TWI753055B - Baw resonator device - Google Patents

Baw resonator device Download PDF

Info

Publication number
TWI753055B
TWI753055B TW106141571A TW106141571A TWI753055B TW I753055 B TWI753055 B TW I753055B TW 106141571 A TW106141571 A TW 106141571A TW 106141571 A TW106141571 A TW 106141571A TW I753055 B TWI753055 B TW I753055B
Authority
TW
Taiwan
Prior art keywords
stack
resonator
filter
conductive
baw
Prior art date
Application number
TW106141571A
Other languages
Chinese (zh)
Other versions
TW201830695A (en
Inventor
湯瑪士 波拉德
布萊恩 費雪
真那丹 耐斯
奧斯卡 梅嫩德茲納德爾
Original Assignee
美商史奈帕翠克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商史奈帕翠克公司 filed Critical 美商史奈帕翠克公司
Publication of TW201830695A publication Critical patent/TW201830695A/en
Application granted granted Critical
Publication of TWI753055B publication Critical patent/TWI753055B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02125Means for compensation or elimination of undesirable effects of parasitic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A BAW resonator device is proposed comprising fully conductive acoustic mirrors . Each of the BAW resonators is electrically contacted by a respective stack. Two or more BAW resonators may be electrically connected by connection lines arranged in a plane distant from the electrodes. The connection lines connect the stacks of the respective resonators. The fully conductive acoustic mirrors may be arranged on top of the resonators as well such that the BAW device has a structure symmetric with respect to horizontal mirror plane.

Description

BAW諧振器裝置BAW resonator device

本專利申請案主張於2016年12月13日提出申請的德國專利申請案第102016124236.5號的優先權,其全部內容經由引用明確地併入本文。This patent application claims priority from German Patent Application No. 102016124236.5, filed on December 13, 2016, the entire content of which is expressly incorporated herein by reference.

本發明係關於具有改進的諧振器互連的BAW裝置。The present invention relates to BAW devices with improved resonator interconnections.

如基於SMR的諧振器濾波器(SMR=固定安裝的諧振器)的傳統BAW裝置使用薄膜電極作為頂部電極和底部電極。由於SMR裝置的整合製造,用於形成濾波器的不同SMR裝置的互連由如頂部電極或底部電極的相同膜製成。結果,濾波器中的電流必須經由僅具有小橫截面積的電極膜部分流過長距離。這引起濾波器中顯著的電損耗。Conventional BAW devices such as SMR based resonator filters (SMR=fixed mounted resonator) use thin film electrodes as top and bottom electrodes. Due to the integrated fabrication of SMR devices, the interconnections of the different SMR devices used to form the filter are made of the same film as the top electrode or the bottom electrode. As a result, the current in the filter has to flow over long distances via electrode film portions having only a small cross-sectional area. This causes significant electrical losses in the filter.

已經嘗試經由將電極材料應用到互連上來加強互連,由此改善互連中的導電性。但是,直接連接到諧振器端子而不使諧振器的效能嚴重降級變得不可能。此外,這種降級是不可控制的,因此不可能對其進行補償。Attempts have been made to strengthen the interconnect by applying electrode materials to the interconnect, thereby improving conductivity in the interconnect. However, it becomes impossible to connect directly to the resonator terminals without severely degrading the performance of the resonator. Furthermore, this degradation is uncontrollable, so it is impossible to compensate for it.

因此,電流從高聲學能量諧振器區域流向低聲學能量互連區域,從而經由位於高聲學能量區域和低聲學能量區域之間的過渡區域。過渡區域和互連區域這二者仍然由薄膜電極材料的部分製成。使用薄膜過渡區域可能會對諧振器效能具有負面影響--顯示出增加的橫向模式洩漏(Q減小)和增加的寄生電容(減少的耦合)。這個區域在理想情況下應該是被消除的,但這迄今尚未完成,而是考慮最小效能影響來設計它(例如,Avago / Broadcom「空中橋」概念)。Thus, current flows from the high acoustic energy resonator region to the low acoustic energy interconnection region, via the transition region located between the high acoustic energy region and the low acoustic energy region. Both the transition region and the interconnect region are still made of parts of the thin film electrode material. The use of thin-film transition regions may have a negative impact on resonator efficacy - exhibiting increased lateral mode leakage (reduced Q) and increased parasitic capacitance (reduced coupling). This area should ideally be eliminated, but this has not been done so far, and it is designed with minimal performance impact in mind (eg, Avago/Broadcom "air bridge" concept).

本發明的目的是改善諧振器電極和互連的電氣效能並且避免上面提及的缺陷。The aim of the present invention is to improve the electrical performance of the resonator electrodes and interconnections and to avoid the above-mentioned drawbacks.

這個目的和其他目的由根據請求項1的裝置來滿足。進一步的有利實施例由從屬請求項提供。This and other objects are met by a device according to claim 1 . A further advantageous embodiment is provided by the dependent claims.

揭示一種具有微聲學BAW諧振器的裝置,其具有通用的振動諧振器結構。該諧振器結構是從頂部到底部包括頂部電極、壓電層和底部電極的層序列。A device with a micro-acoustic BAW resonator is disclosed with a general vibrating resonator structure. The resonator structure is a layer sequence including a top electrode, a piezoelectric layer and a bottom electrode from top to bottom.

在諧振器結構和承載諧振器結構的襯底之間的底部電極之下,佈置布拉格反射鏡以用於保持諧振器內的聲學能量。Below the bottom electrode between the resonator structure and the substrate carrying the resonator structure, a Bragg mirror is arranged for maintaining the acoustic energy within the resonator.

為了改善諧振器端子的導電性,在襯底和底部電極之間佈置導電結構,從而引導電流從底部電極離開去往襯底。因此,經由在完全低的聲學能量區域中形成過渡區域,在互連區域與高聲學能量諧振器區域之間的過渡區域處的上述問題得到了解決。導電結構的橫向面積可以與諧振的諧振器部分的橫向面積一致,或者可以略微伸出諧振器面積。To improve the conductivity of the resonator terminals, a conductive structure is arranged between the substrate and the bottom electrode to direct current away from the bottom electrode to the substrate. Thus, the above-mentioned problem at the transition region between the interconnect region and the high acoustic energy resonator region is solved by forming the transition region in the region of completely low acoustic energy. The lateral area of the conductive structure may coincide with the lateral area of the resonating resonator portion, or may extend slightly beyond the resonator area.

