TWI752644B - Internet of things vehicle control system and internet of things vehicle control method - Google Patents
Internet of things vehicle control system and internet of things vehicle control method Download PDFInfo
- Publication number
- TWI752644B TWI752644B TW109132861A TW109132861A TWI752644B TW I752644 B TWI752644 B TW I752644B TW 109132861 A TW109132861 A TW 109132861A TW 109132861 A TW109132861 A TW 109132861A TW I752644 B TWI752644 B TW I752644B
- Authority
- TW
- Taiwan
- Prior art keywords
- input value
- vehicle body
- vehicle
- control
- internet
- Prior art date
Links
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
本發明涉及一種控制系統及控制方法,尤其涉及一種物聯網車輛控制系統及物聯網車輛控制方法。 The invention relates to a control system and a control method, in particular to an Internet of Things vehicle control system and an Internet of Things vehicle control method.
目前車輛的行駛方式大多是採用人工駕駛,而駕駛員於駕駛過程中時,可能會因為生理上的精神不濟或突發疾病而發生車輛事故。因此,現有的物聯網車輛控制系統能以自動駕駛方式解決人工駕駛帶來的問題。 At present, the driving mode of vehicles is mostly manual driving, and the driver may have a vehicle accident due to physical mental weakness or sudden illness during the driving process. Therefore, the existing IoT vehicle control system can solve the problems caused by manual driving in an automatic driving manner.
然而,現有的物聯網車輛控制系統雖然能以自動駕駛方式駕駛車輛,但當駕駛員於車輛上發生身體不適的情況時,現有的物聯網車輛控制系統無法察覺駕駛員的情況,而仍繼續依照原規劃路徑自動行駛。舉例來說,駕駛員於預先設定路程時間為五個小時的路線,若當駕駛員上路沒多久就突發心臟不適而無法請求協助或控制車輛時,現有的物聯網車輛控制系統仍依據預先設定路程行徑,導致駕駛員會受困於車中五個小時而錯失急救的黃金時間。 However, although the existing IoT vehicle control system can drive the vehicle in an automatic driving manner, when the driver is physically unwell in the vehicle, the existing IoT vehicle control system cannot detect the driver's condition, and continues to follow the The original planned route is automatically driven. For example, if the driver is on a route with a preset travel time of five hours, if the driver suddenly suffers from cardiac discomfort and cannot request assistance or control the vehicle, the existing IoT vehicle control system is still based on the preset. Driving on the road, the driver will be trapped in the car for five hours and miss the prime time for first aid.
也就是說,現有的物聯網車輛控制系統仍缺乏對於駕駛員的生理狀況的監測及應變,因此,此問題便成為現有的物聯網車輛控制系統的重要課題。 That is to say, the existing Internet of Things vehicle control system still lacks monitoring and response to the driver's physiological condition. Therefore, this problem has become an important subject of the existing Internet of Things vehicle control system.
於是,本發明人認為上述缺陷可改善,乃特潛心研究並配合科學原理的運用,終於提出一種設計合理且有效改善上述缺陷的本發明。 Therefore, the inventor believes that the above-mentioned defects can be improved. Nate has devoted himself to research and application of scientific principles, and finally proposes an invention with reasonable design and effective improvement of the above-mentioned defects.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種物聯網車輛控制系統及物聯網車輛控制方法,能準確地自動駕駛車輛且能根據駕駛員的生理狀況進行應變。 The technical problem to be solved by the present invention is to provide an Internet of Things vehicle control system and an Internet of Things vehicle control method in view of the deficiencies of the prior art, which can automatically drive the vehicle accurately and respond to the driver's physiological condition.
