TWI753412B - A method for generating a model for automatically locating an anchor point, a skeletal state analysis method, and an electronic system - Google Patents

A method for generating a model for automatically locating an anchor point, a skeletal state analysis method, and an electronic system Download PDF

Info

Publication number
TWI753412B
TWI753412B TW109114030A TW109114030A TWI753412B TW I753412 B TWI753412 B TW I753412B TW 109114030 A TW109114030 A TW 109114030A TW 109114030 A TW109114030 A TW 109114030A TW I753412 B TWI753412 B TW I753412B
Authority
TW
Taiwan
Prior art keywords
image data
processing unit
bone
positioning
electronic system
Prior art date
Application number
TW109114030A
Other languages
Chinese (zh)
Other versions
TW202141525A (en
Inventor
林郁智
蔡宗廷
葉祐成
范佐搖
陳嶽鵬
郭昶甫
Original Assignee
長庚醫療財團法人林口長庚紀念醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長庚醫療財團法人林口長庚紀念醫院 filed Critical 長庚醫療財團法人林口長庚紀念醫院
Priority to TW109114030A priority Critical patent/TWI753412B/en
Publication of TW202141525A publication Critical patent/TW202141525A/en
Application granted granted Critical
Publication of TWI753412B publication Critical patent/TWI753412B/en

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一種產生用於自動定位出定位點的模型的方法,包含:一X光機拍攝多位參考患者的一預定骨骼及一植入物以產生多筆訓練影像資料;一處理單元針對每一訓練影像資料,根據經由一輸入單元接收到的多個手動定位指令,產生多個對應於該訓練影像資料的手動定位資料,每一手動定位資料指示出該訓練影像資料中的一定位點的位置;及該處理單元針對每一定位點,根據指示出該定位點的位置的該等手動定位資料及該等訓練影像資料,訓練一卷積神經網路模型而產生一自動定位模型,該自動定位模型用於根據一待分析影像資料產生一自動定位資料。A method for generating a model for automatically locating an anchor point, comprising: an X-ray machine photographing a predetermined bone and an implant of a plurality of reference patients to generate multiple pieces of training image data; a processing unit for each training image data, generating a plurality of manual positioning data corresponding to the training image data according to a plurality of manual positioning instructions received through an input unit, each manual positioning data indicating the position of a positioning point in the training image data; and For each positioning point, the processing unit trains a convolutional neural network model according to the manual positioning data indicating the position of the positioning point and the training image data to generate an automatic positioning model. The automatic positioning model uses An automatic positioning data is generated according to a to-be-analyzed image data.

Description

產生用於自動定位出定位點的模型的方法、骨骼狀態分析方法及電子系統A method for generating a model for automatically locating an anchor point, a skeletal state analysis method, and an electronic system

本發明是有關於一種產生模型的方法,特別是指一種產生用於自動定位出定位點的模型的方法。本發明還有關於一種骨骼狀態分析方法及一種電子系統。The present invention relates to a method for generating a model, in particular to a method for generating a model for automatically locating an anchor point. The present invention also relates to a bone state analysis method and an electronic system.

髖關節病變的種類有許多種,例如酒精性或是發炎免疫性疾病所致的股骨頭壞死、亞洲族群常見的髖關節發育不良導致髖關節早期退化、骨鬆肌少的高齡人口中常見的股骨頸骨折。當發生相關疾病且嚴重影響日常生活時,將需要進行人工髖關節手術。人工髖關節置換手術在術前、術中、術後、預後追蹤都需要精確的定位,以避免植入物校正失準,亦可長期觀察是否發生異常。以往的定位方式,是由醫師或技術人員觀察骨盆部位X-ray影像,以電腦軟體手動定位重要標的物,從而判讀人工髖關節置換後的狀態。然而前述現有技術高度仰賴專業之醫療人員進行手動定位,且手動定位難免有失誤或誤差。There are many types of hip joint diseases, such as femoral head necrosis caused by alcohol or inflammatory immune diseases, early degeneration of the hip joint caused by hip dysplasia common in Asian populations, and femoral bone common in the elderly population with low osteoporosis. Neck fracture. Artificial hip surgery will be required when a related disorder occurs that seriously affects daily life. Preoperative, intraoperative, postoperative, and prognosis tracking of artificial hip replacement requires precise positioning to avoid misalignment of implant correction and long-term observation of abnormalities. In the previous positioning method, physicians or technicians observed the X-ray images of the pelvis, and manually positioned important objects with computer software, so as to interpret the state of the artificial hip joint replacement. However, the aforementioned prior art highly relies on professional medical personnel to perform manual positioning, and errors or errors are inevitable in manual positioning.

因此,本發明的目的,即在提供一種產生用於自動定位出定位點的模型的方法。Therefore, an object of the present invention is to provide a method for generating a model for automatically locating an anchor point.

本發明的另一目的,在於提供一種骨骼狀態分析方法。Another object of the present invention is to provide a bone state analysis method.

本發明的又一目的,在於提供一種電子系統。Another object of the present invention is to provide an electronic system.