導電結構的高度超過底部電極的高度。因此,當使用具有與底部電極相當或超過底部電極的電導率的材料時,底部諧振器端子的串聯電阻顯著減小。這是因為當與傳統的BAW諧振器裝置相比時,電流以從頂部到底部的方向從高聲學能量區域流向具有顯著擴大的導體橫截面積的低聲學能量區域和並且流過較小距離。The height of the conductive structure exceeds the height of the bottom electrode. Thus, the series resistance of the bottom resonator terminals is significantly reduced when using materials with a conductivity comparable to or exceeding that of the bottom electrode. This is because current flows in a top-to-bottom direction from a region of high acoustic energy to a region of low acoustic energy with a significantly enlarged conductor cross-sectional area and over a smaller distance when compared to conventional BAW resonator devices.

根據一個實施例,導電結構包括交替的第一導電層和第二導電層的第一疊層。第一層具有相對低的聲學阻抗。第二層具有相對高的聲學阻抗。因此,可以將第一疊層構造成作為聲學反射鏡工作,該聲學反射鏡能夠將聲波反射回諧振器的高能量聲學區域中。換句話說,SMR型諧振器所必需的聲學反射鏡可以經由僅使用導電層來修改,使得反射鏡可以被用作諧振器端子。According to one embodiment, the conductive structure includes a first stack of alternating first and second conductive layers. The first layer has relatively low acoustic impedance. The second layer has relatively high acoustic impedance. Thus, the first stack can be configured to operate as an acoustic mirror capable of reflecting sound waves back into the high energy acoustic region of the resonator. In other words, the acoustic mirrors necessary for SMR-type resonators can be modified via the use of only conductive layers, so that the mirrors can be used as resonator terminals.

若該裝置包括製作在共同襯底上的多於一個的BAW諧振器,則必須避免共同的導電聲學反射鏡造成的電短路。根據一個實施例,諧振器下方的每個第一疊層都被嵌入電媒體中。兩個相鄰諧振器的兩個第一疊層因此至少部分地彼此電隔離。嵌入意味著每個第一疊層被電媒體橫向包圍。若襯底是電隔離的,則疊層和襯底之間的額外絕緣層不是必需的。If the device includes more than one BAW resonator fabricated on a common substrate, electrical shorting by a common conductive acoustic mirror must be avoided. According to one embodiment, each of the first stacks below the resonator is embedded in an electrical medium. The two first stacks of two adjacent resonators are thus at least partially electrically isolated from each other. Embedded means that each first stack is laterally surrounded by an electrical medium. Additional insulating layers between the stack and the substrate are not necessary if the substrates are electrically isolated.

可以在形成並構造第一疊層之後施加嵌入電媒體。可替代地,電媒體層的沉積可以在局部層中完成。嵌入電媒體的這種局部層可以在沉積和構造疊層的相應局部層之後,即在第一或第二導電層中相應一個層的沉積和構造之後被施加並構造。The embedded dielectric may be applied after forming and constructing the first stack. Alternatively, the deposition of the dielectric layer can be done in local layers. Such partial layers embedded in the dielectric may be applied and structured after the deposition and structuring of the respective partial layers of the stack, ie after the deposition and structuring of the respective one of the first or second conductive layers.

諸如濾波器之類的BAW裝置包括在同一襯底上製造的多個BAW諧振器。根據另一個實施例,此類多個BAW諧振器中的每一個BAW諧振器被佈置在單獨的第一疊層上方。連接線在遠離底部電極的平面中電連接第一疊層中的兩個或多個。由此,導致了兩個第一疊層的串聯或並聯連接,並且因此導致了被電連接到並且被佈置在該兩個第一疊層之上的兩個諧振器的串聯或並聯連接。BAW devices such as filters include multiple BAW resonators fabricated on the same substrate. According to another embodiment, each BAW resonator of such a plurality of BAW resonators is arranged over a separate first stack. Connection lines electrically connect two or more of the first stacks in a plane remote from the bottom electrode. This results in a series or parallel connection of the two first stacks, and thus a series or parallel connection of the two resonators which are electrically connected to and arranged above the two first stacks.

可以在最低的第一導電層和第二導電層中的至少一個層中構造連接線。可替代地,從被佈置在第一疊層的最低層下方的單獨的導電層來構造連接線可能是有利的。可以為該層選擇提供足夠電導率的材料,而不必使用具有相對較高或較低聲學阻抗的材料。此外,該單獨的導電層可以具有比最低的第一層或第二層更大的厚度,因為該層不需要充當反射鏡層,並且因此該層可以是任意厚的,因為它處於極低聲學能量的區域中。The connection lines may be constructed in at least one of the lowermost first conductive layer and the second conductive layer. Alternatively, it may be advantageous to construct the connection lines from a separate conductive layer arranged below the lowest layer of the first stack. Materials that provide sufficient electrical conductivity can be selected for this layer without having to use materials with relatively high or low acoustic impedance. Furthermore, this single conductive layer may have a greater thickness than the lowest first or second layer, as this layer need not act as a mirror layer, and thus this layer may be arbitrarily thick as it is at very low acoustic levels in the energy area.

由於連接線在低聲學能量區域中接觸相應的第一疊層,所以不會引起諧振器效能中不利的聲學變化。更好的電導率連接線及其在低聲學能量區域中的位置經由電損耗的降低而導致整體更好的濾波器效能。該技術亦可以導致諧振器的改善的Q因數,因為諧振器的更均勻的激勵是可能的,這是由於第一疊層在諧振器底部電極的橫向面積上施加了更均勻的電壓。Since the connecting wires contact the respective first stacks in the low acoustic energy region, no adverse acoustic changes in the resonator performance are caused. Better conductivity connecting lines and their placement in low acoustic energy regions lead to overall better filter performance through reductions in electrical losses. This technique can also lead to an improved Q-factor of the resonator, as more uniform excitation of the resonator is possible due to the fact that the first stack applies a more uniform voltage across the lateral area of the bottom electrode of the resonator.

