TWI753716B - Method and system for collecting exercise data - Google Patents

Method and system for collecting exercise data Download PDF

Info

Publication number
TWI753716B
TWI753716B TW109145823A TW109145823A TWI753716B TW I753716 B TWI753716 B TW I753716B TW 109145823 A TW109145823 A TW 109145823A TW 109145823 A TW109145823 A TW 109145823A TW I753716 B TWI753716 B TW I753716B
Authority
TW
Taiwan
Prior art keywords
distance
specific
peak
reference object
trough
Prior art date
Application number
TW109145823A
Other languages
Chinese (zh)
Other versions
TW202224729A (en
Inventor
盧彥年
李志丰
許峻翔
林淵翔
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW109145823A priority Critical patent/TWI753716B/en
Priority to CN202011595715.8A priority patent/CN114653027B/en
Application granted granted Critical
Publication of TWI753716B publication Critical patent/TWI753716B/en
Publication of TW202224729A publication Critical patent/TW202224729A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance

Abstract

The disclosure provides a method and system for collecting exercise data. The method includes: detecting a load weight of the weight training equipment through a first distance sensor installed on the weight training equipment, wherein the weight training equipment is equipped with a reference object; and detecting a movement of the reference object, and estimating the exercise data of the user of the weight training equipment based on the movement of the reference object and the load weight.

Description

運動數據收集方法及系統Sports data collection method and system

本發明是有關於一種運動測量方法及系統,且特別是有關於一種運動數據收集方法及系統。The present invention relates to a motion measurement method and system, and more particularly, to a motion data collection method and system.

隨著時代的進步,運動健身已然成為人們生活中相當重要的一部分。一般而言,人們所能接觸到的傳統重量訓練器材多半僅能以配重塊或槓片等形式呈現所使用的訓練重量,並無法提供使用者的動作次數、運動功率等較為科學化的運動數據。With the progress of the times, exercise and fitness has become a very important part of people's lives. Generally speaking, most of the traditional weight training equipment that people can come into contact with can only present the training weight used in the form of counterweights or bars, and cannot provide users with more scientific movements such as the number of movements and exercise power. data.

另外,雖市面上亦存在其他較為高階的重量訓練器材(例如使用動力源(如:馬達,氣壓泵…等)作為阻力來源,藉由使用者帳號管理,得到訓練次數、訓練時的阻力值等運動數據的器材),但由於其多半造價昂貴而難以讓市場接受。In addition, although there are other higher-level weight training equipment on the market (for example, using a power source (such as a motor, an air pump, etc.) as a resistance source, the number of training times and the resistance value during training can be obtained through user account management. equipment for sports data), but it is difficult to be accepted by the market due to its high cost.

因此,對於本領域技術人員而言,如何設計一種能夠以較低成本收集使用者運動數據的機制實為一項重要議題。Therefore, for those skilled in the art, how to design a mechanism capable of collecting user motion data at a lower cost is an important issue.

有鑑於此,本發明提供一種運動數據收集方法及系統,其可用於解決上述技術問題。In view of this, the present invention provides a motion data collection method and system, which can be used to solve the above technical problems.

本發明提供一種運動數據收集方法,包括:透過安裝於一重量訓練器材上的一第一距離感測器偵測重量訓練器材的一負載重量,其中重量訓練器材安裝有一參考物體;偵測參考物體的一移動情形,並基於參考物體的移動情形及負載重量估計重量訓練器材的一使用者的一運動數據。The present invention provides a sports data collection method, comprising: detecting a load weight of the weight training equipment through a first distance sensor installed on a weight training equipment, wherein a reference object is installed on the weight training equipment; detecting the reference object and a movement data of a user of the weight training equipment is estimated based on the movement situation of the reference object and the load weight.

本發明提供一種運動數據收集系統,包括第一距離感測器及處理器。第一距離感測器安裝於重量訓練器材上。處理器耦接於第一距離感測器,並經配置以:透過第一距離感測器偵測重量訓練器材的一負載重量,其中重量訓練器材安裝有一參考物體;偵測參考物體的一移動情形,並基於參考物體的移動情形及負載重量估計重量訓練器材的一使用者的一運動數據。The present invention provides a motion data collection system, including a first distance sensor and a processor. The first distance sensor is installed on the weight training equipment. The processor is coupled to the first distance sensor, and is configured to: detect a load weight of the weight training equipment through the first distance sensor, wherein the weight training equipment is installed with a reference object; detect a movement of the reference object situation, and estimate a movement data of a user of the weight training equipment based on the movement situation of the reference object and the load weight.

請參照圖1,其是依據本發明第一實施例繪示的運動數據收集系統示意圖。如圖1所示,在第一實施例中,運動數據收集系統100可包括第一距離感測器102及處理器104。Please refer to FIG. 1 , which is a schematic diagram of a sports data collection system according to a first embodiment of the present invention. As shown in FIG. 1 , in the first embodiment, the athletic data collection system 100 may include a first distance sensor 102 and a processor 104 .

在不同的實施例中,第一距離感測器102可以是任何能夠偵測自身與位於其偵測範圍(或稱視野範圍(field of view,FOV))內物體之間距離的單一感測器或感測器陣列,例如紅外線距離感測器(例如飛時(time of flight,ToF)感測器)、超音波距離感測器等,但可不限於此。In different embodiments, the first distance sensor 102 may be any single sensor capable of detecting the distance between itself and objects within its detection range (or field of view (FOV)). Or a sensor array, such as an infrared distance sensor (such as a time of flight (ToF) sensor), an ultrasonic distance sensor, etc., but not limited thereto.

處理器104耦接於第一距離感測器102,並可為一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。The processor 104 is coupled to the first distance sensor 102 and can be a general-purpose processor, a special-purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more Microprocessors, controllers, microcontrollers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), any other kind incorporating a digital signal processor core integrated circuits, state machines, Advanced RISC Machine (ARM)-based processors, and the like.

在本發明的實施例中,處理器104可協同第一距離感測器102以實現本發明提出的運動數據收集方法,其細節詳述如下。In an embodiment of the present invention, the processor 104 may cooperate with the first distance sensor 102 to implement the motion data collection method proposed by the present invention, the details of which are described below.

請參照圖2,其是依據本發明之一實施例繪示的運動數據收集方法流程圖。本實施例的方法可由圖1的運動數據收集系統100執行,以下即搭配圖1所示的元件說明圖2各步驟的細節。Please refer to FIG. 2 , which is a flowchart of a method for collecting sports data according to an embodiment of the present invention. The method of this embodiment can be executed by the sports data collection system 100 in FIG. 1 , and the details of each step in FIG. 2 will be described below with the elements shown in FIG. 1 .

首先,在步驟S210中,處理器104可透過安裝於重量訓練器材上的第一距離感測器102偵測重量訓練器材的負載重量。First, in step S210, the processor 104 can detect the load weight of the weight training equipment through the first distance sensor 102 installed on the weight training equipment.

在本發明的第一實施例中,上述重量訓練器材例如是具有堆疊的多個配重塊,以讓使用者自行從中選用訓練重量的訓練器材,例如常見的滑輪下拉機、腿部伸張機等,但可不限於此。In the first embodiment of the present invention, the above-mentioned weight training equipment is, for example, a training equipment with a plurality of stacked weight blocks, so that the user can choose the training weight from them, such as the common pulley pull-down machine, leg extension machine, etc. , but not limited to this.

請參照圖3A及圖3B,其中圖3A是依據本發明第一實施例繪示的重量訓練器材的配重塊示意圖,而圖3B是圖3A的側視圖。Please refer to FIGS. 3A and 3B , wherein FIG. 3A is a schematic diagram of a weight block of the weight training apparatus according to the first embodiment of the present invention, and FIG. 3B is a side view of FIG. 3A .

在第一實施例中,重量訓練器材300可具有堆疊的多個配重塊311,而各個配重塊311可設置有插銷孔311a。藉此,重量訓練器材300的使用者即可藉由將參考物體312(其例如是一插銷)插設於配重塊311之一的插銷孔311a中,以選定所需的訓練重量(其亦可理解為重量訓練器材300的負載重量),但可不限於此。一般而言,參考物體312所在的配重塊311的位置越低,其對應的訓練重量越高,反之亦反。In the first embodiment, the weight training apparatus 300 may have a plurality of weights 311 stacked, and each weight 311 may be provided with a latch hole 311a. In this way, the user of the weight training apparatus 300 can select the required training weight by inserting the reference object 312 (such as a latch) into one of the latch holes 311a of the weight block 311 It can be understood as the load weight of the weight training equipment 300 ), but not limited to this. Generally speaking, the lower the position of the weight block 311 where the reference object 312 is, the higher the corresponding training weight, and vice versa.

在第一實施例中,各配重塊311的插銷孔311a可沿一直線排列,而第一距離感測器102可設置於此直線上,用以偵測第一距離感測器102與參考物體312之間的距離。如圖3A及圖3B所示,各配重塊311的插銷孔311a可理解為沿著垂直於地面的一直線排列,而第一距離感測器102可設置於參考物體312的正下方,並往上方偵測第一距離感測器102與參考物體312之間的距離。亦即,在圖3A中,第一距離感測器102的FOV 102a係朝向第一距離感測器102的上方進行偵測。In the first embodiment, the latch holes 311a of each weight block 311 can be arranged along a straight line, and the first distance sensor 102 can be arranged on the straight line to detect the first distance sensor 102 and the reference object distance between 312. As shown in FIG. 3A and FIG. 3B , the latch holes 311a of each counterweight 311 can be understood as being arranged along a straight line perpendicular to the ground, and the first distance sensor 102 can be disposed directly under the reference object 312 and move toward the The distance between the first distance sensor 102 and the reference object 312 is detected above. That is, in FIG. 3A , the FOV 102 a of the first distance sensor 102 is detected toward the top of the first distance sensor 102 .

