TWI750622B - Deep learning model training system, deep learning model training method, and non-transitory computer readable storage medium - Google Patents

Deep learning model training system, deep learning model training method, and non-transitory computer readable storage medium Download PDF

Info

Publication number
TWI750622B
TWI750622B TW109111080A TW109111080A TWI750622B TW I750622 B TWI750622 B TW I750622B TW 109111080 A TW109111080 A TW 109111080A TW 109111080 A TW109111080 A TW 109111080A TW I750622 B TWI750622 B TW I750622B
Authority
TW
Taiwan
Prior art keywords
test
training
value
learning model
deep learning
Prior art date
Application number
TW109111080A
Other languages
Chinese (zh)
Other versions
TW202139075A (en
Inventor
陳冠丞
林宏軒
陳郁雯
Original Assignee
群光電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群光電子股份有限公司 filed Critical 群光電子股份有限公司
Priority to TW109111080A priority Critical patent/TWI750622B/en
Publication of TW202139075A publication Critical patent/TW202139075A/en
Application granted granted Critical
Publication of TWI750622B publication Critical patent/TWI750622B/en

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

A deep learning model training system, deep learning model training method, and non-transitory computer readable storage medium are provided. The method includes: adjusting an original image set to obtain testing image sets according to testing values; inputting the testing training image sets to a first learning model for testing to obtain confidence values, wherein the confidence values correspond to the testing values in a one-to-one manner; classifying the test values into an invalid group or a valid group according to whether the confidence value corresponding to each of the test value is less than a threshold value; obtaining training values according to the test values in the invalid group; adjusting the original image set to obtain training image sets according to the training values; and inputting the original image set and the training image sets to the first deep learning model for training to obtain a second deep learning model.

Description

深度學習模型訓練系統、深度學習模型訓練方法及非暫態電腦可讀取儲存媒體Deep learning model training system, deep learning model training method, and non-transitory computer-readable storage medium

本案是關於人工智慧領域,特別是一種深度學習模型訓練系統及其方法。This case is about the field of artificial intelligence, especially a deep learning model training system and its method.

近年來人工智慧的研究日新月異,尤其是深度學習對於各個領域的應用更是突飛猛進,其中包括影像辨識領域。現今影像辨識領域的深度學習系統,通常需要使用者使用巨量的影像做為訓練資料來訓練深度學習系統,才能使深度學習系統得以正常運作,也就是使深度學習系統的輸出結果具有較高的置信度(又稱為信心度(Confidence))。雖然這樣的訓練方式在理論上是淺顯易懂的,但是在實行上卻並不容易,因為處理及獲得巨量的影像是相當耗時,通常需要高效能的處理器才能執行。獲得巨量的影像的方法除了蒐集原始影像之外,還有透過調整原始影像來獲得類似影像。In recent years, the research on artificial intelligence has changed rapidly, especially the application of deep learning in various fields, including the field of image recognition. Today's deep learning systems in the field of image recognition usually require users to use a huge amount of images as training data to train the deep learning system, so that the deep learning system can operate normally, that is, the output of the deep learning system has a higher level. Confidence (also known as Confidence). Although this training method is easy to understand in theory, it is not easy to implement because processing and obtaining a large number of images is time-consuming and usually requires a high-performance processor to execute. In addition to collecting the original images, the method to obtain a huge amount of images is to obtain similar images by adjusting the original images.

但是,以巨量的影像做為訓練資料來訓練深度學習系統的過程中,會發現訓練量跟置信度的增長並不成比例,例如大量的訓練量卻只讓置信度微幅提升。換句話說,現今透過調整原始影像來獲得類似影像的方法雖然可以增加訓練資料,但卻是一個耗時且並不有效的訓練方法。However, in the process of training a deep learning system with a huge amount of images as training data, it will be found that the training amount is not proportional to the increase in the confidence. For example, a large amount of training only increases the confidence slightly. In other words, the current method of obtaining similar images by adjusting the original image can increase the training data, but it is a time-consuming and inefficient training method.

另外,現今計量表的研究中,雖然已經研究出智慧計量表,智慧計量表透過電子式量測及回報資料,讓計量資料能即時上線。但是在實務上,智慧計量表並不普遍,大部分的使用者仍然是使用傳統計量表。若將傳統計量表更換為智慧計量表,對於自來水供應代表需要停水,而對於電力供應則需要停電,這樣不僅需耗費計量表本身的成本,對於使用者是24小時營運的工廠而言更需負擔龐大的時間成本,因此將傳統計量表更換為智慧計量表是使用者不樂見的。但是傳統計量表需要人工抄表來收集與統計計量資料,不僅沒效率又容易出錯,因此現今計量表仍需要改善。In addition, in the current meter research, although the smart meter has been researched, the smart meter can measure and report the data electronically, so that the measurement data can be online in real time. However, in practice, smart meters are not common, and most users still use traditional meters. If the traditional meter is replaced with a smart meter, the water supply needs to be cut off, but the power supply needs to be cut off, which not only costs the cost of the meter itself, but also requires a 24-hour operation for the user. It has a huge time cost, so users are not happy to replace the traditional meter with a smart meter. However, the traditional meter needs manual meter reading to collect and count the measurement data, which is not only inefficient but also prone to errors. Therefore, the current meter still needs to be improved.

鑑於上述,本案提出一種深度學習模型訓練系統及其方法。In view of the above, this case proposes a deep learning model training system and method.

依據一些實施例,深度學習模型訓練方法包括:依據多個測試值調整原始影像集以獲得多個測試影像集;輸入測試影像集至第一深度學習模型進行測試,獲得多個置信度,置信度以一對一的方式對應於測試值;依據各個測試值對應的置信度是否小於閥值,將測試值分類於有效組或無效組;依據無效組中的測試值,獲得多個訓練值;依據訓練值調整原始影像集以獲得多個訓練影像集進行訓練;以及,輸入原始影像集及訓練影像集至第一深度學習模型,獲得第二深度學習模型。According to some embodiments, the deep learning model training method includes: adjusting the original image set according to multiple test values to obtain multiple test image sets; inputting the test image set to the first deep learning model for testing to obtain multiple confidence levels, confidence levels Corresponding to the test values in a one-to-one manner; according to whether the confidence corresponding to each test value is less than the threshold, the test values are classified into valid groups or invalid groups; according to the test values in the invalid groups, multiple training values are obtained; The training value adjusts the original image set to obtain a plurality of training image sets for training; and, inputting the original image set and the training image set to the first deep learning model to obtain the second deep learning model.

依據一些實施例,深度學習模型訓練系統包括處理器及儲存裝置。處理器用於接收原始影像集、多個測試值及閥值。處理器用於依據測試值調整原始影像集以獲得多個測試影像集,並輸入測試影像集至第一深度學習模型進行測試而獲得多個置信度,置信度以一對一方式對應於測試值。處理器用依據各個測試值對應的置信度是否小於閥值將測試值分類於有效組或無效組,並依據無效組中的測試值獲得多個訓練值。處理器用於依據訓練值調整原始影像集以獲得多個訓練影像集,並且輸入原始影像集及訓練影像集至第一深度學習模型進行訓練而獲得第二深度學習模型。According to some embodiments, a deep learning model training system includes a processor and a storage device. The processor is used to receive the original image set, a plurality of test values and threshold values. The processor is configured to adjust the original image set according to the test value to obtain multiple test image sets, and input the test image set to the first deep learning model for testing to obtain multiple confidence levels, where the confidence levels correspond to the test values in a one-to-one manner. The processor classifies the test values into a valid group or an invalid group according to whether the corresponding confidence level of each test value is smaller than a threshold value, and obtains a plurality of training values according to the test values in the invalid group. The processor is configured to adjust the original image set according to the training value to obtain a plurality of training image sets, and input the original image set and the training image set to the first deep learning model for training to obtain the second deep learning model.

依據一些實施例,非暫態電腦可讀取儲存媒體用於儲存一或多個軟體程式,一或多個軟體程式包括多個指令,當這些指令被電子裝置的一或多個處理器執行時,將使電子裝置進行深度學習模型訓練方法。According to some embodiments, a non-transitory computer-readable storage medium is used to store one or more software programs, the one or more software programs including a plurality of instructions, when the instructions are executed by one or more processors of the electronic device , which will make the electronic device perform the deep learning model training method.

綜上,本案一些實施例的深度學習模型訓練系統、深度學習模型訓練系統方法及非暫態電腦可讀取儲存媒體,能依據測試值調整原始影像集以獲得測試影像集,並輸入測試影像集至第一深度學習模型進行測試而獲得測試影像集的置信度,也就是測試值的置信度。並且能依據閥值分類測試值為有效組或無效組,再從無效組中的測試值獲得訓練值。以及依據訓練值調整原始影像集以獲得訓練影像集,並輸入原始影像集及訓練影像集至第一深度學習模型進行訓練而獲得第二深度學習模型。To sum up, the deep learning model training system, the deep learning model training system method and the non-transitory computer-readable storage medium of some embodiments of the present application can adjust the original image set according to the test value to obtain the test image set, and input the test image set The first deep learning model is tested to obtain the confidence of the test image set, that is, the confidence of the test value. And the test value can be classified into the valid group or the invalid group according to the threshold value, and then the training value can be obtained from the test value in the invalid group. and adjusting the original image set according to the training value to obtain a training image set, and inputting the original image set and the training image set to the first deep learning model for training to obtain a second deep learning model.