第一導電層優選包括多晶矽、石墨、鋁、導電氧化物和摻雜半導體之一。進一步優選的導電材料可選自美鋁基合金(例如,AZ91、AE42和AS41)、SC、La、Y、Yb、Be、LaN、Ga、鎂基合金、錫基合金、鉍基合金、Mg2C3和Mg3N2。這些材料具有相對較低的聲學阻抗,並且可被用於根據布拉格原理工作的聲學反射鏡中。The first conductive layer preferably includes one of polysilicon, graphite, aluminum, conductive oxide, and doped semiconductor. Further preferred conductive materials may be selected from Alcoa based alloys (eg, AZ91, AE42 and AS41), SC, La, Y, Yb, Be, LaN, Ga, magnesium based alloys, tin based alloys, bismuth based alloys, Mg2C3 and Mg3N2. These materials have relatively low acoustic impedance and can be used in acoustic mirrors that operate according to the Bragg principle.

第二導電層可以包括W、WC、WN、SiC、Mo、Mo2N、Ir、Au、Pt、Rh、Re、Ru、Ta、HfN和銅基合金之一。這些材料中的一些已經在普通的SMR諧振器中被用作高阻抗層。The second conductive layer may include one of W, WC, WN, SiC, Mo, Mo2N, Ir, Au, Pt, Rh, Re, Ru, Ta, HfN, and a copper-based alloy. Some of these materials have been used as high impedance layers in common SMR resonators.

在另一個實施例中,該裝置在每個諧振器的頂部上具有第二聲學反射鏡。該反射鏡包括如第一疊層一樣構造的導電的第一層和第二層的第二疊層。因此,第二疊層可以具有與第一疊層相同的結構,但是被佈置在每個諧振器的頂部電極之上。經由諧振器相對於水平反射鏡層對稱的結構是優選的。In another embodiment, the device has a second acoustic mirror on top of each resonator. The mirror includes a second stack of conductive first and second layers constructed as the first stack. Thus, the second stack may have the same structure as the first stack, but arranged over the top electrode of each resonator. Structures that are symmetrical with respect to the horizontal mirror layer via the resonator are preferred.

亦在第二疊層之上,第二連接線從第二疊層的最頂端的第一層和第二層來構造,以串聯或並聯地電連接兩個或多個BAW諧振器。Also over the second stack, second connection lines are constructed from the topmost first and second layers of the second stack to electrically connect two or more BAW resonators in series or in parallel.

可替代地,從佈置在第二疊層的最頂端層之上的單獨導電層來構造第二連接線亦可以是有利的。Alternatively, it may also be advantageous to construct the second connection line from a separate conductive layer arranged above the topmost layer of the second stack.

當然,每個第二疊層都有利地被嵌入在另一電媒體層中。這樣可以保證不經由第二連接線連接的兩個諧振器之間的相互電隔離。Of course, each second stack is advantageously embedded in another layer of electrical media. This ensures mutual electrical isolation between the two resonators not connected via the second connecting line.

利用此類第二疊層,相應的頂部電極的電端子可以在其電效能態樣得到改善。因此,可以實現類似的改進,如已經提到的由第一疊層產生的改進。With such a second stack, the electrical terminals of the respective top electrodes can be improved in terms of their electrical performance. Thus, similar improvements can be achieved as already mentioned by the first stack.

利用所提出的BAW裝置,可以構造濾波器。為此,幾個諧振器以梯型或格型佈置進行電路連接。裝置的第一數量的BAW諧振器與信號線串聯地進行電路連接。裝置的第二數量的BAW諧振器在與信號線並聯電路連接的分流線中進行電路連接,並且被連接到信號線中的不同節點。濾波器電路本身符合常用的濾波器電路,因此不需要更詳細的解釋。With the proposed BAW device, a filter can be constructed. For this purpose, several resonators are circuit-connected in a ladder or lattice arrangement. A first number of BAW resonators of the device are electrically connected in series with the signal line. A second number of BAW resonators of the device are circuit-connected in shunt lines that are circuit-connected in parallel with the signal line and are connected to different nodes in the signal line. The filter circuit itself conforms to commonly used filter circuits and therefore does not require a more detailed explanation.

如此構造的濾波器可以用來形成雙工器的一個濾波器。第二濾波器亦可以具有相同的本發明結構。儘管如此,使用SAW濾波器作為第二濾波器亦是可能的。雙工器的第一濾波器和第二濾波器選自Rx濾波器和Tx濾波器。優選地,根據新原理將雙工器的Tx濾波器構造成具有改善的功率處理能力的本發明濾波器,因為對於施加到Tx濾波器的Tx信號的較高的信號位準或功率幅度來說這是必需的。The filter thus constructed can be used to form one filter of the duplexer. The second filter can also have the same structure of the present invention. Nevertheless, it is possible to use a SAW filter as the second filter. The first filter and the second filter of the duplexer are selected from Rx filters and Tx filters. Preferably, the Tx filter of the duplexer is constructed according to the new principles as an inventive filter with improved power handling capability, because for higher signal levels or power amplitudes of the Tx signal applied to the Tx filter This is required.

圖1圖示包括三個SMR型的BAW諧振器的傳統裝置。SMR諧振器包括頂部電極TE、壓電層PS和底部電極BE。主動諧振器區域是所有三層TE、PS和BE彼此重疊的體積。經由構造電極層,實現三個單個的SMR諧振器。經由由底部電極BE或頂部電極TE的若干部分形成的互連IC,這三個諧振器串聯地電連接在端子T1和第三端子T3之間。互連IC每個覆蓋兩個或多個疊層。隨後,每個互連IC電連接兩個相鄰的諧振器。FIG. 1 illustrates a conventional device including three SMR-type BAW resonators. The SMR resonator includes a top electrode TE, a piezoelectric layer PS, and a bottom electrode BE. The active resonator region is the volume where all three layers of TE, PS and BE overlap each other. By structuring the electrode layers, three individual SMR resonators are realized. The three resonators are electrically connected in series between the terminal T1 and the third terminal T3 via an interconnection IC formed by portions of the bottom electrode BE or the top electrode TE. The interconnect ICs each cover two or more stacks. Subsequently, each interconnect IC electrically connects two adjacent resonators.