請參照圖3C,其是依據本發明第一實施例繪示的另一配重塊的側視圖。在圖3C中,各配重塊311的態樣與圖3A所示大致相同,惟圖3C中的第一距離感測器102可藉由附接於重量訓練器材300的某一處的方式而設置於參考物體312的正上方,並往下方偵測第一距離感測器102與參考物體312之間的距離。亦即,在圖3C中,第一距離感測器102的FOV 102a係朝向第一距離感測器102的下方進行偵測,但本發明可不限於此。Please refer to FIG. 3C , which is a side view of another weight block according to the first embodiment of the present invention. In FIG. 3C , the shape of each weight block 311 is substantially the same as that shown in FIG. 3A , but the first distance sensor 102 in FIG. 3C can be attached to a certain part of the weight training equipment 300 It is disposed just above the reference object 312 and detects the distance between the first distance sensor 102 and the reference object 312 downward. That is, in FIG. 3C , the FOV 102a of the first distance sensor 102 is directed toward the bottom of the first distance sensor 102 for detection, but the present invention is not limited thereto.

在第一實施例中,處理器104可透過第一距離感測器102偵測第一距離感測器102與參考物體312之間的初始距離,並據以估計使用者所選用的訓練重量(即,重量訓練器材300的負載重量)。為便於理解本發明的概念,以下將輔以圖4作進一步說明。In the first embodiment, the processor 104 can detect the initial distance between the first distance sensor 102 and the reference object 312 through the first distance sensor 102, and estimate the training weight ( That is, the load weight of the weight training apparatus 300). In order to facilitate the understanding of the concept of the present invention, the following will be supplemented with FIG. 4 for further description.

請參照圖4,其是基於本發明第一實施例繪示的多個預設距離區間的示意圖。在第一實施例中,當參考物體312插設於某一配重塊311上時,第一距離感測器312所測得的距離可能並非為一固定值,而可能是隨時間而變化的一變動值。Please refer to FIG. 4 , which is a schematic diagram of a plurality of preset distance intervals according to the first embodiment of the present invention. In the first embodiment, when the reference object 312 is inserted on a certain counterweight 311, the distance measured by the first distance sensor 312 may not be a fixed value, but may vary with time a variable value.

以圖4的波形411為例,其例如是參考物體312被揷設於對應於5kg的配重塊311(即,負載重量為5kg)時,由圖3C的第一距離感測器102所測得的距離變動值,即,第一距離感測器102的FOV 102a係朝向第一距離感測器102的下方進行偵測。以圖4的波形412為例,其例如是參考物體312被揷設於對應於10kg的配重塊311(即,負載重量為10kg)時,由圖3C的第一距離感測器102所測得的距離變動值。以圖4的波形413為例,其例如是參考物體312被揷設於對應於15kg的配重塊311(即,負載重量為15kg)時,由圖3C的第一距離感測器102所測得的距離變動值。圖4中其餘波形的意義應可依上述教示而推得,於此不另贅述。Taking the waveform 411 of FIG. 4 as an example, it is, for example, measured by the first distance sensor 102 of FIG. 3C when the reference object 312 is placed on the counterweight 311 corresponding to 5 kg (ie, the load weight is 5 kg). The obtained distance variation value, that is, the FOV 102 a of the first distance sensor 102 is detected toward the bottom of the first distance sensor 102 . Taking the waveform 412 of FIG. 4 as an example, it is, for example, measured by the first distance sensor 102 of FIG. 3C when the reference object 312 is placed on the counterweight 311 corresponding to 10 kg (ie, the load weight is 10 kg). The obtained distance change value. Taking the waveform 413 of FIG. 4 as an example, it is, for example, measured by the first distance sensor 102 of FIG. 3C when the reference object 312 is placed on the counterweight 311 corresponding to 15kg (ie, the load weight is 15kg). The obtained distance change value. The meanings of the remaining waveforms in FIG. 4 can be inferred according to the above teachings, and will not be repeated here.

基於圖4中對應於不同負載重量的波形,處理器104可相應地決定對應於不同負載重量的多個預設距離區間。舉例而言,在取得對應於負載重量10kg的波形412之後,處理器104例如可估計波形412對應的一距離平均值(以m1表示)及距離標準差(以s1表示),並以(m1-s1, m1+s1)作為對應於負載重量10kg的預設距離區間412a。舉另一例而言,在取得對應於負載重量15kg的波形413之後,處理器104例如可估計波形412對應的一距離平均值(以m2表示)及距離標準差(以s2表示),並以(m2-s2, m2+s2)作為對應於負載重量15kg的預設距離區間413a。另外,假設5kg為最低的負載重量,則處理器104例如可將低於預設距離區間412a的距離區間皆定義為對應於負載重量5kg的預設距離區間411a,但可不限於此。其餘負載重量所對應的預設距離區間應可基於以上教示而推得,於此不另贅述。Based on the waveforms corresponding to different load weights in FIG. 4 , the processor 104 may accordingly determine a plurality of preset distance intervals corresponding to different load weights. For example, after obtaining the waveform 412 corresponding to the load weight of 10 kg, the processor 104 can estimate, for example, a distance mean value (represented by m1 ) and a distance standard deviation (represented by s1 ) corresponding to the waveform 412 , and use (m1− s1, m1+s1) as the preset distance interval 412a corresponding to the load weight of 10kg. For another example, after obtaining the waveform 413 corresponding to the load weight of 15 kg, the processor 104 can estimate, for example, a distance mean value (represented by m2) and a distance standard deviation (represented by s2) corresponding to the waveform 412, and use ( m2-s2, m2+s2) as the preset distance interval 413a corresponding to the load weight of 15kg. In addition, if 5kg is the lowest load weight, the processor 104 may define, for example, the distance intervals lower than the preset distance interval 412a as the preset distance interval 411a corresponding to the load weight of 5kg, but not limited thereto. The preset distance intervals corresponding to the remaining load weights should be inferred based on the above teachings, and will not be described in detail here.

因此,在處理器104取得第一距離感測器102與參考物體312之間的初始距離之後,處理器104可判定此初始距離係屬於所述多個預設距離區間中的何者。假設處理器104判定此初始距離屬於所述多個預設距離區間中的特定距離區間,則處理器104可判定重量訓練器材300的負載重量為對應於此特定距離區間的特定重量。Therefore, after the processor 104 obtains the initial distance between the first distance sensor 102 and the reference object 312, the processor 104 can determine which of the plurality of preset distance intervals the initial distance belongs to. Assuming that the processor 104 determines that the initial distance belongs to a specific distance interval among the plurality of preset distance intervals, the processor 104 can determine that the load weight of the weight training apparatus 300 is a specific weight corresponding to the specific distance interval.

舉例而言,假設處理器104判定此初始距離屬於預設距離區間411a,則處理器104可判定重量訓練器材300的負載重量為對應於預設距離區間411a的負載重量(即,5kg)。假設處理器104判定此初始距離屬於預設距離區間412a,則處理器104可判定重量訓練器材300的負載重量為對應於預設距離區412a的負載重量(即,10kg)。另外,假設處理器104判定此初始距離屬於預設距離區間413a,則處理器104可判定重量訓練器材300的負載重量為對應於預設距離區413a的負載重量(即,15kg)。其餘初始距離與重量訓練器材300的負載重量的對應關係應可依上述教示而推得,於此不另贅述。For example, if the processor 104 determines that the initial distance belongs to the predetermined distance interval 411a, the processor 104 may determine that the load weight of the weight training equipment 300 is the load weight corresponding to the predetermined distance interval 411a (ie, 5kg). Assuming that the processor 104 determines that the initial distance belongs to the preset distance zone 412a, the processor 104 may determine that the load weight of the weight training equipment 300 is the load weight corresponding to the preset distance zone 412a (ie, 10kg). In addition, if the processor 104 determines that the initial distance belongs to the preset distance zone 413a, the processor 104 may determine that the load weight of the weight training equipment 300 is the load weight corresponding to the preset distance zone 413a (ie, 15kg). The corresponding relationship between the remaining initial distances and the load weight of the weight training equipment 300 should be inferred according to the above teachings, and will not be repeated here.

在另一實施例中,若第一距離感測器102係以圖3A及圖3B所示的方式配置(,即,第一距離感測器102的FOV 102a係朝向第一距離感測器102的上方進行偵測),則圖4中的距離及負載重量會相反配置(未圖示),或可藉由數值轉換的方式來調整成與圖4相同的表示方式。此時,偵測到的數值愈小,表示負載重量愈重。In another embodiment, if the first distance sensor 102 is configured as shown in FIGS. 3A and 3B (ie, the FOV 102a of the first distance sensor 102 is facing the first distance sensor 102 ) ), the distance and load weight in Figure 4 will be arranged in the opposite direction (not shown), or can be adjusted to the same representation as Figure 4 by means of numerical conversion. At this time, the smaller the detected value, the heavier the load is.

接著,在步驟S220中,處理器104可偵測參考物體312的移動情形,並基於參考物體312的移動情形及負載重量估計重量訓練器材300的使用者的運動數據。在不同的實施例中,前述運動數據可包括動作次數、運動功率、運動時間、休息時間等,但可不限於此。Next, in step S220, the processor 104 may detect the movement of the reference object 312, and estimate the movement data of the user of the weight training apparatus 300 based on the movement of the reference object 312 and the load weight. In different embodiments, the aforementioned exercise data may include the number of movements, exercise power, exercise time, rest time, etc., but may not be limited thereto.

在第一實施例中,處理器104可透過第一距離感測器102偵測參考物體312的移動情形。具體而言,參考物體312與第一距離感測器102之間可理解為存在第一距離(其最小值可對應於上述初始距離),且參考物體312的移動情形可表徵為第一距離的距離變化情形。In the first embodiment, the processor 104 can detect the movement of the reference object 312 through the first distance sensor 102 . Specifically, it can be understood that there is a first distance between the reference object 312 and the first distance sensor 102 (the minimum value of which can correspond to the above-mentioned initial distance), and the movement of the reference object 312 can be characterized as the first distance distance changes.