以下將以圖式揭露本案之多個實施例,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本案。也就是說,在本案部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之,而在所有圖式中,相同的標號將用於表示相同或相似的元件。且若實施上為可能,不同實施例的特徵係可以交互應用。Several embodiments of the present application will be disclosed in the following drawings. For the sake of clarity, many practical details will be described together in the following description. It should be understood, however, that these practical details should not be used to limit the present case. That is, in some embodiments of this case, these practical details are unnecessary. In addition, for the purpose of simplifying the drawings, some well-known and conventional structures and elements will be shown in a simple and schematic manner in the drawings, and the same reference numerals will be used to denote the same or similar elements in all the drawings. . And if possible in implementation, the features of different embodiments can be applied interactively.

圖1為根據本案一些實施例所繪示之深度學習模型訓練系統100的示意圖,請參照圖1,在一些實施例,深度學習模型訓練系統100包括處理器120及儲存裝置140。處理器120用於接收原始影像集、多個測試值及閥值,並依據測試值調整原始影像集以獲得多個測試影像集。處理器120用於輸入測試影像集至第一深度學習模型T1進行測試而獲得多個置信度,置信度以一對一方式對應於測試值。處理器120用於依據測試值對應的置信度是否小於閥值將測試值分類於有效組或無效組,並依據無效組中的測試值獲得多個訓練值。處理器120用於依據訓練值調整原始影像集以獲得多個訓練影像集。處理器120用於輸入原始影像集及訓練影像集至第一深度學習模型T1進行訓練而獲得第二深度學習模型T2。儲存裝置140用於儲存第一深度學習模型T1及第二深度學習模型T2。在一些實施例,儲存裝置140電性連接於處理器120。FIG. 1 is a schematic diagram of a deep learning model training system 100 according to some embodiments of the present application. Please refer to FIG. 1 . In some embodiments, the deep learning model training system 100 includes a processor 120 and a storage device 140 . The processor 120 is configured to receive an original image set, a plurality of test values and threshold values, and adjust the original image set according to the test values to obtain a plurality of test image sets. The processor 120 is configured to input the test image set to the first deep learning model T1 for testing to obtain a plurality of confidence levels, and the confidence levels correspond to the test values in a one-to-one manner. The processor 120 is configured to classify the test values into a valid group or an invalid group according to whether the corresponding confidence level of the test value is smaller than a threshold value, and obtain a plurality of training values according to the test values in the invalid group. The processor 120 is configured to adjust the original image set according to the training value to obtain a plurality of training image sets. The processor 120 is configured to input the original image set and the training image set to the first deep learning model T1 for training to obtain the second deep learning model T2. The storage device 140 is used for storing the first deep learning model T1 and the second deep learning model T2. In some embodiments, the storage device 140 is electrically connected to the processor 120 .

在一些實施例,深度學習模型(即,第一深度學習模型T1或第二深度學習模型T2)適於用在影像辨識,例如辨識影像中的數字圖像的數值。以具有數字圖像「0011」的影像為例,深度學習模型用於辨識影像而獲得數值「0011」。In some embodiments, the deep learning model (ie, the first deep learning model T1 or the second deep learning model T2 ) is suitable for use in image recognition, eg, recognizing numerical values of digital images in images. Taking an image with a digital image "0011" as an example, the deep learning model is used to identify the image to obtain the value "0011".

在一些實施例,當深度學習模型進行測試,深度學習模型依據輸入的測試問題(例如,具有數字圖像「0011」的影像)而輸出測試答案(例如,數值「0011」)及測試答案的置信度。具體而言,置信度代表深度學習模型對於測試答案是正確的有多少信心,或著說深度學習模型對於輸入的測試問題有多少信心能正確回答,也就是測試答案的正確率。因此,置信度介於0至1之間,當置信度為1代表測試答案的正確率是100%,置信度為0.5代表測試答案的正確率是50%,當置信度為0代表測試答案的正確率是0%。In some embodiments, when the deep learning model is tested, the deep learning model outputs the test answer (eg, the value "0011") and the confidence of the test answer according to the input test question (eg, the image with the digital image "0011") Spend. Specifically, the confidence represents how much confidence the deep learning model has for the test answer to be correct, or how much confidence the deep learning model has for the input test question to answer correctly, that is, the correct rate of the test answer. Therefore, the confidence level is between 0 and 1. When the confidence level is 1, it means that the correct rate of the test answer is 100%. When the confidence level is 0.5, it means that the correct rate of the test answer is 50%. When the confidence level is 0, it means that the test answer is correct. The correct rate is 0%.

在一些實施例,深度學習模型是以監督式學習進行訓練,具體而言,監督式學習是輸入相對應的訓練問題及訓練答案至深度學習模型進行訓練,於訓練之後的深度學習模型將可依據接收的訓練問題及訓練答案來處理測試問題,也就是深度學習模型能比對測試問題與訓練問題,並依據訓練答案而輸出對應測試問題的測試答案。因此,深度學習模型依據適當的監督式學習之後,深度學習模型能提高輸出的置信度,也就是測試答案的正確率。當本說明書提到相關於「輸入影像(集)至第一深度學習模型T1進行訓練,並獲得第二深度學習模型T2」時,代表「輸入影像(集)及對應的數值(集)至第一深度學習模型T1進行訓練,並獲得第二深度學習模型T2」。其中影像(集)是監督式學習中的訓練問題,對應的數值(集)是監督式學習中的訓練答案。對應的數值(集)不限於以任何形式獲得,例如影像(集)的檔案本身就具有數值(集)、從外部輸入數值(集)至深度學習模型訓練系統100、或經由處理器120依據其他辨識模型辨識影像(集)產生數值(集)。In some embodiments, the deep learning model is trained by supervised learning. Specifically, the supervised learning is inputting corresponding training questions and training answers to the deep learning model for training. After the training, the deep learning model can be trained according to The received training questions and training answers are used to process the test questions, that is, the deep learning model can compare the test questions and the training questions, and output the test answers corresponding to the test questions according to the training answers. Therefore, after the deep learning model is based on appropriate supervised learning, the deep learning model can improve the confidence of the output, that is, the correct rate of the test answer. When this specification refers to "input image (set) to the first deep learning model T1 for training, and obtain the second deep learning model T2", it means "input image (set) and corresponding values (set) to the first deep learning model T2" A deep learning model T1 is trained, and a second deep learning model T2 is obtained. The image (set) is the training question in supervised learning, and the corresponding value (set) is the training answer in supervised learning. The corresponding value (set) is not limited to be obtained in any form, for example, the file of the image (set) itself has the value (set), the value (set) is input to the deep learning model training system 100 from the outside, or the processor 120 is based on other data. The recognition model recognizes images (sets) to generate values (sets).

圖2為根據本案一些實施例所繪示之深度學習模型訓練方法的流程圖。為了清楚說明圖1之各項元件的運作,以下將搭配圖2之流程圖詳細說明如下。然而,本案所屬技術領域中具有通常知識者均可瞭解,本案實施例的深度學習模型訓練方法並不侷限應用於圖1的深度學習模型訓練系統100,也不侷限於圖2之流程圖的各項步驟順序。在一些實施例,非暫態電腦可讀取儲存媒體用於儲存一或多個軟體程式,一或多個軟體程式包括多個指令,當這些指令由電子裝置的一或多個處理電路執行時,將使電子裝置進行深度學習模型訓練方法。具體而言,電子裝置包括一或多個處理電路(又稱為控制電路)。深度學習模型訓練方法例如由一或多個軟體程式實作,軟體程式儲存於光碟、硬碟或其他非暫態電腦可讀取儲存媒體,軟體程式包括相關於處理電路的多個指令。當這些指令或軟體程式被電子裝置載入之後,將使電子裝置執行深度學習模型訓練方法。關於深度學習模型訓練方法的各項步驟的詳細說明,如下所列。FIG. 2 is a flowchart of a deep learning model training method according to some embodiments of the present application. In order to clearly illustrate the operations of the various elements in FIG. 1 , the following detailed description is given in conjunction with the flowchart in FIG. 2 . However, those with ordinary knowledge in the technical field to which this case belongs can understand that the deep learning model training method of the embodiment of this case is not limited to the deep learning model training system 100 shown in FIG. item step sequence. In some embodiments, a non-transitory computer-readable storage medium is used to store one or more software programs, the one or more software programs including a plurality of instructions when executed by one or more processing circuits of an electronic device , which will make the electronic device perform the deep learning model training method. Specifically, the electronic device includes one or more processing circuits (also referred to as control circuits). The deep learning model training method is implemented by, for example, one or more software programs. The software program is stored on a CD-ROM, a hard disk or other non-transitory computer-readable storage medium. The software program includes a plurality of instructions related to the processing circuit. After these instructions or software programs are loaded by the electronic device, the electronic device will execute the deep learning model training method. A detailed description of each step of the deep learning model training method is listed below.

請一併參照圖1及圖2,在一些實施例,深度學習模型訓練方法的流程包括測試影像集獲得步驟(步驟S210)、模型測試步驟(步驟S220)、分組步驟(步驟S230)、訓練值獲得步驟(步驟S240)、訓練影像集獲得步驟(步驟S250)及模型訓練步驟(步驟S260)。Please refer to FIG. 1 and FIG. 2 together. In some embodiments, the process of the deep learning model training method includes a test image set acquisition step (step S210 ), a model testing step (step S220 ), a grouping step (step S230 ), a training value The obtaining step (step S240 ), the training image set obtaining step (step S250 ), and the model training step (step S260 ).