在每個諧振器之下,佈置低聲學阻抗和高聲學阻抗的交替層的疊層。因此,每個疊層形成用於將聲波反射回主動區域以將聲學能量保持在主動諧振器區域內的聲學反射鏡。低阻抗層LI例如由諸如SiO2的電媒體形成。高阻抗層由例如鎢W的重硬金屬形成。底部電極可以是聲學反射鏡的一部分,並且因此亦由重金屬形成。Below each resonator, a stack of alternating layers of low and high acoustic impedance is arranged. Thus, each stack forms an acoustic mirror for reflecting acoustic waves back to the active area to keep the acoustic energy within the active resonator area. The low-resistance layer LI is formed of, for example, a dielectric such as SiO 2 . The high resistance layer is formed of a heavy hard metal such as tungsten W. The bottom electrode may be part of the acoustic mirror and thus also be formed of heavy metals.

根據實施例,可以使用混合的底部電極。「混合」電極指的是電極的在低和高之間的阻抗行為。此類底部電極可以包括若干層以產生導電性與(高)聲學阻抗之間的最佳化折衷。作為實施例,可以使用Ti、AlCu和W的多層結構。約10 nm的Ti薄層用於黏附目的。高電導率、但是僅約150 nm的AlCu聲學阻抗層和約80 nm的W高阻抗層完成電極結構。AlCu增加了更多的電導率,而沒有減少太多的耦合,例如若W層厚度降低,則聲學效能會增加,但導電性會下降。According to embodiments, mixed bottom electrodes may be used. A "hybrid" electrode refers to the impedance behavior of the electrode between low and high. Such bottom electrodes may comprise several layers to create an optimal compromise between electrical conductivity and (high) acoustic impedance. As an example, a multilayer structure of Ti, AlCu, and W may be used. A thin layer of Ti of about 10 nm was used for adhesion purposes. A high conductivity, but only about 150 nm AlCu acoustic impedance layer and about 80 nm W high impedance layer complete the electrode structure. AlCu adds more conductivity without reducing coupling much, eg if the W layer thickness is reduced, the acoustic performance increases but the conductivity decreases.

除了互連之外,諧振器經由嵌入的電媒體而被電隔離。此外,導電的高阻抗層被構造並且被限制到相應的主動諧振器區域的橫向面積。此類傳統BAW裝置具有上述缺點,因為互連IS的電導率被限於底部電極和頂部電極的薄膜電極層。In addition to interconnection, the resonators are electrically isolated via the embedded electrical medium. Furthermore, conductive high impedance layers are constructed and confined to the lateral area of the corresponding active resonator region. Such conventional BAW devices suffer from the above-mentioned disadvantages because the conductivity of the interconnect IS is limited to the thin film electrode layers of the bottom and top electrodes.

圖2圖示本發明的第一實施例。由包括頂部電極TE、壓電層PS和底部電極BE的層序列形成的單個諧振器RES被示出。到目前為止,該實施例符合傳統的諧振器。但是與在底部電極的平面中形成的傳統諧振器的橫向互連IC相反,存在導電的第一疊層ST1,第一疊層ST1允許形成將來自諧振器的底部的電流向襯底引導的電端子,該襯底可以被佈置在疊層之下的某處並且承載整個裝置。因此,該電端子的有效橫截面符合與第一疊層的橫向橫截面積相等的橫向諧振器面積。第一疊層可以包括均由導電材料形成的低聲學阻抗LI和高聲學阻抗HI的交替層。因此該疊層起到了聲學反射鏡AS的作用。Figure 2 illustrates a first embodiment of the present invention. A single resonator RES formed from a layer sequence comprising a top electrode TE, a piezoelectric layer PS and a bottom electrode BE is shown. So far, this embodiment conforms to conventional resonators. But in contrast to the lateral interconnects IC of conventional resonators formed in the plane of the bottom electrode, there is a conductive first stack ST1 that allows the formation of electrical circuits that direct the current from the bottom of the resonator to the substrate Terminals, the substrate can be placed somewhere under the stack and carry the entire device. Thus, the effective cross-section of the electrical terminal conforms to a lateral resonator area equal to the lateral cross-sectional area of the first stack. The first stack may comprise alternating layers of low acoustic impedance LI and high acoustic impedance HI, each formed of a conductive material. The stack thus acts as an acoustic mirror AS.

因此,諧振器可以經由頂部電極TE處的第一端子T1以及第一疊層ST1的底部處的第二端子T2而被接觸。Therefore, the resonator can be contacted via the first terminal T1 at the top electrode TE and the second terminal T2 at the bottom of the first stack ST1.

高阻抗層HI可以由W形成。低阻抗層LI可以由Al形成。The high resistance layer HI may be formed of W. The low resistance layer L1 may be formed of Al.

底部電極BE可以是聲學反射鏡AS的一部分。The bottom electrode BE may be part of the acoustic mirror AS.

圖3圖示本發明的第二實施例。它包括三個諧振器,每個諧振器被佈置在被實施為聲學反射鏡AS的第一疊層ST1之上。在圖1左手側所示的第一諧振器與橫向相鄰的第二諧振器之間,經由連接線CL形成電連接。連接線CL在其相應底側處連接兩個第一疊層ST1,該底側處於相應的第一疊層ST1的最低層。連接線CL由如Al的導電金屬形成,並且可以具有例如1 μm至2 μm的厚度。可替代地,連接線CL可以由第一疊層ST1的最底部延伸的導電層形成。Figure 3 illustrates a second embodiment of the present invention. It comprises three resonators, each of which is arranged above a first stack ST1 implemented as an acoustic mirror AS. Between the first resonator shown on the left-hand side of FIG. 1 and the laterally adjacent second resonator, an electrical connection is formed via a connecting line CL. The connection lines CL connect the two first stacks ST1 at their respective bottom sides, which are at the lowermost layers of the respective first stacks ST1. The connection line CL is formed of a conductive metal such as Al, and may have a thickness of, for example, 1 μm to 2 μm. Alternatively, the connection line CL may be formed of a conductive layer extending from the bottommost portion of the first stack ST1.