於是,本發明產生用於自動定位出定位點的模型的方法,藉由一電子系統實施,該電子系統包含一X光機、一輸入單元及一處理單元,該方法包含:該X光機拍攝多位參考患者的一預定骨骼及一裝設在該預定骨骼的植入物以產生多筆分別相關於該等參考患者且包含該預定骨骼的影像及該植入物的影像的訓練影像資料;該處理單元針對每一訓練影像資料,根據經由該輸入單元接收到的多個手動定位指令,產生多個對應於該訓練影像資料的手動定位資料,每一手動定位資料指示出該訓練影像資料中的一定位點的位置;及該處理單元針對每一定位點,根據指示出該定位點的位置的該等手動定位資料及該等訓練影像資料,訓練一卷積神經網路模型而產生一自動定位模型,該自動定位模型用於根據一由該X光機拍攝一目標患者的該預定骨骼及該植入物所產生的待分析影像資料產生一自動定位資料,該自動定位資料指示出該待分析影像資料中該定位點的位置。Therefore, the present invention generates a method for automatically locating a model for locating points, and is implemented by an electronic system, the electronic system includes an X-ray machine, an input unit and a processing unit, and the method includes: the X-ray machine shoots a predetermined bone of a plurality of reference patients and an implant mounted on the predetermined bone to generate a plurality of training image data respectively related to the reference patients and including the image of the predetermined bone and the image of the implant; For each training image data, the processing unit generates a plurality of manual positioning data corresponding to the training image data according to a plurality of manual positioning instructions received through the input unit, and each manual positioning data indicates that in the training image data and the processing unit for each positioning point, according to the manual positioning data and the training image data indicating the position of the positioning point, train a convolutional neural network model to generate an automatic A positioning model, the automatic positioning model is used to generate an automatic positioning data according to a to-be-analyzed image data generated by photographing the predetermined bone of a target patient and the implant by the X-ray machine, and the automatic positioning data indicates the to-be-analyzed image data. Analyze the location of the anchor point in the image data.

本發明骨骼狀態分析方法,藉由一電子系統實施,該電子系統包含一X光機及一處理單元,該方法包含:該X光機拍攝一目標患者的一預定骨骼及一裝設在該預定骨骼的植入物以產生一包含該預定骨骼的影像及該植入物的影像的待分析影像資料;該處理單元根據該待分析影像資料,使用該等自動定位模型以分別產生多個分別指示出該待分析影像資料中該等定位點的位置的自動定位資料;及該處理單元根據該等自動定位資料產生一相關於距離或角度的骨骼狀態參數值。The bone state analysis method of the present invention is implemented by an electronic system, the electronic system includes an X-ray machine and a processing unit, and the method includes: the X-ray machine photographing a predetermined bone of a target patient and a device installed in the predetermined bone the implant of the bone to generate an image data to be analyzed including the image of the predetermined bone and the image of the implant; the processing unit uses the automatic positioning models to generate a plurality of separate indications according to the image data to be analyzed Obtaining automatic positioning data of the positions of the positioning points in the image data to be analyzed; and the processing unit generating a bone state parameter value related to distance or angle according to the automatic positioning data.

在一些實施態樣中,該電子系統還包含一顯示單元,該方法於產生該等自動定位資料後還包含:該處理單元根據該待分析影像資料及該等自動定位資料經由該顯示單元顯示一自動標記影像資料,該自動標記影像資料包含該預定骨骼的影像、該植入物的影像及多個分別指示出該等定位點的標記圖像。In some implementation aspects, the electronic system further includes a display unit, and after generating the automatic positioning data, the method further includes: the processing unit displays a display unit through the display unit according to the image data to be analyzed and the automatic positioning data The automatic marking image data includes the image of the predetermined bone, the image of the implant, and a plurality of marked images respectively indicating the positioning points.

在一些實施態樣中,該方法於產生該骨骼狀態參數值後還包含:該處理單元經由該顯示單元顯示該骨骼狀態參數值。In some implementation aspects, after generating the bone state parameter value, the method further includes: the processing unit displays the bone state parameter value via the display unit.

在一些實施態樣中,該方法於產生該骨骼狀態參數值後還包含:該處理單元判斷該骨骼狀態參數值是否符合一警示條件;及當該處理單元判斷該骨骼狀態參數值符合該警示條件,該處理單元經由該顯示單元顯示一指示出該骨骼狀態參數值符合該警示條件的警示訊息。In some implementation aspects, after generating the bone state parameter value, the method further includes: the processing unit determining whether the bone state parameter value meets a warning condition; and when the processing unit determines that the bone state parameter value meets the warning condition , the processing unit displays a warning message indicating that the bone state parameter value meets the warning condition via the display unit.

本發明電子系統,包含一X光機及一處理單元。該X光機拍攝一目標患者的一預定骨骼及一裝設在該預定骨骼的植入物以產生一包含該預定骨骼的影像及該植入物的影像的待分析影像資料。The electronic system of the present invention includes an X-ray machine and a processing unit. The X-ray machine photographs a predetermined bone of a target patient and an implant mounted on the predetermined bone to generate an image data to be analyzed including an image of the predetermined bone and an image of the implant.

該處理單元根據該待分析影像資料,使用該等自動定位模型以分別產生多個分別指示出該待分析影像資料中該等定位點的位置的自動定位資料。The processing unit uses the automatic positioning models to generate a plurality of automatic positioning data respectively indicating the positions of the positioning points in the image data to be analyzed according to the image data to be analyzed.

該處理單元根據該等自動定位資料產生一相關於距離或角度的骨骼狀態參數值。The processing unit generates a bone state parameter value related to distance or angle according to the automatic positioning data.

