TWI753644B - Memory device and method of fabricating the same - Google Patents

Memory device and method of fabricating the same Download PDF

Info

Publication number
TWI753644B
TWI753644B TW109139460A TW109139460A TWI753644B TW I753644 B TWI753644 B TW I753644B TW 109139460 A TW109139460 A TW 109139460A TW 109139460 A TW109139460 A TW 109139460A TW I753644 B TWI753644 B TW I753644B
Authority
TW
Taiwan
Prior art keywords
end portion
layer
stepped
region
stacked structure
Prior art date
Application number
TW109139460A
Other languages
Chinese (zh)
Other versions
TW202220184A (en
Inventor
洪敏峰
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW109139460A priority Critical patent/TWI753644B/en
Application granted granted Critical
Publication of TWI753644B publication Critical patent/TWI753644B/en
Publication of TW202220184A publication Critical patent/TW202220184A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A memory device is provided. The memory device includes a substrate, a stacked structure, and a contact. The substrate includes a memory array region and a staircase region. The stacked structure is located on the substrate in the memory array region and the staircase region. The stacked structure includes a plurality of conductive layers and a plurality of insulating layers alternately stacked on each other. Each of the plurality of conductive layers includes a main body and an end part. The main body is located in the memory array region and extends to the staircase region. The end part is connected to the main body and is located in the staircase region. A thickness of the end part is greater than a thickness of the main body. The contact lands on and is connected to the end part.

Description

記憶體元件及其製造方法Memory device and method of manufacturing the same

本發明實施例是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶體元件及其製造方法。Embodiments of the present invention relate to a semiconductor device and a method for manufacturing the same, and more particularly, to a memory device and a method for fabricating the same.

非揮發性記憶體元件(如,快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體元件。Non-volatile memory devices (eg, flash memory) are widely used as memory devices in personal computers and other electronic devices because of the advantage that the stored data does not disappear after a power failure.

目前業界較常使用的快閃記憶體陣列包括反或閘(NOR)快閃記憶體與反及閘(NAND)快閃記憶體。由於NAND快閃記憶體的結構是使各記憶胞串接在一起,其積集度與面積利用率較NOR快閃記憶體佳,已經廣泛地應用在多種電子產品中。此外,為了進一步地提升記憶體元件的積集度,發展出一種三維NAND快閃記憶體。然而,仍存在許多與三維NAND快閃記憶體相關的挑戰。Currently, the flash memory arrays commonly used in the industry include NOR flash memory and NAND flash memory. Since the structure of the NAND flash memory is to connect the memory cells in series, its accumulation and area utilization are better than those of the NOR flash memory, and it has been widely used in a variety of electronic products. In addition, in order to further improve the integration of memory elements, a three-dimensional NAND flash memory has been developed. However, there are still many challenges associated with 3D NAND flash memory.

本發明提供一種記憶體元件,包括:基底、堆疊結構、介電層以及第一接觸窗。基底包括記憶體陣列區與階梯區。堆疊結構位於記憶體陣列區與階梯區的所述基底上,其中所述堆疊結構包括彼此交互堆疊的多個導體層與多個絕緣層。每一所述多個導體層包括:主體部,位於所述記憶體陣列區並延伸至所述階梯區;以及末端部,與所述主體部連接,位於所述階梯區中,其中所述末端部的厚度大於所述主體部的厚度。介電層位於所述記憶體陣列區與所述階梯區的所述堆疊結構上。第一接觸窗貫穿在所述階梯區的所述介電層以及位於所述末端部上方的對應的絕緣層,且著陸於所述末端部並與所述末端部連接。The present invention provides a memory device, comprising: a substrate, a stack structure, a dielectric layer and a first contact window. The substrate includes a memory array area and a stepped area. The stacked structure is located on the substrate of the memory array region and the stepped region, wherein the stacked structure includes a plurality of conductor layers and a plurality of insulating layers stacked alternately with each other. Each of the plurality of conductor layers includes: a main body portion located in the memory array region and extending to the stepped region; and an end portion connected to the main body portion and located in the stepped region, wherein the end portion The thickness of the portion is greater than the thickness of the main body portion. A dielectric layer is located on the stacked structure of the memory array region and the stepped region. The first contact window penetrates through the dielectric layer of the stepped region and the corresponding insulating layer above the end portion, and is landed on and connected to the end portion.

本發明的一實施例中,一種記憶體元件的製造方法,包括:提供基底,所述基底包括記憶體陣列區與階梯區;於所述記憶體陣列區與所述階梯區的所述基底上形成堆疊結構,其中所述堆疊結構包括彼此交互堆疊的多個第一材料層與多個第二材料層;圖案化所述堆疊結構,以在所述階梯區的所述堆疊結構形成階梯結構;移除所述階梯結構的末端處的部分的多個第二材料層,以形成多個第一水平開口;移除所述多個多個第一水平開口周圍的部分的多個第一材料層,以增加所述多個第一水平開口的高度;在每一所述多個第一水平開口之中形成末端部,所述末端部的材料與所述多個第二材料層的材料相同,且所述末端部的厚度大於相鄰的第二材料層的厚度;在所述記憶體陣列區與所述階梯區的所述堆疊結構上形成介電層;以及於所述階梯區形成第一接觸窗,其中所述第一接觸窗貫穿在所述階梯區的所述介電層以及位於所述末端部上方的對應的第一材料層,且著陸於所述末端部並與所述末端部連接。In one embodiment of the present invention, a method for manufacturing a memory device includes: providing a substrate, the substrate comprising a memory array region and a stepped region; on the substrate of the memory array region and the stepped region forming a stacked structure, wherein the stacked structure includes a plurality of first material layers and a plurality of second material layers stacked alternately with each other; patterning the stacked structure to form a stepped structure in the stacked structure in the stepped region; removing portions of the plurality of second material layers at the ends of the stepped structure to form a plurality of first horizontal openings; removing portions of the plurality of first material layers surrounding the plurality of first horizontal openings , to increase the height of the plurality of first horizontal openings; forming an end portion in each of the plurality of first horizontal openings, the material of the end portion is the same as the material of the plurality of second material layers, and the thickness of the end portion is greater than the thickness of the adjacent second material layer; a dielectric layer is formed on the stacked structure of the memory array region and the stepped region; and a first layer is formed on the stepped region a contact window, wherein the first contact window penetrates through the dielectric layer in the stepped region and the corresponding first material layer above the end portion, and is landed on the end portion and is connected with the end portion connect.

基於上述,在本發明的多個實施例中,局部地增加閘極的末端部的厚度,可以避免在形成深度較深接觸窗開口的過程中,深度較淺的接觸窗開口下方的閘極層被蝕穿。末端部的形成製程可與現有的製程整合。此外,在形成末端部之前可以先在階梯區的堆疊結構中形成支撐柱結構,以避免堆疊結構在形成末端部的蝕刻過程中發生塌陷。Based on the above, in various embodiments of the present invention, by locally increasing the thickness of the end portion of the gate electrode, in the process of forming the contact window opening with a deeper depth, the gate electrode layer below the contact window opening with a shallow depth can be avoided. etched through. The formation process of the end portion can be integrated with the existing process. In addition, the support column structure may be formed in the stacked structure in the stepped region before forming the end portion, so as to avoid the collapse of the stacked structure during the etching process for forming the end portion.

圖1A至圖1I是依照本發明一實施例所繪示的一種三維記憶體元件的製造方法的剖面示意圖。圖2A至圖2I是依照本發明一實施例所繪示的一種三維記憶體元件的製造方法的另一剖面的示意圖。圖5A的切線I-I’的部分製程的剖面圖如圖1A至1I所示。圖5A的切線II-II’的部分製程的剖面圖如圖2A至2I所示。圖5B的切線III-III’ 的部分製程的剖面圖如圖1A至1I所示。圖5B的切線IV-IV’的部分製程的剖面圖如圖2A至2I所示。1A to FIG. 1I are schematic cross-sectional views of a method for manufacturing a three-dimensional memory device according to an embodiment of the present invention. 2A to 2I are schematic diagrams of another cross-section of a manufacturing method of a three-dimensional memory device according to an embodiment of the present invention. Cross-sectional views of a part of the process along the line I-I' of FIG. 5A are shown in FIGS. 1A to 1I. Cross-sectional views of a part of the process along the line II-II' of Fig. 5A are shown in Figs. 2A to 2I. Sectional views of a part of the process along the line III-III' of FIG. 5B are shown in FIGS. 1A to 1I . Sectional views of a portion of the process along the line IV-IV' of FIG. 5B are shown in FIGS. 2A to 2I.