另一電互連在第三諧振器處(即圖3的右手側處的最外的諧振器)處接觸疊層的底部。它被形成為將右手側的第一疊層與端子T3連接的另一連接線CL'。Another electrical interconnect touches the bottom of the stack at the third resonator (ie the outermost resonator at the right hand side of Figure 3). It is formed as another connection line CL' connecting the first stack on the right-hand side with the terminal T3.

在該佈置的頂部上,中間的諧振器和右手側的諧振器經由兩個諧振器共用的擴大的頂部電極TE互連。第一端子T1接觸左手側的諧振器的頂部電極。結果,三個諧振器在第一端子T1和第三端子T3之間被串聯地電路連接。第二端子T2可以接觸第二(=中間的)和第三(=右手的)諧振器的頂部電極TE的公共部分,以允許不同的電路連接方式。在端子T1、T2和頂部電極TE之間,厚金屬焊盤在端子面積周圍被施加。優選地,該焊盤被佈置在低聲學能量區域中,即在如對於圖3中的端子T2所示的兩個相鄰諧振器區域之間或者在如對於端子T1所示的諧振器區域旁邊。On top of this arrangement, the middle and right-hand resonators are interconnected via an enlarged top electrode TE common to both resonators. The first terminal T1 contacts the top electrode of the left-hand resonator. As a result, the three resonators are circuit-connected in series between the first terminal T1 and the third terminal T3. The second terminal T2 may contact a common part of the top electrodes TE of the second (=middle) and third (=right-handed) resonators to allow different ways of circuit connection. Between the terminals T1, T2 and the top electrode TE, thick metal pads are applied around the terminal area. Preferably, the pad is arranged in an area of low acoustic energy, ie between two adjacent resonator areas as shown for terminal T2 in FIG. 3 or beside the resonator area as shown for terminal T1 .

所示結構可以經由與之串聯或並聯地互連更多的諧振器來繼續。代替端子T3,連接線CL'可以連接另一諧振器的鄰近疊層。The illustrated structure may continue by interconnecting more resonators in series or parallel with it. Instead of terminal T3, a connecting line CL' can connect an adjacent stack of another resonator.

為了隔離的目的,優選地,在連接線CL、CL'和襯底SU的頂表面之間佈置電媒體層。該電媒體可以與第一疊層被嵌入的電媒體DE相同。電媒體DE可以包含SiO2。For isolation purposes, a dielectric layer is preferably arranged between the connection lines CL, CL' and the top surface of the substrate SU. The electrical medium may be the same electrical medium DE in which the first stack is embedded. The electrical medium DE may contain SiO2.

圖4圖示根據本發明的第二實施例的具有若干BAW諧振器的電路的BAW裝置。在該實施例中,在BAW諧振器的頂部電極TE的頂端佈置第二疊層ST2。該第二疊層具有與第一疊層ST1相同的結構,並且包括具有低阻抗和高阻抗的交替的第一導電層和第二導電層。結果,第二疊層ST2亦形成將聲波反射回諧振器RES的聲學反射鏡AS。此外,由於該疊層僅包括導電層,所以電流以垂直方向被第二疊層ST2從頂部電極引導離開。第二疊層ST2亦像第一疊層那樣嵌入電媒體DE內。Figure 4 illustrates a BAW device with a circuit of several BAW resonators according to a second embodiment of the present invention. In this embodiment, the second stack ST2 is arranged on top of the top electrode TE of the BAW resonator. The second stack has the same structure as the first stack ST1 and includes alternating first and second conductive layers with low and high impedance. As a result, the second stack ST2 also forms an acoustic mirror AS that reflects the acoustic waves back to the resonator RES. Furthermore, since the stack comprises only conductive layers, the current is directed away from the top electrode by the second stack ST2 in a vertical direction. The second stack ST2 is also embedded in the electrical medium DE like the first stack.

在電媒體DE的頂部上佈置另外的連接線,以在壓電層之上並遠離壓電層的平面中連接兩個鄰近的第二疊層ST2的頂側。與從本發明所屬領域已知的頂部電極和橫向連接相比,連接線CL具有更高的厚度和更低的電阻。因此,本實施例進一步降低了BAW佈置的頂側上的互連的電阻。因此,BAW佈置的損耗被進一步降低。經由該結構相對於壓電層PS中間的水平對稱平面的對稱性產生了額外益處。諧振器內的激勵在對稱佈置中更均勻並且導致更高的Q因數。A further connection line is arranged on top of the dielectric DE to connect the top sides of two adjacent second stacks ST2 in a plane above and away from the piezoelectric layer. The connection line CL has a higher thickness and lower resistance than the top electrodes and lateral connections known from the art to which the present invention pertains. Therefore, the present embodiment further reduces the resistance of the interconnects on the top side of the BAW arrangement. Therefore, the losses of the BAW arrangement are further reduced. Additional benefits arise via the symmetry of the structure with respect to the horizontal plane of symmetry in the middle of the piezoelectric layer PS. The excitation within the resonator is more uniform in a symmetrical arrangement and results in a higher Q factor.

此外,對於具有正常過渡區域的裝置來說可以降低橫向損耗。Furthermore, lateral losses can be reduced for devices with normal transition regions.

根據或類似於圖4中所示的實施例的BAW裝置提供了在高聲學能量區域處、尤其是壓電層處的改善的密封性。A BAW device according to or similar to the embodiment shown in Figure 4 provides improved sealing at regions of high acoustic energy, especially at piezoelectric layers.