本發明的功效在於:藉由該處理單元針對每一定位點,根據指示出該定位點的位置的該等手動定位資料及該等訓練影像資料,訓練該卷積神經網路模型而產生該自動定位模型,且藉由該處理單元使用該等自動定位模型以分別產生多個分別指示出該待分析影像資料中該等定位點的位置的自動定位資料,且根據該等自動定位資料產生相關於距離或角度的該骨骼狀態參數值,從而改善現有技術中手動定位可能發生的失誤或誤差,並讓專業醫療人員不必將時間耗費在執行手動定位上。The effect of the present invention is: for each positioning point, the processing unit trains the convolutional neural network model according to the manual positioning data and the training image data indicating the position of the positioning point to generate the automatic positioning models, and using the automatic positioning models by the processing unit to generate a plurality of automatic positioning data respectively indicating the positions of the positioning points in the image data to be analyzed, and generating the related automatic positioning data according to the automatic positioning data The skeletal state parameter value of the distance or angle is improved, thereby improving the errors or errors that may occur in manual positioning in the prior art, and freeing professional medical personnel from spending time on performing manual positioning.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated by the same reference numerals.

參閱圖1,本發明電子系統100的一實施例,包含一X光機1、一輸入單元2、一顯示單元3及一處理單元4。Referring to FIG. 1 , an embodiment of an electronic system 100 of the present invention includes an X-ray machine 1 , an input unit 2 , a display unit 3 and a processing unit 4 .

該輸入單元2例如(但不限於)包含一鍵盤及一滑鼠。該顯示單元3例如(但不限於)為一液晶螢幕。該處理單元4電連接於該X光機1、該輸入單元2及顯示單元3,且例如可包含(但不限於)一單核處理器、一個多核處理器、一個單核或多核手機處理器、一微處理器、一微控制器、一數位訊號處理器(DSP)、一現場可程式邏輯閘陣列(FPGA)、一特殊應用積體電路(ASIC)、一射頻積體電路(RFIC)、一圖形處理器(GPU)其中至少一者。The input unit 2 includes, for example (but not limited to) a keyboard and a mouse. The display unit 3 is, for example (but not limited to) a liquid crystal screen. The processing unit 4 is electrically connected to the X-ray machine 1, the input unit 2 and the display unit 3, and may include (but not limited to) a single-core processor, a multi-core processor, a single-core or multi-core mobile phone processor, for example , a microprocessor, a microcontroller, a digital signal processor (DSP), a field programmable logic gate array (FPGA), a special application integrated circuit (ASIC), a radio frequency integrated circuit (RFIC), At least one of a graphics processing unit (GPU).

參閱圖1、圖2及圖3,以下說明該電子系統100執行的產生用於自動定位出定位點的模型的方法的步驟。首先,如步驟S01所示,該X光機1拍攝多位參考患者的一預定骨骼200及一裝設在該預定骨骼200的植入物300以產生多筆分別相關於該等參考患者且包含該預定骨骼200的影像及該植入物300的影像的訓練影像資料。在本實施例中,該預定骨骼200為一骨盆(Pelvis),該植入物300為一人工髖關節(Hip),但不以此為限(例如不限於病患之左髖或右髖)。Referring to FIG. 1 , FIG. 2 and FIG. 3 , the steps of the method for generating a model for automatically locating an anchor point performed by the electronic system 100 are described below. First, as shown in step S01, the X-ray machine 1 photographs a predetermined bone 200 of a plurality of reference patients and an implant 300 installed in the predetermined bone 200 to generate a plurality of images respectively related to the reference patients and including The training image data of the image of the predetermined bone 200 and the image of the implant 300 . In this embodiment, the predetermined bone 200 is a pelvis (Pelvis), and the implant 300 is an artificial hip joint (Hip), but not limited thereto (for example, not limited to the patient's left hip or right hip) .

接著,如步驟S02所示,該處理單元4針對每一訓練影像資料,根據經由該輸入單元2接收到的多個手動定位指令,產生多個對應於該訓練影像資料的手動定位資料,每一手動定位資料指示出該訓練影像資料中的一定位點P的位置。在本實施例中,該處理單元4執行一手動標記程式而經由該顯示單元3顯示一手動標記圖形化使用者介面,該手動標記圖形化使用者介面包含該訓練影像資料且可供使用者(例如專業醫療人員)透過操作該輸入單元2於該訓練影像資料上標記該等定位點P而產生該等手動定位資料。Next, as shown in step S02, for each training image data, the processing unit 4 generates a plurality of manual positioning data corresponding to the training image data according to a plurality of manual positioning instructions received through the input unit 2, each The manual positioning data indicates the position of a certain positioning point P in the training image data. In this embodiment, the processing unit 4 executes a manual labeling program to display a manual labeling GUI via the display unit 3, and the manual labeling GUI includes the training image data and is available for the user ( For example, professional medical personnel) generate the manual positioning data by operating the input unit 2 to mark the positioning points P on the training image data.

在本實施例中,該等定位點P的數量為20(但不以此為限),也就是說,每一訓練影像資料對應有20筆手動定位資料。定位點P01為第一側薦髂關節(SI joint)最低點,定位點P02為第二側薦髂關節最低點,定位點P03為第一側淚滴狀骨(Teardrop)最低點,定位點P04為第二側淚滴狀骨(Teardrop)最低點,定位點P05為第一側閉孔(Obturator foramen)最低點,定位點P06為第二側閉孔最低點,定位點P07為第一側坐骨(Ischium)最低點,定位點P08為第二側坐骨最低點,定位點P09為第一側小轉子(Lesser trochanter)下緣,定位點P10為第二側小轉子下緣,定位點P11為髖臼杯(Cup)長軸最外緣,定位點P12為髖臼杯長軸最內緣,定位點P13為股骨頭(Femoral head)最寬軸外側緣,定位點P14為股骨頭最寬軸內側緣,定位點P15為股骨頭中心點,定位點P16為髖臼杯短軸邊緣,定位點P17為大轉子最高點(Greater trochanter tip),定位點P18為股骨柄(Stem)上緣,定位點P19為股骨髓腔(Femoral canal)在鄰近小轉子上緣處的中點,定位點P20為股骨髓腔在鄰近股骨柄端緣處的中點。In this embodiment, the number of the positioning points P is 20 (but not limited thereto), that is to say, each training image data corresponds to 20 pieces of manual positioning data. The anchor point P01 is the lowest point of the first sacral iliac joint (SI joint), the anchor point P02 is the lowest point of the second sacral iliac joint, the anchor point P03 is the lowest point of the first side Teardrop, and the anchor point P04 It is the lowest point of the second side teardrop bone (Teardrop), the location point P05 is the lowest point of the first side obturator foramen, the location point P06 is the lowest point of the second side obturator foramen, the location point P07 is the first side ischium The lowest point of (Ischium), the locating point P08 is the lowest point of the second ischium, the locating point P09 is the lower edge of the lesser trochanter (Lesser trochanter) on the first side, the locating point P10 is the lower edge of the second side lesser trochanter, and the locating point P11 is the hip The outermost edge of the long axis of the cup (Cup), the anchor point P12 is the innermost edge of the long axis of the acetabular cup, the anchor point P13 is the lateral edge of the widest axis of the femoral head, and the anchor point P14 is the medial edge of the widest axis of the femoral head The positioning point P15 is the center point of the femoral head, the positioning point P16 is the short-axis edge of the acetabular cup, the positioning point P17 is the Greater trochanter tip, the positioning point P18 is the upper edge of the femoral stem (Stem), the positioning point P19 is the midpoint of the femoral canal adjacent to the upper edge of the lesser trochanter, and the location point P20 is the midpoint of the femoral canal adjacent to the end edge of the femoral stem.

接著,如步驟S03所示,該處理單元4針對每一定位點P,根據指示出該定位點P的位置的該等手動定位資料及該等訓練影像資料,訓練一卷積神經網路(Convolutional Neural Network,CNN)模型而產生一自動定位模型。舉例來說,若該等訓練影像資料的數目是300筆,則該處理單元4針對每一定位點P,會根據所述300筆訓練影像資料及分別對應於所述300筆訓練影像資料且指示出該定位點P的位置的300筆手動定位資料,訓練該卷積神經網路模型而產生該自動定位模型。在本實施例中,該處理單元4會產生20個分別對應於所述20個定位點P的自動定位模型。在本實施例中,該卷積神經網路模型是名稱為UNet++之模型,其中每次訓練結果會藉由向後傳遞(Back-propagation)更新參數,但該卷積神經網路模型不以UNet++為限。Next, as shown in step S03, for each positioning point P, the processing unit 4 trains a convolutional neural network (Convolutional Neural Network) according to the manual positioning data indicating the position of the positioning point P and the training image data Neural Network, CNN) model to generate an automatic localization model. For example, if the number of the training image data is 300 pieces, the processing unit 4 for each positioning point P, according to the 300 pieces of training image data and corresponding to the 300 pieces of training image data respectively, and indicates 300 pieces of manual positioning data of the position of the positioning point P are obtained, and the convolutional neural network model is trained to generate the automatic positioning model. In this embodiment, the processing unit 4 generates 20 automatic positioning models corresponding to the 20 positioning points P respectively. In this embodiment, the convolutional neural network model is a model named UNet++, wherein the parameters are updated by back-propagation for each training result, but the convolutional neural network model does not use UNet++ as the limit.

參閱圖1及圖4,以下說明該電子系統100執行的骨骼狀態分析方法的步驟。首先,如步驟S11所示,該X光機1拍攝一目標患者的該預定骨骼200及裝設在該預定骨骼200的該植入物300以產生一包含該預定骨骼200的影像及該植入物300的影像的待分析影像資料。Referring to FIG. 1 and FIG. 4 , the steps of the bone state analysis method executed by the electronic system 100 are described below. First, as shown in step S11, the X-ray machine 1 photographs the predetermined bone 200 of a target patient and the implant 300 installed in the predetermined bone 200 to generate an image including the predetermined bone 200 and the implant The to-be-analyzed image data of the image of the object 300.

接著,如步驟S12所示,該處理單元4根據該待分析影像資料,使用步驟S03產生的該等自動定位模型以分別產生多個分別指示出該待分析影像資料中該等定位點P的位置的自動定位資料。該等自動定位資料的數目在本實施例中為20筆。Next, as shown in step S12, the processing unit 4 uses the automatic positioning models generated in step S03 to generate a plurality of positions respectively indicating the positioning points P in the image data to be analyzed according to the image data to be analyzed. of automatic location data. The number of the automatic positioning data is 20 in this embodiment.

接著,如步驟S13所示,該處理單元4根據該等自動定位資料產生多個相關於距離或角度的骨骼狀態參數值。以下說明該等骨骼狀態參數值的定義。Next, as shown in step S13, the processing unit 4 generates a plurality of bone state parameter values related to distance or angle according to the automatic positioning data. The definitions of these bone state parameter values are described below.

參閱圖5,其中一骨骼狀態參數值為通過定位點P11及定位點P12的直線與通過定位點P03及定位點P04的直線之夾角。或者,也可以是通過定位點P11及定位點P12的直線與通過定位點P07及定位點P08的直線之夾角。此骨骼狀態參數值可用於評估該植入物300是否容易發生脫臼或夾擠(Impingement)。Referring to FIG. 5 , a bone state parameter value is the included angle between a straight line passing through the positioning points P11 and P12 and a straight line passing through the positioning points P03 and P04 . Alternatively, the angle between the straight line passing through the positioning point P11 and the positioning point P12 and the straight line passing through the positioning point P07 and the positioning point P08 may be used. The bone state parameter value can be used to assess whether the implant 300 is prone to dislocation or impingement.