在一些實施例,測試影像集獲得步驟(圖2之步驟S210)包括:依據多個測試值調整原始影像集以獲得多個測試影像集。具體而言,原始影像集包括多個原始影像,每個測試影像集分別包括多個測試影像。測試值以角度旋轉為例,測試值的單位為「度」,各個測試值分別為「-10、-9.5、-9、-8.5、-8、-7.5、-7、-6.5、-6、-5.5、-5、-4.5、-4、-3.5、-3、-2.5、-2、-1.5、-1、-0.5、0、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10」。測試值為正值表示將原始影像朝向順時針旋轉,測試值為負值表示將原始影像朝向逆時針旋轉,測試值為「0」則表示未旋轉原始影像,但並不以此為限。在一些實施例,測試影像集以一對一的方式對應於測試值,例如旋轉「-10」度為一個測試影像集,旋轉「-9.5」度為另一個測試影像集,以此類推,因此當測試值有「21」個時,處理器120就依據「21」個測試值調整原始影像集以獲得對應的「21」個測試影像集。在一些實施例,一個原始影像集之中原始影像的數目乘以測試比例係數等於一個測試影像集之中測試影像的數量,測試比例係數介於0至1之間。具體而言,處理器120依據測試比例係數從原始影像集之中選出部分的原始影像集,並且調整部分的原始影像集以獲得各個測試影像集。需特別說明的是,「部分的原始影像集之中的原始影像的數目」(或是,「一個測試影像集之中測試影像的數量」)除以「原始影像集之中的原始影像的數目」等於測試比例係數。例如原始影像的數目為「1000」、測試值共有「21」個及測試比例係數為「0.1」時,部分的原始影像的數目為「1000*0.1=100」,各個測試影像集之中測試影像的數量為「100」,因此「21」個測試影像集之中測試影像的總數為「21*100=2100」。In some embodiments, the step of obtaining a test image set (step S210 in FIG. 2 ) includes: adjusting the original image set according to a plurality of test values to obtain a plurality of test image sets. Specifically, the original image set includes a plurality of original images, and each test image set includes a plurality of test images respectively. The test value takes angle rotation as an example, the unit of test value is "degree", and each test value is "-10, -9.5, -9, -8.5, -8, -7.5, -7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 , 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10”. A positive test value indicates that the original image is rotated clockwise, a negative value indicates that the original image is rotated counterclockwise, and a test value of "0" indicates that the original image is not rotated, but not limited to this. In some embodiments, test image sets correspond to test values in a one-to-one manner, eg rotated "-10" degrees for one test image set, "-9.5" degrees for another test image set, and so on, so When there are "21" test values, the processor 120 adjusts the original image set according to the "21" test values to obtain corresponding "21" test image sets. In some embodiments, the number of original images in an original image set multiplied by a test scale factor equals the number of test images in a test image set, and the test scale factor is between 0 and 1. Specifically, the processor 120 selects a part of the original image set from the original image set according to the test scale factor, and adjusts the part of the original image set to obtain each test image set. In particular, divide "the number of original images in the partial original image set" (or, "the number of test images in a test image set") by "the number of original images in the original image set" ” is equal to the test scale factor. For example, when the number of original images is "1000", the test value is "21" in total, and the test scale factor is "0.1", the number of partial original images is "1000*0.1=100", and the test images in each test image set is "100", so the total number of test images in the "21" test image set is "21*100=2100".

在一些實施例,測試值為等差數列,例如前述角度旋轉的實施例,測試值的最大值為「10」度,測試值的最小值為「-10」度,呈等差數列的測試值之公差為「0.5」。In some embodiments, the test value is an arithmetic sequence. For example, in the above-mentioned angular rotation embodiment, the maximum value of the test value is "10" degrees, and the minimum value of the test value is "-10" degrees. The tolerance is "0.5".

在一些實施例,當處理器120依據測試值調整原始影像集以獲得多個測試影像集時,各個測試值只對應同一個調整類別,例如調整類別為角度旋轉,但是不以此為限。在一些實施例,調整類別例如但不限於角度旋轉、等比例縮放、高度放大、寬度放大、對比度調整、亮度調整及伽瑪(Gamma)值調整等。其中「角度旋轉」能以任意方向旋轉原始影像,例如以直角坐標系為例,原始影像包括第一軸向及第二軸向,其中第一軸向為Y軸,第二軸向為Z軸。原始影像能以X軸、Y軸、Z軸或任意軸向旋轉為測試影像。「高度放大」為原始影像在維持等寬的條件下拉長,「寬度放大」為原始影像在維持等高的條件下拉寬。In some embodiments, when the processor 120 adjusts the original image set according to the test value to obtain multiple test image sets, each test value only corresponds to the same adjustment type, for example, the adjustment type is angle rotation, but not limited thereto. In some embodiments, the adjustment categories are, for example, but not limited to, angle rotation, proportional scaling, height enlargement, width enlargement, contrast adjustment, brightness adjustment, and gamma (Gamma) value adjustment. "Angle rotation" can rotate the original image in any direction. For example, in a rectangular coordinate system, the original image includes a first axis and a second axis, where the first axis is the Y axis and the second axis is the Z axis . The original image can be rotated in X, Y, Z or any axis as a test image. "Height enlargement" means that the original image is stretched while maintaining the same width, and "width enlargement" means that the original image is widening while maintaining the same height.

在一些實施例,測試值包括原始影像集對應的原始值。具體而言,原始值為測試值的其中之一,通常原始值為測試值的基準,例如原始值為測試值之中的最小值、最大值或中位數。以測試值對應的調整類別而言,原始值為原始影像集對應於調整類別的數值。例如調整類別為角度旋轉時,原始值為「0」度,也就是原始影像集的旋轉角度為「0」度(即,未旋轉)。例如調整類別為等比例縮放時,原始值為「1」,也就是原始影像集的比例為「1」倍(即,原始尺寸)。In some embodiments, the test values include raw values corresponding to the original image set. Specifically, the original value is one of the test values, usually the original value is a benchmark of the test value, for example, the original value is the minimum value, the maximum value or the median among the test values. In terms of the adjustment category corresponding to the test value, the original value is the value corresponding to the adjustment category of the original image set. For example, when the adjustment type is angle rotation, the original value is "0" degrees, that is, the rotation angle of the original image set is "0" degrees (ie, not rotated). For example, when the adjustment category is proportional scaling, the original value is "1", that is, the scale of the original image set is "1" times (ie, the original size).

在一些實施例,原始值對應的測試影像集為部分的原始影像集。具體而言,當處理器120依據原始值調整原始影像集以獲得測試影像集時,處理器120以原始影像集做為測試影像集,也就是處理器120無需調整原始影像集就可獲得測試影像集。例如測試值對應的調整類別為角度旋轉時,原始值為「0」度,因此處理器120能將原始影像集做為測試影像集。在一些實施例,處理器120依據測試比例係數決定部分的原始影像集為測試影像集。In some embodiments, the test image set corresponding to the original value is a partial original image set. Specifically, when the processor 120 adjusts the original image set according to the original value to obtain the test image set, the processor 120 uses the original image set as the test image set, that is, the processor 120 can obtain the test image without adjusting the original image set set. For example, when the adjustment type corresponding to the test value is an angle rotation, the original value is "0" degree, so the processor 120 can use the original image set as the test image set. In some embodiments, the processor 120 determines a portion of the original image set as the test image set according to the test scale factor.

在一些實施例,模型測試步驟(步驟S220)包括:輸入測試影像集至第一深度學習模型T1進行測試,獲得多個置信度,置信度以一對一的方式對應於測試值。由前述關於深度學習模型的說明可知,置信度代表第一深度學習模型T1對於輸入的測試影像集有多少信心能正確輸出對應的測試答案。因此,當處理器120輸入測試影像集至第一深度學習模型T1進行測試時,處理器120能從第一深度學習模型T1獲得測試影像集對應的置信度。由於測試影像集是依據測試值所調整,置信度以一對一的方式對應於測試值。在一些實施例,測試影像集對應的置信度為多個子置信度的平均數。具體而言,測試影像集包括多個測試影像,第一深度學習模型T1依據輸入的測試影像集而對應輸出置信度,並且第一深度學習模型T1依據輸入的各個測試影像而對應輸出各個子置信度。因此處理器120輸入任一個測試影像至第一深度學習模型T1進行測試時,第一深度學習模型T1能輸出對應於這個測試影像的子置信度,因此處理器120將某一個測試影像集之中的各個測試影像所對應的所有子置信度平均計算,能獲得這個測試影像集的置信度。在一些實施例,測試影像集對應的置信度可以為多個子置信度的中位數、最大值、最小值,不以此為限。In some embodiments, the model testing step (step S220 ) includes: inputting a test image set to the first deep learning model T1 for testing, and obtaining a plurality of confidence levels, where the confidence levels correspond to the test values in a one-to-one manner. As can be seen from the foregoing description about the deep learning model, the confidence level represents how much confidence the first deep learning model T1 has in the input test image set to correctly output the corresponding test answer. Therefore, when the processor 120 inputs the test image set to the first deep learning model T1 for testing, the processor 120 can obtain the confidence level corresponding to the test image set from the first deep learning model T1. Since the test image set is adjusted according to the test values, the confidence levels correspond to the test values in a one-to-one manner. In some embodiments, the confidence level corresponding to the test image set is an average of multiple sub-confidence levels. Specifically, the test image set includes a plurality of test images, the first deep learning model T1 correspondingly outputs confidence levels according to the input test image set, and the first deep learning model T1 outputs each sub-confidence correspondingly according to each input test image Spend. Therefore, when the processor 120 inputs any test image to the first deep learning model T1 for testing, the first deep learning model T1 can output the sub-confidence corresponding to the test image, so the processor 120 selects one of the test images in a certain test image set. The average calculation of all sub-confidences corresponding to each test image of , can obtain the confidence of this test image set. In some embodiments, the confidence level corresponding to the test image set may be the median, maximum value, and minimum value of multiple sub-confidence levels, but not limited thereto.