另一個優點在於,本發明能夠針對以更高頻率(> 3GHz)操作的濾波器實現更高的效能。為了將較高諧振頻率的濾波器的阻抗保持在與較低頻率的濾波器相同的水平,諧振器疊層中的聲學主動層的幾何參數必須被減小頻率所增加的因數。儘管濾波器諧振器的阻抗被設計成與在較低頻率(例如,< 3GHz)工作的諧振器相同,但是諧振器只是在頻率上向上改變。Another advantage is that the present invention enables higher performance for filters operating at higher frequencies (>3GHz). In order to keep the impedance of the higher resonant frequency filter at the same level as the lower frequency filter, the geometry of the acoustically active layer in the resonator stack must be reduced by a factor that increases in frequency. Although the impedance of the filter resonator is designed to be the same as the resonator operating at lower frequencies (eg, < 3GHz), the resonator only changes upward in frequency.

為了說明這如何影響濾波器效能,提供下面的實例以示出以較低頻率f1和較高頻率f2操作的濾波器之間的差異。相對於較低頻率的諧振器,較高操作頻率的諧振器在尺寸上以與頻率增加相同的因數f2/f1來按比例縮小。從而,諧振器的所有線性尺度都被縮放。To illustrate how this affects filter performance, the following example is provided to illustrate the difference between filters operating at lower frequency f1 and higher frequency f2. Relative to the lower frequency resonators, the higher operating frequency resonators scale down in size by the same factor f2/f1 as the frequency increases. Thus, all linear dimensions of the resonator are scaled.

隨後,這個諧振器將具有有效電容Q因數Q2(電容器阻抗大小與等效串聯電阻的比值),該因數被減小相同的因數f2/f1。本發明可以緩解進入高頻的挑戰,因為可以使用厚互連而不損害聲學效能,並且因為在諧振器區域中電流流動方向將是從上到下的方向而不是從左到右的方向此類事實。此外,與現有技術的諧振器相比,導電結構(亦即,疊層)的橫截面積現在更大並且路徑長度更短。This resonator will then have an effective capacitive Q-factor Q2 (the ratio of the size of the capacitor's impedance to the equivalent series resistance), which is reduced by the same factor f2/f1. The present invention can alleviate the challenge of getting into high frequencies because thick interconnects can be used without compromising acoustic performance, and because the direction of current flow in the resonator region will be in a top-to-bottom direction rather than a left-to-right direction. fact. Furthermore, the cross-sectional area of the conductive structure (ie, the stack) is now larger and the path length is shorter compared to prior art resonators.

經由路由頂部連接線CL產生進一步的優點。路由可以從大多數幾何限制中不受約束地完成。此外,用於頂部連接線的材料可以自由選擇,只要導電性好即可。A further advantage arises via routing the top connection line CL. Routing can be done unconstrained from most geometric constraints. Furthermore, the material used for the top connection wire can be freely selected as long as the conductivity is good.

圖5圖示具有若干BAW諧振器的電路的BAW裝置的方塊圖。該方塊圖本身是本發明所屬領域已知的,並且亦可以被用於根據本發明的BAW裝置。Figure 5 illustrates a block diagram of a BAW device with a circuit of several BAW resonators. The block diagram itself is known in the art to which the present invention pertains, and may also be used in a BAW device according to the present invention.

第一數量的BAW諧振器SR在將輸入SE與輸出SA連接的信號線中被串聯地電路連接。串聯連接可以像圖4中圖示的三個諧振器那樣在端子T1和T2之間完成。The first number of BAW resonators SR are circuit-connected in series in the signal line connecting the input SE to the output SA. A series connection can be done between terminals T1 and T2 like the three resonators illustrated in FIG. 4 .

第二數量的BAW諧振器PR在分流線中被電路連接,該分流線與信號線並聯地電路連接並且被連接到信號線中的節點。環繞的虛線表明該佈置的諧振器是在共同晶片CH上實現的。A second number of BAW resonators PR are circuit-connected in shunt lines that are circuit-connected in parallel with the signal lines and connected to nodes in the signal lines. The encircling dashed line indicates that the resonators of this arrangement are realized on the common wafer CH.

本發明的範疇由請求項限定並且可以不受限於僅能示出單個實現的實施例和附圖,其中許多其他的實施例和修改是可能的並且落入本發明的範疇內。The scope of the invention is defined by the claims and may not be limited to the embodiments and drawings, which illustrate only a single implementation, many other embodiments and modifications are possible and fall within the scope of the invention.

AS‧‧‧聲學反射鏡BE‧‧‧底部電極CH‧‧‧共同晶片CL‧‧‧連接線CL'‧‧‧連接線DE‧‧‧電媒體HI‧‧‧高阻抗層IC‧‧‧互連LI‧‧‧低阻抗層PR1‧‧‧BAW諧振器PR3‧‧‧BAW諧振器PS‧‧‧壓電層RES‧‧‧微聲學BAW諧振器SA‧‧‧輸出SE‧‧‧輸入SR1‧‧‧BAW諧振器SR2‧‧‧BAW諧振器SR3‧‧‧BAW諧振器ST1‧‧‧第一疊層ST2‧‧‧第二疊層SU‧‧‧襯底T1‧‧‧端子T2‧‧‧端子T3‧‧‧端子TE‧‧‧頂部電極AS‧‧‧Acoustic mirror BE‧‧‧Bottom electrode CH‧‧‧Common chip CL‧‧‧Connecting line CL'‧‧‧Connecting line DE‧‧‧Electrical medium HI‧‧‧High impedance layer IC‧‧‧Interconnect Connect LI‧‧‧low impedance layer PR1‧‧‧BAW resonator PR3‧‧‧BAW resonator PS‧‧‧piezoelectric layer RES‧‧‧micro-acoustic BAW resonator SA‧‧‧output SE‧‧‧input SR1‧ ‧‧BAW resonator SR2‧‧‧BAW resonator SR3‧‧‧BAW resonator ST1‧‧‧First stack ST2‧‧‧Second stack SU‧‧‧Substrate T1‧‧‧Terminal T2‧‧‧ Terminal T3‧‧‧Terminal TE‧‧‧Top Electrode

將關於一些實施例和附圖更詳細地解釋本發明。這些附圖僅是示意性的並且未按比例繪製。因此,無論是相對的還是絕對的尺寸都不能從附圖中得到。The invention will be explained in more detail with respect to some embodiments and figures. The figures are only schematic and not drawn to scale. Therefore, neither relative nor absolute dimensions can be derived from the drawings.