參閱圖6,其中一骨骼狀態參數值為定位點P11與定位點P03的縱向距離。其中一骨骼狀態參數值為定位點P12與定位點P03的縱向距離。其中一骨骼狀態參數值為定位點P15與定位點P03的縱向距離。前述三個骨骼狀態參數值用於評估該植入物300是否有向上移動,若前述三個骨骼狀態參數值持續變大,代表該植入物300有鬆動的情況。Referring to FIG. 6 , a bone state parameter value is the longitudinal distance between the positioning point P11 and the positioning point P03 . One of the bone state parameters is the longitudinal distance between the positioning point P12 and the positioning point P03. One of the bone state parameters is the longitudinal distance between the positioning point P15 and the positioning point P03. The aforementioned three bone state parameter values are used to evaluate whether the implant 300 has moved upward. If the aforementioned three bone state parameter values continue to increase, it means that the implant 300 is loose.

參閱圖7,其中一骨骼狀態參數值由下式計算而得:

Figure 02_image001
Referring to Figure 7, a bone state parameter value is calculated by the following formula:
Figure 02_image001

其中上式中的A為定位點P01至定位點P02的連線的中點與定位點P03至定位點P04的連線的中點之縱向距離,B為定位點P03至定位點P04的連線的中點與定位點P05至定位點P06的連線的中點之縱向距離。Wherein A in the above formula is the longitudinal distance between the midpoint of the line connecting the positioning point P01 to the positioning point P02 and the midpoint of the line connecting the positioning point P03 to the positioning point P04, and B is the connecting line from the positioning point P03 to the positioning point P04 The longitudinal distance between the midpoint of and the midpoint of the line connecting the positioning point P05 to the positioning point P06.

參閱圖3,其餘骨骼狀態參數值的定義說明如下。其中一骨骼狀態參數值為通過定位點P11及定位點P12的直線與通過定位點P12及定位點P16的直線之夾角。其中一骨骼狀態參數值為(定位點P09至通過定位點P07及定位點P08的直線之最短距離)-(定位點P10至通過定位點P07及定位點P08的直線之最短距離)。其中一骨骼狀態參數值為定位點P15與通過定位點P19及定位點P20的直線之最小距離。其中一骨骼狀態參數值為定位點P15與通過定位點P03且縱向延伸的鉛垂線之最小距離。其中一骨骼狀態參數值為定位點P13與定位點P14的最短距離。其中一骨骼狀態參數值為定位點P11與定位點P12的最短距離。其中一骨骼狀態參數值為定位點P17與定位點P18的縱向距離。其中一骨骼狀態參數值為定位點P11與定位點P15的最短距離與定位點P15與定位點P12的最短距離之比值。Referring to Fig. 3, the definitions of the remaining skeleton state parameter values are described as follows. One of the bone state parameter values is the included angle between the straight line passing through the positioning point P11 and the positioning point P12 and the straight line passing through the positioning point P12 and the positioning point P16. One of the skeleton state parameter values is (the shortest distance from the anchor point P09 to the straight line passing through the anchor point P07 and the anchor point P08) - (the shortest distance from the anchor point P10 to the straight line passing through the anchor point P07 and the anchor point P08). One of the bone state parameters is the minimum distance between the anchor point P15 and a straight line passing through the anchor points P19 and P20. One of the bone state parameters is the minimum distance between the positioning point P15 and the vertical line extending longitudinally through the positioning point P03. One of the bone state parameters is the shortest distance between the positioning point P13 and the positioning point P14. One of the bone state parameters is the shortest distance between the positioning point P11 and the positioning point P12. One of the bone state parameters is the longitudinal distance between the positioning point P17 and the positioning point P18. One of the bone state parameters is the ratio of the shortest distance between the positioning point P11 and the positioning point P15 to the shortest distance between the positioning point P15 and the positioning point P12.

參閱圖1及圖4,接著,如步驟S14所示,該處理單元4根據該待分析影像資料及該等自動定位資料經由該顯示單元3顯示一自動標記影像資料,該自動標記影像資料包含該預定骨骼200的影像、該植入物300的影像及多個分別指示出該等定位點P的標記圖像。該自動標記影像資料可供醫療人員在後續手術術前及術中參考用。Referring to FIG. 1 and FIG. 4, then, as shown in step S14, the processing unit 4 displays an automatically marked image data through the display unit 3 according to the to-be-analyzed image data and the automatic positioning data, and the automatically marked image data includes the The image of the predetermined bone 200, the image of the implant 300, and a plurality of marker images indicating the positioning points P, respectively. The automatically marked image data can be used by medical personnel for reference before and during subsequent operations.

接著,如步驟S15所示,該處理單元4經由該顯示單元3顯示該等骨骼狀態參數值,以供醫療人員觀看並評估該預定骨骼200及該植入物300的狀態。Next, as shown in step S15 , the processing unit 4 displays the bone state parameter values via the display unit 3 for medical personnel to view and evaluate the state of the predetermined bone 200 and the implant 300 .

接著,如步驟S16所示,該處理單元4判斷每一骨骼狀態參數值是否符合對應的一警示條件,若是,則執行步驟S17。步驟S17是該處理單元4經由該顯示單元3顯示一指示出該骨骼狀態參數值符合對應的該警示條件的警示訊息。每一警示條件例如是對應的該骨骼狀態參數值未落在一正常數值範圍內。Next, as shown in step S16, the processing unit 4 determines whether each bone state parameter value meets a corresponding warning condition, and if so, executes step S17. In step S17 , the processing unit 4 displays a warning message indicating that the bone state parameter value meets the corresponding warning condition via the display unit 3 . Each warning condition is, for example, that the corresponding bone state parameter value does not fall within a normal value range.

綜上所述,本發明電子系統100藉由該處理單元4針對每一定位點P,根據指示出該定位點P的位置的該等手動定位資料及該等訓練影像資料,訓練該卷積神經網路模型而產生該自動定位模型,且藉由該處理單元4使用該等自動定位模型以分別產生多個分別指示出該待分析影像資料中該等定位點P的位置的自動定位資料,且根據該等自動定位資料產生相關於距離或角度的該等骨骼狀態參數值,從而改善先前技術中手動定位可能發生的失誤或誤差,並讓專業醫療人員不必將時間耗費在執行手動定位上,故確實能達成本發明的目的。To sum up, the electronic system 100 of the present invention uses the processing unit 4 for each positioning point P to train the convolutional neural network according to the manual positioning data indicating the position of the positioning point P and the training image data network model to generate the automatic positioning model, and the processing unit 4 uses the automatic positioning models to generate a plurality of automatic positioning data respectively indicating the positions of the positioning points P in the image data to be analyzed, and The bone state parameter values related to the distance or the angle are generated according to the automatic positioning data, so as to improve the errors or errors that may occur in manual positioning in the prior art, and save the professional medical personnel from spending time on performing manual positioning. Therefore, It can indeed achieve the purpose of the present invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and should not limit the scope of implementation of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the patent specification are still included in the scope of the present invention. within the scope of the invention patent.

100····· 電子系統 1········ X光機 2········ 輸入單元 3········ 顯示單元 4········ 處理單元 200····· 預定骨骼 300····· 植入物 P、P01~P20········ 定位點 S01~S03··· 步驟 S11~S17··· 步驟 100・・・Electronic systems 1・・・・・・・・・・・・・・・・・・・・・・・・・・・・ X-ray machine 2・・・・Input unit 3・・・・Display unit 4・・・・Processing unit 200... Predetermined Bones 300...Implants P, P01~P20・・・・Location point S01~S03... Steps S11~S17... Steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是本發明電子系統的一個實施例的一硬體連接關係示意圖; 圖2是該實施例的一流程圖,說明該電子系統執行的產生用於自動定位出定位點的模型的方法; 圖3是該實施例的一示意圖,說明多個定位點的位置; 圖4是該實施例的一流程圖,說明該電子系統執行的骨骼狀態分析方法; 圖5是該實施例的一示意圖,說明其中一骨骼狀態參數值的定義; 圖6是該實施例的一示意圖,說明另一骨骼狀態參數值的定義;及 圖7是該實施例的一示意圖,說明又一骨骼狀態參數值的定義。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: 1 is a schematic diagram of a hardware connection relationship of an embodiment of the electronic system of the present invention; 2 is a flow chart of this embodiment illustrating a method performed by the electronic system to generate a model for automatically locating an anchor point; Fig. 3 is a schematic diagram of this embodiment, illustrating the positions of a plurality of anchor points; FIG. 4 is a flow chart of this embodiment, illustrating a method for analyzing a bone state performed by the electronic system; 5 is a schematic diagram of the embodiment, illustrating the definition of a bone state parameter value; FIG. 6 is a schematic diagram of this embodiment, illustrating the definition of another bone state parameter value; and FIG. 7 is a schematic diagram of this embodiment, illustrating the definition of yet another bone state parameter value.

S01~S03······ 步驟S01~S03... Steps

Claims (9)

一種產生用於自動定位出定位點的模型的方法,藉由一電子系統實施,該電子系統包含一X光機、一輸入單元及一處理單元,該方法包含: 該X光機拍攝多位參考患者的一預定骨骼及一裝設在該預定骨骼的植入物以產生多筆分別相關於該等參考患者且包含該預定骨骼的影像及該植入物的影像的訓練影像資料; 該處理單元針對每一訓練影像資料,根據經由該輸入單元接收到的多個手動定位指令,產生多個對應於該訓練影像資料的手動定位資料,每一手動定位資料指示出該訓練影像資料中的一定位點的位置;及 該處理單元針對每一定位點,根據指示出該定位點的位置的該等手動定位資料及該等訓練影像資料,訓練一卷積神經網路模型而產生一自動定位模型,該自動定位模型用於根據一由該X光機拍攝一目標患者的該預定骨骼及該植入物所產生的待分析影像資料產生一自動定位資料,該自動定位資料指示出該待分析影像資料中該定位點的位置。 A method of generating a model for automatically locating an anchor point is implemented by an electronic system, the electronic system comprising an X-ray machine, an input unit and a processing unit, the method comprising: The X-ray machine captures a predetermined bone of a plurality of reference patients and an implant mounted on the predetermined bone to generate a plurality of images respectively related to the reference patients and including the predetermined bone and the implant. training image data; For each training image data, the processing unit generates a plurality of manual positioning data corresponding to the training image data according to a plurality of manual positioning instructions received through the input unit, and each manual positioning data indicates that in the training image data the location of an anchor point of ; and For each positioning point, the processing unit trains a convolutional neural network model according to the manual positioning data indicating the position of the positioning point and the training image data to generate an automatic positioning model. The automatic positioning model uses generating an automatic positioning data according to a to-be-analyzed image data generated by photographing the predetermined bone of a target patient and the implant by the X-ray machine, the automatic positioning data indicating the position of the positioning point in the to-be-analyzed image data Location. 一種骨骼狀態分析方法,藉由一電子系統實施,該電子系統包含一X光機及一處理單元,該方法包含: 該X光機拍攝一目標患者的一預定骨骼及一裝設在該預定骨骼的植入物以產生一包含該預定骨骼的影像及該植入物的影像的待分析影像資料; 該處理單元根據該待分析影像資料,使用如請求項1所述的該等自動定位模型以分別產生多個分別指示出該待分析影像資料中該等定位點的位置的自動定位資料;及 該處理單元根據該等自動定位資料產生一相關於距離或角度的骨骼狀態參數值。 A bone state analysis method is implemented by an electronic system, the electronic system includes an X-ray machine and a processing unit, and the method includes: The X-ray machine photographs a predetermined bone of a target patient and an implant mounted on the predetermined bone to generate an image data to be analyzed including the image of the predetermined bone and the image of the implant; The processing unit uses the automatic positioning models as described in claim 1 according to the image data to be analyzed to generate a plurality of automatic positioning data respectively indicating the positions of the positioning points in the image data to be analyzed; and The processing unit generates a bone state parameter value related to distance or angle according to the automatic positioning data. 如請求項2所述的骨骼狀態分析方法,其中,該電子系統還包含一顯示單元,該方法於產生該等自動定位資料後還包含: 該處理單元根據該待分析影像資料及該等自動定位資料經由該顯示單元顯示一自動標記影像資料,該自動標記影像資料包含該預定骨骼的影像、該植入物的影像及多個分別指示出該等定位點的標記圖像。 The bone state analysis method according to claim 2, wherein the electronic system further includes a display unit, and after generating the automatic positioning data, the method further includes: The processing unit displays an automatically marked image data through the display unit according to the to-be-analyzed image data and the automatic positioning data, and the automatically marked image data includes the image of the predetermined bone, the image of the implant, and a plurality of respectively indicating Marker images for these anchor points. 如請求項2所述的骨骼狀態分析方法,其中,該電子系統還包含一顯示單元,該方法於產生該骨骼狀態參數值後還包含: 該處理單元經由該顯示單元顯示該骨骼狀態參數值。 The bone state analysis method according to claim 2, wherein the electronic system further includes a display unit, and after generating the bone state parameter value, the method further includes: The processing unit displays the bone state parameter value via the display unit. 如請求項2所述的骨骼狀態分析方法,其中,該電子系統還包含一顯示單元,該方法於產生該骨骼狀態參數值後還包含: 該處理單元判斷該骨骼狀態參數值是否符合一警示條件;及 當該處理單元判斷該骨骼狀態參數值符合該警示條件,該處理單元經由該顯示單元顯示一指示出該骨骼狀態參數值符合該警示條件的警示訊息。 The bone state analysis method according to claim 2, wherein the electronic system further includes a display unit, and after generating the bone state parameter value, the method further includes: The processing unit determines whether the bone state parameter value meets an alert condition; and When the processing unit determines that the bone state parameter value meets the warning condition, the processing unit displays a warning message through the display unit indicating that the bone state parameter value meets the warning condition. 一種電子系統,包含: 一X光機;及 一處理單元; 該X光機拍攝一目標患者的一預定骨骼及一裝設在該預定骨骼的植入物以產生一包含該預定骨骼的影像及該植入物的影像的待分析影像資料; 該處理單元根據該待分析影像資料,使用如請求項1所述的該等自動定位模型以分別產生多個分別指示出該待分析影像資料中該等定位點的位置的自動定位資料; 該處理單元根據該等自動定位資料產生一相關於距離或角度的骨骼狀態參數值。 An electronic system comprising: an X-ray machine; and a processing unit; The X-ray machine photographs a predetermined bone of a target patient and an implant mounted on the predetermined bone to generate an image data to be analyzed including the image of the predetermined bone and the image of the implant; The processing unit uses the automatic positioning models as described in claim 1 according to the image data to be analyzed to generate a plurality of automatic positioning data respectively indicating the positions of the positioning points in the image data to be analyzed; The processing unit generates a bone state parameter value related to distance or angle according to the automatic positioning data. 如請求項6所述的電子系統,還包含一顯示單元,其中,該處理單元根據該待分析影像資料及該等自動定位資料顯示一自動標記影像資料,該自動標記影像資料包含該預定骨骼的影像、該植入物的影像及多個分別指示出該等定位點的標記圖像。The electronic system according to claim 6, further comprising a display unit, wherein the processing unit displays an automatically marked image data according to the to-be-analyzed image data and the automatic positioning data, and the automatically marked image data includes the predetermined skeleton. An image, an image of the implant, and a plurality of marker images respectively indicating the locating points. 如請求項6所述的電子系統,還包含一顯示單元,其中,該處理單元經由該顯示單元顯示該骨骼狀態參數值。The electronic system according to claim 6, further comprising a display unit, wherein the processing unit displays the bone state parameter value via the display unit. 如請求項6所述的電子系統,還包含一顯示單元,其中,該處理單元判斷該骨骼狀態參數值是否符合一警示條件; 當該處理單元判斷該骨骼狀態參數值符合該警示條件,該處理單元經由該顯示單元顯示一指示出該骨骼狀態參數值符合該警示條件的警示訊息。 The electronic system according to claim 6, further comprising a display unit, wherein the processing unit determines whether the bone state parameter value meets a warning condition; When the processing unit determines that the bone state parameter value meets the warning condition, the processing unit displays a warning message through the display unit indicating that the bone state parameter value meets the warning condition.
TW109114030A 2020-04-27 2020-04-27 A method for generating a model for automatically locating an anchor point, a skeletal state analysis method, and an electronic system TWI753412B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109114030A TWI753412B (en) 2020-04-27 2020-04-27 A method for generating a model for automatically locating an anchor point, a skeletal state analysis method, and an electronic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109114030A TWI753412B (en) 2020-04-27 2020-04-27 A method for generating a model for automatically locating an anchor point, a skeletal state analysis method, and an electronic system

Publications (2)

Publication Number Publication Date
TW202141525A TW202141525A (en) 2021-11-01
TWI753412B true TWI753412B (en) 2022-01-21

Family

ID=80783489

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109114030A TWI753412B (en) 2020-04-27 2020-04-27 A method for generating a model for automatically locating an anchor point, a skeletal state analysis method, and an electronic system

Country Status (1)

Country Link
TW (1) TWI753412B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201303807A (en) * 2011-07-14 2013-01-16 Univ Nat Taiwan Science Tech A surgery simulating system having alarming function and method of simulating surgery
CN105377175A (en) * 2013-03-15 2016-03-02 内布拉斯加大学评议会 On-board tool tracking system and methods of computer assisted surgery
JP2017515613A (en) * 2014-02-25 2017-06-15 ジョイントポイント,インコーポレイテッド System and method for intraoperative image analysis
CN107072739A (en) * 2014-08-01 2017-08-18 史密夫和内修有限公司 Implant for surgical procedures is provided
CN108992169A (en) * 2011-07-20 2018-12-14 史密夫和内修有限公司 System and method for optimizing implantation material Yu anatomical cooperation
CN109069067A (en) * 2015-12-16 2018-12-21 穆罕默德·R·马赫福兹 IMU calibration
CN110944594A (en) * 2017-06-19 2020-03-31 穆罕默德·R·马赫福兹 Hip surgical navigation using fluoroscopy and tracking sensors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201303807A (en) * 2011-07-14 2013-01-16 Univ Nat Taiwan Science Tech A surgery simulating system having alarming function and method of simulating surgery
CN108992169A (en) * 2011-07-20 2018-12-14 史密夫和内修有限公司 System and method for optimizing implantation material Yu anatomical cooperation
CN105377175A (en) * 2013-03-15 2016-03-02 内布拉斯加大学评议会 On-board tool tracking system and methods of computer assisted surgery
JP2017515613A (en) * 2014-02-25 2017-06-15 ジョイントポイント,インコーポレイテッド System and method for intraoperative image analysis
CN107072739A (en) * 2014-08-01 2017-08-18 史密夫和内修有限公司 Implant for surgical procedures is provided
CN109069067A (en) * 2015-12-16 2018-12-21 穆罕默德·R·马赫福兹 IMU calibration
CN110944594A (en) * 2017-06-19 2020-03-31 穆罕默德·R·马赫福兹 Hip surgical navigation using fluoroscopy and tracking sensors

Also Published As

Publication number Publication date
TW202141525A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US12089898B2 (en) Methods for patient-specific shoulder arthroplasty
Budge et al. Comparison of standard two-dimensional and three-dimensional corrected glenoid version measurements
Tannast et al. Tilt and rotation correction of acetabular version on pelvic radiographs
US11727563B2 (en) Systems and methods for evaluating accuracy in a patient model
JP2021151490A (en) System and method for in-surgery image analysis
Langton et al. Cup anteversion in hip resurfacing: validation of EBRA and the presentation of a simple clinical grading system
DeLude et al. An anthropometric study of the bilateral anatomy of the humerus
EP2583246B1 (en) Method and system of automatic determination of geometric elements characterizing a bone deformation from 3d image
Paprosky et al. Intellijoint HIP®: a 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty
CN110177492A (en) Method and apparatus for treating joint hits the treatment that the clamp type femur acetabular bone in disease and hip joint hits disease including the cam type femur acetabular bone in hip joint
US20100145231A1 (en) System for measuring space width of joint, method for measuring space width of joint and recording medium
CN111134840B (en) Knee joint replacement surgery scheme generation device and terminal
Sandgren et al. Computed tomography vs. digital radiography assessment for detection of osteolysis in asymptomatic patients with uncemented cups: a proposal for a new classification system based on computer tomography
TWI753412B (en) A method for generating a model for automatically locating an anchor point, a skeletal state analysis method, and an electronic system
CN113066109A (en) Pelvis registration method, pelvis registration device and pelvis registration system
Gannon et al. Advanced templating for total shoulder arthroplasty
EP2090228A1 (en) Display direction correcting device, correcting method, and correction program for medical 3d image
Vroemen et al. Accuracy of distal radius positioning using an anatomical plate
CN212037803U (en) Automatic change head shadow measurement system
KR101659056B1 (en) Automated diagnosis system for craniosynostosis using a 2d shape descriptor and automated diagnosis method for craniosynostosis using the same
CN110604594B (en) Imaging method of hip joint and hip joint imaging system
CN113262087B (en) Systems, methods, apparatus, and storage media for acetabular cup anteversion measurement
Roner et al. Three-dimensional automated assessment of the distal radioulnar joint morphology according to sigmoid notch surface orientation
Patel et al. Pronation on weightbearing radiographs does not correlate with pronation from weightbearing CT scans
CN113763297A (en) Acromioclavicular joint CT image processing method