請參照圖1A與2A,提供基底100。基底100可為半導體基底,例如含矽基底。在一實施例中,依據設計需求,可於基底100中形成摻雜區。基底100具有記憶體陣列區R1以及階梯區R2。階梯區R2包括區域A1、區域A2與區域A3(如圖5A所示)。基底100上可形成元件層(未示出)與金屬內連線結構(未示出)。元件層可以包括主動元件或是被動元件。主動元件例如是電晶體、二極體等。被動元件例如是電容器、電感等。金屬內連線結構可以包括介電層、插塞與導線等。1A and 2A, a substrate 100 is provided. The substrate 100 may be a semiconductor substrate, such as a silicon-containing substrate. In one embodiment, doped regions may be formed in the substrate 100 according to design requirements. The substrate 100 has a memory array region R1 and a stepped region R2. The stepped area R2 includes an area A1 , an area A2 and an area A3 (as shown in FIG. 5A ). An element layer (not shown) and a metal interconnect structure (not shown) may be formed on the substrate 100 . The element layer may include active elements or passive elements. The active elements are, for example, transistors, diodes, and the like. Passive elements are, for example, capacitors, inductors, and the like. The metal interconnect structure may include dielectric layers, plugs and wires, and the like.

請參照圖1A與2A,於基底100上方形成堆疊結構101。基底100可以是半導體基底,例如是矽基底。堆疊結構101位於記憶體陣列區R1以及階梯區R2上。堆疊結構101包括交替堆疊的多個第一材料層102與多個第二材料層104。第一材料層102可以是絕緣層,例如是氧化矽。第二材料層104可以是絕緣層(例如是氮化矽)或導體層(例如是摻雜多晶矽)。在一實施例中,第一材料層102的材料包括氧化矽,而第二材料層104的材料包括氮化矽。在另一實施例中,第一材料層102的材料包括氧化矽,而第二材料層104的材料包括摻雜多晶矽。在本實施例中,堆疊結構101的最底層為第一材料層102,最頂層為第二材料層104,但本發明不限於此。此外,在本實施例中,是以4層的第二材料層104以及4層的第一材料層102來說明,然而,本發明不以此為限。Referring to FIGS. 1A and 2A , a stacked structure 101 is formed on the substrate 100 . The substrate 100 may be a semiconductor substrate, such as a silicon substrate. The stacked structure 101 is located on the memory array region R1 and the stepped region R2. The stacked structure 101 includes a plurality of first material layers 102 and a plurality of second material layers 104 stacked alternately. The first material layer 102 may be an insulating layer, such as silicon oxide. The second material layer 104 may be an insulating layer (eg, silicon nitride) or a conductor layer (eg, doped polysilicon). In one embodiment, the material of the first material layer 102 includes silicon oxide, and the material of the second material layer 104 includes silicon nitride. In another embodiment, the material of the first material layer 102 includes silicon oxide, and the material of the second material layer 104 includes doped polysilicon. In this embodiment, the bottommost layer of the stacked structure 101 is the first material layer 102 , and the topmost layer is the second material layer 104 , but the invention is not limited thereto. In addition, in this embodiment, four layers of the second material layer 104 and four layers of the first material layer 102 are used for description, however, the present invention is not limited thereto.

接著,請參照圖2A,在階梯區R2的堆疊結構101之中形成支撐結構98。支撐結構98又可稱為虛設結構。在一些實施例中,支撐結構98的形成方法如以下所述。在堆疊結構101之中形成開口96。在一實施例中,開口96可具有大致垂直的側壁,如圖2A所示。在另一實施例中,開口96可具有略微傾斜的側壁。之後,在堆疊結構101上以及開口96之中形成絕緣層(未示出)。絕緣層的材料與第二材料層104不同,例如是氧化矽。之後,進行平坦化製程,例如是化學機械研磨製程或是回蝕刻製程,移除開口96以外的絕緣層,以在開口96之中形成支撐結構98。支撐結構98可以在後續的製程中避免堆疊結構101塌陷。支撐結構98可以具有各種的形狀,例如是柱狀(pillar)、柵狀(fence)或是牆狀。支撐結構98可以僅形成在階梯區R2,也可以同時形成在階梯區R2以及記憶體陣列區R1。以下將參照圖5A至圖5D,針對支撐結構98的形狀以及位置詳加說明之。Next, referring to FIG. 2A , a support structure 98 is formed in the stacked structure 101 in the stepped region R2 . The support structure 98 may also be referred to as a dummy structure. In some embodiments, support structures 98 are formed as described below. Openings 96 are formed in the stacked structure 101 . In one embodiment, the openings 96 may have substantially vertical sidewalls, as shown in FIG. 2A . In another embodiment, opening 96 may have slightly sloped sidewalls. After that, an insulating layer (not shown) is formed on the stacked structure 101 and in the opening 96 . The material of the insulating layer is different from that of the second material layer 104, such as silicon oxide. Afterwards, a planarization process, such as a chemical mechanical polishing process or an etch-back process, is performed to remove the insulating layer outside the opening 96 to form the support structure 98 in the opening 96 . The support structure 98 can prevent the stack structure 101 from collapsing in the subsequent process. The support structure 98 may have various shapes, such as pillar, fence, or wall. The support structure 98 may be formed only in the stepped region R2, or may be formed in the stepped region R2 and the memory array region R1 simultaneously. The shape and position of the support structure 98 will be described in detail below with reference to FIGS. 5A to 5D .

請參照圖5A與5B,開口96可以是位於階梯區R2的堆疊結構101之中的開孔(hole)。形成在開孔之中的支撐結構98可以是支撐柱。支撐結構(支撐柱)98位於後續形成的接觸窗旁。在一些實施例中,請參照圖5A,支撐結構(支撐柱)98可以多個且可以是排列成一列,設置於區域A1與A3之間的區域A2中,位於區域A1與A3的接觸窗C1與C3之間。在另一些實施例中,請參照圖5B,支撐結構(支撐柱)98可以多個且可以是排列成陣列,分別設置於區域A1與A3中,且接觸窗C1與C3分別位於支撐結構(支撐柱)98之間。Referring to FIGS. 5A and 5B , the opening 96 may be a hole in the stacked structure 101 in the stepped region R2 . The support structures 98 formed in the openings may be support posts. A support structure (support column) 98 is located next to the contact window formed later. In some embodiments, please refer to FIG. 5A , the supporting structures (supporting columns) 98 may be multiple and may be arranged in a row, disposed in the area A2 between the areas A1 and A3, and located in the contact window C1 of the areas A1 and A3 between C3. In other embodiments, please refer to FIG. 5B , the supporting structures (supporting columns) 98 may be multiple and may be arranged in an array, which are respectively disposed in the regions A1 and A3, and the contact windows C1 and C3 are respectively located in the supporting structures (supporting columns). column) between 98.

請參照圖5C,在其他實施例中,開口96可以是從階梯區R2的區域A2延伸至記憶體陣列區R1的溝渠(trench)。形成在溝渠之中的支撐結構98可以是一個從記憶體陣列區R1連續延伸至階梯區R2的支撐牆(slit)。在圖5C與5D中以單一個支撐結構(支撐牆)98來表示,但不以此為限。支撐結構(支撐牆)98設置於區域A2中,且位於接觸窗C1與C3之間。Referring to FIG. 5C , in other embodiments, the opening 96 may be a trench extending from the region A2 of the step region R2 to the memory array region R1 . The support structure 98 formed in the trench may be a support wall (slit) extending continuously from the memory array region R1 to the step region R2. A single support structure (support wall) 98 is shown in FIGS. 5C and 5D, but not limited thereto. A support structure (support wall) 98 is provided in the area A2 between the contact windows C1 and C3.

接著,請參照圖1B與2B,在記憶體陣列區R1以及階梯區R2的堆疊結構101以及支撐結構98上形成絕緣層102T。絕緣層102T的材料與第二材料層104不同,絕緣層102T的材料與第一材料層104相同,例如是氧化矽。絕緣層102T與堆疊結構101可以合稱為堆疊結構101’。Next, referring to FIGS. 1B and 2B , an insulating layer 102T is formed on the stacked structure 101 and the support structure 98 of the memory array region R1 and the stepped region R2 . The material of the insulating layer 102T is different from that of the second material layer 104 , and the material of the insulating layer 102T is the same as that of the first material layer 104 , such as silicon oxide. The insulating layer 102T and the stacked structure 101 may be collectively referred to as the stacked structure 101'.

之後,請參照圖1C與2C,對堆疊結構101’的絕緣層102T、第二材料層104與第一材料層102以及支撐結構98進行圖案化,使得絕緣層102T、第二材料層104與第一材料層102的末端在階梯區R2形成階梯結構105。在一些實施例中,支撐結構98圖案化成具有不同高度的支撐結構(支撐柱)98A、98B、98C與98D,如圖2C所示。在另一些實施例中,支撐結構98圖案化成具有不同高度的支撐結構(支撐牆)98E,如圖5D所示。1C and 2C, the insulating layer 102T, the second material layer 104, the first material layer 102 and the supporting structure 98 of the stacked structure 101' are patterned, so that the insulating layer 102T, the second material layer 104 and the first material layer 102 are patterned. The end of a material layer 102 forms a stepped structure 105 in the stepped region R2. In some embodiments, the support structure 98 is patterned into support structures (support columns) 98A, 98B, 98C, and 98D having different heights, as shown in FIG. 2C . In other embodiments, the support structures 98 are patterned to have different heights of support structures (support walls) 98E, as shown in Figure 5D.

請參照圖2C,在階梯區R2中,支撐結構98A、98B、98C與98D貫穿階梯結構105的第一材料層102與第二材料層104,而達到最底層的第一材料層102中。除最接近記憶體陣列區R1的支撐柱98D的頂面被絕緣層102T覆蓋之外,其餘的支撐結構98A、98B與98C的頂面被裸露出來。在階梯區R2中,未形成支撐結構98A、98B、98C與98D之處,階梯結構105的第二材料層104被第一材料層102與絕緣層102T覆蓋,如圖1C與2C所示。也就是說,階梯結構105的最頂層裸露出絕緣層102T,而未裸露支撐結構98D。階梯結構105的其餘各層裸露出第一材料層102的頂面與支撐結構98A、98B、98C的頂面。各層第一材料層102的頂面例如是與支撐結構98A、98B與98C共平面。此外,階梯結構105的側壁裸露出絕緣層102T、第一材料層102與第二材料層104。Referring to FIG. 2C , in the stepped region R2 , the supporting structures 98A, 98B, 98C and 98D penetrate through the first material layer 102 and the second material layer 104 of the stepped structure 105 to reach the bottommost first material layer 102 . The top surfaces of the remaining support structures 98A, 98B and 98C are exposed except that the top surfaces of the support pillars 98D closest to the memory array region R1 are covered by the insulating layer 102T. In the stepped region R2, where the supporting structures 98A, 98B, 98C and 98D are not formed, the second material layer 104 of the stepped structure 105 is covered by the first material layer 102 and the insulating layer 102T, as shown in FIGS. 1C and 2C . That is, the topmost layer of the stepped structure 105 exposes the insulating layer 102T, but does not expose the support structure 98D. The remaining layers of the stepped structure 105 expose the top surface of the first material layer 102 and the top surfaces of the supporting structures 98A, 98B, and 98C. The top surfaces of the first material layers 102 are, for example, coplanar with the support structures 98A, 98B, and 98C. In addition, the sidewalls of the stepped structure 105 expose the insulating layer 102T, the first material layer 102 and the second material layer 104 .

請參照圖5D,支撐結構98圖案化成支撐結構(支撐牆)98E。支撐結構(支撐牆)98E從記憶體陣列區R1連續延伸至階梯區R2。在記憶體陣列區R1的支撐結構(支撐牆)98E具有相同的高度,且被絕緣層102T覆蓋。在階梯區R2的支撐結構(支撐牆)98E具有不同高度。階梯結構105的最頂階裸露出絕緣層102T,而未裸露支撐結構98E。階梯結構105的其餘各階裸露出第一材料層102的頂面與支撐結構98E的頂面,且各層第一材料層102的頂面例如是與支撐結構98E共平面。此外,階梯結構105的側壁裸露出絕緣層102T、第一材料層102、第二材料層104以及支撐結構98E。為了便於說明,以下仍以支撐結構98來說明後續製程,支撐結構98可以是支撐結構98A、98B、98C以及98D或是支撐結構98E。5D, the support structure 98 is patterned into a support structure (support wall) 98E. The support structure (support wall) 98E extends continuously from the memory array region R1 to the step region R2. The support structures (support walls) 98E in the memory array region R1 have the same height and are covered by the insulating layer 102T. The support structures (support walls) 98E in the stepped region R2 have different heights. The topmost step of the stepped structure 105 exposes the insulating layer 102T without exposing the support structure 98E. The remaining steps of the stepped structure 105 expose the top surface of the first material layer 102 and the top surface of the support structure 98E, and the top surfaces of the first material layers 102 are, for example, coplanar with the support structure 98E. In addition, the sidewalls of the stepped structure 105 expose the insulating layer 102T, the first material layer 102 , the second material layer 104 and the support structure 98E. For the convenience of description, the following process will still be described with the support structure 98. The support structure 98 may be the support structures 98A, 98B, 98C and 98D or the support structure 98E.

請參照圖1D與圖2D,進行拉回製程,例如是選擇性蝕刻製程,以移除階梯結構105的第二材料層104的末端部分,以形成多個水平開口107。在一些實施例中,拉回製程可以對所有的第二材料層104的末端部分進行,如圖1D與圖2D所示。拉回製程也可以針對單一層或是數層的第二材料層104的末端部分進行(未示出)。舉例來說,可以藉由罩幕層覆蓋堆疊結構101’較下方方的1至2層的第二材料層104,使拉回製程僅針對堆疊結構101’較上方的1至2層的第二材料層104來進行,以使得水平開口107形成在堆疊結構101’較上方的1至2層的第二材料層104末端。Referring to FIGS. 1D and 2D , a pullback process, such as a selective etching process, is performed to remove the end portion of the second material layer 104 of the stepped structure 105 to form a plurality of horizontal openings 107 . In some embodiments, the pull-back process may be performed on all end portions of the second material layer 104, as shown in FIGS. 1D and 2D. The pull-back process can also be performed for a single layer or several layers of the end portion of the second material layer 104 (not shown). For example, the second material layer 104 of the lower layer 1 to 2 of the stack structure 101 ′ can be covered by a mask layer, so that the pullback process is only performed on the second layer 1 to 2 of the upper layer of the stacked structure 101 ′. The material layer 104 is performed so that the horizontal opening 107 is formed at the end of the second material layer 104 of 1 to 2 layers above the stacked structure 101 ′.

拉回製程例如是選擇性蝕刻製程。選擇性蝕刻製程可以採用乾式或濕式蝕刻製程。在一些實施例中,第二材料層104為氮化矽,濕式蝕刻製程使採用熱磷酸做為蝕刻劑。在一些實施例中,第二材料層104為摻雜多晶矽,濕式蝕刻製程使採用氨水做為蝕刻劑。支撐結構98可以支撐絕緣層102T與第一材料層102,避免階梯結構105在進行選擇性蝕刻製程的過程中發生塌陷。相鄰兩個水平開口107之間的第一材料層102的厚度例如是20nm或大於20nm。The pullback process is, for example, a selective etching process. The selective etching process can be a dry or wet etching process. In some embodiments, the second material layer 104 is silicon nitride, and the wet etching process uses hot phosphoric acid as an etchant. In some embodiments, the second material layer 104 is doped polysilicon, and the wet etching process uses ammonia water as an etchant. The support structure 98 can support the insulating layer 102T and the first material layer 102 to prevent the stepped structure 105 from collapsing during the selective etching process. The thickness of the first material layer 102 between two adjacent horizontal openings 107 is, for example, 20 nm or more.

請參照圖1E與2E,進行擴口製程,例如是選擇性蝕刻製程,以移除多個水平開口107所裸露的第一材料層102與絕緣層102T,使得多個水平開口107的高度增加,而形成多個水平開口107’。選擇性蝕刻製程例如是乾式或是濕式蝕刻製程。選擇性蝕刻製程例如是可以採用氫氟酸做為蝕刻劑。相鄰的兩個水平開口107’之間的第一材料層102具有足夠的厚度可避免因為太薄而發生塌陷。為了防止第一材料層102和絕緣層102T塌陷,已經進行了水平開口107擴口製程的第一材料層102的厚度T4與第二材料層104的拉回量(即寬度D)的比例小於或等於1:10。舉例來說,如果剩餘的第一材料層104的厚度為10nm,則第二材料層102的拉回量應小於或等於100nm。如果有形成支撐結構98,則已經進行了水平開口107擴口製程的第一材料層102的厚度T4與第二材料層104的回拉量(即寬度D)的比例可以大於或等於1:40。1E and 2E, a flaring process, such as a selective etching process, is performed to remove the first material layer 102 and the insulating layer 102T exposed by the plurality of horizontal openings 107, so that the height of the plurality of horizontal openings 107 is increased, Thus, a plurality of horizontal openings 107' are formed. The selective etching process is, for example, a dry or wet etching process. In the selective etching process, for example, hydrofluoric acid can be used as an etchant. The first material layer 102 between the two adjacent horizontal openings 107' has a sufficient thickness to avoid collapse due to being too thin. In order to prevent the collapse of the first material layer 102 and the insulating layer 102T, the ratio of the thickness T4 of the first material layer 102 to the pullback amount (ie the width D) of the second material layer 104 after the horizontal opening 107 flaring process has been performed is less than or Equal to 1:10. For example, if the thickness of the remaining first material layer 104 is 10 nm, the pullback amount of the second material layer 102 should be less than or equal to 100 nm. If the support structure 98 is formed, the ratio of the thickness T4 of the first material layer 102 to the pullback amount (ie the width D) of the second material layer 104 after the flaring process of the horizontal opening 107 has been performed may be greater than or equal to 1:40 .

請參照圖1F與2F,在絕緣層102T上以及多個水平開口107’之中形成填充層104E。填充層104E可採用與第二材料層104相同的材料。填充層104E例如是共形層,可以共形地覆蓋在絕緣層102T上,並填入多個水平開口107’之中。填充層104E具有良好的溝填特性,可以填入多個水平開口107’之中。在一些實施例中,填充層104E中可能具有縫隙(seam),且這一些縫隙可能在後續的熱製程中因為填充層104E的聚集(aggregate)而形成多個孔隙(void)。Referring to FIGS. 1F and 2F, a filling layer 104E is formed on the insulating layer 102T and in the plurality of horizontal openings 107'. The filling layer 104E can be made of the same material as the second material layer 104 . The filling layer 104E is, for example, a conformal layer, which can conformally cover the insulating layer 102T and fill in the plurality of horizontal openings 107'. The filling layer 104E has good trench filling properties and can be filled into the plurality of horizontal openings 107'. In some embodiments, the filling layer 104E may have seams, and these seams may form multiple voids due to the aggregation of the filling layer 104E in the subsequent thermal process.

請參照圖1F與2F,填充層104E例如是氮化矽、摻雜多晶矽或是摻雜的非晶矽。非晶矽將在後續的熱製程中結晶而形成為掺雜多晶矽。填充層104E以及第二材料層104為摻雜多晶矽或是摻雜的非晶矽的實施例中,填充層104E的摻雜多晶矽之中的摻質與第二材料層104之中的摻雜多晶矽之中的摻質相同型,甚至是相同的摻質。舉例來說,填充層104E與第二材料層104均為摻雜磷的多晶矽。Referring to FIGS. 1F and 2F, the filling layer 104E is, for example, silicon nitride, doped polysilicon, or doped amorphous silicon. Amorphous silicon will be crystallized in a subsequent thermal process to form doped polysilicon. In the embodiment in which the filling layer 104E and the second material layer 104 are doped polysilicon or doped amorphous silicon, the dopant in the doped polysilicon of the filling layer 104E and the doped polysilicon in the second material layer 104 The dopants in them are of the same type, or even the same dopants. For example, the filling layer 104E and the second material layer 104 are both polysilicon doped with phosphorus.

請參照圖1G與2G,移除多個水平開口107’以外的填充層104E,使得第一材料層102、絕緣層102T的頂面裸露出來,且使得留下來的多個填充層104E彼此分離。在一些實施例中,填充層104E形成在每一第二材料層104的末端。在另一些實施例中,填充層104E形成較上層的第二材料層104的末端。1G and 2G, the filling layers 104E other than the plurality of horizontal openings 107' are removed, so that the top surfaces of the first material layer 102 and the insulating layer 102T are exposed, and the remaining filling layers 104E are separated from each other. In some embodiments, a filling layer 104E is formed at the end of each second material layer 104 . In other embodiments, the filling layer 104E forms the end of the upper second material layer 104 .

多個填充層104E的側壁與第二材料層104的側壁連接而形成連續的材料層104’。填充層104E是材料層104’的末端部EP;第二材料層104是材料層104’的主體部MP。末端部EP的厚度T2大於主體部MP的厚度T1。相反地,覆蓋在末端部EP上方的第一材料層102的厚度T4小於覆蓋在主體部MP上方的第一材料層102的厚度T3。此外,在一些實施例中,在縱向(例如是Z方向)上,末端部EP和與其相鄰另一末端部EP可以相錯開(如圖1G所示)。在另一些實施例中,在縱向(例如是Z方向)上末端部EP和與其相鄰另一末端部EP可以少部分重疊(未示出)。The sidewalls of the plurality of filling layers 104E are connected to the sidewalls of the second material layer 104 to form a continuous material layer 104'. The filling layer 104E is the end portion EP of the material layer 104'; the second material layer 104 is the main body portion MP of the material layer 104'. The thickness T2 of the tip end portion EP is larger than the thickness T1 of the main body portion MP. Conversely, the thickness T4 of the first material layer 102 covering the end portion EP is smaller than the thickness T3 of the first material layer 102 covering the main body portion MP. In addition, in some embodiments, in the longitudinal direction (eg, the Z direction), the end portion EP and the other end portion EP adjacent thereto may be staggered (as shown in FIG. 1G ). In other embodiments, the end portion EP and the other end portion EP adjacent thereto in the longitudinal direction (eg, the Z direction) may overlap slightly (not shown).

請參照圖1H與2H,接著,在基底100上方形成介電層103,以覆蓋堆疊結構101’。其後,如圖1H所示,進行圖案化製程,移除記憶體陣列區R1的部分堆疊結構101’,以形成穿過堆疊結構101’的一個或多個開口106。在一實施例中,開口106可具有略微傾斜的側壁,如圖1H所示。在另一實施例中,開口106可具有大致垂直的側壁(未示出)。在一實施例中,開口106又稱為垂直通道(vertical channel;VC)孔洞。之後於開口106中形成垂直通道柱CP。垂直通道柱CP可以以下所述的方法來形成,但不以此為限。Referring to FIGS. 1H and 2H, next, a dielectric layer 103 is formed on the substrate 100 to cover the stacked structure 101'. Thereafter, as shown in FIG. 1H , a patterning process is performed to remove part of the stacked structure 101' of the memory array region R1 to form one or more openings 106 passing through the stacked structure 101'. In one embodiment, the opening 106 may have slightly sloped sidewalls, as shown in FIG. 1H . In another embodiment, the opening 106 may have substantially vertical sidewalls (not shown). In one embodiment, the openings 106 are also referred to as vertical channel (VC) holes. Then vertical channel pillars CP are formed in the openings 106 . The vertical channel column CP may be formed by the following methods, but not limited thereto.

請參照圖1H,於開口106的側壁上形成電荷儲存結構108。電荷儲存結構108與第一材料層102以及第二材料層104接觸。電荷儲存結構108的材料例如是氧化物/氮化物/氧化物(ONO)複合層。在一實施例中,電荷儲存結構108以間隙壁的形式形成於開口106的側壁上,而裸露出開口106的底面。Referring to FIG. 1H , a charge storage structure 108 is formed on the sidewall of the opening 106 . The charge storage structure 108 is in contact with the first material layer 102 and the second material layer 104 . The material of the charge storage structure 108 is, for example, an oxide/nitride/oxide (ONO) composite layer. In one embodiment, the charge storage structure 108 is formed on the sidewall of the opening 106 in the form of a spacer, and the bottom surface of the opening 106 is exposed.

然後,請參照圖1H,於電荷儲存結構108上形成通道層110。通道層110的材料例如是包括多晶矽。在一實施例中,通道層110覆蓋開口106的側壁上的電荷儲存結構108,並且覆蓋開口106的底面。接著,於開口106的下部形成絕緣柱112。在一實施例中,絕緣柱112的材料例如是包括氧化矽。之後,於開口106的上部形成導體插塞114,且導體插塞114與通道層110接觸。在一實施例中,導體插塞114的材料例如是包括摻雜多晶矽。通道層110、以及導體插塞114可合稱為垂直通道柱CP。電荷儲存結構108環繞於垂直通道柱CP的垂直外表面。接下來,於堆疊結構101’上方形成絕緣頂蓋層115。絕緣頂蓋層115的材料例如是包括氧化矽。Then, referring to FIG. 1H , a channel layer 110 is formed on the charge storage structure 108 . The material of the channel layer 110 includes, for example, polysilicon. In one embodiment, the channel layer 110 covers the charge storage structures 108 on the sidewalls of the opening 106 and covers the bottom surface of the opening 106 . Next, insulating pillars 112 are formed at the lower portion of the opening 106 . In one embodiment, the material of the insulating pillar 112 includes, for example, silicon oxide. After that, a conductor plug 114 is formed on the upper portion of the opening 106 , and the conductor plug 114 is in contact with the channel layer 110 . In one embodiment, the material of the conductor plug 114 includes, for example, doped polysilicon. The channel layer 110 and the conductor plugs 114 may be collectively referred to as vertical channel pillars CP. The charge storage structure 108 surrounds the vertical outer surface of the vertical channel pillar CP. Next, an insulating cap layer 115 is formed over the stacked structure 101'. The material of the insulating cap layer 115 includes, for example, silicon oxide.

請參照圖1I與圖2I,在第二材料層104與填充層104E為摻雜多晶矽的實施例中,第二材料層104與填充層104E共同形成的材料層104’可做為閘極層。材料層104’(閘極層)在電荷儲存結構108的側壁周圍。在第二材料層104與填充層104E為氮化矽的實施例中,則須進一步進行閘極取代製程,方可形成閘極層126,其後將參照圖3A至圖3C以及圖4A至圖4C再詳細說明之。Referring to FIGS. 1I and 2I, in the embodiment in which the second material layer 104 and the filling layer 104E are doped polysilicon, the material layer 104' jointly formed by the second material layer 104 and the filling layer 104E can be used as a gate layer. A layer of material 104' (gate layer) surrounds the sidewalls of the charge storage structure 108. In the embodiment in which the second material layer 104 and the filling layer 104E are made of silicon nitride, a gate replacement process must be further performed to form the gate layer 126 , which will be referred to later with reference to FIGS. 3A to 3C and FIGS. 4A to 4A . 4C will explain it in detail.

其後,請參照圖1I與圖5A,在第二材料層104與填充層104E為摻雜多晶矽的實施例中,或是在第二材料層104與填充層104E分別為摻雜多晶矽與摻雜非晶矽的實施例中,在形成絕緣頂蓋層115之後,於階梯區R2的區域A1與區域A3中分別形成多個接觸窗C1與C3(如圖1I與5A所示),並於記憶體陣列區R1中形成多個接觸窗C2(如圖1I所示)。接觸窗C1與C3貫穿絕緣頂蓋層115、介電層103、絕緣層102T以及第一材料層102,且著陸於材料層104’(閘極層)的末端部EP並與其電性連接,如圖1I與5A所示。接觸窗C2穿過絕緣頂蓋層115以及堆疊結構101’,並與導體插塞114電性連接,如圖1I所示。Afterwards, please refer to FIG. 1I and FIG. 5A , in the embodiment in which the second material layer 104 and the filling layer 104E are doped polysilicon, or the second material layer 104 and the filling layer 104E are respectively doped polysilicon and doped polysilicon. In the amorphous silicon embodiment, after the insulating cap layer 115 is formed, a plurality of contact windows C1 and C3 are respectively formed in the region A1 and the region A3 of the step region R2 (as shown in FIGS. 1I and 5A ), and the memory A plurality of contact windows C2 are formed in the body array region R1 (as shown in FIG. 1I ). The contact windows C1 and C3 penetrate through the insulating cap layer 115 , the dielectric layer 103 , the insulating layer 102T and the first material layer 102 , and land on the end portion EP of the material layer 104 ′ (gate layer) and are electrically connected thereto, such as shown in Figures 1I and 5A. The contact window C2 passes through the insulating cap layer 115 and the stacked structure 101', and is electrically connected to the conductor plug 114, as shown in FIG. 1I.

請參照圖1I,在一實施例中,接觸窗C1中的每一者包括阻障層128以及導體層131;接觸窗C2中的每一者包括阻障層129以及導體層132;接觸窗C3中的每一者包括阻障層以及導體層(未示出)。在一實施例中,阻障層128、129的材料包括鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合,導體層131、132的材料包括鎢(W)。1I, in one embodiment, each of the contacts C1 includes a barrier layer 128 and a conductor layer 131; each of the contacts C2 includes a barrier layer 129 and a conductor layer 132; and the contacts C3 Each of these includes a barrier layer and a conductor layer (not shown). In one embodiment, the material of the barrier layers 128 and 129 includes titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof, and the material of the conductor layers 131 and 132 includes Tungsten (W).

請參照圖1I與圖5A、5B或5C,接觸窗C1、C2與C3可以同時形成或分別形成。接觸窗C1、C2與C3可以採用以下所述的方法來形成。舉例來說,進行微影與蝕刻製程,以形成多個接觸窗開口OP1以及OP2。接觸窗開口OP1穿過階梯區R2的區域A中的絕緣頂蓋層115、介電層103與絕緣層102T(或第一材料層102)。接觸窗開口OP2穿過記憶體陣列區R1中的絕緣頂蓋層115。之後,再於多個接觸窗開口OP1以及OP2之中形成阻障層以及導體層。於階梯區R2的區域A3中的接觸窗C3也可以採用上述的方法同時形成之。Referring to FIG. 1I and FIG. 5A, 5B or 5C, the contact windows C1, C2 and C3 may be formed simultaneously or separately. The contact windows C1, C2 and C3 can be formed using the method described below. For example, photolithography and etching processes are performed to form a plurality of contact openings OP1 and OP2. The contact opening OP1 passes through the insulating cap layer 115 , the dielectric layer 103 and the insulating layer 102T (or the first material layer 102 ) in the region A of the stepped region R2 . The contact opening OP2 passes through the insulating cap layer 115 in the memory array region R1. After that, a barrier layer and a conductor layer are formed in the plurality of contact openings OP1 and OP2. The contact window C3 in the region A3 of the stepped region R2 can also be formed simultaneously by the above-mentioned method.

請參照圖1I,在階梯區R2的接觸窗開口OP1包括接觸窗開口OP1A、OP1B、OP1C以及OP1D。接觸窗開口OP1A裸露出最底層的末端部EP;接觸窗開口OP1D裸露出最頂層的末端部EP。最遠離記憶體陣列區R1的接觸窗開口OP1A的深度最深,而最接近記憶體陣列區R1的接觸窗開口OP1D的深度最淺。在進行蝕刻的過程中,接觸窗開口OP1D最先被形成,而裸露出最頂層的材料層104’(閘極層)的末端部EP。後續再持續進行蝕刻以依序形成接觸窗開口OP1C、OP1B以及OP1A。在持續進行蝕刻以形成接觸窗開口OP1C、OP1B以及OP1A的過程中,由於材料層104’(閘極層)的末端部EP具有足夠厚度T2,且材料層104’與介電層103之間具有足夠的蝕刻選擇性,縱使末端部EP被裸露於接觸窗開口OP1D也不會因為持續暴露於蝕刻劑而被蝕穿。因此,藉由末端部EP的形成可以增加製程的良率。Referring to FIG. 1I , the contact window openings OP1 in the stepped region R2 include contact window openings OP1A, OP1B, OP1C and OP1D. The contact window opening OP1A exposes the bottommost end portion EP; the contact window opening OP1D exposes the topmost end portion EP. The depth of the contact opening OP1A farthest from the memory array region R1 is the deepest, and the depth of the contact opening OP1D closest to the memory array region R1 is the shallowest. During the etching process, the contact opening OP1D is formed first, and the end portion EP of the topmost material layer 104' (gate layer) is exposed. Subsequently, etching is continued to form contact openings OP1C, OP1B and OP1A in sequence. In the process of continuing to etch to form the contact openings OP1C, OP1B and OP1A, since the end portion EP of the material layer 104 ′ (gate layer) has a sufficient thickness T2 , and there is a gap between the material layer 104 ′ and the dielectric layer 103 With sufficient etching selectivity, even if the end portion EP is exposed to the contact opening OP1D, it will not be etched through by continuous exposure to the etchant. Therefore, the process yield can be increased by forming the end portion EP.

在第二材料層104與填充層104E為氮化矽的實施例中,在形成上述的接觸窗C1、C2與C3之前,須先進行閘極取代製程,請參照圖3A至圖3C以及圖4A至圖4C,詳細說明如後。In the embodiment in which the second material layer 104 and the filling layer 104E are made of silicon nitride, before the above-mentioned contact windows C1 , C2 and C3 are formed, a gate replacement process must be performed first, please refer to FIGS. 3A to 3C and FIG. 4A 4C, the detailed description is as follows.

圖3A至圖3C是依照本發明另一實施例所繪示的一種三維記憶體元件的製造方法的剖面示意圖。圖4A至圖4C是依照本發明另一實施例所繪示的一種三維記憶體元件的製造方法的另一剖面示意圖。圖5A的切線I-I’的部分製程的剖面圖如圖3A至3C所示。圖5A的切線II-II’的部分製程的剖面圖如圖4A至4C所示。圖5B的切線III-III’的部分製程的剖面圖如圖3A至3C所示。圖5B的切線IV-IV’的部分製程的剖面圖如圖4A至4C所示。3A to 3C are schematic cross-sectional views of a method for manufacturing a three-dimensional memory device according to another embodiment of the present invention. 4A to 4C are another schematic cross-sectional view of a manufacturing method of a three-dimensional memory device according to another embodiment of the present invention. Sectional views of a part of the process along the line I-I' of FIG. 5A are shown in FIGS. 3A to 3C . Sectional views of a part of the process along the line II-II' of FIG. 5A are shown in FIGS. 4A to 4C . Cross-sectional views of part of the process along the line III-III' of FIG. 5B are shown in FIGS. 3A to 3C . Cross-sectional views of a portion of the process along the line IV-IV' of FIG. 5B are shown in FIGS. 4A to 4C .

請參照圖1H、2H、3A與4A,依照上述參照圖1H與2H的方法形成介電層103與絕緣頂蓋層115之後,進行選擇性蝕刻製程,移除記憶體陣列區R1以及階梯區R2的第二材料層104以及填充層104E,以形成多個水平開口121。水平開口121裸露出在記憶體陣列區R1的部分電荷儲存結構108、第一材料層102以及絕緣層102T。在進行蝕刻的過程中,在階梯區R2的支撐結構98A、98B、98C與98D可以避免堆疊結構101’塌陷。選擇性蝕刻製程可以是等向性蝕刻,例如是濕式蝕刻製程。濕式蝕刻製程所採用的蝕刻劑例如是熱磷酸。在一些實施例中,在形成絕緣頂蓋層115之後,形成多個水平開口121之前,可以先在階梯區R2中形成虛設柱(dummy pillar)。在一些實施例中,虛設圖案(未示出)可以穿過絕緣頂蓋層115以及介電層103。虛設圖案可以是虛設柱(dummy pillar)或是虛設柵(dummy fence)。虛設圖案可以與支撐柱98A、98B、98C、98D其中任一或全部支撐柱98A、98B、98C、98D的頂面接觸,或完全不接觸。在另一些實施例中,虛設圖案可以穿過絕緣頂蓋層115、介電層103以及階梯結構105,而到達階梯結構105的最底層的第一材料層102。虛設圖案的材料與第二材料層104不同,例如是氧化矽。虛設圖案可以在形成多個水平開口121的過程中,支撐堆疊結構101’,避免堆疊結構101’塌陷。1H, 2H, 3A and 4A, after the dielectric layer 103 and the insulating cap layer 115 are formed according to the method described above with reference to FIGS. 1H and 2H, a selective etching process is performed to remove the memory array region R1 and the stepped region R2 The second material layer 104 and the filling layer 104E are formed to form a plurality of horizontal openings 121 . The horizontal opening 121 exposes part of the charge storage structure 108 , the first material layer 102 and the insulating layer 102T in the memory array region R1 . During the etching process, the supporting structures 98A, 98B, 98C and 98D in the stepped region R2 can avoid the collapse of the stacked structure 101'. The selective etching process may be an isotropic etching process, such as a wet etching process. The etchant used in the wet etching process is, for example, hot phosphoric acid. In some embodiments, after the insulating cap layer 115 is formed and before the plurality of horizontal openings 121 are formed, a dummy pillar may be formed in the stepped region R2 first. In some embodiments, dummy patterns (not shown) may pass through the insulating capping layer 115 and the dielectric layer 103 . Dummy patterns can be dummy pillars or dummy fences. The dummy pattern may be in contact with the top surfaces of any or all of the support posts 98A, 98B, 98C, 98D, or not at all. In other embodiments, the dummy pattern may pass through the insulating cap layer 115 , the dielectric layer 103 and the stepped structure 105 to reach the bottommost first material layer 102 of the stepped structure 105 . The material of the dummy pattern is different from that of the second material layer 104, such as silicon oxide. The dummy pattern can support the stacked structure 101' during the process of forming the plurality of horizontal openings 121 and prevent the stacked structure 101' from collapsing.

請參照圖3B與圖4B,於水平開口121中形成導體層。導體層例如是包括阻障層122以及金屬層124。在一實施例中,阻障層122的材料包括鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合,而金屬層124的材料包括鎢(W)。在水平開口121中的導體層做為閘極層126。Referring to FIG. 3B and FIG. 4B , a conductor layer is formed in the horizontal opening 121 . The conductor layer includes, for example, a barrier layer 122 and a metal layer 124 . In one embodiment, the material of the barrier layer 122 includes titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof, and the material of the metal layer 124 includes tungsten (W ). The conductor layer in the horizontal opening 121 serves as the gate layer 126 .

請參照圖3C、圖4C與圖5A,依照上述的方法於階梯區R2的區域A1與區域A3中分別形成多個接觸窗C1與C3,如圖3C與5A所示,並於記憶體陣列區R1中形成多個接觸窗C2,如圖3C所示。Referring to FIGS. 3C , 4C and 5A, a plurality of contact windows C1 and C3 are respectively formed in the region A1 and the region A3 of the stepped region R2 according to the above method, as shown in FIGS. 3C and 5A , and in the memory array region A plurality of contact windows C2 are formed in R1, as shown in FIG. 3C.

在以上的實施例中,在形成末端部EP之前可以先在階梯區R2的堆疊結構101或101’中形成支撐柱結構98、98A、98B、98C、98D及/或98E,以避免堆疊結構101’在形成末端部EP的蝕刻過程中發生塌陷。在另一實施例中,若堆疊結構101’在形成末端部EP的蝕刻過程中不會塌陷,可以無需形成支撐柱結構98、98A、98B、98C、98D及/或98E。In the above embodiments, the support pillar structures 98 , 98A, 98B, 98C, 98D and/or 98E may be formed in the stacked structure 101 or 101 ′ of the stepped region R2 before forming the end portion EP to avoid the stacked structure 101 'The collapse occurred during the etching process to form the end portion EP. In another embodiment, if the stacked structure 101' does not collapse during the etching process for forming the end portion EP, it may not be necessary to form the support pillar structures 98, 98A, 98B, 98C, 98D and/or 98E.

在本發明的多個實施例中,局部地增加在階梯區的第二材料層(例如是氮化矽或是摻雜多晶矽)的末端部的厚度,可以避免在形成深度不同的接觸窗開口的過程中,深度較淺的接觸窗開口下方的閘極層被蝕穿。因此,藉由末端部的形成可以增加製程空間(process window),以增加製程的良率。末端部可透過多次的選擇性蝕刻以及回填的方式形成,其製程可與現有的製程整合。此外,在形成末端部之前可以先在階梯區的堆疊結構中形成支撐柱結構,以避免堆疊結構在形成末端部的蝕刻過程中發生塌陷。In various embodiments of the present invention, locally increasing the thickness of the end portion of the second material layer (eg, silicon nitride or doped polysilicon) in the stepped region can avoid forming contact openings with different depths. During the process, the gate layer below the shallower contact openings is etched through. Therefore, by forming the end portion, the process window can be increased to increase the yield of the process. The end portion can be formed by multiple selective etching and backfilling, and its process can be integrated with the existing process. In addition, the support column structure may be formed in the stacked structure in the stepped region before forming the end portion, so as to avoid the collapse of the stacked structure during the etching process for forming the end portion.

96、106:開口 98、98A、98B、98C、98D、98E:支撐結構 100:基底 101、101’:堆疊結構 102:第一材料層 102T:絕緣層 103:介電層 104:第二材料層 104E:填充層 104’:材料層 105:階梯結構 107、107’、121:水平開口 108:電荷儲存結構 110:通道層 112:絕緣柱 114:導體插塞 115:絕緣頂蓋層 122、128、129:阻障層 124:金屬層 126:閘極層 131、132:導體層 A1、A2、A3:區域 C1、C2、C3:接觸窗 CP:垂直通道柱 EP:末端部 MP:主體部 OP1、OP2、OP1A、OP1B、OP1C、OP1D:接觸窗開口 R1:記憶體陣列區 R2:階梯區 T1、T2、T3、T4:厚度 I-I’、II-II’、III-III’、IV-IV’:切線96, 106: Opening 98, 98A, 98B, 98C, 98D, 98E: Support structure 100: base 101, 101': Stacked structure 102: The first material layer 102T: Insulation layer 103: Dielectric layer 104: Second material layer 104E: Filler Layer 104': Material Layer 105: Ladder Structure 107, 107', 121: Horizontal opening 108: Charge Storage Structures 110: channel layer 112: Insulation column 114: Conductor plug 115: Insulation top cover 122, 128, 129: Barrier layer 124: metal layer 126: gate layer 131, 132: Conductor layer A1, A2, A3: Area C1, C2, C3: Contact window CP: Vertical Channel Column EP: terminal MP: main body OP1, OP2, OP1A, OP1B, OP1C, OP1D: Contact window openings R1: Memory array area R2: Step area T1, T2, T3, T4: Thickness I-I', II-II', III-III', IV-IV': Tangent

圖1A至圖1I是依照本發明一實施例所繪示的一種三維記憶體元件的製造方法的剖面示意圖。 圖2A至圖2I是依照本發明一實施例所繪示的一種三維記憶體元件的製造方法的另一剖面的示意圖。 圖3A至圖3C是依照本發明另一實施例所繪示的一種三維記憶體元件的製造方法的剖面示意圖。 圖4A至圖4C是依照本發明另一實施例所繪示的一種三維記憶體元件的製造方法的另一剖面示意圖。 圖5A至圖5C是依照本發明一實施例所繪示的一種三維記憶體元件的中間階段的上視圖。 圖5D是繪示圖5C的局部立體圖。 1A to FIG. 1I are schematic cross-sectional views of a method for manufacturing a three-dimensional memory device according to an embodiment of the present invention. 2A to 2I are schematic diagrams of another cross-section of a manufacturing method of a three-dimensional memory device according to an embodiment of the present invention. 3A to 3C are schematic cross-sectional views of a method for manufacturing a three-dimensional memory device according to another embodiment of the present invention. 4A to 4C are another schematic cross-sectional view of a manufacturing method of a three-dimensional memory device according to another embodiment of the present invention. 5A-5C are top views of intermediate stages of a three-dimensional memory device according to an embodiment of the present invention. FIG. 5D is a partial perspective view of FIG. 5C .

100:基底 100: base

102:第一材料層 102: The first material layer

103:介電層 103: Dielectric layer

108:電荷儲存結構 108: Charge Storage Structures

112:絕緣柱 112: Insulation column

115:絕緣頂蓋層 115: Insulation top cover

122、128、129:阻障層 122, 128, 129: Barrier layer

124:金屬層 124: metal layer

126:閘極層 126: gate layer

131、132:導體層 131, 132: Conductor layer

C1、C2:接觸窗 C1, C2: Contact window

CP:垂直通道柱 CP: Vertical Channel Column

EP:末端部 EP: terminal

MP:主體部 MP: main body

OP1、OP2、OP1A、OP1B、OP1C、OP1D:接觸窗開口 OP1, OP2, OP1A, OP1B, OP1C, OP1D: Contact window openings

R1:記憶體陣列區 R1: Memory array area

R2:階梯區 R2: Step area

Claims (10)

一種記憶體元件,包括: 基底,包括記憶體陣列區與階梯區; 堆疊結構,位於所述記憶體陣列區與所述階梯區的所述基底上,其中所述堆疊結構包括彼此交互堆疊的多個導體層與多個絕緣層,且每一所述多個導體層包括: 主體部,位於所述記憶體陣列區並延伸至所述階梯區;以及 末端部,與所述主體部連接,位於所述階梯區中,其中所述末端部的厚度大於所述主體部的厚度; 介電層,位於所述記憶體陣列區與所述階梯區的所述堆疊結構上;以及 第一接觸窗,貫穿在所述階梯區的所述介電層以及位於所述末端部上方的對應的絕緣層,且著陸於所述末端部並與所述末端部連接。 A memory device comprising: a substrate, including a memory array area and a stepped area; A stacked structure, located on the substrate of the memory array region and the stepped region, wherein the stacked structure includes a plurality of conductor layers and a plurality of insulating layers stacked alternately with each other, and each of the plurality of conductor layers include: a main body portion located in the memory array region and extending to the stepped region; and an end portion, connected with the main body portion, located in the stepped region, wherein the thickness of the end portion is greater than the thickness of the main body portion; a dielectric layer on the stacked structure of the memory array region and the stepped region; and The first contact window penetrates through the dielectric layer in the stepped region and the corresponding insulating layer above the end portion, and is landed on the end portion and connected with the end portion. 如請求項1所述的記憶體元件,更包括: 支撐柱,設置在所述第一接觸窗旁,從位於所述末端部上方的所述對應的絕緣層,貫穿所述末端部,並延伸至所述堆疊結構的最底層的絕緣層。 The memory device of claim 1, further comprising: A support column, disposed beside the first contact window, penetrates the end portion from the corresponding insulating layer located above the end portion, and extends to the bottommost insulating layer of the stacked structure. 如請求項1所述的記憶體元件,更包括: 第二接觸窗,設置在所述第一接觸窗旁,貫穿在所述階梯區的所述介電層以及位於所述末端部上方的所述對應的絕緣層,且著陸於所述末端部並與所述末端部連接;以及 支撐牆,從所述記憶體陣列區延伸至所述階梯區,設置在所述第一接觸窗與所述第二接觸窗之間且貫穿所述堆疊結構。 The memory device of claim 1, further comprising: A second contact window, disposed beside the first contact window, penetrates the dielectric layer in the stepped region and the corresponding insulating layer above the end portion, and is landed on the end portion and connected to the end portion; and A support wall, extending from the memory array area to the step area, is disposed between the first contact window and the second contact window and penetrates through the stack structure. 如請求項1所述的記憶體元件,更包括: 第二接觸窗,設置在所述第一接觸窗旁,貫穿在所述階梯區的所述介電層,著陸於所述末端部並與所述末端部連接;以及 支撐柱,設置在所述第一接觸窗與所述第二接觸窗之間且貫穿位於所述末端部上方的所述對應的絕緣層以及所述末端部至所述堆疊結構的最底層的絕緣層。 The memory device of claim 1, further comprising: A second contact window, disposed beside the first contact window, penetrates the dielectric layer in the stepped region, landed on the end portion and connected with the end portion; and a support column disposed between the first contact window and the second contact window and passing through the corresponding insulating layer above the end portion and the insulation from the end portion to the bottommost layer of the stack structure Floor. 一種記憶體元件的製造方法,包括: 提供基底,所述基底包括記憶體陣列區與階梯區; 於所述記憶體陣列區與所述階梯區的所述基底上形成堆疊結構,其中所述堆疊結構包括彼此交互堆疊的多個第一材料層與多個第二材料層; 圖案化所述堆疊結構,以在所述階梯區的所述堆疊結構形成階梯結構; 移除所述階梯結構的末端處的部分的多個第二材料層,以形成多個第一水平開口; 移除所述多個第一水平開口周圍的部分的多個第一材料層,以增加所述多個第一水平開口的高度; 在每一所述多個第一水平開口之中形成末端部,且所述末端部的厚度大於相鄰的第二材料層的厚度; 在所述記憶體陣列區與所述階梯區的所述堆疊結構上形成介電層;以及 於所述階梯區形成第一接觸窗,其中所述第一接觸窗貫穿在所述階梯區的所述介電層以及位於所述末端部上方的對應的第一材料層,且著陸於所述末端部並與所述末端部連接。 A method of manufacturing a memory device, comprising: providing a substrate, the substrate includes a memory array region and a stepped region; forming a stacked structure on the substrate of the memory array region and the stepped region, wherein the stacked structure includes a plurality of first material layers and a plurality of second material layers stacked alternately with each other; patterning the stacked structure to form a stepped structure in the stacked structure in the stepped region; removing portions of the plurality of second material layers at ends of the stepped structure to form a plurality of first horizontal openings; removing the plurality of first material layers of portions around the plurality of first horizontal openings to increase the height of the plurality of first horizontal openings; forming an end portion in each of the plurality of first horizontal openings, and the thickness of the end portion is greater than the thickness of the adjacent second material layer; forming a dielectric layer on the stacked structure of the memory array region and the stepped region; and A first contact window is formed in the stepped area, wherein the first contact window penetrates through the dielectric layer in the stepped area and the corresponding first material layer above the end portion, and is landed on the end portion and connected to the end portion. 如請求項5所述的記憶體元件的製造方法,其中在每一所述多個第一水平開口之中形成所述末端部的方法包括: 在所述堆疊結構上以及所述多個第一水平開口之中形成第三材料層;以及 移除所述多個第一水平開口以外的第三材料層,以在每一所述多個第一水平開口之中形成所述末端部。 The method of manufacturing a memory device according to claim 5, wherein the method of forming the end portion in each of the plurality of first horizontal openings comprises: forming a third material layer on the stacked structure and among the plurality of first horizontal openings; and A third material layer other than the plurality of first horizontal openings is removed to form the end portion in each of the plurality of first horizontal openings. 如請求項6所述的記憶體元件的製造方法,更包括: 於所述階梯區形成所述第一接觸窗之前,移除所述第二材料層與所述末端部,以形成多個第二水平開口;以及 在所述多個第二水平開口形成多個導體層。 The method for manufacturing a memory device as claimed in claim 6, further comprising: before forming the first contact window in the stepped region, removing the second material layer and the end portion to form a plurality of second horizontal openings; and A plurality of conductor layers are formed in the plurality of second horizontal openings. 如請求項5所述的記憶體元件的製造方法,更包括: 在形成所述階梯結構之前,在所述階梯區的所述堆疊結構之中形成支撐結構。 The method for manufacturing a memory device according to claim 5, further comprising: Before forming the stepped structure, a support structure is formed in the stacked structure of the stepped region. 如請求項8所述的記憶體元件的製造方法,其中所述支撐結構的形成方法包括: 在所述階梯區的所述堆疊結構之中形成開孔,裸露出所述堆疊結構的最底層的第一材料層;以及 於所述開孔中形成絕緣層,以形成所述支撐結構。 The method for manufacturing a memory device according to claim 8, wherein the method for forming the support structure comprises: forming an opening in the stacked structure of the stepped area to expose the bottommost first material layer of the stacked structure; and An insulating layer is formed in the opening to form the support structure. 如請求項8所述的記憶體元件的製造方法,其中所述支撐結構的形成方法包括: 在所述記憶體陣列區與所述階梯區的所述堆疊結構中形成溝渠,裸露出所述堆疊結構的最底層的第一材料層;以及 於所述溝渠中形成絕緣層,以形成所述支撐結構。 The method for manufacturing a memory device according to claim 8, wherein the method for forming the support structure comprises: forming a trench in the stacked structure of the memory array region and the stepped region, exposing the bottommost first material layer of the stacked structure; and An insulating layer is formed in the trench to form the support structure.
TW109139460A 2020-11-12 2020-11-12 Memory device and method of fabricating the same TWI753644B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109139460A TWI753644B (en) 2020-11-12 2020-11-12 Memory device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109139460A TWI753644B (en) 2020-11-12 2020-11-12 Memory device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI753644B true TWI753644B (en) 2022-01-21
TW202220184A TW202220184A (en) 2022-05-16

Family

ID=80809293

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109139460A TWI753644B (en) 2020-11-12 2020-11-12 Memory device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI753644B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204102A1 (en) * 2015-01-14 2016-07-14 Macronix International Co., Ltd. Three-dimensional semiconductor device and method of manufacturing the same
US20190287903A1 (en) * 2018-03-15 2019-09-19 Toshiba Memory Corporation Semiconductor memory device
US20190296117A1 (en) * 2018-03-22 2019-09-26 Toshiba Memory Corporation Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204102A1 (en) * 2015-01-14 2016-07-14 Macronix International Co., Ltd. Three-dimensional semiconductor device and method of manufacturing the same
US20190287903A1 (en) * 2018-03-15 2019-09-19 Toshiba Memory Corporation Semiconductor memory device
US20190296117A1 (en) * 2018-03-22 2019-09-26 Toshiba Memory Corporation Semiconductor device

Also Published As

Publication number Publication date
TW202220184A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
JP7478512B2 (en) Vertical memory device and method for manufacturing the same
KR100553835B1 (en) Capacitor and Method for manufacturing the same
TWI762156B (en) Semiconductor memory device and method of fabricating same
US8022457B2 (en) Semiconductor memory device having vertical channel transistor and method for fabricating the same
KR102344862B1 (en) Vertical semiconductor devices
KR20190032718A (en) Semiconductor memory device and method of forming the same
JP2021027335A (en) Vertical memory device
US20240015968A1 (en) Vertical memory devices
US8647973B2 (en) Semiconductor device capable of reducing electrical defects and method of fabricating the same
KR20120126399A (en) Nonvolatile memory device and method for fabricating the same
KR102339740B1 (en) Vertical memory devices
US20150371895A1 (en) Method for manufacturing smeiconductor device
KR100534100B1 (en) Methods of fabricating a semiconductor device by exposing upper sidewall of contact plug to form a charge storage electrode
JP2021072442A (en) Vertical memory device
US20220148919A1 (en) Memory device and method of fabricating the same
KR20100107548A (en) Method for forming an insulating layer pattern
US20230290396A1 (en) Memory device
US6555481B2 (en) Semiconductor device and its manufacture
TWI753644B (en) Memory device and method of fabricating the same
US20220123009A1 (en) Memory device
TW202314694A (en) Semiconductor memory device
TWI751748B (en) Memory device
KR20210040708A (en) Integrated Circuit devices and manufacturing methods for the same
KR100576825B1 (en) Semiconductor device having an isolation pattern in an interlayer insulating layer between capacitor contact plugs and methods of fabricating the same
TWI768969B (en) Memory device