圖1圖示從現有技術已知的傳統BAW裝置。Figure 1 illustrates a conventional BAW device known from the prior art.

圖2圖示根據本發明第一實施例的BAW裝置。FIG. 2 illustrates a BAW device according to a first embodiment of the present invention.

圖3圖示根據本發明第一實施例的BAW裝置。FIG. 3 illustrates a BAW device according to a first embodiment of the present invention.

圖4圖示根據本發明第二實施例的具有若干BAW諧振器的電路的BAW裝置。Figure 4 illustrates a BAW device with a circuit of several BAW resonators according to a second embodiment of the present invention.

圖5圖示具有若干BAW諧振器的電路的BAW裝置的方塊圖。Figure 5 illustrates a block diagram of a BAW device with a circuit of several BAW resonators.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in the order of storage institution, date and number) None

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of deposit country, institution, date and number) None

T1‧‧‧端子 T1‧‧‧terminal

TE‧‧‧頂部電極 TE‧‧‧Top Electrode

RES‧‧‧微聲學BAW諧振器 RES‧‧‧Microacoustic BAW Resonator

LI‧‧‧低阻抗層 LI‧‧‧Low impedance layer

HI‧‧‧高阻抗層 HI‧‧‧High impedance layer

AS‧‧‧聲學反射鏡 AS‧‧‧Acoustic Mirror

ST1‧‧‧第一疊層 ST1‧‧‧First stack

BE‧‧‧底部電極 BE‧‧‧Bottom Electrode

PS‧‧‧壓電層 PS‧‧‧piezoelectric layer

Claims (12)

一種具有一微聲學BAW諧振器的裝置,包括:-一頂部電極;-一壓電層;-一底部電極;-一襯底,在該底部電極之下;以及-一導電結構,該導電結構被佈置在該襯底和該底部電極之間,該導電結構引導電流從該底部電極離開去往該襯底,其中該導電結構包括交替的第一導電層和第二導電層的一第一疊層,且其中該裝置進一步包含兩個或多個BAW諧振器,每個BAW諧振器被佈置在一單獨的第一疊層上方,以及一連接線,該連接線被構造在該第一疊層中的最低導電層中的一或多個層中,並且在遠離該底部電極的一平面中電連接兩個第一疊層。 A device having a micro-acoustic BAW resonator comprising: - a top electrode; - a piezoelectric layer; - a bottom electrode; - a substrate, below the bottom electrode; and - a conductive structure, the conductive structure Disposed between the substrate and the bottom electrode, the conductive structure conducts current away from the bottom electrode to the substrate, wherein the conductive structure includes a first stack of alternating first and second conductive layers layer, and wherein the device further comprises two or more BAW resonators, each BAW resonator being arranged over a separate first stack, and a connecting line constructed on the first stack in one or more of the lowest conductive layers in and electrically connect the two first stacks in a plane remote from the bottom electrode. 根據請求項1之裝置,其中該第一導電層具有一相對低的聲學阻抗,且該第二導電層具有一相對高的聲學阻抗。 The device of claim 1, wherein the first conductive layer has a relatively low acoustic impedance, and the second conductive layer has a relatively high acoustic impedance. 根據請求項1之裝置,其中該第一疊層形成一聲學反射鏡,該聲學反射鏡用於將聲波反射回該微聲學BAW諧振器的一高能量聲學區域中。 The apparatus of claim 1, wherein the first stack forms an acoustic mirror for reflecting sound waves back into a high energy acoustic region of the microacoustic BAW resonator. 根據請求項1之裝置,其中該第一疊層被嵌入在一介電質的一層中,至少該第一疊層的側表面被 該介電質橫向包圍。 The device of claim 1, wherein the first stack is embedded in a layer of dielectric, at least the side surfaces of the first stack are The dielectric surrounds laterally. 根據請求項1之裝置,其中在佈置於該第一疊層的最低導電層正下方的一單獨導電層中構造一第二連接線,該第二連接線比最低的第一導電層或第二導電層厚。 The apparatus of claim 1, wherein a second connection line is constructed in a separate conductive layer disposed directly below the lowermost conductive layer of the first stack, the second connection line being longer than the lowermost first conductive layer or the second connection line The conductive layer is thick. 根據請求項1之裝置,其中該第一導電層包括多晶矽、石墨、鋁、一導電氧化物和一摻雜半導體之一。 The device of claim 1, wherein the first conductive layer comprises one of polysilicon, graphite, aluminum, a conductive oxide, and a doped semiconductor. 根據請求項1之裝置,其中該第二導電層包括W、WC、WN、SiC、Mo、Mo2N、Ir、Au、Pt、Rh、Re、Ru、Ta、HfN和銅基合金之一。 The device of claim 1, wherein the second conductive layer comprises one of W, WC, WN, SiC, Mo, Mo2N , Ir, Au, Pt, Rh, Re, Ru, Ta, HfN, and a copper-based alloy. 根據請求項1之裝置,該裝置進一步包括:具有導電層的一第二疊層,該第二疊層被佈置在該頂部電極之上並且與該頂部電極直接接觸,並且形成一頂部聲學反射鏡。 The apparatus of claim 1, further comprising: a second stack having a conductive layer, the second stack being disposed over and in direct contact with the top electrode and forming a top acoustic mirror . 根據請求項8之裝置,其中-該第二疊層被橫向嵌入在一另一介電質層中,以及-從該第二疊層的導電層中的一頂部導電層構造的一第二連接線,用於在該頂部電極之上並遠離該頂部電極的一平面處電連接兩個第二疊層。 Apparatus according to claim 8, wherein - the second stack is laterally embedded in a further dielectric layer, and - a second connection is constructed from a top conductive layer of the conductive layers of the second stack Wires for electrically connecting the two second stacks at a plane above the top electrode and remote from the top electrode. 一種濾波器,包括根據前述請求項之一所述的裝置, 其中該裝置的一第一數量的BAW諧振器在一信號線中被串聯地電路連接,以及其中該裝置的一第二數量的BAW諧振器在與該信號線並聯的分流線中被電路連接。 A filter comprising the device according to one of the preceding claims, wherein a first number of BAW resonators of the device are circuit-connected in series in a signal line, and wherein a second number of BAW resonators of the device are circuit-connected in a shunt line in parallel with the signal line. 一種雙工器,該雙工器包括一第一濾波器和一第二濾波器,其中該第一濾波器是根據前述請求項10所述的濾波器。 A duplexer comprising a first filter and a second filter, wherein the first filter is the filter according to claim 10 above. 根據請求項11之雙工器,其中該第二濾波器是一SAW濾波器、一FBAR濾波器或一Lamb波裝置。 The duplexer of claim 11, wherein the second filter is a SAW filter, a FBAR filter or a Lamb wave device.
TW106141571A 2016-12-13 2017-11-29 Baw resonator device TWI753055B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016124236.5 2016-12-13
??102016124236.5 2016-12-13
DE102016124236.5A DE102016124236B4 (en) 2016-12-13 2016-12-13 BAW resonator