在第一實施例中,隨著使用者操作重量訓練器材300,參考物體312的移動情形(即,第一距離變化情形)可呈現為如圖5所示的距離變化圖500。在圖5A(及以下的各個實施例)中,第一距離感測器102係假設為以圖3C的方式進行偵測。如圖5A所示,距離變化圖500可包括對應於一個動作組的波峰-波谷集合501,其包括多個波峰-波谷對511~515,其中各波峰-波谷對511~515可包括連續的1個波谷及1個波峰。In the first embodiment, as the user operates the weight training apparatus 300 , the movement situation (ie, the first distance change situation) of the reference object 312 may be presented as a distance change graph 500 as shown in FIG. 5 . In FIG. 5A (and various embodiments below), the first distance sensor 102 is assumed to be detected in the manner of FIG. 3C . As shown in FIG. 5A , the distance variation graph 500 may include a peak-trough set 501 corresponding to an action group, which includes a plurality of peak-trough pairs 511-515, wherein each peak-trough pair 511-515 may include a continuous 1 trough and 1 peak.

例如,波峰-波谷對511可包括波峰511a及波谷511b,波峰-波谷對512可包括波峰512a及波谷512b,而波峰-波谷對513可包括波峰513a及波谷513b,但可不限於此。For example, peak-trough pair 511 may include peak 511a and trough 511b, peak-trough pair 512 may include peak 512a and trough 512b, and peak-trough pair 513 may include peak 513a and trough 513b, but not limited thereto.

在一實施例中,處理器104可在波峰-波谷對511~515中找出多個特定波峰-波谷對,並以上述特定波峰-波谷對的數量作為所述動作組的動作次數。In one embodiment, the processor 104 may find a plurality of specific peak-trough pairs in the peak-trough pairs 511-515, and use the number of the specific peak-trough pairs as the number of actions of the action group.

在一實施例中,各特定波峰-波谷對可包括特定波峰及特定波谷,特定波峰及特定波谷之一對應的第一特定距離可大於第一距離門限值T1,特定波峰及特定波谷之另一對應的第二特定距離可小於第二距離門限值T2,且第一距離門限值T1可大於第二距離門限值T2。In one embodiment, each specific peak-trough pair may include a specific peak and a specific trough, the first specific distance corresponding to one of the specific peak and the specific trough may be greater than the first distance threshold T1, and the other of the specific peak and the specific trough may be greater than the first distance threshold T1. The corresponding second specific distance may be smaller than the second distance threshold value T2, and the first distance threshold value T1 may be greater than the second distance threshold value T2.

在一些實施例中,第一距離門限值T1及第二距離門限值T2可依據當下的初始距離而定。舉例而言,假設當下的初始距離為X,則第一距離門限值T1可定為X-X1,第二距離門限值T2則可定為X-X2,其中X2可大於X1。在圖5情境中,初始距離約略為920mm,在此情況下,假設X1及X2分別定為200及400,則可相應得到如圖5A所示第一距離門限值T1及第二距離門限值T2,但本發明可不限於此。In some embodiments, the first distance threshold value T1 and the second distance threshold value T2 may be determined according to the current initial distance. For example, assuming that the current initial distance is X, the first distance threshold value T1 can be set as X-X1, and the second distance threshold value T2 can be set as X-X2, where X2 can be greater than X1. In the situation shown in FIG. 5, the initial distance is approximately 920 mm. In this case, assuming that X1 and X2 are set to be 200 and 400, respectively, the first distance threshold value T1 and the second distance threshold value T2 as shown in FIG. 5A can be obtained accordingly. , but the present invention may not be limited to this.

以波峰-波谷對511為例,由於其中的波峰511a對應的距離大於第一距離門限值T1,且波谷511b對應的距離小於第二距離門限值T2,因此處理器104可將波峰-波谷對511視為一個特定波峰-波谷對。另外,再以波峰-波谷對512為例,由於其中的波峰512a對應的距離大於第一距離門限值T1,且波谷512b對應的距離小於第二距離門限值T2,因此處理器104可將波峰-波谷對512視為一個特定波峰-波谷對。同理,波峰-波谷對513~515亦將個別被視為一個特定波峰波谷對。Taking the peak-trough pair 511 as an example, since the distance corresponding to the peak 511a is greater than the first distance threshold T1, and the distance corresponding to the trough 511b is less than the second distance threshold T2, the processor 104 may assign the peak-trough pair 511 to the peak-trough pair 511. regarded as a specific peak-trough pair. In addition, taking the peak-trough pair 512 as an example again, since the distance corresponding to the peak 512a is greater than the first distance threshold T1, and the distance corresponding to the trough 512b is less than the second distance threshold T2, the processor 104 can convert the peak- A trough pair 512 is considered a specific peak-trough pair. Similarly, the peak-trough pairs 513~515 will also be individually regarded as a specific peak-trough pair.

換言之,在圖5情境中,共存在5個特定波峰-波谷對(即,波峰-波谷對511~515)。在此情況下,處理器104將判定使用者的動作次數為5次。In other words, in the scenario of FIG. 5 , there are altogether 5 specific peak-trough pairs (ie, peak-trough pairs 511 to 515 ). In this case, the processor 104 will determine that the number of actions performed by the user is 5 times.

從另一觀點而言,當某些波峰-波谷對未被判定為特定波峰-波谷對時,其代表使用者未將所選用的配重塊311進行足夠距離的移動(即,動作不完整),因此處理器104將不會將這些波峰-波谷對用於累計使用者的動作次數,但本發明可不限於此。From another point of view, when some peak-trough pairs are not determined as specific peak-trough pairs, it means that the user has not moved the selected weight 311 a sufficient distance (ie, the movement is incomplete). , so the processor 104 will not use these peak-to-valley pairs to accumulate the number of actions of the user, but the present invention is not limited to this.

在一實施例中,處理器104還可基於負載重量(以w表示)、參考物體312的總移動距離(以D表示)及移動時間估計上述運動數據中的運動功率(以P表示)。在圖5情境中,參考物體312的總移動距離例如是波形599所包括的各個距離值的總和。另外,參考物體312的移動時間可理解為使用者的運動時間,而其例如可表徵為時間長度TD1。在此情況下,處理器104可先以總移動距離(即,D)除以時間長度TD1取得平均移動速度(以v表示)。之後,處理器104可依據上述數據估計運動功率。In one embodiment, the processor 104 may also estimate the motion power (denoted by P) in the motion data based on the load weight (denoted by w), the total moving distance of the reference object 312 (denoted by D), and the travel time. In the context of FIG. 5 , the total travel distance of the reference object 312 is, for example, the sum of the individual distance values included in the waveform 599 . In addition, the movement time of the reference object 312 can be understood as the movement time of the user, and it can be represented as a time length TD1, for example. In this case, the processor 104 may first obtain the average moving speed (represented by v) by dividing the total moving distance (ie, D) by the time length TD1. Afterwards, the processor 104 can estimate the motion power according to the above data.

在一些實施例中,處理器104可依據距離變化圖估計每個動作組的向心運動功率及離心運動功率,以下將輔以圖5B作進一步說明。In some embodiments, the processor 104 may estimate the concentric motion power and the eccentric motion power of each action group according to the distance change map, which will be further described below with reference to FIG. 5B .

請參照圖5B,其是依據本發明之一實施例繪示的距離變化圖及其對應的速率變化圖。在本實施例中,距離變化圖500a可包括對應於使用者執行的第j個動作組的1個波峰-波谷集合(下稱第j個波峰-波谷集合)。依先前的教示,圖5所示的第j個波峰-波谷集合可理解為包括8個特定波峰-波谷對。Please refer to FIG. 5B , which is a distance change graph and a corresponding speed change graph according to an embodiment of the present invention. In this embodiment, the distance change graph 500a may include one peak-to-valley set corresponding to the j-th action group performed by the user (hereinafter referred to as the j-th peak-to-valley set). According to the previous teachings, the jth peak-trough set shown in FIG. 5 can be understood as including 8 specific peak-trough pairs.

在一實施例中,在取得圖5B的距離變化圖500a之後,處理器104例如可將距離變化圖500a對時間取微分來產生圖5B下半部所示的速率變化圖500b,但可不限於此。In one embodiment, after obtaining the distance change graph 500a of FIG. 5B , the processor 104 may, for example, differentiate the distance change graph 500a with respect to time to generate the velocity change graph 500b shown in the lower half of FIG. 5B , but not limited to this .

如圖5B下半部所示,速率變化圖500b可包括對應於所述第j個波峰-波谷集合的特定波峰-波谷對的多個時間區間D1~D8,其中時間區間D1~D8個別可依序包括第一特定時間點、第二特定時間點及第三特定時間點。在本發明的實施例中,第一特定時間點、第二特定時間點及第三特定時間點對應的速率可為0。As shown in the lower half of FIG. 5B , the rate change graph 500b may include a plurality of time intervals D1 to D8 corresponding to a specific peak-valley pair of the jth peak-valley set, wherein the time intervals D1 to D8 may be individually dependent on The sequence includes a first specific time point, a second specific time point and a third specific time point. In the embodiment of the present invention, the rates corresponding to the first specific time point, the second specific time point, and the third specific time point may be zero.

之後,處理器104可依據時間區間D1~D8的第i個時間區間的第一特定時間點及第二特定時間點定義所述第i個時間區間的向心時間段,其中i為正整數(例如是1~8中的任一者)。接著,處理器104可依據第i個時間區間的第二特定時間點及第三特定時間點定義所述第i個時間區間的離心時間段。Afterwards, the processor 104 may define the centripetal time period of the i-th time interval according to the first specific time point and the second specific time point of the i-th time interval of the time intervals D1-D8, where i is a positive integer ( For example, any of 1 to 8). Next, the processor 104 may define the centrifugation time period of the i-th time interval according to the second specific time point and the third specific time point of the i-th time interval.

以時間區間D1為例,其可依序包括第一特定時間點t1、第二特定時間點t2及第三特定時間點t3,而其個別對應的速率為0。在一實施例中,處理器104可將第一特定時間點t1及第二特定時間點t2之間的時間區間定義為時間區間D1的向心時間段,並將第二特定時間點t2及第三特定時間點t3之間的時間區間定義為時間區間D1的離心時間段,但可不限於此。此外,處理器104還可基於上述教示而決定時間區間D2~D8個別的向心時間段及離心時間段。Taking the time interval D1 as an example, it may include a first specific time point t1 , a second specific time point t2 and a third specific time point t3 in sequence, and the respective corresponding rates are zero. In one embodiment, the processor 104 may define the time interval between the first specific time point t1 and the second specific time point t2 as the centripetal time period of the time interval D1, and define the second specific time point t2 and the second specific time point t2 as the centripetal time period of the time interval D1. The time interval between the three specific time points t3 is defined as the centrifugation time period of the time interval D1, but it may not be limited thereto. In addition, the processor 104 can also determine the individual centripetal time periods and centrifugal time periods of the time intervals D2 to D8 based on the above teachings.

在取得時間區間D1~D8個別的向心時間段及離心時間段之後,處理器104可基於時間區間D1~D8個別的向心時間段決定所述第j個動作組的向心運動功率,並基於時間區間D1~D8個別的離心時間段決定所述第j個動作組的離心運動功率。After obtaining the individual centripetal time periods and the centripetal time periods of the time intervals D1 to D8, the processor 104 may determine the centripetal motion power of the jth action group based on the individual centripetal time periods of the time intervals D1 to D8, and The centrifugal exercise power of the j-th action group is determined based on the individual centrifugal time periods of the time intervals D1 to D8.

在一實施例中,處理器104可基於時間區間D1~D8個別的向心時間段決定參考物體312在所述第j個動作組中的平均向心移動速率(以

Figure 02_image001
表示),以及參考物體312在所述第j個動作組中的總向心位移量(以
Figure 02_image003
表示)。之後,處理器104可依據「
Figure 02_image005
」的式子估計所述第j個動作組的向心運動功率,其中m為負載重量,g為重力常數,但可不限於此。 In one embodiment, the processor 104 may determine the average centripetal movement rate of the reference object 312 in the j-th action group (in
Figure 02_image001
), and the total centripetal displacement of the reference object 312 in the j-th action group (with
Figure 02_image003
Express). Afterwards, the processor 104 may
Figure 02_image005
” to estimate the centripetal motion power of the jth action group, where m is the load weight and g is the gravitational constant, but it is not limited to this.

在另一實施例中,處理器104可基於時間區間D1~D8個別的離心時間段決定參考物體312在所述第j個動作組中的平均離心移動速率(以

Figure 02_image007
表示),以及參考物體312在所述第j個動作組中的總離心位移量(以
Figure 02_image009
表示)。之後,處理器104可依據「
Figure 02_image011
」的式子估計所述第j個動作組的離心運動功率,但可不限於此。 In another embodiment, the processor 104 may determine the average centrifugal movement rate of the reference object 312 in the j-th action group (in
Figure 02_image007
), and the total centrifugal displacement of the reference object 312 in the jth action group (with
Figure 02_image009
Express). Afterwards, the processor 104 may
Figure 02_image011
The formula for estimating the eccentric power of the jth action group, but not limited to this.

在一些實施例中,運動數據收集系統100可將所收集到的運動數據(動作次數、運動功率(例如向心運動功率/離心運動功率)、運動時間、休息時間)提供予其他的智慧型裝置,以由此智慧型裝置將上述運動數據呈現予重量訓練器材的300的使用者或其他相關人員(例如教練)參考,但可不限於此。In some embodiments, the exercise data collection system 100 can provide the collected exercise data (number of movements, exercise power (eg, concentric exercise power/eccentric exercise power), exercise time, rest time) to other smart devices , so that the above-mentioned exercise data can be presented to the user of the weight training equipment 300 or other relevant personnel (such as coaches) for reference by the smart device, but it is not limited to this.

請參照圖6,其是依據本發明之一實施例繪示的對應於不同負載重量的距離變化圖。在圖6中,所示的各個波形例如是在使用者選定某個負載重量(例如45kg、50kg、55kg、60kg、65kg以及70kg)之後,由圖3C的第一距離感測器102對參考物體312所測得的第一距離的距離變化圖。如先前所言,處理器104可基於圖6中的各個波形估計對應的運動數據,例如動作次數、運動功率、運動時間等,但可不限於此。Please refer to FIG. 6 , which is a diagram illustrating distance variation corresponding to different load weights according to an embodiment of the present invention. In FIG. 6 , the waveforms shown are, for example, after the user selects a certain load weight (eg, 45kg, 50kg, 55kg, 60kg, 65kg, and 70kg), the first distance sensor 102 in FIG. 3C sets the reference object to the reference object. 312 is a distance graph of the measured first distance. As mentioned earlier, the processor 104 may estimate corresponding motion data, such as the number of actions, motion power, motion time, etc., based on the respective waveforms in FIG. 6 , but it is not limited thereto.

在一些實施例中,當第一距離感測器102係以ToF感測器實現時,受限於第一距離感測器102本身的特性,可能會使得其所偵測到的讀值未能正確地對應第一距離感測器102與參考物體312之間的實際距離。具體而言,當參考物體312與第一距離感測器102之間的第一距離位於某個較近的第一距離範圍內時,第一距離感測器102應可較為準確地測量上述第一距離。即,第一距離感測器102的讀值可大致匹配於實際上的第一距離(下稱第一實際距離)。在此情況下,所述讀值與第一實際距離之間的關係可以「

Figure 02_image013
」的式子(下稱第一轉換式)描述,其中x是所述讀值,Y為第一實際距離,
Figure 02_image015
為斜率,
Figure 02_image017
為一常數。 In some embodiments, when the first distance sensor 102 is implemented as a ToF sensor, limited by the characteristics of the first distance sensor 102 itself, the read value detected by the first distance sensor 102 may not be able to be detected. Corresponds correctly to the actual distance between the first distance sensor 102 and the reference object 312 . Specifically, when the first distance between the reference object 312 and the first distance sensor 102 is within a certain first distance range, the first distance sensor 102 should be able to measure the above-mentioned first distance more accurately. a distance. That is, the reading value of the first distance sensor 102 can roughly match the actual first distance (hereinafter referred to as the first actual distance). In this case, the relationship between the read value and the first actual distance can be "
Figure 02_image013
” (hereinafter referred to as the first conversion formula) description, where x is the reading value, Y is the first actual distance,
Figure 02_image015
is the slope,
Figure 02_image017
is a constant.

然而,當參考物體312與第一距離感測器102之間的第一距離位於某個較遠的第二距離範圍內時,由於第一距離感測器102的FOV 102a內將一併出現其他遮擋物(例如配重塊311),故將相應地使得所述讀值無法正確地對應第一實際距離。經實驗,此情況下的所述讀值與第一實際距離之間的關係可以「

Figure 02_image019
」的式子(下稱第二轉換式)描述,其中x是所述讀值,Y為第一實際距離,
Figure 02_image021
為斜率(其大於
Figure 02_image015
),
Figure 02_image023
為一常數。 However, when the first distance between the reference object 312 and the first distance sensor 102 is within a certain second distance range, other distances will also appear in the FOV 102a of the first distance sensor 102 Obstructors (eg, the counterweight block 311 ), accordingly, the read value cannot correctly correspond to the first actual distance. Through experiments, the relationship between the reading value and the first actual distance in this case can be "
Figure 02_image019
” (hereinafter referred to as the second conversion formula) description, where x is the reading value, Y is the first actual distance,
Figure 02_image021
is the slope (which is greater than
Figure 02_image015
),
Figure 02_image023
is a constant.

因此,在一實施例中,當處理器104判定第一距離感測器102提供的當下讀值位於第一距離範圍內時,處理器104可依據第一轉換式將此當下讀值轉換為第一實際距離。另一方面,當處理器104判定第一距離感測器102提供的當下讀值位於第二距離範圍內時,處理器104可依據第二轉換式將此當下讀值轉換為第一實際距離。Therefore, in one embodiment, when the processor 104 determines that the current reading value provided by the first distance sensor 102 is within the first distance range, the processor 104 can convert the current reading value into the first reading value according to the first conversion formula. an actual distance. On the other hand, when the processor 104 determines that the current reading value provided by the first distance sensor 102 is within the second distance range, the processor 104 can convert the current reading value into the first actual distance according to the second conversion formula.

請參照圖7,其是依據本發明之一實施例繪示的多個距離範圍的示意圖。在本實施例中,假設經實驗測量後,得知第一距離感測器102在讀值在大於1000mm之後將無法正確對應第一實際距離,則處理器104可將0mm至1000mm的範圍定為第一距離範圍710,並將大於1000mm的範圍定為第二距離範圍720。Please refer to FIG. 7 , which is a schematic diagram of a plurality of distance ranges according to an embodiment of the present invention. In this embodiment, if it is found that the first distance sensor 102 cannot correctly correspond to the first actual distance after the reading value is greater than 1000mm after the experimental measurement, the processor 104 can set the range of 0mm to 1000mm as the first distance A distance range 710 , and a range greater than 1000 mm is defined as a second distance range 720 .

之後,處理器104可基於所述讀值與第一實際距離在第一距離範圍710內的關係產生所述第一轉換式,並基於所述讀值與第一實際距離在第二距離範圍720內的關係產生所述第二轉換式。藉此,處理器104即可依據第一距離感測器102提供的當下讀值適應性地依據第一/第二轉換式將當下讀值轉換為第一實際距離。Afterwards, the processor 104 may generate the first conversion formula based on the relationship between the read value and the first actual distance within the first distance range 710 , and generate the first conversion formula based on the read value and the first actual distance within the second distance range 720 The relationship within yields the second transformation. In this way, the processor 104 can adaptively convert the current reading value into the first actual distance according to the first/second conversion formula according to the current reading value provided by the first distance sensor 102 .

在一些實施例中,若使用者在選定某個負載重量之後開始操作重量訓練器材300,則參考物體312將在使用者運動的期間將相應地上下移動,而第一距離感測器102所測得的讀值也會相應地變化。在圖7中,假設第一距離感測器102在使用者運動的期間內所測得的讀值係在變動範圍730(例如是700mm~1400mm)中變化。在此情況下,當處理器104判定第一距離感測器102提供的當下讀值介於700mm至1000mm時,處理器104可因判定此當下讀值位於第一距離範圍710內而依據第一轉換式將此當下讀值轉換為第一實際距離。另一方面,當處理器104判定第一距離感測器102提供的當下讀值介於1000mm至1400mm時,處理器104可因判定此當下讀值位於第二距離範圍720內而依據第二轉換式將此當下讀值轉換為第一實際距離,但本發明可不限於此。In some embodiments, if the user begins to operate the weight training apparatus 300 after selecting a certain load weight, the reference object 312 will move up and down accordingly during the user's movement, while the first distance sensor 102 detects The resulting reading will vary accordingly. In FIG. 7 , it is assumed that the reading value measured by the first distance sensor 102 during the movement of the user varies within a variation range 730 (eg, 700 mm˜1400 mm). In this case, when the processor 104 determines that the current reading value provided by the first distance sensor 102 is between 700 mm and 1000 mm, the processor 104 can determine that the current reading value is within the first distance range 710 according to the first The conversion formula converts the current reading value into the first actual distance. On the other hand, when the processor 104 determines that the current reading value provided by the first distance sensor 102 is between 1000 mm and 1400 mm, the processor 104 may determine that the current reading value is within the second distance range 720 according to the second conversion The formula converts the current reading value into the first actual distance, but the present invention is not limited to this.

在一些實施例中,當使用者使用重量訓練器材300執行多個動作組時,處理器104可依據對應的距離變化圖估計各個動作組對應的動作次數,以及這些動作組之間的組間休息時間。In some embodiments, when the user uses the weight training equipment 300 to perform multiple action groups, the processor 104 may estimate the number of movements corresponding to each action group and the rest between these action groups according to the corresponding distance change graph time.

請參照圖8,其是依據本發明之一實施例繪示的對應多個動作組的距離變化圖。如圖8所示,距離變化圖800共包括約23個特定波峰-波谷對,而處理器104可將這些特定波峰-波谷對劃分為對應於3個動作組的多個波峰-波谷集合G1~G3。Please refer to FIG. 8 , which is a diagram of distance variation corresponding to a plurality of action groups according to an embodiment of the present invention. As shown in FIG. 8 , the distance variation graph 800 includes about 23 specific peak-trough pairs in total, and the processor 104 can divide these specific peak-trough pairs into a plurality of peak-trough sets G1~ corresponding to 3 action groups G3.

在一實施例中,處理器104例如可估計連續的2個特定波峰-波谷對之間的時間差,並可據以將這些特定波峰-波谷對劃分為波峰-波谷集合G1~G3。舉例而言,當處理器104判斷連續的2個特定波峰-波谷對之間的時間差小於一休息時間門限值T3時,處理器104可將此2個特定波峰-波谷對歸為屬於同一個波峰-波谷集合。另一方面,當處理器104判斷連續的2個特定波峰-波谷對之間的時間差大於休息時間門限值T3,則處理器104可將此2個特定波峰-波谷對歸為屬於不同的波峰-波谷集合。In one embodiment, the processor 104 may, for example, estimate the time difference between two consecutive specific peak-trough pairs, and may divide these specific peak-trough pairs into peak-trough sets G1 to G3 accordingly. For example, when the processor 104 determines that the time difference between two consecutive specific peak-trough pairs is less than a rest time threshold value T3, the processor 104 can classify the two specific peak-trough pairs as belonging to the same peak - Valley collection. On the other hand, when the processor 104 determines that the time difference between two consecutive specific peak-trough pairs is greater than the rest time threshold value T3, the processor 104 may classify the two specific peak-trough pairs as belonging to different peak-trough pairs. Valley Collection.

舉例而言,由圖8可看出,在各個波峰-波谷集合G1~G3中,連續的2個特定波峰-波谷對之間的時間差皆未大於休息時間門限值T3。然而,由於連續的特定波峰-波谷對G1L及G21之間的時間差T41大於休息時間門限值T3,因此處理器104可將特定波峰-波谷對G1L及G21歸為屬於不同的波峰-波谷集合。相似地,由於連續的特定波峰-波谷對G2L及G31之間的時間差T42大於休息時間門限值T3,因此處理器104可將特定波峰-波谷對G2L及G31歸為屬於不同的波峰-波谷集合。For example, it can be seen from FIG. 8 that in each peak-trough set G1-G3, the time difference between two consecutive specific peak-trough pairs is not greater than the rest time threshold value T3. However, since the time difference T41 between the consecutive specific peak-trough pairs G1L and G21 is greater than the rest time threshold value T3, the processor 104 can classify the specific peak-trough pairs G1L and G21 as belonging to different peak-trough sets. Similarly, since the time difference T42 between the consecutive specific peak-trough pairs G2L and G31 is greater than the rest time threshold value T3, the processor 104 can classify the specific peak-trough pairs G2L and G31 as belonging to different peak-trough sets.

此外,假設波峰-波谷集合G1及G2分別對應於第1個動作組及第2個動作組,由於特定波峰-波谷對G1L及G21分別屬於對應不同動作組的波峰-波谷集合G1及G2,故特定波峰-波谷對G1L(即波峰-波谷集合G1的最末特定波峰-波谷對)及G21(即波峰-波谷集合G2的第1個特定波峰-波谷對)之間的時間差T41可經定義為第1個動作組及第2個動作組之間的組間休息時間。相似地,假設波峰-波谷集合G3對應於第3個動作組,則特定波峰-波谷對G2L(即波峰-波谷集合G2的最末特定波峰-波谷對)及G31(即波峰-波谷集合G3的第1個特定波峰-波谷對)之間的時間差T42可經定義為第2個動作組及第3個動作組之間的組間休息時間,但可不限於此。In addition, it is assumed that the peak-trough sets G1 and G2 correspond to the first action group and the second action group, respectively. Since the specific peak-trough pairs G1L and G21 belong to the peak-trough sets G1 and G2 corresponding to different action groups, respectively, The time difference T41 between a specific peak-trough pair G1L (ie, the last specific peak-trough pair of the peak-trough set G1) and G21 (ie, the first specific peak-trough pair of the peak-trough set G2) can be defined as Rest time between sets 1 and 2. Similarly, assuming that the peak-trough set G3 corresponds to the third action group, the specific peak-trough pair G2L (ie the last specific peak-trough pair of the peak-trough set G2) and G31 (ie the peak-trough set G3) The time difference T42 between the first specific peak-trough pair) may be defined as the rest time between sets between the second action group and the third action group, but may not be limited thereto.

請參照圖9,其是依據本發明之一實施例繪示的更換負載重量的示意圖。在本實施例中,當負載重量經選定為最輕的特定重量時,參考物體312與第一距離感測器102之間的初始距離可稱為參考距離RD,而其可作為使用者是否切換負載重量的參考。Please refer to FIG. 9 , which is a schematic diagram of replacing the load weight according to an embodiment of the present invention. In this embodiment, when the load weight is selected as the lightest specific weight, the initial distance between the reference object 312 and the first distance sensor 102 can be referred to as the reference distance RD, and it can be used as whether the user switches Reference for load weight.

具體而言,處理器104可判斷第一距離是否已維持第一靜止波形P1達第一靜止時間門限值T5,其中第一靜止波形對應的距離高於參考距離RD。在圖9中,反應於判定第一距離已維持第一靜止波形P1達第一靜止時間門限值T5,處理器104可偵測第一距離是否改變為第二靜止波形P2,其中第二靜止波形P2對應的距離亦高於參考距離RD。Specifically, the processor 104 can determine whether the first distance has maintained the first static waveform P1 for a first static time threshold value T5, wherein the distance corresponding to the first static waveform is higher than the reference distance RD. In FIG. 9, in response to determining that the first distance has maintained the first static waveform P1 for the first static time threshold value T5, the processor 104 can detect whether the first distance has changed to the second static waveform P2, wherein the second static waveform The distance corresponding to P2 is also higher than the reference distance RD.

若是,處理器104可進一步判斷第一距離是否已維持第二靜止波形P2達第一靜止時間門限值T5,且第一靜止波形P1與第二靜止波形P2之間的時間差是否小於第二靜止時間門限值T6。若是,此即代表使用者已將負載重量切換至對應於第二靜止波形P2的特定重量。因此,反應於判定第一距離已維持第二靜止波形P2達第一靜止時間門限值T5,且第一靜止波形P1與第二靜止波形P2之間的時間差小於第二靜止時間門限值T6,處理器104可依據第二靜止波形P2更新負載重量,而其細節可參照圖4的相關說明,於此不另贅述。If so, the processor 104 can further determine whether the first distance has maintained the second resting waveform P2 for the first resting time threshold value T5, and whether the time difference between the first resting waveform P1 and the second resting waveform P2 is less than the second resting time Threshold value T6. If so, it means that the user has switched the load weight to a specific weight corresponding to the second resting waveform P2. Therefore, in response to determining that the first distance has maintained the second static waveform P2 for the first static time threshold value T5, and the time difference between the first static waveform P1 and the second static waveform P2 is smaller than the second static time threshold value T6, processing The device 104 can update the load weight according to the second static waveform P2, and the details thereof can be referred to the related description of FIG. 4, and will not be repeated here.

請參照圖10,其是依據本發明第二實施例繪示的運動數據收集系統示意圖。如圖10所示,在第二實施例中,運動數據收集系統1000可包括第一距離感測器1001、第二距離感測器1002及處理器1004,其中第一距離感測器1001、第二距離感測器1002及處理器1004個別的可能的實施方式可參照第一距離感測器102及處理器104的相關說明,於此不另贅述。Please refer to FIG. 10 , which is a schematic diagram of a sports data collection system according to a second embodiment of the present invention. As shown in FIG. 10 , in the second embodiment, the motion data collection system 1000 may include a first distance sensor 1001 , a second distance sensor 1002 and a processor 1004 , wherein the first distance sensor 1001 , the first distance sensor 1001 , the For the respective possible implementations of the two distance sensors 1002 and the processor 1004 , reference may be made to the relevant descriptions of the first distance sensor 102 and the processor 104 , and details are not described herein.

在第二實施例中,運動數據收集系統1000亦可用於執行圖2的各個步驟,惟其所適用的重量訓練器材與第一實施例中的略有不同,故相應的操作細節亦將略有不同。以下將輔以圖11作進一步說明。In the second embodiment, the exercise data collection system 1000 can also be used to execute each step in FIG. 2 , but the weight training equipment it applies to is slightly different from the first embodiment, so the corresponding operation details will also be slightly different . The following will be supplemented with FIG. 11 for further description.

請參照圖11,其是依據本發明第二實施例繪示的重量訓練器材的局部示意圖。在第二實施例中,所考慮的重量訓練器材1100例如是包括槓鈴1101的史密斯機器(Smith machine),而第一距離感測器1001可為包括多個距離感測單元的一陣列式距離感測器,並可透過連接桿1112連接至槓鈴1101的套筒1101a。Please refer to FIG. 11 , which is a partial schematic diagram of a weight training apparatus according to a second embodiment of the present invention. In the second embodiment, the considered weight training equipment 1100 is, for example, a Smith machine including a barbell 1101, and the first distance sensor 1001 may be an array of distance sensors including a plurality of distance sensing units The measuring device can be connected to the sleeve 1101a of the barbell 1101 through the connecting rod 1112 .

在第二實施例中,在處理器1004執行步驟S210時,處理器1004可透過第一距離感測器1001偵測裝設於套筒1101a上的多個槓片1121~1123個別的厚度及各槓片1121~1123與第一距離感測器1001的參考距離。之後,處理器1004可基於各槓片1121~1123的厚度及參考距離估計各槓片1121~1123對應的重量。In the second embodiment, when the processor 1004 executes step S210, the processor 1004 can detect through the first distance sensor 1001 the individual thicknesses and the respective thicknesses of the plurality of bars 1121-1123 mounted on the sleeve 1101a. The reference distance between the bars 1121 - 1123 and the first distance sensor 1001 . Afterwards, the processor 1004 can estimate the corresponding weight of each of the bar pieces 1121 to 1123 based on the thickness of each of the bar pieces 1121 to 1123 and the reference distance.

在第二實施例中,設計者例如可在一前置作業中將各槓片預先置於套筒1101a上,以讓第一距離感測器1001測量各槓片的厚度及參考距離,再將各槓片的厚度及參考距離與各槓片的重量的對應關係予以記錄。藉此,當第一距離感測器1001測得某槓片對應的厚度(其可由偵測到此槓片的距離感測單元的數量推得)及參考距離時,即可據以推得此槓片的重量,但本發明可不限於此。In the second embodiment, the designer can, for example, place each bar piece on the sleeve 1101a in advance in a pre-operation, so that the first distance sensor 1001 can measure the thickness and reference distance of each bar piece, and then The thickness of each bar and the corresponding relationship between the reference distance and the weight of each bar are recorded. In this way, when the first distance sensor 1001 measures the thickness corresponding to a bar (which can be inferred from the number of distance sensing units that detect the bar) and the reference distance, it can be deduced accordingly. The weight of the bar, but the present invention may not be limited to this.

在第二實施例中,在處理器1004依據上述教示取得各槓片1121~1123對應的重量之後,即可據以估計重量訓練器材1100的負載重量。一般而言,史密斯機器上槓鈴1101兩側的套筒應承載有相同重量的槓片,故處理器1004可以各槓片1121~1123對應重量的總和的2倍作為重量訓練器材1100的負載重量,但可不限於此。In the second embodiment, after the processor 1004 obtains the weights corresponding to the bars 1121 - 1123 according to the above teachings, the load weight of the weight training equipment 1100 can be estimated accordingly. Generally speaking, the sleeves on both sides of the barbell 1101 on the Smith machine should carry bar pieces of the same weight, so the processor 1004 can use twice the sum of the corresponding weights of the bar pieces 1121-1123 as the load weight of the weight training equipment 1100, But not limited to this.

此外,在第二實施例中,所考慮的參考物體1111可包括第一距離感測器1001及連接桿1112,而當處理器1004執行步驟S220時,可透過安裝於重量訓練器材1100上的第二距離感測器1002偵測第一距離感測器1001的特定移動情形作為參考物體1111的移動情形。In addition, in the second embodiment, the considered reference object 1111 may include the first distance sensor 1001 and the connecting rod 1112, and when the processor 1004 executes step S220, the The two distance sensors 1002 detect a specific movement situation of the first distance sensor 1001 as the movement situation of the reference object 1111 .

在第二實施例中,依史密斯機器的特性可知,槓鈴1101將沿著一固定軌跡移動。具體而言,槓鈴1101可固定地連接於滑套1102,而滑套1102可滑動於滑軌1199上。在此情況下,當使用者操作槓鈴1101時,槓鈴1101將帶動滑套1102沿著滑軌1199滑動,進而使得槓鈴1101沿固定軌跡1131移動。In the second embodiment, according to the characteristics of the Smith machine, the barbell 1101 will move along a fixed trajectory. Specifically, the barbell 1101 can be fixedly connected to the sliding sleeve 1102 , and the sliding sleeve 1102 can slide on the sliding rail 1199 . In this case, when the user operates the barbell 1101 , the barbell 1101 will drive the sliding sleeve 1102 to slide along the sliding rail 1199 , thereby making the barbell 1101 move along the fixed track 1131 .

此外,為使第二距離感測器1002可偵測第一距離感測器1001的特定移動情形,第一距離感測器1001及第二距離感測器1002之間的參考連線1132可經設計為平行於固定軌跡1131。In addition, in order to enable the second distance sensor 1002 to detect a specific movement situation of the first distance sensor 1001, the reference connection 1132 between the first distance sensor 1001 and the second distance sensor 1002 can be Designed to be parallel to the fixed track 1131.

在第二實施例中,第一距離感測器1001與第二距離感測器1002之間可理解為存在第二距離,而參考物體1111的移動情形可表徵為第二距離的距離變化情形。In the second embodiment, the distance between the first distance sensor 1001 and the second distance sensor 1002 can be understood as the existence of the second distance, and the movement of the reference object 1111 can be characterized as the distance change of the second distance.

在此情況下,隨著使用者操作重量訓練器材1100,參考物體1111的移動情形亦可呈現為如圖5A所示的距離變化圖500,而處理器1004據以估計使用者的運動數據的方式可參照第一實施例中的相關說明,於此不另贅述。In this case, as the user operates the weight training equipment 1100, the movement of the reference object 1111 can also be presented as a distance change graph 500 as shown in FIG. 5A, and the processor 1004 estimates the user's motion data accordingly. Reference may be made to the relevant description in the first embodiment, which will not be repeated here.

此外,運動數據收集系統1000亦可將所收集到的運動數據(動作次數、運動功率、運動時間、休息時間)提供予其他的智慧型裝置,以由此智慧型裝置將上述運動數據呈現予重量訓練器材的1100的使用者或其他相關人員(例如教練)參考,但可不限於此。In addition, the exercise data collection system 1000 can also provide the collected exercise data (number of movements, exercise power, exercise time, rest time) to other smart devices, so that the smart device can present the above-mentioned exercise data to the weight User of training equipment 1100 or other relevant personnel (eg, a coach) for reference, but may not be limited thereto.

綜上所述,本發明提出的運動數據收集方法及系統可在簡易地安裝於對應的重量訓練器材之後,相應地基於參考物體的移動情形測量使用者操作重量訓練器材時的運動數據。並且,由於運動數據收集系統僅包括例如微控制器及距離感測器等較低成本的元件,故本發明可提供以較低成本收集使用者運動數據的解決方案。To sum up, the exercise data collection method and system provided by the present invention can be easily installed on the corresponding weight training equipment, and then measure the exercise data when the user operates the weight training equipment based on the movement of the reference object. Also, since the motion data collection system only includes relatively low-cost components such as microcontrollers and distance sensors, the present invention can provide a solution for collecting user motion data at a relatively low cost.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

100,1000:運動數據收集系統 102,1001:第一距離感測器 102a:FOV 1002:第二距離感測器 104,1004:處理器 300,1100:重量訓練器材 311:配重塊 311a:插銷孔 312,1111:參考物體 411~413,599:波形 411a~413a:預設距離區間 500,500a,800:距離變化圖 500b:速率變化圖 501,G1,G2,G3:波峰-波谷集合 511~515,G1L,G21,G2L,G31:波峰-波谷對 511a~515a:波峰 511b~515b:波谷 710:第一距離範圍 720:第二距離範圍 730:變動範圍 1101:槓鈴 1101a:套筒 1102:滑套 1112:連接桿 1121~1123:槓片 1131:固定軌跡 1132:參考連線 1199:滑軌 S210,S220:步驟 D1~D8:時間區間 T1:第一距離門限值 T2:第二距離門限值 T3:休息時間門限值 T41,T42:時間差 T5:第一靜止時間門限值 T6:第二靜止時間門限值 t1:第一特定時間點 t2:第二特定時間點 t3:第三特定時間點 TD1:時間長度 P1:第一波形 P2:第二波形 RD:參考距離100,1000: Exercise data collection system 102, 1001: First distance sensor 102a:FOV 1002: Second distance sensor 104, 1004: Processor 300,1100: Weight training equipment 311: Counterweight 311a: pin hole 312, 1111: Reference objects 411~413,599: Waveform 411a~413a: Preset distance range 500,500a,800: Distance change graph 500b: Rate change graph 501, G1, G2, G3: crest-trough set 511~515, G1L, G21, G2L, G31: peak-valley pair 511a~515a: crest 511b~515b: valley 710: First distance range 720: Second distance range 730: Range of change 1101: Barbell 1101a: Sleeve 1102: Sliding sleeve 1112: connecting rod 1121~1123: bar piece 1131: Fixed track 1132: Reference connection 1199: Slider S210, S220: Steps D1~D8: time interval T1: first distance threshold value T2: second distance threshold T3: Rest time threshold T41, T42: time difference T5: Threshold value of the first static time T6: second static time threshold value t1: The first specific time point t2: The second specific time point t3: The third specific time point TD1: time length P1: The first waveform P2: Second waveform RD: reference distance

圖1是依據本發明第一實施例繪示的運動數據收集系統示意圖。 圖2是依據本發明之一實施例繪示的運動數據收集方法流程圖。 圖3A是依據本發明第一實施例繪示的重量訓練器材的配重塊示意圖。 圖3B是圖3A的側視圖。 圖3C是依據本發明第一實施例繪示的另一配重塊的側視圖。 圖4是基於本發明第一實施例繪示的多個預設距離區間的示意圖。 圖5A是依據本發明之一實施例繪示的距離變化圖。 圖5B是依據本發明之一實施例繪示的距離變化圖及其對應的速率變化圖。 圖6是依據本發明之一實施例繪示的對應於不同負載重量的距離變化圖。 圖7是依據本發明之一實施例繪示的多個距離範圍的示意圖。 圖8是依據本發明之一實施例繪示的對應多個動作組的距離變化圖。 圖9是依據本發明之一實施例繪示的更換負載重量的示意圖。 圖10是依據本發明第二實施例繪示的運動數據收集系統示意圖。 圖11是依據本發明第二實施例繪示的重量訓練器材的局部示意圖。 FIG. 1 is a schematic diagram of a sports data collection system according to a first embodiment of the present invention. FIG. 2 is a flowchart of a method for collecting sports data according to an embodiment of the present invention. 3A is a schematic diagram of a weight block of the weight training equipment according to the first embodiment of the present invention. Figure 3B is a side view of Figure 3A. 3C is a side view of another weight block according to the first embodiment of the present invention. FIG. 4 is a schematic diagram of a plurality of preset distance intervals according to the first embodiment of the present invention. FIG. 5A is a distance change diagram according to an embodiment of the present invention. FIG. 5B is a distance change graph and a corresponding velocity change graph according to an embodiment of the present invention. FIG. 6 is a diagram illustrating distance variation corresponding to different load weights according to an embodiment of the present invention. FIG. 7 is a schematic diagram of a plurality of distance ranges according to an embodiment of the present invention. FIG. 8 is a diagram illustrating distance changes corresponding to a plurality of action groups according to an embodiment of the present invention. FIG. 9 is a schematic diagram of replacing the load weight according to an embodiment of the present invention. FIG. 10 is a schematic diagram of a sports data collection system according to a second embodiment of the present invention. 11 is a partial schematic diagram of a weight training apparatus according to a second embodiment of the present invention.

S210,S220:步驟 S210, S220: Steps

Claims (18)

一種運動數據收集方法,包括: 透過安裝於一重量訓練器材上的一第一距離感測器偵測該重量訓練器材的一負載重量,其中該重量訓練器材安裝有一參考物體;以及 偵測該參考物體的一移動情形,並基於該參考物體的該移動情形及該負載重量估計該重量訓練器材的一使用者的一運動數據。 A method of athletic data collection comprising: Detecting a load weight of the weight training equipment through a first distance sensor mounted on the weight training equipment, wherein the weight training equipment is mounted with a reference object; and A movement situation of the reference object is detected, and a movement data of a user of the weight training equipment is estimated based on the movement situation of the reference object and the load weight. 如請求項1所述的方法,其中偵測該重量訓練器材的該負載重量的步驟包括: 偵測該第一距離感測器與該參考物體之間的一初始距離;以及 反應於判定該初始距離屬於多個預設距離區間中的一特定距離區間,判定該重量訓練器材的該負載重量為對應於該特定距離區間的一特定重量。 The method of claim 1, wherein the step of detecting the load weight of the weight training equipment comprises: detecting an initial distance between the first distance sensor and the reference object; and In response to determining that the initial distance belongs to a specific distance interval among a plurality of preset distance intervals, it is determined that the load weight of the weight training equipment is a specific weight corresponding to the specific distance interval. 如請求項1所述的方法,其中該重量訓練器材包括堆疊的多個配重塊及一插銷,各該配重塊具有一插銷孔,該插銷用以插設於該些配重塊之一的該插銷孔,且該參考物體包括該插銷。The method of claim 1, wherein the weight training equipment comprises a plurality of stacked weights and a latch, each of the weights has a latch hole, and the latch is configured to be inserted into one of the weights the pin hole, and the reference object includes the pin. 如請求項1所述的方法,其中偵測該參考物體的該移動情形的步驟包括: 透過該第一距離感測器偵測該參考物體的該移動情形。 The method of claim 1, wherein the step of detecting the movement of the reference object comprises: The movement of the reference object is detected through the first distance sensor. 如請求項4所述的方法,其中該參考物體與該第一距離感測器之間存在一第一距離,且該參考物體的該移動情形表徵為該第一距離的一距離變化情形。The method of claim 4, wherein a first distance exists between the reference object and the first distance sensor, and the movement of the reference object is characterized by a distance change of the first distance. 如請求項5所述的方法,更包括: 反應於判定該第一距離的一當下讀值位於一第一距離範圍內,依據一第一轉換式將該當下讀值轉換為一第一實際距離;以及 反應於判定該第一距離的該當下讀值位於一第二距離範圍內,依據一第二轉換式將該當下讀值轉換為該第一實際距離,其中該第一轉換式及該第二轉換式對應於不同的斜率。 The method according to claim 5, further comprising: In response to determining that a current reading value of the first distance is within a first distance range, converting the current reading value into a first actual distance according to a first conversion formula; and In response to determining that the current reading value of the first distance is within a second distance range, converting the current reading value into the first actual distance according to a second conversion formula, wherein the first conversion formula and the second conversion formula The formulas correspond to different slopes. 如請求項1所述的方法,其中該重量訓練器材為包括一槓鈴的一史密斯機器,該第一距離感測器為一陣列式距離感測器並透過一連接桿連接至該槓鈴的一套筒,且偵測該重量訓練器材的該負載重量的步驟包括: 透過該第一距離感測器偵測裝設於該套筒上的多個槓片個別的一厚度及各該槓片與該第一距離感測器的一參考距離;以及 基於各該槓片的該厚度及該參考距離估計各該槓片對應的一重量,並據以估計該重量訓練器材的該負載重量。 The method of claim 1, wherein the weight training equipment is a Smith machine including a barbell, the first distance sensor is an array of distance sensors and is connected to a set of the barbell through a connecting rod tube, and the step of detecting the load weight of the weight training equipment includes: detecting, through the first distance sensor, a thickness of each of the plurality of bars mounted on the sleeve and a reference distance between each bar and the first distance sensor; and Based on the thickness of each of the bar pieces and the reference distance, a weight corresponding to each of the bar pieces is estimated, and the load weight of the weight training equipment is estimated accordingly. 如請求項7所述的方法,其中該重量訓練器材的該負載重量為各該槓片對應的該重量的總和的2倍。The method of claim 7, wherein the load weight of the weight training equipment is 2 times the sum of the weights corresponding to each of the bar pieces. 如請求項7所述的方法,其中該參考物體包括該第一距離感測器及該連接桿,且偵測該參考物體的該移動情形的步驟包括: 透過安裝於該重量訓練器材上的一第二距離感測器偵測該第一距離感測器的一特定移動情形作為該參考物體的該移動情形。 The method of claim 7, wherein the reference object includes the first distance sensor and the connecting rod, and the step of detecting the movement of the reference object comprises: A specific movement situation of the first distance sensor is detected as the movement situation of the reference object through a second distance sensor installed on the weight training equipment. 如請求項9所述的方法,其中該第一距離感測器與該第二距離感測器之間存在一第二距離,且該參考物體的該移動情形表徵為該第二距離的一距離變化情形。The method of claim 9, wherein a second distance exists between the first distance sensor and the second distance sensor, and the movement of the reference object is characterized by a distance of the second distance changing situation. 如請求項7所述的方法,其中該槓鈴沿一固定軌跡移動,該第一距離感測器及該第二距離感測器之間的一參考連線平行於該固定軌跡。The method of claim 7, wherein the barbell moves along a fixed trajectory, and a reference line between the first distance sensor and the second distance sensor is parallel to the fixed trajectory. 如請求項1所述的方法,其中該運動數據包括一動作次數,該參考物體的該移動情形表徵為一距離變化圖,該距離變化圖包括多個波峰-波谷對,且基於該參考物體的該移動情形及該負載重量估計該重量訓練器材的該使用者的該運動數據的步驟包括: 將該些波峰-波谷對劃分為對應於多個動作組的多個波峰-波谷集合; 在該些波峰-波谷集合中的第j個波峰-波谷集合中找出多個特定波峰-波谷對,其中各該特定波峰-波谷對包括一特定波峰及一特定波谷,該特定波峰及該特定波谷之一對應的一第一特定距離大於一第一距離門限值,該特定波峰及該特定波谷之另一對應的一第二特定距離小於一第二距離門限值,且該第一距離門限值大於該第二距離門限值;以及 以所述第j個波峰-波谷集合的該些特定波峰-波谷對的一數量作為該些動作組中的第j個動作組的該動作次數。 The method of claim 1, wherein the motion data includes a number of motions, and the movement of the reference object is represented by a distance change graph, the distance change graph including a plurality of peak-to-valley pairs, and based on the movement of the reference object The step of estimating the movement data of the user of the weight training equipment by the movement situation and the load weight includes: dividing the peak-trough pairs into a plurality of peak-trough sets corresponding to a plurality of action groups; Find a plurality of specific peak-trough pairs in the jth peak-trough set of the peak-trough sets, wherein each specific peak-trough pair includes a specific peak and a specific trough, the specific peak and the specific peak-trough A first specific distance corresponding to one of the troughs is greater than a first distance threshold, a second specific distance corresponding to the other of the specific peak and the specific trough is smaller than a second distance threshold, and the first distance threshold greater than the second distance threshold; and Taking a number of the specific peak-trough pairs in the jth peak-trough set as the number of movements of the jth movement group in the movement groups. 如請求項12所述的方法,其中該負載重量對應於一初始距離,該第一距離門限值與該初始距離相距達一第一差值,該第二距離門限值與該初始距離相距達一第二差值。The method of claim 12, wherein the load weight corresponds to an initial distance, the first distance threshold value is separated from the initial distance by a first difference, and the second distance threshold value is separated from the initial distance by a distance second difference. 如請求項12所述的方法,更包括: 將該距離變化圖轉換為一速率變化圖,其中該速率變化圖包括對應於所述第j個波峰-波谷集合的該些特定波峰-波谷對的多個時間區間,且各該時間區間依序包括一第一特定時間點、一第二特定時間點及一第三特定時間點,該第一特定時間點、該第二特定時間點及該第三特定時間點對應的速率為0; 依據該些時間區間的第i個時間區間的該第一特定時間點及該第二特定時間點定義所述第i個時間區間的一向心時間段,其中i為正整數; 依據所述第i個時間區間的該第二特定時間點及該第三特定時間點定義所述第i個時間區間的一離心時間段; 基於各該時間區間的該向心時間段決定所述第j個動作組的一向心運動功率; 基於各該時間區間的該離心時間段決定所述第j個動作組的一離心運動功率。 The method according to claim 12, further comprising: Converting the distance variation graph into a velocity variation graph, wherein the velocity variation graph includes a plurality of time intervals corresponding to the specific peak-valley pairs of the jth peak-valley set, and each of the time intervals is in sequence Including a first specific time point, a second specific time point and a third specific time point, the rate corresponding to the first specific time point, the second specific time point and the third specific time point is 0; Define a concentric time period of the i-th time interval according to the first specific time point and the second specific time point of the i-th time interval of the time intervals, wherein i is a positive integer; defining a centrifugation time period of the i-th time interval according to the second specific time point and the third specific time point of the i-th time interval; Determine the concentric motion power of the jth action group based on the concentric time period of each time interval; An eccentric exercise power of the j-th action group is determined based on the centrifugal time period of each of the time intervals. 如請求項12所述的方法,其中該些波峰-波谷集合更包括第(j-1)個波峰-波谷集合,該些動作組更包括第(j-1)個動作組,所述第j個波峰-波谷集合中的第1個特定波峰-波谷對與所述第(j-1)個波峰-波谷集合中的最末特定波峰-波谷對之間的時間差為所述第j個動作組與所述第(j-1)個動作組之間的一組間休息時間,且該組間休息時間大於一休息時間門限值。The method of claim 12, wherein the peak-trough sets further include a (j-1)th peak-trough set, the action groups further include a (j-1)th action group, and the jth The time difference between the first specific peak-trough pair in the peak-trough set and the last specific peak-trough pair in the (j-1)th peak-trough set is the jth action group The rest time between a group and the (j-1)th action group, and the rest time between groups is greater than a rest time threshold. 如請求項1所述的方法,其中該參考物體與該第一距離感測器之間存在一第一距離,該負載重量為多個特定重量的其中之一,且該些特定重量中的一最輕特定重量對應於一參考距離,且所述方法更包括: 反應於判定該第一距離已維持一第一靜止波形達一第一靜止時間門限值,偵測該第一距離是否改變為一第二靜止波形,其中該第一靜止波形及該第二靜止波形個別對應的距離皆高於該參考距離; 反應於判定該第一距離已維持該第二靜止波形達該第一靜止時間門限值,且該第一靜止波形與該第二靜止波形之間的時間差小於一第二靜止時間門限值,依據該第二靜止波形更新該負載重量,其中該第二靜止時間門限值高於該第一靜止時間門限值。 The method of claim 1, wherein there is a first distance between the reference object and the first distance sensor, the load weight is one of a plurality of specific weights, and one of the specific weights The lightest specific weight corresponds to a reference distance, and the method further includes: In response to determining that the first distance has maintained a first static waveform for a first static time threshold, detecting whether the first distance has changed into a second static waveform, wherein the first static waveform and the second static waveform Individual corresponding distances are higher than the reference distance; In response to determining that the first distance has maintained the second static waveform up to the first static time threshold, and the time difference between the first static waveform and the second static waveform is less than a second static time threshold, according to the A second resting waveform updates the load weight, wherein the second resting time threshold is higher than the first resting time threshold. 如請求項1所述的方法,其中該運動數據包括一運動功率,且該運動功率係基於該負載重量、該參考物體的一總移動距離及一移動時間而得。The method of claim 1, wherein the motion data includes a motion power, and the motion power is obtained based on the load weight, a total moving distance and a moving time of the reference object. 一種運動數據收集系統,包括: 一第一距離感測器,其安裝於一重量訓練器材上; 一處理器,其耦接於該第一距離感測器,並經配置以: 透過該第一距離感測器偵測該重量訓練器材的一負載重量,其中該重量訓練器材安裝有一參考物體;以及 偵測該參考物體的一移動情形,並基於該參考物體的該移動情形及該負載重量估計該重量訓練器材的一使用者的一運動數據。 An athletic data collection system comprising: a first distance sensor mounted on a weight training equipment; a processor coupled to the first distance sensor and configured to: Detecting a load weight of the weight training equipment through the first distance sensor, wherein the weight training equipment is mounted with a reference object; and A movement of the reference object is detected, and a movement data of a user of the weight training equipment is estimated based on the movement of the reference object and the load weight.
TW109145823A 2020-12-23 2020-12-23 Method and system for collecting exercise data TWI753716B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109145823A TWI753716B (en) 2020-12-23 2020-12-23 Method and system for collecting exercise data
CN202011595715.8A CN114653027B (en) 2020-12-23 2020-12-29 Exercise data collection method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109145823A TWI753716B (en) 2020-12-23 2020-12-23 Method and system for collecting exercise data

Publications (2)

Publication Number Publication Date
TWI753716B true TWI753716B (en) 2022-01-21
TW202224729A TW202224729A (en) 2022-07-01

Family

ID=80809017

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109145823A TWI753716B (en) 2020-12-23 2020-12-23 Method and system for collecting exercise data

Country Status (2)

Country Link
CN (1) CN114653027B (en)
TW (1) TWI753716B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201528012A (en) * 2013-09-16 2015-07-16 Axis Ab Joining a distributed database
CN105392589A (en) * 2013-03-15 2016-03-09 林肯环球股份有限公司 Systems and methods for communicating with welding equipment
CN208498389U (en) * 2018-03-30 2019-02-15 斑马网络技术有限公司 Vehicle with sensing device
US20200312170A1 (en) * 2019-03-27 2020-10-01 Reliable Robotics Corporation Cross-checking localization during aircraft terminal operations
US20200320810A1 (en) * 2018-01-25 2020-10-08 Alibaba Group Holding Limited Object display frame, data processing method, device, equipment and system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100053753A (en) * 2008-11-13 2010-05-24 주식회사 오투런 Seperating device for weight blocks and counting device for exercising quantity
JP5342577B2 (en) * 2011-02-24 2013-11-13 カシオ計算機株式会社 Training management device, training device and program
TWI468199B (en) * 2012-07-26 2015-01-11 Joong Chenn Industry Co Ltd Weight training device with load detection system
EP3246074B1 (en) * 2016-05-20 2019-10-30 Joong Chenn Industry Co., Ltd. Multifunctional leg training machine
CN206342863U (en) * 2016-12-13 2017-07-21 济南金奥太信息有限公司 Fitness equipment detection means based on displacement sensor for pull rope
TWI616223B (en) * 2016-12-14 2018-03-01 國立臺灣體育運動大學 Plug for fitness equipment and recording system thereof
CN108310718A (en) * 2017-01-14 2018-07-24 富士康(昆山)电脑接插件有限公司 Weight exerciser and its ultrasonic sensing method
CN209237251U (en) * 2018-10-22 2019-08-13 魏依凡 A kind of strength training device counter block operating parameter acquisition device
JP6566591B1 (en) * 2018-11-06 2019-08-28 株式会社Oliori Weight training information management system, information processing apparatus, weight training information management program, and weight training information management method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105392589A (en) * 2013-03-15 2016-03-09 林肯环球股份有限公司 Systems and methods for communicating with welding equipment
TW201528012A (en) * 2013-09-16 2015-07-16 Axis Ab Joining a distributed database
US20200320810A1 (en) * 2018-01-25 2020-10-08 Alibaba Group Holding Limited Object display frame, data processing method, device, equipment and system
CN208498389U (en) * 2018-03-30 2019-02-15 斑马网络技术有限公司 Vehicle with sensing device
US20200312170A1 (en) * 2019-03-27 2020-10-01 Reliable Robotics Corporation Cross-checking localization during aircraft terminal operations

Also Published As

Publication number Publication date
CN114653027B (en) 2023-07-25
CN114653027A (en) 2022-06-24
TW202224729A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
US10265575B2 (en) Exercise machine with analysis system
US9791295B2 (en) Step counting method and a pedometer based on a 3-axis accelerometer
RU2645934C2 (en) Method and device for recording exercise
US8876664B2 (en) Weight-lifting exercise machine
KR101580065B1 (en) Training device
JP2009131482A5 (en)
KR101853465B1 (en) Step length calculation and NFC function having treadmill system
JPH0535160U (en) Treadmill
JP2012190061A5 (en)
CN106984025A (en) The system and method that exercise apparatus oscillating movement is associated with equipment user in database
TWI753716B (en) Method and system for collecting exercise data
KR20150032949A (en) The monitoring method and device of the weight exercise stack machine
JP2024045390A (en) Predictive Maintenance for Exercise Machines with Time-of-Flight Sensors
US11794074B2 (en) Apparatus and method for exercise type recognition
JP4899725B2 (en) Step counting device
JP4002146B2 (en) Detection device, detection system, portable device, and program
CN106390422A (en) Split measuring device
TWI616223B (en) Plug for fitness equipment and recording system thereof
JP3908930B2 (en) Energy consumption calculation device
KR102342100B1 (en) Auto-counter of Curl-up
JPH10230021A (en) Instrument for measuring data of weight training machine
KR20190016761A (en) Method and apparatus for evaluating stability during running and walking
CN107050829A (en) X, Y-axis centre-of gravity shift detector
KR101549608B1 (en) Exercise monitoring system for using weight training
WO2020209595A3 (en) Analysis device based on power consumption information about treadmill