本發明實施例公開一種物聯網車輛控制系統,用以安裝於一車體上,所述物聯網車輛控制系統包括:一控制組件,電性連接所述車體的一驅動單元,所述控制組件能控制所述驅動單元的驅動所述車體的一輪組的轉動方向及轉動速度,所述控制組件包含有:一影像感測模組,設置於所述車輛上,所述影像感測模組偵測所述車體的環境產生一影像資訊;一類神經模組,分析所述影像資訊並篩選出一第一輸入值、一第二輸入值及一第三輸入值,所述第一輸入值為判定所述車輛進行減速的參數,所述第二輸入值為判定所述車輛進行加速的參數,所述第三輸入值為利用所述第二輸入值所取得最佳化所述車輛進行加速的參數;及一控制模組,電性連接所述類神經模組,所述控制模組包含有:一比例控制單元,接收所述第一輸入值,所述比例控制單元利用所述第一輸入值產生一減速命令,所述減速命令用以控制所述驅動單元驅動所述輪組減速;一積分控制單元,接收所述第二輸入值,所述積分控制單元利用所述第二輸入值產生一加速命令,所述加速命令用以控制所述驅動單元驅動所述輪組加速;及一微分控制單元,接收所述第三輸入值,所述微分控制單元利用所述第三輸入值產生一最佳化命令,所述最佳化命令用以最佳化所述驅動單元於接收所述加速命令後驅動所述輪組的加速變化;一脈搏感測裝置,電性連接所述控制組件,所述脈搏感測裝置用以偵測所述 車體內的駕駛員的脈搏產生一即時脈搏資訊;以及一經緯定位裝置,電性連接所述控制組件,所述經緯定位裝置能定位所述車體位置並具有多個救護經緯位置,多個所述救護經緯位置能用以供所述控制組件確認緊急救護的位置;其中,所述脈搏感測裝置於偵測所述即時脈搏資訊低於正常值時,所述控制組件的所述類神經模組利用所述經緯定位裝置的多個所述救護經緯位置篩選距離最近的一個所述緊急救護經緯位置,從而供所述控制組件的所述控制模組控制所述車輛前往;一雲端裝置,能網路接收所述影像資訊及所述即時脈搏資訊。 An embodiment of the present invention discloses an Internet of Things vehicle control system, which is installed on a vehicle body. The Internet of Things vehicle control system includes: a control component, a drive unit electrically connected to the vehicle body, and the control component It can control the rotation direction and rotation speed of the wheel group of the driving unit that drives the vehicle body. The control assembly includes: an image sensing module, which is arranged on the vehicle, and the image sensing module Detecting the environment of the vehicle body to generate an image information; a type of neural module analyzes the image information and filters out a first input value, a second input value and a third input value, the first input value In order to determine the parameter for decelerating the vehicle, the second input value is a parameter for determining the acceleration of the vehicle, and the third input value is obtained by using the second input value to optimize the acceleration of the vehicle and a control module electrically connected to the neural-like module, the control module includes: a proportional control unit that receives the first input value, and the proportional control unit utilizes the first input value The input value generates a deceleration command, and the deceleration command is used to control the drive unit to drive the wheel set to decelerate; an integral control unit receives the second input value, and the integral control unit uses the second input value generating an acceleration command, the acceleration command is used to control the driving unit to drive the wheel set to accelerate; and a differential control unit, receiving the third input value, the differential control unit generates the third input value by using the differential control unit an optimization command, the optimization command is used to optimize the acceleration change of the drive unit driving the wheel set after receiving the acceleration command; a pulse sensing device, electrically connected to the control component , the pulse sensing device is used to detect the The pulse of the driver in the vehicle body generates a real-time pulse information; and a latitude and longitude positioning device is electrically connected to the control assembly, the longitude and latitude positioning device can locate the position of the vehicle body and has a plurality of ambulance latitude and longitude positions, and a plurality of all the latitude and longitude positions. The rescue latitude and longitude position can be used for the control component to confirm the emergency rescue position; wherein, when the pulse sensing device detects that the real-time pulse information is lower than a normal value, the neural model of the control component The group utilizes a plurality of the rescue longitude and latitude positions of the longitude and latitude positioning device to screen the nearest emergency rescue longitude and latitude position, so that the control module of the control assembly can control the vehicle to go; a cloud device capable of The network receives the image information and the real-time pulse information.
本發明實施例另外公開一種物聯網車輛控制方法,用以控制一車體,所述方法包括以下步驟:實施一狀態監測步驟:取得所述車體的一駕駛員的一即時脈搏資訊;實施一狀態判斷步驟:判斷所述即時脈搏資訊的脈搏是否低於正常值;若是,接著實施下一步驟;若否,實施所述狀態監測步驟;實施一位置確認步驟:取得所述車體的目前所在經緯度位置;實施一救護位置搜尋步驟:確認目前距離所述車體最近的一救護經緯位置;實施一規劃路線步驟:規劃所述車體前往所述救護經緯位置的一行進路線;實施一感知環境步驟:取得所述車體周圍環境的一影像資訊;實施一資訊篩選步驟:篩選所述影像資訊以產生一第一輸入值、一第二輸入值及一第三輸入值;其中,所述第一輸入值為判定所述車體進行減速的參數,所述第二輸入值為判定所述車體進行加速的參數,所述第三輸入值為利用所述第二輸入值所取得最佳化所述車體進行加速的參數;實施一參數輸入步驟:輸入所述第一輸入值、所述第二輸入值、及所述第三輸入值至一FOPID控制器(FOPID controller);其中,所述第一輸入值作為比例運算的一減速參數,所述第二輸入值作為積分運算的一加速參數,所述第三輸入值作為微分運算的一最佳化參數;及實施一整合判定步驟:利用所述第一輸入值、所述第二輸入值及 所述第三輸入值命令所述車體沿著所述行進路線移動。 An embodiment of the present invention further discloses a method for controlling an Internet of Things vehicle, which is used to control a vehicle body. The method includes the following steps: implementing a state monitoring step: obtaining real-time pulse information of a driver of the vehicle body; implementing a Status judgment step: judging whether the pulse of the real-time pulse information is lower than the normal value; if so, then implement the next step; if not, implement the state monitoring step; implement a position confirmation step: obtain the current location of the vehicle body Longitude and latitude position; implementing a rescue location search step: confirming a current ambulance latitude and longitude position closest to the vehicle body; implementing a route planning step: planning a travel route of the vehicle body to the ambulance latitude and longitude position; implementing a perception environment Steps: obtaining an image information of the surrounding environment of the vehicle body; implementing an information screening step: filtering the image information to generate a first input value, a second input value and a third input value; wherein, the first input value An input value is a parameter for determining the deceleration of the vehicle body, the second input value is a parameter for determining the acceleration of the vehicle body, and the third input value is an optimization obtained by using the second input value parameters for the acceleration of the vehicle body; implement a parameter input step: input the first input value, the second input value, and the third input value to a FOPID controller (FOPID controller); wherein, the The first input value is used as a deceleration parameter of the proportional operation, the second input value is used as an acceleration parameter of the integral operation, and the third input value is used as an optimization parameter of the differential operation; and implement an integration determination step: using the first input value, the second input value and The third input value commands the vehicle body to move along the route of travel.
綜上所述,本發明實施例所公開的物聯網車輛控制系統及物聯網車輛控制方法,其能通過“所述影像感測模組取得所述車體周圍的所述影像資訊,並由所述類神經模組篩選各個輸入值後供所述控制模組控制所述車體”以及“所述脈搏感測裝置於偵測所述即時脈搏資訊低於正常值時,所述類神經模組篩選距離最近的一個所述緊急救護經緯位置,以供所述控制模組控制所述車輛前往”的技術方案,從而讓駕駛所述車體的所述駕駛員能於發生無法駕駛的生理狀況時即時就醫。 To sum up, the Internet of Things vehicle control system and the Internet of Things vehicle control method disclosed in the embodiments of the present invention can obtain the image information around the vehicle body through "the image sensing module, and use the The neural module filters each input value for the control module to control the vehicle body” and “When the pulse sensing device detects that the real-time pulse information is lower than the normal value, the neural module The technical solution of screening the nearest emergency ambulance latitude and longitude position for the control module to control the vehicle to go”, so that the driver who drives the vehicle body can be in a physiological condition that cannot drive. Seek immediate medical attention.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 For a further understanding of the features and technical content of the present invention, please refer to the following detailed descriptions and drawings of the present invention. However, the drawings provided are only for reference and description, and are not intended to limit the present invention.
100:物聯網車輛控制系統 100: IoT Vehicle Control System
110:控制組件 110: Control Components
111:影像感測模組 111: Image sensing module
112:類神經模組 112: Neural-like modules
113:控制模組 113: Control Module
1131:比例控制單元 1131: Proportional Control Unit
1132:積分控制單元 1132: Integral control unit
1133:微分控制單元 1133: Differential Control Unit
114:雷達感測模組 114: Radar Sensing Module
120:脈搏感測裝置 120: Pulse Sensing Device
121:脈搏偵測模組 121: Pulse detection module
122:通訊模組 122: Communication module
130:經緯定位裝置 130: latitude and longitude positioning device
140:傳輸裝置 140: Transmission device
150:警示組件 150: Warning component
160:眼球感測裝置 160: Eye Sensing Device
170:腦波穿戴裝置 170: Brainwave Wearable Device
180:雲端裝置 180: Cloud Device
200:車體 200: body
210:驅動單元 210: Drive unit
220:輪組 220: Wheels
P:駕駛員 P: driver
V1:第一輸入值 V1: first input value
V2:第二輸入值 V2: Second input value
V3:第三輸入值 V3: The third input value
VD:影像資訊 VD: Video Information
DT:距離資訊 DT: Distance information
D1:減速命令 D1: Deceleration command
D2:加速命令 D2: Speed up command
D3:最佳化命令 D3: Optimization command
RP:即時脈搏資訊 RP: Real-time pulse information
RB:即時腦波資訊 RB: real-time brainwave information
RE:即時眼球資訊 RE: Real-time eyeball information
LA:救護經緯位置 LA: ambulance latitude and longitude position
WR:救護警示 WR: Ambulance Alert
PTH:行進路線 PTH: route of travel
S101~S119、S103A:步驟 S101~S119, S103A: Steps
圖1為本發明第一實施例的物聯網車輛控制系統配合車輛的電路方塊示意圖。 FIG. 1 is a schematic block diagram of a circuit of an IoT vehicle control system in cooperation with a vehicle according to a first embodiment of the present invention.
圖2為本發明第一實施例的物聯網車輛控制系統配合車輛的功能方塊示意圖。 FIG. 2 is a functional block diagram of the IoT vehicle control system matching the vehicle according to the first embodiment of the present invention.
圖3為本發明第一實施例的物聯網車輛控制系統取得影像資訊時的狀態示意圖。 FIG. 3 is a schematic diagram of the state when the IoT vehicle control system obtains image information according to the first embodiment of the present invention.
圖4為本發明第一實施例的駕駛員穿戴脈搏感測裝置且駕駛車體時的狀態示意圖。 FIG. 4 is a schematic diagram of a state when a driver wears a pulse sensing device and drives a vehicle body according to the first embodiment of the present invention.
圖5為本發明第一實施例的物聯網車輛控制系統於規劃行進路線時的狀態示意圖。 FIG. 5 is a schematic state diagram of the Internet of Things vehicle control system when planning a travel route according to the first embodiment of the present invention.
圖6為本發明第二實施例的物聯網車輛控制系統配合車輛的電 路方塊示意圖。 FIG. 6 is a second embodiment of the Internet of Things vehicle control system in coordination with the electrical power of the vehicle. Road block diagram.
圖7為本發明第二實施例的物聯網車輛控制系統配合車輛的功能方塊示意圖。 FIG. 7 is a functional block diagram of an IoT vehicle control system in coordination with a vehicle according to a second embodiment of the present invention.
圖8為本發明第二實施例的物聯網車輛控制系統取得影像資訊及距離訊息時的狀態示意圖。 FIG. 8 is a schematic diagram of the state when the IoT vehicle control system according to the second embodiment of the present invention acquires image information and distance information.
圖9為本發明第二實施例的駕駛員穿戴脈搏感測裝置、眼球感測裝置及腦波穿戴裝置時的狀態示意圖。 9 is a schematic diagram of a state when a driver wears a pulse sensing device, an eyeball sensing device, and a wearable brainwave device according to a second embodiment of the present invention.
圖10為本發明第三實施例的物聯網車輛控制方法的流程方塊示意圖。 FIG. 10 is a schematic block diagram of a flow chart of a method for controlling an Internet of Things vehicle according to a third embodiment of the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關“物聯網車輛控制系統及物聯網車輛控制方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本創作的優點與效果。本創作可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本創作的構思下進行各種修改與變更。另外,本創作的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。此外,以下如有指出請參閱特定圖式或是如特定圖式所示,其僅是用以強調於後續說明中,所述及的相關內容大部份出現於該特定圖式中,但不限制該後續說明中僅可參考所述特定圖式。以下的實施方式將進一步詳細說明本創作的相關技術內容,但所公開的內容並非用以限制本創作的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。 The following are specific specific examples to illustrate the embodiments of the “Internet of Things vehicle control system and the Internet of Things vehicle control method” disclosed in the present invention. Those skilled in the art can understand the advantages and effects of this creation from the content disclosed in this specification. . This creation can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of this creation. In addition, the drawings in this creation are only for simple schematic illustration, and are not drawn according to the actual size, and are stated in advance. In addition, if it is indicated below to refer to a specific figure or as shown in a specific figure, it is only used for emphasis in the subsequent description, and most of the relevant content mentioned appears in the specific figure, but not Reference in this ensuing description is limited to those specific drawings. The following embodiments will further describe the related technical contents of the present creation in detail, but the disclosed contents are not intended to limit the protection scope of the present creation. In addition, the term "or", as used herein, should include any one or a combination of more of the associated listed items, as the case may be.
如圖1至圖5所示,其為本發明的第一實施例。參閱圖1及圖2所示,本實施例公開一種物聯網車輛控制系統100,所述物聯網車輛控制系統100是用以安裝於一車體200上,所述車體200於本實施例中為電動車並具有一驅動單元210及受所述驅動單元210驅動的一輪組220。
As shown in FIG. 1 to FIG. 5 , it is the first embodiment of the present invention. Referring to FIG. 1 and FIG. 2 , the present embodiment discloses an IoT
所述物聯網車輛控制系統100包括有一控制組件110、一脈搏感測裝置120、一經緯定位裝置130、一傳輸裝置140、及一警示組件150、一雲端裝置180。具體來說,所設物聯網車輛控制系統100能根據所述脈搏感測裝置120確認駕駛所述車體200的一駕駛員P(如圖4所示)的生理狀況,並通過所述控制組件110配合所述經緯定位裝置130控制所述車體200自動行駛至救護單位(例如:醫院)就醫。換個角度說,任何不具有能確認駕駛員的生理狀況並自動駕駛車輛至救護單位就醫的物聯網車輛控制系統,並非本發明所指的物聯網車輛控制系統100。以下將分別介紹所述物聯網車輛控制系統100的各個元件構造,並適時說明所述物聯網車輛控制系統100的各個元件彼此之間的連接關係。
The IoT
所述控制組件110電性連接所述車體200的所述驅動單元210,所述控制組件110能控制所述驅動單元210的驅動所述車體200的所述輪組220的轉動方向及轉動速度。也就是說,所述控制組件110是控制所述車體200移動的主要構件。所述控制組件110包含有一影像感測模組111、一類神經模組112及一控制模組113。
The
配合圖1至圖3所示,所述影像感測模組111設置於所述車體200上,所述影像感測模組111偵測所述車體200的環境產生一影像資訊VD。具體來說,所述影像感測模組111於本實施例中為多個影像辨識器所組成並設置於所述車體200的四周,每個所述影像辨識器能擷取所述車體200的周圍環境以產生一影像畫面,而多個所述影像畫面共同組成所述影像資訊VD。
As shown in FIGS. 1 to 3 , the
所述類神經模組112分析所述影像資訊VD並篩選出一第一輸入值V1、一第二輸入值V2及一第三輸入值V3,所述第一輸入值V1為判定所述車體200進行減速的參數,所述第二輸入值V2為判定所述車體200進行加速的參數,所述第三輸入值V3為利用所述第二輸入值V2所取得最佳化所述車體200加速的參數。
The neural-
具體來說,所述類神經模組112於本實施例中為人工神經網路(Artificial Neural Network),所述類神經模組112是通過一個基於數學統計學類型的學習方法得以最佳化,需強調的是,通過數學統計學的應用可以來做人工感知方面的決定問題,也就是經由統計學的方法,所述類神經模組112能夠類似人一樣具有簡單的決定能力和簡單的判斷能力。
Specifically, the neural-
舉例來說,所述影像感測模組111所偵測產生的所述影像資訊VD為一人員於所述車體200行進馬路中的中央行走時的影像內容,所述類神經模組112經影像辨識後判定人員與所述車體200的距離於小於一百公尺時,所述類神經模組112篩選所述影像資訊VD的中的影像參數(例如:陰影長短及變化)作為所述第一輸入值V1,以作為判定所述車體200進行減速的參數。需說明的是,作為判定所述車體200進行加速的參數的所述第二輸入值V2及最佳化所述車體200加速的參數的所述第三輸入值V3,也是以上述相似方式進行篩選判定,故不再舉例說明。
For example, the image information VD detected and generated by the
所述控制模組113電性連接所述類神經模組112,所述控制模組113於本實施例中為FOPID控制器(FOPID controller)並包含有一比例控制單元1131、一積分控制單元1132及一微分控制單元1133。
The
所述比例控制單元1131接收所述第一輸入值V1,所述比例控制單元1131利用所述第一輸入值V1產生一減速命令D1,所述減速命令D1用以控制所述驅動單元210驅動所述輪組220減速。舉例來說,所述第一輸入值V1輸
入至所述比例控制單元1131,所述比例控制單元1131能產生為減速至時速三十公里的所述減速命令D1,所述比例控制單元1131會對所述驅動單元210發出所述減速命令D1,使所述驅動單元210驅動所述輪組220減速,從而讓所述車體200的車速降至時速三十公里,而當所述車體200的時速為三十公里時,所述比例控制單元1131則停止發出所述減速命令D1。
The
所述積分控制單元1132接收所述第二輸入值V2,所述積分控制單元1132利用所述第二輸入值V2產生一加速命令D2,所述加速命令D2用以控制所述驅動單元210驅動所述輪組220加速。舉例來說,所述第二輸入值V2輸入至所述積分控制單元1132,所述積分控制單元1132能產生為加速至時速五十公里的所述加速命令D2,所述積分控制單元1132會對所述驅動單元210發出所述減速命令D1,使所述驅動單元210驅動所述輪組220加速,從而讓所述車體200的車速加速時速五十公里,而當所述車體200的時速為五十公里時,所述積分控制單元1132則停止發出所述加速命令D2。
The
另外需說明的是,所述比例控制單元1131若輸入的所述第一輸入值V1較大(也就是比例較大)時,會導致所述比例控制單元1131於控制所述車體200減速的過程中,車速產生一定的車速變化的震盪範圍(例如:震盪範圍介於每小時25至31公里之間),而無法精確保持至所述減速命令D1所欲達到的車速(例如:每小時30公里),因此,配合所述積分控制單元1132能縮小並穩定所述比例控制單元1131於車速變化的震盪範圍(例如:當車速低於每小時30公里時,所述積分控制單元1132提升車速),從而使所述車體200的車速更趨近於所欲達到的車速,例如。
In addition, it should be noted that if the first input value V1 input by the
所述微分控制單元1133接收所述第三輸入值V3,所述微分控制單元1133利用所述第三輸入值V3產生一最佳化命令D3,所述最佳化命令D3用以最佳化所述驅動單元210於接收所述加速命令後驅動所述輪組220的加速
變化。具體來說,不管是所述驅動單元210於接收所述比例控制單元1131的所述減速命令D1或是所述積分控制單元1132的所述加速命令D2,所述車體200的車速變化都是非理想的線性變化,而所述最佳化命令D3能使所述車體200的車速變化更趨近於理想的線性變化。
The
所述脈搏感測裝置120電性連接所述控制組件110,所述脈搏感測裝置120用以偵測所述車體200內的駕駛員的脈搏產生一即時脈搏資訊RP。具體來說,所述脈搏感測裝置120於本實施例中為智慧穿戴手環並具有一脈搏偵測模組121及一通訊模組122,所述脈搏偵測模組121於實務上可以是通過光電容積脈搏波描記法、心電信號法、壓力振蕩法、及圖像信號分析法等方法所使用的模組構件。所述通訊模組122於本實施例中為藍芽通訊器,所述通訊模組122能無線連接所述控制組件110。
The
所述經緯定位裝置130電性連接所述控制組件110,所述經緯定位裝置130能定位所述車體200位置並具有多個救護經緯位置LA,多個所述救護經緯位置LA能用以供所述控制組件110確認緊急救護的位置。所述經緯定位裝置130於本實施例中為全球定位系統(俗稱:GPS定位系統),所述經緯定位裝置130預先設定有為醫院、診所及救護站等多個所述救護經緯位置LA,從而供所述控制組件110使用。
The latitude and
具體來說,配合圖2、圖4及圖5所示,所述脈搏感測裝置120於偵測所述即時脈搏資訊RP低於正常值時,所述控制組件110的所述類神經模組112利用所述經緯定位裝置130的多個所述救護經緯位置LA篩選距離最近的一個所述緊急救護經緯位置LA並規劃出一行進路線PTH,從而供所述控制組件110的所述控制模組113控制所述車體200前往。
Specifically, as shown in FIG. 2 , FIG. 4 and FIG. 5 , when the
所述警示組件150電性連接所述脈搏感測裝置120,所述脈搏感測裝置120於偵測所述即時脈搏資訊RP的脈搏低於正常值時,所述脈搏感測裝
置120命令所述警示組件150發出一救護警示WR。詳細地說,所述警示組件150於本實施例中為具有蜂鳴功能的燈光閃爍裝置,所述警示組件150設置於所述車體200的顯眼位置,例如:車頂,而於所述即時脈搏資訊RP的脈搏低於正常值時,所述警示組件150能為發出蜂鳴及閃爍燈光的所述救護警示WR,從而警示及告知周圍的人車,所述車體200目前有緊急救護的需求。當然,所述警示組件150也可以利用所述車體200既有的遠近光燈、方向燈、喇叭等發出所述救護警示WR。
The
所述傳輸裝置140電性連接所述控制組件110及所述脈搏感測裝置120,所述傳輸裝置140於本實施例中為無線網路通訊裝置,所述傳輸裝置用以能將所述控制組件110的所述影像資訊VD及所述脈搏感測裝置120的所述即時脈搏資訊RP傳送至所述雲端裝置180上紀錄。進一步地說,接收所述影像資訊VD及所述脈搏感測裝置120的所述雲端裝置180是連接多個所述救護經緯位置LA對應的醫療救護單位。當所述脈搏感測裝置120於偵測所述即時脈搏資訊RP的脈搏低於正常值時,所述傳輸裝置140傳送至所述雲端裝置180的所述影像資訊VD及所述即時脈搏資訊RP能供醫療救護單位即時確認所述駕駛員P的脈搏狀況及所述車體200的周圍車況,從而即時做出適當的行為,例如:救護器材的準備、或派遣能排除車況的救護載具(直昇機、救護機車)等。
The
如圖6及圖9所示,其為本發明的第二實施例,本實施例類似於上述第一實施例,兩個實施例的相同處則不再加以贅述,而本實施例相較於上述第一實施例的差異主要在於:配合圖6、圖7及圖9所示,所述物聯網車輛控制系統100更具有電性連接所述控制組件110的所述類神經模組112的一眼球感測裝置160及一
腦波穿戴裝置170。所述眼球感測裝置160及所述腦波穿戴裝置170於本實施例中整合為眼鏡結構以供所述駕駛員P穿戴。所述眼球感測裝置160為鏡片部份,而所述腦波穿戴裝置170則為接觸頭部的鏡架部份。
As shown in FIG. 6 and FIG. 9 , which are the second embodiment of the present invention, this embodiment is similar to the above-mentioned first embodiment, and the similarities between the two embodiments will not be repeated. The difference between the above-mentioned first embodiment mainly lies in that: as shown in FIG. 6 , FIG. 7 and FIG.
進一步地說,所述眼球感測裝置160能感測所述車體200內的駕駛員P的眼球產生一即時眼球資訊RE,而所述腦波穿戴裝置170則能感測所述駕駛員P的腦波產生一即時腦波資訊RB。於實務上,人體於精神渙散及注意力不集中時,人體具有許多生理特徵,例如:眼皮會產生多次眨眼或瞳孔放大、腦波下降等生理特徵,而根據此等特徵所述類神經模組112能由通過所述眼球感測裝置160所產生的所述即時眼球資訊RE及通過所述腦波穿戴裝置170所產生的所述即時腦波資訊RB判定。當所述類神經模組112由所述即時眼球資訊RE判斷所述車體200的所述駕駛員P眼球眨眼次數異常或所述即時腦波資訊RB的腦波異常時,所述控制組件110控制所述車體200的控制權,從而避免所述駕駛員P因精神渙散及注意力不集中而釀成意外。
Further, the
當然,所述即時眼球資訊RE及所述即時腦波資訊RB也能通過所述傳輸裝置140傳輸至所述雲端裝置180記錄。
Of course, the real-time eyeball information RE and the real-time brainwave information RB can also be transmitted to the
另外,復參圖6至圖8所示,所述控制組件110更具有設置於所述車體200上的一雷達感測模組114,所述雷達感測模組114能偵測所述車體200的環境產生一距離資訊DT;所述類神經模組112能分析所述距離資訊DT並篩選出所述第一輸入值V1、所述第二輸入值V2及所述第三輸入值V3,從而提升所述控制組件110於控制所述車體200時的準確度。
In addition, referring back to FIGS. 6 to 8 , the
如圖10所示,其為本發明的第三實施例,本實施例類似於上述第一實施例,兩個實施例的相同處則不再加以贅述,而本實施例相較於上述第一實施例的差異主要在於,本實施例為採用第一實施例的一種物聯網車輛
控制方法,因此需要同時配合圖1至圖5所示,所述物聯網車輛控制方法包含有:一狀態監測步驟S101、一狀態判斷步驟S103、一位置確認步驟S105、一救護位置搜尋步驟S107、一救護通知步驟S109、一規劃路線步驟S111、一感知環境步驟S113、一資訊篩選步驟S115、一參數輸入步驟S117及一整合判定步驟S119。
As shown in FIG. 10 , it is a third embodiment of the present invention. This embodiment is similar to the above-mentioned first embodiment, and the similarities between the two embodiments will not be repeated. Compared with the above-mentioned first embodiment, this embodiment The main difference between the embodiments is that this embodiment is an IoT vehicle using the
所述狀態監測步驟S101:取得所述車體200的所述駕駛員P的所述即時脈搏資訊RP。具體來說,所述即時脈搏資訊RP為所述駕駛員P於當下每分鐘脈搏的跳動次數。
The state monitoring step S101 : obtaining the real-time pulse information RP of the driver P of the
所述狀態判斷步驟S103:判斷所述即時脈搏資訊RP的脈搏是否低於正常值。若是,實施一警示子步驟S103A:發出為聲音及燈光的所述救護警示WR,並接著實施所述位置確認步驟S105。若否,實施所述狀態監測步驟S101。進一步地說,人體正常的脈搏為每分鐘至少必須大於50次以上,也就是說,當所述即時脈搏資訊RP的脈搏低於每分鐘50次時,此時的脈搏為低於正常值,但本發明不受限於本實施例所載。舉例來說,脈搏次數的驟降也是為一種脈搏異常的警訊。 The state judging step S103 : judging whether the pulse of the real-time pulse information RP is lower than a normal value. If yes, implement a warning sub-step S103A: emit the ambulance warning WR as sound and light, and then implement the position confirmation step S105. If not, the state monitoring step S101 is implemented. Further, the normal pulse of the human body must be at least more than 50 times per minute, that is to say, when the pulse of the real-time pulse information RP is lower than 50 times per minute, the pulse at this time is lower than the normal value, but The present invention is not limited to what is contained in this embodiment. For example, a sudden drop in the pulse rate is also a warning sign of an abnormal pulse.
所述位置確認步驟S105:取得所述車體200的目前所在經緯度位置。
The position confirmation step S105 : obtaining the current latitude and longitude position of the
所述救護位置搜尋步驟S107:確認目前距離所述車體200最近的一個所述救護經緯位置LA,接著同時執行所述救護通知步驟S109及所述規劃路線步驟S111。換個方式說,於所述救護位置搜尋步驟S107中,是由預先設定或記錄的多個所述救護經緯位置LA中,尋找出一個距離目前最近位置的所述救護經緯位置LA。
The ambulance location searching step S107 : confirming the ambulance latitude and longitude position LA that is currently closest to the
所述救護通知步驟S109:利用所述雲端裝置180傳送所述即時脈搏資訊RP及所述車體200的目前所在經緯度位置至所述救護經緯位置
LA所對應的緊急救護單位。具體來說,醫護人員能通過所述雲端裝置180得知所述駕駛員P的脈搏狀況及所述車體200的位置,從而即時做出適當的行為。
The ambulance notification step S109 : using the
所述規劃路線步驟S111:規劃所述車體200前往所述救護經緯位置LA的一行進路線PTH。當然,於規劃所述行進路線PTH中,需考量目前欲前往的所述救護經緯位置LA的周圍車況,而所述車體的周圍車況能通過連接現有的車況平台(例如:公路局即時車況系統)取得,從而選擇出能於最短時間內抵達的所述行進路線PTH。
The route planning step S111 : planning a travel route PTH of the
所述感知環境步驟S113:取得所述車體200周圍環境的所述影像資訊VD。
The sensing environment step S113 : obtaining the image information VD of the surrounding environment of the
所述資訊篩選步驟S115:篩選所述影像資訊VD以產生所述第一輸入值、所述第二輸入值及所述第三輸入值。其中,所述第一輸入值V1為判定所述車體200進行減速的參數,所述第二輸入值V2為判定所述車體200進行加速的參數,所述第三輸入值V3為利用所述第二輸入值V2所取得最佳化所述車體200進行加速的參數。
The information screening step S115 : screening the image information VD to generate the first input value, the second input value and the third input value. The first input value V1 is a parameter for determining the deceleration of the
所述參數輸入步驟S117:輸入所述第一輸入值V1、所述第二輸入值V2、及所述第三輸入值V3至一FOPID控制器(FOPID controller),也就是第一實施例的所述控制模組113。其中,所述第一輸入值V1作為比例運算的一減速參數,所述第二輸入值V2作為積分運算的一加速參數,所述第三輸入值V3作為微分運算的一最佳化參數。
The parameter input step S117: Input the first input value V1, the second input value V2, and the third input value V3 to a FOPID controller (FOPID controller), which is the first embodiment. The
所述整合判定步驟S119:利用所述第一輸入值V1、所述第二輸入值V2及所述第三輸入值V3命令所述車體200沿著所述行進路線移動。
The integration determination step S119 : using the first input value V1 , the second input value V2 and the third input value V3 to instruct the
綜上所述,本發明實施例所公開的物聯網車輛控制系統100及
物聯網車輛控制方法,其能通過“所述影像感測模組111取得所述車體200周圍的所述影像資訊VD,並由所述類神經模組112篩選各個輸入值後供所述控制模組113控制所述車體200”以及“所述脈搏感測裝置120於偵測所述即時脈搏資訊RP低於正常值時,所述類神經模組112篩選距離最近的一個所述緊急救護經緯位置LA,以供所述控制模組113控制所述車體200前往”的技術方案,從而讓駕駛所述車體200的所述駕駛員P能於發生無法駕駛的生理狀況時即時就醫。
To sum up, the IoT
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The contents disclosed above are only preferred feasible embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, any equivalent technical changes made by using the contents of the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
100:物聯網車輛控制系統 100: IoT Vehicle Control System
110:控制組件 110: Control Components
111:影像感測模組 111: Image sensing module
112:類神經模組 112: Neural-like modules
113:控制模組 113: Control Module
1131:比例控制單元 1131: Proportional Control Unit
1132:積分控制單元 1132: Integral control unit
1133:微分控制單元 1133: Differential Control Unit
120:脈搏感測裝置 120: Pulse Sensing Device
121:脈搏偵測模組 121: Pulse detection module
122:通訊模組 122: Communication module
130:經緯定位裝置 130: latitude and longitude positioning device
140:傳輸裝置 140: Transmission device
150:警示組件 150: Warning component
160:眼球感測裝置 160: Eye Sensing Device
200:車體 200: body
210:驅動單元 210: Drive unit
220:輪組 220: Wheels
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109132861A TWI752644B (en) | 2020-09-23 | 2020-09-23 | Internet of things vehicle control system and internet of things vehicle control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109132861A TWI752644B (en) | 2020-09-23 | 2020-09-23 | Internet of things vehicle control system and internet of things vehicle control method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI752644B true TWI752644B (en) | 2022-01-11 |
TW202211863A TW202211863A (en) | 2022-04-01 |
Family
ID=80809406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109132861A TWI752644B (en) | 2020-09-23 | 2020-09-23 | Internet of things vehicle control system and internet of things vehicle control method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI752644B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014147828A1 (en) * | 2013-03-22 | 2014-09-25 | トヨタ自動車株式会社 | Driving assistance device, driving assistance method, information-providing device, information-providing method, navigation device and navigation method |
WO2017177221A1 (en) * | 2016-04-08 | 2017-10-12 | Magna Seating Inc. | Heart rate variability and drowsiness detection |
-
2020
- 2020-09-23 TW TW109132861A patent/TWI752644B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014147828A1 (en) * | 2013-03-22 | 2014-09-25 | トヨタ自動車株式会社 | Driving assistance device, driving assistance method, information-providing device, information-providing method, navigation device and navigation method |
WO2017177221A1 (en) * | 2016-04-08 | 2017-10-12 | Magna Seating Inc. | Heart rate variability and drowsiness detection |
Also Published As
Publication number | Publication date |
---|---|
TW202211863A (en) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7032966B2 (en) | Vehicle safety support devices and methods | |
WO2019188398A1 (en) | Information processing device, moving apparatus, method, and program | |
JP7273031B2 (en) | Information processing device, mobile device, information processing system and method, and program | |
JP7173105B2 (en) | AUTOMATIC OPERATION CONTROL DEVICE, AUTOMATIC OPERATION CONTROL METHOD, PROGRAM, AND AUTOMATIC OPERATION CONTROL SYSTEM | |
JP7324716B2 (en) | Information processing device, mobile device, method, and program | |
JP7424305B2 (en) | Information processing device, information processing method, and program | |
US12094316B2 (en) | Flight crew fatigue and controlled rest management system | |
WO2021145131A1 (en) | Information processing device, information processing system, information processing method, and information processing program | |
CN108099601A (en) | A kind of detecting system for improving drive safety | |
CN107336711A (en) | Vehicle and its automated driving system and method | |
CN105748050A (en) | Car-mounted health diagnosis system | |
US11447140B2 (en) | Cognitive tunneling mitigation device for driving | |
CA2644053C (en) | Incapacity monitor | |
US11866073B2 (en) | Information processing device, information processing system, and information processing method for wearable information terminal for a driver of an automatic driving vehicle | |
CN112455461A (en) | Human-vehicle interaction method for automatically driving vehicle and automatically driving system | |
TWI752644B (en) | Internet of things vehicle control system and internet of things vehicle control method | |
TWI824833B (en) | Fatigue driving decision system and method thereof | |
WO2022172724A1 (en) | Information processing device, information processing method, and information processing program | |
CN117423456A (en) | Control system and method for intelligent driving | |
WO2023156245A1 (en) | Method for monitoring the state of a driver | |
Dymov et al. | Automation Control System against Driver Falling Asleep in Traffic | |
CN117653045A (en) | Lifting equipment operator fatigue operation detection system and method |