Publications (2)

Publication Number Publication Date
TW201830695A TW201830695A (en) 2018-08-16
TWI753055B true TWI753055B (en) 2022-01-21

Family

ID=60629846

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141571A TWI753055B (en) 2016-12-13 2017-11-29 Baw resonator device

Country Status (3)

Country Link
DE (1) DE102016124236B4 (en)
TW (1) TWI753055B (en)
WO (1) WO2018111532A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117520B3 (en) * 2018-07-19 2019-12-05 RF360 Europe GmbH RF filter device
CN114208031A (en) * 2019-07-31 2022-03-18 丘克斯奥尼克斯公司 Acoustic device structures, filters, and systems
CN111010123B (en) * 2019-10-23 2021-06-01 诺思(天津)微系统有限责任公司 Bulk acoustic wave resonator, filter, and electronic device having electrode with void layer and protrusion structure
US11916537B2 (en) 2020-10-28 2024-02-27 Rf360 Singapore Pte. Ltd. Electroacoustic device with conductive acoustic mirrors
FR3130102B1 (en) * 2021-12-06 2024-01-12 Commissariat Energie Atomique Volume acoustic wave device and method for producing such a device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227581A2 (en) * 2001-01-16 2002-07-31 Nokia Corporation Bulk acoustic wave resonator with a conductive acoustic mirror
TW200509525A (en) * 2002-11-07 2005-03-01 Infineon Technologies Ag Acoustic reflector for a BAW resonator
US20060119230A1 (en) * 2004-12-07 2006-06-08 Keiichi Umeda Piezoelectric thin-film resonator and process for producing same
TW200931800A (en) * 2007-10-12 2009-07-16 Avago Technologies Wireless Ip Bulk acoustic wave device
TW201216619A (en) * 2010-10-11 2012-04-16 Richwave Technology Corp Bulk acoustic wave resonator and bulk acoustic wave filter and method of fabricating bulk acoustic wave resonator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147075A1 (en) * 2001-09-25 2003-04-30 Infineon Technologies Ag Piezoelectric component and method for its production
JP2008172711A (en) * 2007-01-15 2008-07-24 Hitachi Media Electoronics Co Ltd Thin film bulk acoustic wave resonator, filter, and high frequency module using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227581A2 (en) * 2001-01-16 2002-07-31 Nokia Corporation Bulk acoustic wave resonator with a conductive acoustic mirror
TW200509525A (en) * 2002-11-07 2005-03-01 Infineon Technologies Ag Acoustic reflector for a BAW resonator
US20060119230A1 (en) * 2004-12-07 2006-06-08 Keiichi Umeda Piezoelectric thin-film resonator and process for producing same
TW200931800A (en) * 2007-10-12 2009-07-16 Avago Technologies Wireless Ip Bulk acoustic wave device
TW201216619A (en) * 2010-10-11 2012-04-16 Richwave Technology Corp Bulk acoustic wave resonator and bulk acoustic wave filter and method of fabricating bulk acoustic wave resonator

Also Published As

Publication number Publication date
DE102016124236A1 (en) 2018-06-14
WO2018111532A1 (en) 2018-06-21
DE102016124236B4 (en) 2018-07-26
TW201830695A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
TWI753055B (en) Baw resonator device
WO2021077711A1 (en) Bulk acoustic wave resonator having electrode having gap layer, and filter and electronic device
US9444428B2 (en) Film bulk acoustic resonators comprising backside vias
KR101543812B1 (en) Bulk acoustic wave structure with aluminum copper nitride piezoelectric layer and related method
US9099983B2 (en) Bulk acoustic wave resonator device comprising a bridge in an acoustic reflector
JP4940148B2 (en) Components operating on surface acoustic waves with high bandwidth
JP4924993B2 (en) Thin film piezoelectric resonator and manufacturing method thereof
JP4688070B2 (en) Piezoelectric thin film resonator, piezoelectric thin film device, and manufacturing method thereof
US7554422B2 (en) Filter module using piezoelectric resonators, duplexer, communication device, and method for fabricating filter module
KR20180117466A (en) Bulk acoustic wave resonator
JP4775445B2 (en) Thin film piezoelectric resonator and thin film piezoelectric filter
WO2021077716A1 (en) Bulk acoustic resonator, filter, and electronic device
WO2021042740A1 (en) Bulk acoustic wave resonator and manufacturing method therefor, filter and electronic device
US8536764B2 (en) Arrangement of a piezoacoustic resonator on an acoustic mirror of a substrate, method for producing the arrangement and use of the arrangement
JP2004120016A (en) Filter
KR101942734B1 (en) Bulk-acoustic wave resonator
JP4895323B2 (en) Thin film piezoelectric resonator
TWI723606B (en) Acoustic resonator and method of manufacturing thereof
CN111327290B (en) Acoustic wave resonator and method for manufacturing the same
JP2007228190A (en) Bulk elastic wave resonance element, manufacturing method therefor and filter circuit
CN112688659A (en) Bulk acoustic wave resonator
KR20210023944A (en) Acoustic resonator
CN112087215B (en) Bulk acoustic wave resonator
JP2006067271A (en) Thin film surface acoustic wave device, manufacturing method thereof and packaged thin-film surface acoustic wave unit
KR20200076555A (en) Acoustic resonator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees