圖像中的直流分量。在其他實施方式中,所述直流去除模組302去除所述指紋圖像中的直流分量包括:藉由所述指紋圖像減去所述指紋圖像的均值濾波後的圖像以去除所述指紋圖像中的直流分量。本實施方式中,藉由去除指紋圖像中的直流分量可以保證指紋圖像中的指紋頻率資訊佔據頻域能量譜地主要成分。本案中,所有不同形式地去除指紋圖像地直流分量的方案均屬於本案所保護地範疇。
In another embodiment, the removing the DC component in the fingerprint image by the
所述頻域變換模組303對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖,並根據所述指紋圖像的頻譜圖計算出所述指紋圖像的頻譜能量圖。
The frequency
本實施方式中,所述頻域變換模組303對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖包括:對去除直流分量的所述指紋圖像進行FFT變換得到所述指紋圖像的頻譜圖。在另一實施方式中,所述對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖包括:對去除直流分量的所述指紋圖像進行小波變換方法得到所述指紋圖像的頻譜圖。
本案中,所有不同形式地對去除直流分量的所述指紋圖像進行頻域變換得到所述指紋圖像的頻譜圖的方案均屬於本案所保護地範疇。
In this embodiment, the frequency
本實施方式中,所述頻域變換模組303根據所述圖像的頻譜圖計算出所述指紋圖像的頻譜能量圖包括:根據公式E(x,y)=F(x,y)˙F(x,y)計算出所述指紋圖像的頻譜能量圖,其中,所述(x,y)為所述指紋圖像中的圖元點的座標,F(x,y)為所述指紋圖像中的頻譜圖,E(x,y)為所述指紋圖像中的頻譜能量圖。
In this embodiment, the frequency
所述特徵提取模組304提取所述頻譜能量圖中的指紋頻率區域特徵。
The
本實施方式中,所述特徵提取模組304提取所述頻譜能量圖中的指紋頻率區域特徵包括:預設所述指紋圖像的頻域檢測區域;及提取所述頻譜能量圖在所述頻域檢測區域的指紋頻率區域特徵。在具體實施方式中,所述特徵提取模組304預設所述指紋圖像的頻域檢測區域包括:採集標準指紋圖像,藉由影像處理工具查看標準指紋圖像的頻率分佈位置,設定檢測標準指紋圖像的位置頻率點為f0,並設定標準指紋圖像的指紋頻帶區域範圍為一個橢圓形區域;將標準指紋圖像的頻域圖像的頻率資訊歸一化,且歸一化後的頻域圖像的中心代表頻域圖像的0頻率,遠離頻域圖像的中心的區域為高頻區域;將所述頻域檢測區域設定為[f1-delta,f1+delta],其中,f1為歸一化後的標準指紋圖像的位置頻率點,delta為調整參數且取值為0.1。本實施方式中,調整參數delta可以依據人類指紋脊穀頻率不可能無限大或無限小而是有一定的分佈範圍的原理進行設定。當調整參數delta設定為0.1時所確定的頻域檢測區域以囊括99%以上的使用群體。
In this embodiment, the
在一實施方式中,所述提取所述頻譜能量圖中的指紋頻率區域特徵包括:遍歷所述頻譜能量圖提取出所述頻譜能量圖中能量最大值點作為所述位置頻率點f0並進行歸一化,將所述頻域檢測區域設定為[f0-delta,f0+delta],從 而即時得到所述頻域檢測區域,其中,delta為調整參數且取值為0.1;及提取所述頻譜能量圖在所述頻域檢測區域的指紋頻率區域特徵。 In one embodiment, the extracting the fingerprint frequency region feature in the spectral energy map includes: traversing the spectral energy map to extract the energy maximum point in the spectral energy map as the position frequency point f0 and normalizing it. Unification, the frequency domain detection area is set to [f0-delta, f0+delta], from The frequency domain detection area is obtained immediately, wherein delta is an adjustment parameter and the value is 0.1; and the fingerprint frequency area feature of the spectral energy map in the frequency domain detection area is extracted.
本實施方式中,所述指紋頻率區域特徵為表示頻率強度與分佈的特徵。本實施方式中,所述指紋頻率區域特徵包括均值、標準差、方差、極大/極小值差異、熵中的至少一者。本案中,所述指紋圖像的指紋頻率區域特徵不局限於均值、標準差、方差、極大/極小值差異、熵,只要是表徵指紋圖像中的頻率強度與分佈的特徵均屬於本案所保護地範疇。 In this embodiment, the fingerprint frequency region feature is a feature representing frequency intensity and distribution. In this embodiment, the fingerprint frequency region feature includes at least one of mean, standard deviation, variance, maximum/minimum difference, and entropy. In this case, the fingerprint frequency region features of the fingerprint image are not limited to the mean, standard deviation, variance, maximum/minimum value difference, and entropy, as long as the features that characterize the frequency intensity and distribution in the fingerprint image belong to the protection of this case area.
所述評分模組305根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果。
The
本實施方式中,所述評分模組305根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述指紋頻率區域特徵查找評分關係表確認與所述指紋頻率區域特徵對應的評分得到所述指紋圖像的評估結果,其中,所述評分關係表中定義多個不同的指紋頻率區域特徵與多個不同的評分的對應關係。例如,所述指紋頻率區域特徵為標準差,所述評分關係表中定義多個不同的標準差與多個不同的評分的對應關係,所述評分模組305根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述標準差查找評分關係表確認與所述標準差對應的評分得到所述指紋圖像的評估結果。再例如,所述指紋頻率區域特徵為均值,所述評分關係表中定義多個不同的均值與多個不同的評分的對應關係,所述評分模組305根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述均值查找評分關係表確認與所述均值對應的評分得到所述指紋圖像的評估結果。
In this embodiment, the
本實施方式中,所述根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果包括:根據所述指紋頻率區域特徵利用深度學習演算法計算得到所述指紋圖像的評分。 In this embodiment, scoring the fingerprint image according to the fingerprint frequency region feature to obtain the evaluation result of the fingerprint image includes: calculating and obtaining the fingerprint according to the fingerprint frequency region feature using a deep learning algorithm image rating.
本案對去除直流分量的指紋圖像進行頻域變換得到指紋圖像的頻譜能量圖,提取所述頻譜能量圖中的指紋頻率區域特徵,及根據所述指紋頻率區域特徵對所述指紋圖像進行評分得到所述指紋圖像的評估結果,從而快速評價指紋圖像的品質,減少指紋品質評估的計算的複雜度,簡化指紋品質評估的流程。 In this case, the frequency domain transformation is performed on the fingerprint image with the DC component removed to obtain the spectral energy map of the fingerprint image, the fingerprint frequency region features in the spectral energy map are extracted, and the fingerprint image is processed according to the fingerprint frequency region features. The evaluation result of the fingerprint image is obtained by scoring, so as to quickly evaluate the quality of the fingerprint image, reduce the computational complexity of fingerprint quality evaluation, and simplify the process of fingerprint quality evaluation.
圖3為本發明一實施方式中電子設備6的示意圖。所述電子設備6包括記憶體61、處理器62以及存儲在所述記憶體61中並可在所述處理器62上運行的電腦程式63。所述處理器62執行所述電腦程式63時實現上述基於圖像的指紋品質評估方法實施例中的步驟,例如圖1所示的步驟S11~S15。或者,所述處理器62執行所述電腦程式63時實現上述基於圖像的指紋品質評估裝置實施例中各模組/單元的功能,例如圖2中的模組301~305。
FIG. 3 is a schematic diagram of an
示例性的,所述電腦程式63可以被分割成一個或多個模組/單元,所述一個或者多個模組/單元被存儲在所述記憶體61中,並由所述處理器62執行,以完成本發明。所述一個或多個模組/單元可以是能夠完成特定功能的一系列電腦程式指令段,所述指令段用於描述所述電腦程式63在所述電子設備6中的執行過程。例如,所述電腦程式63可以被分割成圖2中的採集模組301、直流去除模組302、頻域變換模組303、特徵提取模組304及評分模組305,各模組具體功能參見實施例2。
Exemplarily, the
本實施方式中,所述電子設備6可以是桌上型電腦、筆記本、掌上型電腦、伺服器及雲端終端裝置等計算設備。本領域技術人員可以理解,所述示意圖僅僅是電子設備6的示例,並不構成對電子設備6的限定,可以包括比圖示更多或更少的部件,或者組合某些部件,或者不同的部件,例如所述電子設備6還可以包括輸入輸出設備、網路接入設備、匯流排等。
In this embodiment, the
所稱處理器62可以是中央處理模組(Central Processing Unit,CPU),還可以是其他通用處理器、數位訊號處理器(Digital Signal Processor,DSP)、專用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式設計閘陣
列(Field-Programmable Gate Array,FPGA)或者其他可程式設計邏輯器件、分立門或者電晶體邏輯器件、分立硬體元件等。通用處理器可以是微處理器或者所述處理器62也可以是任何常規的處理器等,所述處理器62是所述電子設備6的控制中心,利用各種介面和線路連接整個電子設備6的各個部分。
The
所述記憶體61可用於存儲所述電腦程式63和/或模組/單元,所述處理器62藉由運行或執行存儲在所述記憶體61內的電腦程式和/或模組/單元,以及調用存儲在記憶體61內的資料,實現所述電子設備6的各種功能。所述記憶體61可主要包括存儲程式區和存儲資料區,其中,存儲程式區可存儲作業系統、至少一個功能所需的應用程式(比如聲音播放功能、圖像播放功能等)等;存儲資料區可存儲根據電子設備6的使用所創建的資料(比如音訊資料、電話本等)等。此外,記憶體61可以包括高速隨機存取記憶體,還可以包括非易失性記憶體,例如硬碟、記憶體、插接式硬碟,智慧存儲卡(Smart Media Card,SMC),安全數位(Secure Digital,SD)卡,快閃記憶體卡(Flash Card)、至少一個磁碟記憶體件、快閃記憶體器件、或其他易失性固態記憶體件。
The
所述電子設備6集成的模組/單元如果以軟體功能模組的形式實現並作為獨立的產品銷售或使用時,可以存儲在一個電腦可讀取存儲介質中。基於這樣的理解,本發明實現上述實施例方法中的全部或部分流程,也可以藉由電腦程式來指令相關的硬體來完成,所述的電腦程式可存儲於一電腦可讀存儲介質中,所述電腦程式在被處理器執行時,可實現上述各個方法實施例的步驟。其中,所述電腦程式包括電腦程式代碼,所述電腦程式代碼可以為原始程式碼形式、物件代碼形式、可執行檔或某些中間形式等。所述電腦可讀介質可以包括:能夠攜帶所述電腦程式代碼的任何實體或裝置、記錄介質、U盤、移動硬碟、磁碟、光碟、電腦記憶體、唯讀記憶體(ROM,Read-Only Memory)、隨機存取記憶體(RAM,Random Access Memory)、電載波信號、電信信號以及軟體分發介質等。需要說明的是,所述電腦可讀介質包含的內容可以根據司法
管轄區內立法和專利實踐的要求進行適當的增減,例如在某些司法管轄區,根據立法和專利實踐,電腦可讀介質不包括電載波信號和電信信號。
If the modules/units integrated in the
在本發明所提供的幾個實施例中,應該理解到,所揭露的電子設備和方法,可以藉由其它的方式實現。例如,以上所描述的電子設備實施例僅僅是示意性的,例如,所述模組的劃分,僅僅為一種邏輯功能劃分,實際實現時可以有另外的劃分方式。 In the several embodiments provided by the present invention, it should be understood that the disclosed electronic devices and methods may be implemented in other manners. For example, the above-described electronic device embodiments are only illustrative. For example, the division of the modules is only a logical function division, and other division methods may be used in actual implementation.
另外,在本發明各個實施例中的各功能模組可以集成在相同處理模組中,也可以是各個模組單獨物理存在,也可以兩個或兩個以上模組集成在相同模組中。上述集成的模組既可以採用硬體的形式實現,也可以採用硬體加軟體功能模組的形式實現。 In addition, each functional module in each embodiment of the present invention may be integrated in the same processing module, or each module may exist physically alone, or two or more modules may be integrated in the same module. The above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of hardware plus software function modules.
對於本領域技術人員而言,顯然本發明不限於上述示範性實施例的細節,而且在不背離本發明的精神或基本特徵的情況下,能夠以其他的具體形式實現本發明。因此,無論從哪一點來看,均應將實施例看作是示範性的,而且是非限制性的,本發明的範圍由所附權利要求而不是上述說明限定,因此旨在將落在權利要求的等同要件的含義和範圍內的所有變化涵括在本發明內。不應將權利要求中的任何附圖標記視為限制所涉及的權利要求。此外,顯然“包括”一詞不排除其他模組或步驟,單數不排除複數。電子設備權利要求中陳述的多個模組或電子設備也可以由同一個模組或電子設備藉由軟體或者硬體來實現。第一,第二等詞語用來表示名稱,而並不表示任何特定的順序。 It will be apparent to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, but that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Therefore, the embodiments are to be regarded in all respects as illustrative and not restrictive, and the scope of the invention is to be defined by the appended claims rather than the foregoing description, which are therefore intended to fall within the scope of the claims. All changes within the meaning and range of the equivalents of , are included in the present invention. Any reference signs in the claims shall not be construed as limiting the involved claim. Furthermore, it is clear that the word "comprising" does not exclude other modules or steps, and the singular does not exclude the plural. A plurality of modules or electronic devices recited in the electronic device claims can also be realized by one and the same module or electronic device by means of software or hardware. The terms first, second, etc. are used to denote names and do not denote any particular order.
S11~S15:步驟 S11~S15: Steps
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010028285.5 | 2020-01-10 | ||
CN202010028285.5A CN111179265B (en) | 2020-01-10 | 2020-01-10 | Image-based fingerprint quality evaluation method and device and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202127376A TW202127376A (en) | 2021-07-16 |
TWI754242B true TWI754242B (en) | 2022-02-01 |
Family
ID=70650993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109108510A TWI754242B (en) | 2020-01-10 | 2020-03-13 | Method, device for evaluating fingerprint quality based on images and electronic device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111179265B (en) |
TW (1) | TWI754242B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111781457A (en) * | 2020-07-24 | 2020-10-16 | 上海擎度汽车科技有限公司 | Test system and method for EMC conduction emission of electronic product |
CN112232163B (en) * | 2020-09-30 | 2022-04-15 | 墨奇科技(北京)有限公司 | Fingerprint acquisition method and device, fingerprint comparison method and device, and equipment |
WO2022068931A1 (en) * | 2020-09-30 | 2022-04-07 | 墨奇科技(北京)有限公司 | Non-contact fingerprint recognition method and apparatus, terminal, and storage medium |
CN112232159B (en) * | 2020-09-30 | 2021-12-07 | 墨奇科技(北京)有限公司 | Fingerprint identification method, device, terminal and storage medium |
CN112434572B (en) * | 2020-11-09 | 2022-05-06 | 北京极豪科技有限公司 | Fingerprint image calibration method and device, electronic equipment and storage medium |
CN113838139B (en) * | 2021-08-13 | 2024-08-27 | 天津极豪科技有限公司 | Parameter detection method and device of image sensor, electronic equipment and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103324944A (en) * | 2013-06-26 | 2013-09-25 | 电子科技大学 | Fake fingerprint detecting method based on SVM and sparse representation |
CN106778459A (en) * | 2015-12-31 | 2017-05-31 | 深圳市汇顶科技股份有限公司 | The method and its fingerprint identification device of fingerprint recognition |
CN107038432A (en) * | 2017-05-12 | 2017-08-11 | 西安电子科技大学 | Fingerprint image orientation extracting method based on frequency information |
US20190205611A1 (en) * | 2017-12-30 | 2019-07-04 | MorphoTrak, LLC | Quality-based ten-print match score normalization |
US20190362509A1 (en) * | 2018-05-25 | 2019-11-28 | Boe Technology Group Co., Ltd. | Texture recognition method and apparatus, and computer-readable storage medium thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5822303B2 (en) * | 2012-02-17 | 2015-11-24 | Necソリューションイノベータ株式会社 | Fingerprint quality evaluation device, fingerprint quality evaluation method, fingerprint quality evaluation program |
CN102708364B (en) * | 2012-05-31 | 2014-08-20 | 西安电子科技大学 | Cascade-classifier-based fingerprint image classification method |
CN104239306A (en) * | 2013-06-08 | 2014-12-24 | 华为技术有限公司 | Multimedia fingerprint Hash vector construction method and device |
CN105975909B (en) * | 2016-04-27 | 2019-11-29 | 湖南工业大学 | A kind of fingerprint classification method and fingerprint three-level classification method based on fractal dimension |
CN106650572A (en) * | 2016-09-12 | 2017-05-10 | 深圳芯启航科技有限公司 | Method for assessing quality of fingerprint image |
-
2020
- 2020-01-10 CN CN202010028285.5A patent/CN111179265B/en active Active
- 2020-03-13 TW TW109108510A patent/TWI754242B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103324944A (en) * | 2013-06-26 | 2013-09-25 | 电子科技大学 | Fake fingerprint detecting method based on SVM and sparse representation |
CN106778459A (en) * | 2015-12-31 | 2017-05-31 | 深圳市汇顶科技股份有限公司 | The method and its fingerprint identification device of fingerprint recognition |
CN107038432A (en) * | 2017-05-12 | 2017-08-11 | 西安电子科技大学 | Fingerprint image orientation extracting method based on frequency information |
US20190205611A1 (en) * | 2017-12-30 | 2019-07-04 | MorphoTrak, LLC | Quality-based ten-print match score normalization |
US20190362509A1 (en) * | 2018-05-25 | 2019-11-28 | Boe Technology Group Co., Ltd. | Texture recognition method and apparatus, and computer-readable storage medium thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111179265A (en) | 2020-05-19 |
CN111179265B (en) | 2023-04-18 |
TW202127376A (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI754242B (en) | Method, device for evaluating fingerprint quality based on images and electronic device | |
TWI619080B (en) | Method for calculating fingerprint overlapping region and electronic device | |
JP2018505493A (en) | Fingerprint recognition method and fingerprint recognition apparatus | |
CN110458078B (en) | Face image data clustering method, system and equipment | |
CN110232318A (en) | Acupuncture point recognition methods, device, electronic equipment and storage medium | |
CN113723309A (en) | Identity recognition method, identity recognition device, equipment and storage medium | |
CN113257255B (en) | Method and device for identifying forged voice, electronic equipment and storage medium | |
CN110047519A (en) | A kind of sound end detecting method, device and equipment | |
CN118376839B (en) | Method, device and equipment for positioning newly-added peak point frequency based on DBSCAN algorithm | |
CN116706876A (en) | Broadband oscillation identification method, device and equipment for dual-high power system | |
WO2024213095A1 (en) | Snore detection method and apparatus | |
Devadoss et al. | Performance improvement using an automation system for recognition of multiple parametric features based on human footprint | |
CN107292620A (en) | Personal identification method and device, computer-readable recording medium, terminal | |
JP3902887B2 (en) | Lip extraction method | |
CN116910734A (en) | Biological feature identification method for power operation and maintenance, terminal equipment and storage medium | |
Rajkumar et al. | A secondary fingerprint enhancement and minutiae extraction | |
CN110210425B (en) | Face recognition method and device, electronic equipment and storage medium | |
CN112489363A (en) | Rear-coming vehicle early warning method and device based on intelligent wireless earphone and storage medium | |
TWI754241B (en) | A method, a device for extracting features of fingerprint images and computer-readable storage medium | |
Puhan et al. | Robust eyeball segmentation in noisy iris images using fourier spectral density | |
CN113679396A (en) | Training method, device, terminal and medium for fatigue recognition model | |
Popovic et al. | Robust enhancement of fingerprint images obtained by ink method | |
Sisodia et al. | A conglomerate technique for finger print recognition using phone camera captured images | |
CN112037814B (en) | Audio fingerprint extraction method and device, electronic equipment and storage medium | |
Yuanyuan et al. | Spectral analysis based fingerprint image enhancement algorithm |