在一些實施例,測試值以角度旋轉為例,測試值與置信度的對照表如下表1所示:In some embodiments, the test value takes the angle rotation as an example, and the comparison table between the test value and the confidence is shown in Table 1 below:

表1 測試值 置信度 測試值 置信度 測試值 置信度 -10 0 -2.5 0.5 3 0.4 -9.5 0 -2 0.6 3.5 0.3 -9 0 -1.5 0.7 4 0.2 -8.5 0 -1 0.8 4.5 0.1 -8 0 -0.5 0.9 5 0 -7.5 0 0 1 5.5 0 -7 0 0.5 0.9 6 0 -6.5 0 1 0.8 6.5 0 -6 0 1.5 0.7 7 0 -5.5 0 2 0.6 7.5 0 -5 0 2.5 0.5 8 0 -4.5 0.1     8.5 0 -4 0.2     9 0 -3.5 0.3     9.5 0 -3 0.4     10 0 Table 1 test value Confidence test value Confidence test value Confidence -10 0 -2.5 0.5 3 0.4 -9.5 0 -2 0.6 3.5 0.3 -9 0 -1.5 0.7 4 0.2 -8.5 0 -1 0.8 4.5 0.1 -8 0 -0.5 0.9 5 0 -7.5 0 0 1 5.5 0 -7 0 0.5 0.9 6 0 -6.5 0 1 0.8 6.5 0 -6 0 1.5 0.7 7 0 -5.5 0 2 0.6 7.5 0 -5 0 2.5 0.5 8 0 -4.5 0.1 8.5 0 -4 0.2 9 0 -3.5 0.3 9.5 0 -3 0.4 10 0

在一些實施例,分組步驟(圖2之步驟S230)包括:判斷各個測試值對應的置信度是否小於閥值,將測試值分類於無效組或有效組。具體而言,置信度越高代表第一深度學習模型T1越能正確辨識輸入之測試影像集,置信度越低代表第一深度學習模型T1越不能正確辨識。因此處理器120判斷測試值對應的置信度是否小於閥值,透過閥值區分有效的置信度及無效的置信度,將置信度小於閥值的測試值分類於無效組,並且將置信度大於或等於閥值的測試值分類於有效組。以測試值為角度旋轉為例並參照表1,假如閥值為「0.5」,當置信度小於「0.5」代表第一深度學習模型T1不能有效的正確辨識,因此置信度小於「0.5」對應的測試值「-10、-9.5、-9、-8.5、-8、-7.5、-7、-6.5、-6、-5.5、-5、-4.5、-4、-3.5、-3、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10」分類於無效組。當置信度大於或等於「0.5」代表第一深度學習模型T1能有效的正確辨識,因此置信度大於或等於「0.5」對應的測試值「-2.5、-2、-1.5、-1、-0.5、0、0.5、1、1.5、2、2.5」分類於有效組。In some embodiments, the grouping step (step S230 in FIG. 2 ) includes: judging whether the confidence level corresponding to each test value is less than a threshold value, and classifying the test values into invalid groups or valid groups. Specifically, a higher confidence level means that the first deep learning model T1 can more correctly identify the input test image set, and a lower confidence level means that the first deep learning model T1 cannot be correctly identified. Therefore, the processor 120 determines whether the confidence level corresponding to the test value is smaller than the threshold value, distinguishes the valid confidence level and the invalid confidence level through the threshold value, classifies the test value whose confidence level is less than the threshold value into the invalid group, and classifies the confidence level greater than or Test values equal to the threshold are classified into valid groups. Taking the test value as an example of angular rotation and referring to Table 1, if the threshold value is "0.5", when the confidence level is less than "0.5", it means that the first deep learning model T1 cannot be effectively and correctly identified, so the confidence level is less than "0.5" corresponding to Test value "-10, -9.5, -9, -8.5, -8, -7.5, -7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10" are classified in the invalid group. When the confidence level is greater than or equal to "0.5", it means that the first deep learning model T1 can be effectively and correctly identified, so the test value corresponding to the confidence level greater than or equal to "0.5" is "-2.5, -2, -1.5, -1, -0.5 , 0, 0.5, 1, 1.5, 2, 2.5" are classified as valid groups.

在一些實施例,測試值以角度旋轉為例,無效組與有效組的對照表如下表2所示:In some embodiments, the test value takes the angle rotation as an example, and the comparison table between the invalid group and the valid group is shown in Table 2 below:

表2 無效組 有效組 無效組 測試值 置信度 測試值 置信度 測試值 置信度 -10 0 -2.5 0.5 3 0.4 -9.5 0 -2 0.6 3.5 0.3 -9 0 -1.5 0.7 4 0.2 -8.5 0 -1 0.8 4.5 0.1 -8 0 -0.5 0.9 5 0 -7.5 0 0 1 5.5 0 -7 0 0.5 0.9 6 0 -6.5 0 1 0.8 6.5 0 -6 0 1.5 0.7 7 0 -5.5 0 2 0.6 7.5 0 -5 0 2.5 0.5 8 0 -4.5 0.1     8.5 0 -4 0.2     9 0 -3.5 0.3     9.5 0 -3 0.4     10 0 Table 2 invalid group valid group invalid group test value Confidence test value Confidence test value Confidence -10 0 -2.5 0.5 3 0.4 -9.5 0 -2 0.6 3.5 0.3 -9 0 -1.5 0.7 4 0.2 -8.5 0 -1 0.8 4.5 0.1 -8 0 -0.5 0.9 5 0 -7.5 0 0 1 5.5 0 -7 0 0.5 0.9 6 0 -6.5 0 1 0.8 6.5 0 -6 0 1.5 0.7 7 0 -5.5 0 2 0.6 7.5 0 -5 0 2.5 0.5 8 0 -4.5 0.1 8.5 0 -4 0.2 9 0 -3.5 0.3 9.5 0 -3 0.4 10 0

在一些實施例,訓練值獲得步驟(圖2之步驟S240)包括:依據無效組中的測試值,獲得多個訓練值。具體而言,對應於無效組中的測試值的測試影像集是第一深度學習模型T1無法有效的正確辨識的測試影像集,因此對應於無效組中的測試值的測試影像集正是第一深度學習模型T1需要加強訓練的部分,所以處理器120依據無效組中的測試值而獲得訓練值。在一些實施例,訓練值為無效組中的所有測試值,以測試值為角度旋轉為例及參照表2,訓練值為「-10、-9.5、-9、-8.5、-8、-7.5、-7、-6.5、-6、-5.5、-5、-4.5、-4、-3.5、-3、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10」。In some embodiments, the step of obtaining the training value (step S240 in FIG. 2 ) includes: obtaining a plurality of training values according to the test values in the invalid group. Specifically, the test image set corresponding to the test values in the invalid group is the test image set that cannot be effectively and correctly identified by the first deep learning model T1, so the test image set corresponding to the test values in the invalid group is the first The deep learning model T1 needs to strengthen the training part, so the processor 120 obtains the training value according to the test value in the invalid group. In some embodiments, the training value is all the test values in the invalid group. Taking the test value as an example of angle rotation and referring to Table 2, the training value is "-10, -9.5, -9, -8.5, -8, -7.5 , -7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10”.

在一些實施例,訓練值獲得步驟(圖2之步驟S240)更包括:依據有效組中最大的測試值與原始值之間的差值,獲得有效區間值;以及依據有效區間值的多個整數倍,從無效組中的測試值獲得訓練值。具體而言,處理器120依據無效組中的測試值獲得訓練值的過程包括上述步驟,其中處理器120運算有效組中最大的測試值與原始值之間的差值,再由差值的兩倍獲得有效區間值(即,有效區間值是有效組中最大的測試值與原始值之間的兩倍差值),並且處理器120將無效組中符合有效區間值的多個整數倍的測試值做為訓練值。以測試值為角度旋轉為例及參照表2,有效組中最大的測試值為「2.5」,原始值為「0」,有效組中最大的測試值與原始值之間的差值為「|2.5-0|=2.5」,差值的兩倍為「2*2.5=5」,因此有效區間值為「5」。有效區間值的多個整數倍為「5*m,m=0、±1、±2、…」,因此無效組中符合有效區間值的多個整數倍的測試值為「-10、-5、5、10」,所以訓練值為「-10、-5、5、10」。In some embodiments, the step of obtaining the training value (step S240 in FIG. 2 ) further includes: obtaining a valid interval value according to the difference between the largest test value in the valid group and the original value; and according to a plurality of integers of the valid interval value times, the training values are obtained from the test values in the null group. Specifically, the process of obtaining the training value by the processor 120 according to the test value in the invalid group includes the above steps, wherein the processor 120 calculates the difference between the largest test value in the valid group and the original value, and then calculates the difference between the two values of the difference. The valid interval value is obtained multiple times (ie, the valid interval value is twice the difference between the largest test value in the valid group and the original value), and the processor 120 matches the tests in the invalid group with multiple integer multiples of the valid interval value. value as the training value. Taking the test value of angle rotation as an example and referring to Table 2, the largest test value in the valid group is "2.5", the original value is "0", and the difference between the largest test value in the valid group and the original value is "| 2.5-0|=2.5", twice the difference is "2*2.5=5", so the valid interval value is "5". Multiple integer multiples of the valid interval value are "5*m, m=0, ±1, ±2, ...", so the test values of multiple integer multiples of the valid interval value in the invalid group are "-10, -5 , 5, 10", so the training value is "-10, -5, 5, 10".

在一些實施例,訓練影像集獲得步驟(圖2之步驟S250)包括:依據訓練值調整原始影像集以獲得多個訓練影像集。具體而言,訓練影像集包括多個訓練影像。以測試值為角度旋轉為例並參照表2,訓練值的單位為「度」,各個訓練值為「-10、-5、5、10」。在一些實施例,訓練影像集以一對一的方式對應於訓練值,例如將原始影像集旋轉「-10」度以獲得一個訓練影像集,將原始影像集旋轉「-5」度以獲得另一個訓練影像集,以此類推,因此當訓練值有「4」個時,處理器120就依據「4」個訓練值調整原始影像集以獲得「4」個訓練影像集。在一些實施例,一個原始影像集之中原始影像的數目乘以訓練比例係數等於一個訓練影像集之中訓練影像的數量,訓練比例係數介於0至1之間。具體而言,訓練比例係數類似於測試比例係數,差異在於訓練比例係數例如但不限於等於測試比例係數。處理器120依據訓練比例係數從原始影像集之中選出部分的原始影像集,並且調整部分的原始影像集以獲得各個訓練影像集。需特別說明的是,「部分的原始影像集之中的原始影像的數目」(或是,「一個訓練影像集之中訓練影像的數量」)除以「原始影像集之中的原始影像的數目」等於訓練比例係數。例如原始影像的數目為「1000」及訓練比例係數為「0.5」時,一個訓練影像集之中訓練影像的數量為「1000*0.5=500」,同理對於「4」個訓練影像集之中訓練影像的總數為「4*500=2000」。In some embodiments, the step of obtaining the training image set (step S250 in FIG. 2 ) includes: adjusting the original image set according to the training value to obtain a plurality of training image sets. Specifically, the training image set includes a plurality of training images. Taking the test value as an example of an angle rotation and referring to Table 2, the unit of the training value is "degree", and each training value is "-10, -5, 5, 10". In some embodiments, training image sets correspond to training values in a one-to-one manner, eg, rotating the original image set by "-10" degrees to obtain one training image set, and rotating the original image set by "-5" degrees to obtain another One training image set, and so on, so when there are "4" training values, the processor 120 adjusts the original image set according to the "4" training values to obtain "4" training image sets. In some embodiments, the number of original images in an original image set multiplied by a training scale factor equals the number of training images in a training image set, and the training scale factor is between 0 and 1. Specifically, the training scale coefficient is similar to the test scale coefficient, except that the training scale coefficient is, for example, but not limited to, equal to the test scale coefficient. The processor 120 selects parts of the original image sets from the original image sets according to the training scale factor, and adjusts the part of the original image sets to obtain each training image set. In particular, divide "the number of original images in the partial original image set" (or, "the number of training images in a training image set") by "the number of original images in the original image set" ” is equal to the training scale factor. For example, when the number of original images is "1000" and the training scale factor is "0.5", the number of training images in one training image set is "1000*0.5=500", and similarly for "4" training image sets The total number of training images is "4*500=2000".

在一些實施例,模型訓練步驟(圖2之步驟S260)包括:輸入原始影像集及訓練影像集至第一深度學習模型T1進行訓練,獲得第二深度學習模型T2。具體而言,當處理器120輸入原始影像集及訓練影像集至第一深度學習模型T1進行訓練時,第一深度學習模型T1以原始影像集及各個訓練影像集做為訓練資料。換句話說,第二深度學習模型T2能依據原始影像集及各個訓練影像集來提高無效組的各個測試影像集的置信度。因此,相對於第一深度學習模型T1,在不需要以無效組中的全部測試值做為訓練值的情況下,第二深度學習模型T2能依據各個訓練影像集做為訓練資料,提高無效組的各個測試影像集所對應的置信度,因此能精簡深度學習模型的訓練資料量。以測試值為角度旋轉為例並參照表2,處理器120只需要輸入原始影像集及訓練值為「-10、-5、5、10」對應的訓練影像集(總共4個訓練影像集)至第一深度學習模型T1進行訓練。In some embodiments, the model training step (step S260 in FIG. 2 ) includes: inputting the original image set and the training image set to the first deep learning model T1 for training to obtain the second deep learning model T2 . Specifically, when the processor 120 inputs the original image set and the training image set to the first deep learning model T1 for training, the first deep learning model T1 uses the original image set and each training image set as training data. In other words, the second deep learning model T2 can improve the confidence of each test image set of the invalid group according to the original image set and each training image set. Therefore, compared with the first deep learning model T1, without using all the test values in the invalid group as training values, the second deep learning model T2 can use each training image set as training data to improve the invalid group. The confidence level corresponding to each test image set of , so it can reduce the amount of training data of the deep learning model. Taking the angle rotation as the test value as an example and referring to Table 2, the processor 120 only needs to input the original image set and the training image set corresponding to the training value "-10, -5, 5, 10" (4 training image sets in total) to the first deep learning model T1 for training.

在一些實施例,以訓練比例係數是1為例,訓練影像集之訓練影像的數目等於原始影像集之中原始影像的數目,對於以無效組中的全部測試值(即,-10、-9.5、-9、-8.5、-8、-7.5、-7、-6.5、-6、-5.5、-5、-4.5、-4、-3.5、-3、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10)做為訓練值(總共30個訓練影像集,其中不包含原始影像集)的情況做比較,深度學習模型訓練系統100及深度學習模型訓練方法只需「(1+4)/(1+30)=16.1%」的訓練資料量。對於以全部測試值做為訓練值(總共41個訓練影像集,其中包含原始影像集)的情況做比較,深度學習模型訓練系統100及深度學習模型訓練方法只需「(1+4)/(1+40)=12.2%」的訓練資料量。上述精簡訓練資料量的實施例僅做為範例並不以此為限,學習模型訓練系統100及深度學習模型訓練方法所精簡的訓練資料量將依據不同的調整類別、不同的測試值、不同的置信度及不同的閥值而有不同的結果。In some embodiments, taking the training scale factor of 1 as an example, the number of training images in the training image set is equal to the number of original images in the original image set, for all test values in the null set (ie, -10, -9.5 , -9, -8.5, -8, -7.5, -7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10) as training values (30 training image sets in total, excluding the original image set) for comparison, the deep learning model training system 100 And the deep learning model training method only needs the amount of training data of "(1+4)/(1+30)=16.1%". For comparison with all test values as training values (41 training image sets in total, including original image sets), the deep learning model training system 100 and the deep learning model training method only need "(1+4)/( 1+40) = 12.2%" of the amount of training data. The above-mentioned embodiment of reducing the amount of training data is only an example and not limited thereto. The amount of training data reduced by the learning model training system 100 and the deep learning model training method will be based on different adjustment categories, different test values, and different values. Confidence and different thresholds have different results.

在一些實施例,測試值以角度旋轉為例,測試值與置信度的對照表如下表3所示:In some embodiments, the test value takes the angle rotation as an example, and the comparison table between the test value and the confidence is shown in Table 3 below:

表3 有效組 無效組 測試值 置信度 測試值 置信度 0 1 3 0.4 0.5 0.9 3.5 0.3 1 0.8 4 0.2 1.5 0.7 4.5 0.1 2 0.6 5 0 2.5 0.5 5.5 0     6 0     6.5 0     7 0     7.5 0     8 0     8.5 0     9 0     9.5 0     10 0 table 3 valid group invalid group test value Confidence test value Confidence 0 1 3 0.4 0.5 0.9 3.5 0.3 1 0.8 4 0.2 1.5 0.7 4.5 0.1 2 0.6 5 0 2.5 0.5 5.5 0 6 0 6.5 0 7 0 7.5 0 8 0 8.5 0 9 0 9.5 0 10 0

在一些實施例,依據表3各個測試值分別為「0、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10」,原始值為「0」度。由於閥值為「0.5」,因此置信度小於「0.5」的測試值「3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10」分類於無效組,置信度大於或等於「0.5」的測試值「0、0.5、1、1.5、2、2.5」分類於有效組。在一些實施例,訓練值為無效組中的所有測試值時,訓練值為「3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10」。在一些實施例,訓練值獲得步驟(圖2之步驟S250)更包括:依據有效組中最大的測試值與原始值之間的差值,獲得有效區間值;以及依據有效區間值的多個整數倍,從無效組中的測試值獲得訓練值。有效組中最大的測試值為「2.5」,原始值為「0」,有效組中最大的測試值與原始值之間的差值為「|2.5-0|=2.5」,差值的兩倍為「2*2.5=5」,因此有效區間值為「5」。有效區間值的多個整數倍為「5*m,m=0、±1、±2、…」,因此無效組中符合有效區間值的多個整數倍的測試值為「5、10」,所以訓練值為「5、10」。In some embodiments, each test value according to Table 3 is "0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10", the original value is "0" degrees. Since the threshold is "0.5", the test values "3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10" with confidence less than "0.5" are classified In the invalid group, test values "0, 0.5, 1, 1.5, 2, 2.5" with confidence greater than or equal to "0.5" are classified as valid. In some embodiments, the training value is "3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 when the training value is all test values in the null group. ". In some embodiments, the step of obtaining the training value (step S250 in FIG. 2 ) further includes: obtaining a valid interval value according to the difference between the largest test value in the valid set and the original value; and according to a plurality of integers of the valid interval value times, the training values are obtained from the test values in the null group. The largest test value in the valid group is "2.5", the original value is "0", and the difference between the largest test value in the valid group and the original value is "|2.5-0|=2.5", twice the difference is "2*2.5=5", so the valid interval value is "5". Multiple integer multiples of the valid interval value are "5*m, m=0, ±1, ±2, ...", so the test values of multiple integer multiples of the valid interval value in the invalid group are "5, 10", So the training value is "5, 10".

在一些實施例,深度學習模型訓練方法更包括重要度獲得步驟,重要度獲得步驟用於獲得測試值對應的重要度。在一些實施例,處理器120依據重要度獲得步驟獲得測試值對應的重要度。具體而言,當處理器120依據測試值調整原始影像集為多個測試影像集時,各個測試值只對應同一個調整類別,因此重要度獲得步驟用於獲得調整類別的重要度。因此調整類別以一對一的方式對應於重要度。In some embodiments, the deep learning model training method further includes an importance obtaining step, and the importance obtaining step is used to obtain the importance corresponding to the test value. In some embodiments, the processor 120 obtains the importance corresponding to the test value according to the importance obtaining step. Specifically, when the processor 120 adjusts the original image set into a plurality of test image sets according to the test value, each test value corresponds to only one adjustment category, so the importance obtaining step is used to obtain the importance of the adjustment category. The adjustment categories therefore correspond to the importance in a one-to-one manner.

在一些實施例,深度學習模型訓練系統100及深度學習模型訓練方法能依據各個調整類別的重要度的大小,決定以那個調整類別對第一深度學習模型T1進行訓練。例如,以重要度最小的角度旋轉做為調整類別。在一些實施例,深度學習模型訓練系統100及深度學習模型訓練方法能依據各個調整類別的重要度的大小,依序以各個調整類別對第一深度學習模型T1進行訓練。In some embodiments, the deep learning model training system 100 and the deep learning model training method can determine which adjustment category is used to train the first deep learning model T1 according to the importance of each adjustment category. For example, take the rotation with the least important angle as the adjustment category. In some embodiments, the deep learning model training system 100 and the deep learning model training method can sequentially train the first deep learning model T1 with each adjustment category according to the importance of each adjustment category.

在一些實施例,原始影像的高大於原始影像的寬時,調整類別的重要度的大小排列如下所列:等比例縮放>角度旋轉>對比度調整>亮度調整>伽瑪值調整>高度放大>寬度放大。In some embodiments, when the height of the original image is greater than the width of the original image, the importance of the adjustment categories is arranged as follows: proportional scaling > angle rotation > contrast adjustment > brightness adjustment > gamma value adjustment > height enlargement > width enlarge.

在一些實施例,原始影像的高小於原始影像的寬時,調整類別的重要度的大小排列如下所列:等比例縮放>角度旋轉>對比度調整>亮度調整>伽瑪值調整>寬度放大>高度放大。In some embodiments, when the height of the original image is smaller than the width of the original image, the importance of the adjustment categories is arranged as follows: scaling>angle rotation>contrast adjustment>brightness adjustment>gamma value adjustment>width enlargement>height enlarge.

圖3為根據本案一些實施例所繪示之重要度獲得步驟的流程圖。請參照圖3,在一些實施例,重要度獲得步驟的流程包括範圍值獲得步驟(步驟S310)、分組步驟(步驟S320)、無效邊界值獲得步驟(步驟S330)及重要度決定步驟(步驟S340)。FIG. 3 is a flow chart of the steps of obtaining the importance according to some embodiments of the present application. Referring to FIG. 3 , in some embodiments, the flow of the importance obtaining step includes a range value obtaining step (step S310 ), a grouping step (step S320 ), an invalid boundary value obtaining step (step S330 ), and an importance determining step (step S340 ) ).

在一些實施例,範圍值獲得步驟(圖3之步驟S310)包括:依據最大的測試值與最小的測試值之間的差值,獲得範圍值。具體而言,範圍值為測試值的範圍,因此處理器120能依據最大的測試值與最小的測試值之間的差值獲得範圍值。以測試值為角度旋轉為例及參照表1,最大的測試值為「10」,最小的測試值為「-10」,因此範圍值為「|10-(-10)|=20」。In some embodiments, the step of obtaining the range value (step S310 in FIG. 3 ) includes: obtaining the range value according to the difference between the largest test value and the smallest test value. Specifically, the range value is the range of the test value, so the processor 120 can obtain the range value according to the difference between the largest test value and the smallest test value. Taking the test value of angle rotation as an example and referring to Table 1, the maximum test value is "10", and the minimum test value is "-10", so the range value is "|10-(-10)|=20".

在一些實施例,分組步驟(圖3之步驟S320)包括:依據各個測試值對應的置信度是否小於閥值,將測試值分類於無效組或有效組。分組步驟(圖3之步驟S320)類似於分組步驟(圖2之步驟S230),於此不再贅述,步驟S320與步驟S230之間的差異在於兩者的閥值可以相同(例如,閥值都是「0.5」),也可以不相同(例如步驟S320的閥值可以是「0.6」,步驟S230的閥值可以是「0.5」)。以測試值為角度旋轉為例及參照表2,假如閥值為「0.5」,置信度小於「0.5」而分類於無效組的測試值為「-10、-9.5、-9、-8.5、-8、-7.5、-7、-6.5、-6、-5.5、-5、-4.5、-4、-3.5、-3、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10」。當置信度大於或等於「0.5」而分類於有效組的測試值為「-2.5、-2、-1.5、-1、-0.5、0、0.5、1、1.5、2、2.5」。In some embodiments, the grouping step (step S320 in FIG. 3 ) includes: classifying the test values into invalid groups or valid groups according to whether the confidence levels corresponding to each test value are smaller than a threshold. The grouping step (step S320 in FIG. 3 ) is similar to the grouping step (step S230 in FIG. 2 ), which will not be repeated here. The difference between step S320 and step S230 is that the thresholds of both may be the same (for example, is "0.5"), or may be different (for example, the threshold value in step S320 may be "0.6", and the threshold value in step S230 may be "0.5"). Taking the test value of angle rotation as an example and referring to Table 2, if the threshold value is "0.5", the confidence level is less than "0.5" and the test value classified in the invalid group is "-10, -9.5, -9, -8.5, - 8, -7.5, -7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10”. When the confidence level is greater than or equal to "0.5", the test value classified as a valid group is "-2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5".

在一些實施例,無效邊界值獲得步驟(圖3之步驟S330)包括:依據無效組中的測試值與原始值之間最小的差值,獲得無效邊界值。具體而言,處理器120能比較無效組中的測試值與原始值之間的差距,獲得無效組中的各個測試值與原始值之間分別對應的各個差值,並且透過比較這些差值的大小從中獲得最小的差值,再依據最小的差值對應的測試值獲得無效邊界值,也就是無效邊界值為最小差值對應的測試值。需特別說明的是,測試值與原始值之間的差值為「|原始值-測試值|」,也就是各個差值皆為正值。其中無效邊界值代表測試值無法被第一深度學習模組T0正確辨識的門檻,換句話說,無效邊界值是無效組與有效組之間的分界,並且無效邊界值為無效組中的測試值。在一些實施例,以測試值為角度旋轉為例及參照表2,假如原始值為「0」,無效組中的測試值與原始值之間的差值為「3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10」,因此最小的差值為「3」,而最小的差值對應的測試值為「3」或「-3」,並且「3」或「-3」為無效邊界值。需特別說明的是,以「3」或「-3」做為無效邊界值並不影響重要度,因為「3」及「-3」與原始值之間的差值相同(皆為最小的差值「3」)。In some embodiments, the step of obtaining the invalid boundary value (step S330 in FIG. 3 ) includes: obtaining the invalid boundary value according to the smallest difference between the test value in the invalid group and the original value. Specifically, the processor 120 can compare the difference between the test value in the invalid group and the original value, obtain each difference value corresponding to each test value in the invalid group and the original value, and compare the difference between the difference values. The minimum difference value is obtained from the size, and then the invalid boundary value is obtained according to the test value corresponding to the minimum difference value, that is, the invalid boundary value is the test value corresponding to the minimum difference value. It should be noted that the difference between the test value and the original value is "|original value-test value|", that is, each difference value is a positive value. The invalid boundary value represents the threshold that the test value cannot be correctly identified by the first deep learning module T0. In other words, the invalid boundary value is the boundary between the invalid group and the valid group, and the invalid boundary value is the test value in the invalid group. . In some embodiments, taking the test value as an example of angular rotation and referring to Table 2, if the original value is "0", the difference between the test value and the original value in the invalid group is "3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10", so the smallest difference is "3", and the smallest difference corresponds to a test value of "3" or "-3" ", and "3" or "-3" is an invalid boundary value. It should be noted that using "3" or "-3" as the invalid boundary value does not affect the importance, because the difference between "3" and "-3" and the original value is the same (both are the smallest difference. value "3").

在一些實施例,重要度決定步驟(圖3之步驟S340)包括:依據原始值與無效邊界值之間的差值除以範圍值,獲得重要度。具體而言,處理器120能依據原始值與無效邊界值之間的差值除以範圍值獲得商值,而商值即為重要度。原始值為原始影像集對應於調整類別的數值,重要度為原始值與無效邊界值之間的差值除以範圍值,也就是重要度對應於有效組(無效組)與範圍值之間的比例。因此,當重要度越低,代表有效組的測試值佔所有的測試值的比例越低(無效組的測試值佔所有的測試值的比例越高),也就是這個調整類別越容易影響置信度。反之,當重要度越高,代表有效組的測試值佔所有的測試值的比例越高(無效組的測試值佔所有的測試值的比例越低),也就是這個調整類別越不容易影響置信度。以測試值為角度旋轉為例及參照表2,以測試值為角度旋轉為例及參照表2,原始值是「0」,無效邊界值與原始值之間的差值是「3」,範圍值是「20」,商值是「3/20=0.15」,因此重要度是「0.15」。In some embodiments, the step of determining the importance level (step S340 in FIG. 3 ) includes: dividing the difference between the original value and the invalid boundary value by the range value to obtain the importance level. Specifically, the processor 120 can obtain a quotient value by dividing the difference between the original value and the invalid boundary value by the range value, and the quotient value is the importance. The original value is the value of the original image set corresponding to the adjustment category, and the importance is the difference between the original value and the invalid boundary value divided by the range value, that is, the importance corresponds to the difference between the valid group (invalid group) and the range value. Proportion. Therefore, when the importance is lower, the proportion of the test values representing the valid group to all the test values is lower (the proportion of the test values of the invalid group to all the test values is higher), that is, the more likely this adjustment category affects the confidence. . On the contrary, when the importance is higher, the proportion of the test values representing the valid group to all the test values is higher (the proportion of the test values of the invalid group to all the test values is lower), that is, the less likely this adjustment category will affect the confidence. Spend. Take the test value of angle rotation as an example and refer to Table 2, and take the test value of angle rotation as an example and refer to Table 2, the original value is "0", the difference between the invalid boundary value and the original value is "3", the range The value is "20" and the quotient is "3/20=0.15", so the importance is "0.15".

在一些實施例(例如表2),重要度決定步驟(圖3之步驟S340)能以第一重要度獲得公式表示,第一重要度獲得方程式如下所示:In some embodiments (eg, Table 2), the importance determination step (step S340 in FIG. 3 ) can be represented by a first importance obtaining formula, and the first importance obtaining equation is as follows:

Figure 02_image001
Figure 02_image001

其中,I是重要度,O是原始值,

Figure 02_image003
是代表在
Figure 02_image005
Figure 02_image007
之中取最小值,B1 、B2 是無效邊界值,R為範圍值。where I is the importance, O is the original value,
Figure 02_image003
is represented in
Figure 02_image005
and
Figure 02_image007
Take the minimum value among them, B 1 and B 2 are invalid boundary values, and R is the range value.

在一些實施例(例如表3),重要度決定步驟(圖3之步驟S340)能以第二重要度獲得公式表示,第二重要度獲得方程式如下所示:In some embodiments (eg, Table 3), the importance determination step (step S340 in FIG. 3 ) can be represented by a second importance obtaining formula, and the second importance obtaining equation is as follows:

Figure 02_image009
Figure 02_image009

其中,I是重要度,O是原始值,B是無效邊界值,R為範圍值。Among them, I is the importance, O is the original value, B is the invalid boundary value, and R is the range value.

圖4為根據本案一些實施例所繪示之深度學習模型訓練系統100的示意圖。請參照圖4,在一些實施例,深度學習模型訓練系統100能搭配計量表400及影像擷取裝置500。計量表400用於顯示數值,影像擷取裝置500用於從計量表400擷取原始影像,例如擷取「計量表400用於顯示數值的區域」或「計量表400的顯示螢幕」做為原始影像。深度學習模型訓練系統100再從影像擷取裝置500獲得原始影像,因此深度學習模型訓練系統100能獲得原始影像集(即,多個原始影像)。在一些實施例,影像擷取裝置500是透過無線網路連接於深度學習模型訓練系統100。計量表400例如但不限於以機械轉動數字式或電子式顯示數值,並且計量表400例如但不限於用在電力輸送網或自來水輸送網。FIG. 4 is a schematic diagram of a deep learning model training system 100 according to some embodiments of the present application. Referring to FIG. 4 , in some embodiments, the deep learning model training system 100 can be equipped with a meter 400 and an image capture device 500 . The meter 400 is used to display the value, and the image capture device 500 is used to capture the original image from the meter 400, for example, to capture the "area of the meter 400 for displaying the value" or the "display screen of the meter 400" as the original image image. The deep learning model training system 100 then obtains the original images from the image capturing device 500, so the deep learning model training system 100 can obtain a set of original images (ie, a plurality of original images). In some embodiments, the image capture device 500 is connected to the deep learning model training system 100 through a wireless network. The meter 400 is, for example, but not limited to, mechanically rotating digital or electronically displaying values, and the meter 400 is, for example, but not limited to, used in an electric power transmission network or a water supply network.

在一些實施例,深度學習模型訓練系統100除了包括處理器120及儲存裝置140之外,深度學習模型訓練系統100能更包括計量表400及影像擷取裝置500(圖中未繪示深度學習模型訓練系統100能更包括計量表400及影像擷取裝置500)。In some embodiments, in addition to the processor 120 and the storage device 140, the deep learning model training system 100 can further include a meter 400 and an image capturing device 500 (the deep learning model is not shown in the figure). The training system 100 can further include a meter 400 and an image capture device 500).

圖5為根據本案一些實施例所繪示之計量表400的部分示意圖。請參照圖5,在一些實施例,計量表400用於顯示數值的區域能顯示4個十進位數字,也就是計量表400顯示的數值介於「0000至9999」。以圖5為例,計量表400顯示的數值為「0011」。FIG. 5 is a partial schematic diagram of a meter 400 according to some embodiments of the present application. Referring to FIG. 5 , in some embodiments, the area of the meter 400 for displaying values can display four decimal digits, that is, the value displayed by the meter 400 is between “0000 to 9999”. Taking FIG. 5 as an example, the value displayed on the meter 400 is "0011".

在一些實施例,深度學習模型訓練系統100及深度學習模型訓練方法使用的深度學習模型的架構例如但不限於卷積神經網路(Convolutional Neural Network,CNN)、循環神經網路(Recurrent Neural Network,RNN)、深度神經網路(Deep Neural Network,DNN)、或yolo(You Only Look Once)。換句話說,深度學習模型訓練系統100及深度學習模型訓練方法例如但不限於依據上述所列的架構獲得置信度。In some embodiments, the architecture of the deep learning model used by the deep learning model training system 100 and the deep learning model training method is, for example, but not limited to, a convolutional neural network (CNN), a recurrent neural network (Recurrent Neural Network, RNN), Deep Neural Network (DNN), or yolo (You Only Look Once). In other words, the deep learning model training system 100 and the deep learning model training method, for example, but not limited to, obtain the confidence level according to the above-listed architectures.

圖6為根據本案一些實施例所繪示之物件OB與圖框的示意圖。圖7為根據本案一些實施例所繪示之交並比IOU的示意圖。請參照圖6及圖7,在一些實施例,輸入至深度學習模型的影像IM具有物件OB,深度學習模型依據物件OB於影像IM中的位置,設定第一圖框A1及第二圖框A2。深度學習模型依據第一圖框A1及第二圖框A2獲得交集區域A3及聯集區域A4,其中交集區域A3為第一圖框A1與第二圖框A2之間交集的區域,聯集區域A4為第一圖框A1與第二圖框A2之間聯集的區域。深度學習模型依據影像IM、第一圖框A1及第二圖框A2獲得影像IM的置信度,深度學習模型獲得置信度的公式例如但不限於如下所列:FIG. 6 is a schematic diagram of an object OB and a frame according to some embodiments of the present application. FIG. 7 is a schematic diagram of the intersection and ratio IOU according to some embodiments of the present application. 6 and 7, in some embodiments, the image IM input to the deep learning model has an object OB, and the deep learning model sets the first frame A1 and the second frame A2 according to the position of the object OB in the image IM . The deep learning model obtains the intersection area A3 and the union area A4 according to the first frame A1 and the second frame A2, wherein the intersection area A3 is the intersection area between the first frame A1 and the second frame A2, and the union area A4 is an area of union between the first frame A1 and the second frame A2. The deep learning model obtains the confidence of the image IM according to the image IM, the first frame A1 and the second frame A2, and the formula for obtaining the confidence by the deep learning model is, for example, but not limited to the following:

C=Pr(ob)*IOU,IOU=A3/A4。C=Pr(ob)*IOU, IOU=A3/A4.

其中,C為置信度,Pr(ob)為物件OB屬於一個類別的機率(以圖6為例,類別可為「0」,因此Pr(ob)為物件OB屬於「0」的機率),交並比IOU為交集區域A3除以聯集區域A4。Among them, C is the confidence level, Pr(ob) is the probability that the object OB belongs to a category (taking Figure 6 as an example, the category can be "0", so Pr(ob) is the probability that the object OB belongs to "0"). And the ratio of IOU is the intersection area A3 divided by the union area A4.

在一些實施例,具體而言,深度學習模型將影像IM切分為多個陣列區塊(陣列區塊共有S*S個),計算每一個陣列區塊中物件OB屬於一個類別的機率,並且從每一個陣列區塊中物件OB屬於一個類別的機率之中獲得最大值,並以此最大值做為物件OB屬於一個類別的機率。第一圖框A1為參考標準區塊(ground truth box),也就是深度學習模型依據之前訓練的結果,標記物件OB屬於一個類別的標準答案的區塊。第二圖框A2為候選區塊(bounding box),也就是深度學習模型依據輸入的影像IM,標記影像IM之中做為預測物件OB是否屬於一個類別的區塊。In some embodiments, specifically, the deep learning model divides the image IM into a plurality of array blocks (there are S*S array blocks in total), calculates the probability that the object OB in each array block belongs to a class, and The maximum value is obtained from the probability that the object OB belongs to a category in each array block, and the maximum value is used as the probability that the object OB belongs to a category. The first frame A1 is the reference standard block (ground truth box), that is, the block in which the deep learning model marks the standard answer of the object OB belonging to a category according to the result of the previous training. The second frame A2 is a candidate block (bounding box), that is, the deep learning model marks the image IM as a block that predicts whether the object OB belongs to a category according to the input image IM.

綜上,本案一些實施例的深度學習模型訓練系統、深度學習模型訓練方法及非暫態電腦可讀取儲存媒體,能依據測試值調整原始影像集以獲得測試影像集,並輸入測試影像集至第一深度學習模型進行測試而獲得測試影像集的置信度,也就是測試值的置信度。並且能依據閥值分類測試值為有效組或無效組,再從無效組中的測試值獲得訓練值。以及依據訓練值調整原始影像集以獲得訓練影像集,並輸入原始影像集及訓練影像集至第一深度學習模型進行訓練而獲得第二深度學習模型。在一些實施例,深度學習模型訓練系統及方法能利用訓練影像集對第一深度學習模型加強訓練,而不需將低於閥值的置信度所對應的全部測試值都進行訓練,因此能達到精簡深度學習模型的訓練資料量的效果,並且依然能獲得高置信度的第二深度學習模型。在一些實施例,深度學習模型訓練系統及方法能適用於辨識計量表用於顯示數值的區域之影像。To sum up, the deep learning model training system, deep learning model training method and non-transitory computer-readable storage medium of some embodiments of this case can adjust the original image set according to the test value to obtain the test image set, and input the test image set to the The first deep learning model is tested to obtain the confidence of the test image set, that is, the confidence of the test value. And the test value can be classified into the valid group or the invalid group according to the threshold value, and then the training value can be obtained from the test value in the invalid group. and adjusting the original image set according to the training value to obtain a training image set, and inputting the original image set and the training image set to the first deep learning model for training to obtain a second deep learning model. In some embodiments, the deep learning model training system and method can use the training image set to strengthen the training of the first deep learning model without training all the test values corresponding to the confidence levels lower than the threshold, thus achieving The effect of reducing the amount of training data of the deep learning model, and still obtaining a second deep learning model with high confidence. In some embodiments, deep learning model training systems and methods can be adapted to identify images of areas of meters used to display values.

100:深度學習模型訓練系統 120:處理器 140:儲存裝置 400:計量表 500:影像擷取裝置 T1:第一深度學習模型 T2:第二深度學習模型 IM:影像 OB:物件 A1:第一圖框 A2:第二圖框 A3:交集區域 A4:聯集區域 S210-S260:步驟 S310-S340:步驟100: Deep Learning Model Training System 120: Processor 140: Storage Device 400: Meter 500: Image Capture Device T1: The first deep learning model T2: Second Deep Learning Model IM: Video OB:Object A1: The first frame A2: Second frame A3: Intersection area A4: Union area S210-S260: Steps S310-S340: Steps

圖1為根據本案一些實施例所繪示之深度學習模型訓練系統的示意圖。 圖2為根據本案一些實施例所繪示之深度學習模型訓練方法的流程圖。 圖3為根據本案一些實施例所繪示之重要度獲得步驟的流程圖。 圖4為根據本案一些實施例所繪示之深度學習模型訓練系統的示意圖。 圖5為根據本案一些實施例所繪示之計量表的部分示意圖。 圖6為根據本案一些實施例所繪示之物件與圖框的示意圖。 圖7為根據本案一些實施例所繪示之交並比的示意圖。FIG. 1 is a schematic diagram of a deep learning model training system according to some embodiments of the present application. FIG. 2 is a flowchart of a deep learning model training method according to some embodiments of the present application. FIG. 3 is a flow chart of the steps of obtaining the importance according to some embodiments of the present application. FIG. 4 is a schematic diagram of a deep learning model training system according to some embodiments of the present application. FIG. 5 is a partial schematic diagram of a meter according to some embodiments of the present application. FIG. 6 is a schematic diagram of objects and frames according to some embodiments of the present application. FIG. 7 is a schematic diagram of an intersection ratio according to some embodiments of the present application.

S210-S260:步驟S210-S260: Steps

Claims (15)

一種深度學習模型訓練方法,包括: 一測試影像集獲得步驟,依據多個測試值調整一原始影像集以獲得多個測試影像集; 一模型測試步驟,輸入該些測試影像集至一第一深度學習模型進行測試,獲得多個置信度,該些置信度以一對一的方式對應於該些測試值; 一分組步驟,依據各該測試值對應的該置信度是否小於一閥值,將該些測試值分類於一無效組或一有效組; 一訓練值獲得步驟,依據該無效組中的該些測試值,獲得多個訓練值; 一訓練影像集獲得步驟,依據該些訓練值調整該原始影像集以獲得多個訓練影像集;及 一模型訓練步驟,輸入該原始影像集及該些訓練影像集至該第一深度學習模型進行訓練,獲得一第二深度學習模型。A deep learning model training method, including: a step of obtaining a test image set, adjusting an original image set according to a plurality of test values to obtain a plurality of test image sets; a model testing step, inputting the test image sets to a first deep learning model for testing to obtain a plurality of confidence levels, the confidence levels corresponding to the test values in a one-to-one manner; a grouping step of classifying the test values into an invalid group or a valid group according to whether the confidence level corresponding to each of the test values is less than a threshold; a training value obtaining step, obtaining a plurality of training values according to the test values in the invalid group; a training image set obtaining step, adjusting the original image set according to the training values to obtain a plurality of training image sets; and In a model training step, the original image set and the training image sets are input to the first deep learning model for training to obtain a second deep learning model. 如請求項1所述的深度學習模型訓練方法,其中該訓練值獲得步驟更包括: 依據該有效組中最大的該測試值與一原始值之間的差值,獲得一有效區間值;及 依據該有效區間值的多個整數倍,從該無效組中的該些測試值獲得該些訓練值。The deep learning model training method according to claim 1, wherein the step of obtaining the training value further comprises: obtaining a valid interval value according to the difference between the largest test value in the valid set and an original value; and The training values are obtained from the test values in the invalid group according to a plurality of integer multiples of the valid interval value. 如請求項1所述的深度學習模型訓練方法,其中該些測試影像集以一對一的方式對應於該些測試值,該些訓練影像集以一對一的方式對應於該些訓練值。The deep learning model training method according to claim 1, wherein the test image sets correspond to the test values in a one-to-one manner, and the training image sets correspond to the training values in a one-to-one manner. 如請求項1所述的深度學習模型訓練方法,其中該些測試值為一等差數列。The deep learning model training method according to claim 1, wherein the test values are an arithmetic sequence. 如請求項1所述的深度學習模型訓練方法,其中該些測試值包括該原始影像集對應的一原始值。The deep learning model training method according to claim 1, wherein the test values include an original value corresponding to the original image set. 如請求項5所述的深度學習模型訓練方法,其中該原始值對應的該測試影像集為部分的該原始影像集。The deep learning model training method according to claim 5, wherein the test image set corresponding to the original value is a part of the original image set. 如請求項1所述的深度學習模型訓練方法,更包括一重要度獲得步驟,該重要度獲得步驟用於獲得該些測試值對應的一重要度,其中該重要度獲得步驟包括: 依據最大的該測試值與最小的該測試值之間的差值,獲得一範圍值; 依據各該測試值對應的該置信度是否小於該閥值,將該些測試值分類於該無效組或該有效組; 依據該無效組中的該些測試值與一原始值之間最小的差值,獲得一無效邊界值;及 依據該原始值與該無效邊界值之間的差值除以該範圍值,獲得該重要度。The deep learning model training method according to claim 1, further comprising an importance obtaining step, the importance obtaining step is used to obtain an importance corresponding to the test values, wherein the importance obtaining step includes: obtaining a range value according to the difference between the maximum test value and the minimum test value; classifying the test values into the invalid group or the valid group according to whether the confidence level corresponding to each of the test values is less than the threshold value; obtaining a null boundary value according to the smallest difference between the test values in the null set and an original value; and The importance is obtained by dividing the difference between the original value and the invalid boundary value by the range value. 一種深度學習模型訓練系統,包括: 一處理器,用於接收一原始影像集、多個測試值及一閥值,依據該些測試值調整該原始影像集以獲得多個測試影像集,輸入該些測試影像集至一第一深度學習模型進行測試而獲得多個置信度,該些置信度以一對一方式對應於該些測試值,依據各該測試值對應的該置信度是否小於該閥值將該些測試值分類於一無效組或一有效組,依據該無效組中的該些測試值獲得多個訓練值,依據該些訓練值調整該原始影像集以獲得多個訓練影像集,並且輸入該原始影像集及該些訓練影像集至該第一深度學習模型進行訓練而獲得一第二深度學習模型;及 一儲存裝置,用於儲存該第一深度學習模型及該第二深度學習模型。A deep learning model training system, including: a processor for receiving an original image set, a plurality of test values and a threshold, adjusting the original image set according to the test values to obtain a plurality of test image sets, and inputting the test image sets to a first depth The learning model is tested to obtain a plurality of confidence levels, the confidence levels correspond to the test values in a one-to-one manner, and the test values are classified into a an invalid group or a valid group, obtain a plurality of training values according to the test values in the invalid group, adjust the original image set according to the training values to obtain a plurality of training image sets, and input the original image set and the training the image set to the first deep learning model for training to obtain a second deep learning model; and a storage device for storing the first deep learning model and the second deep learning model. 如請求項8所述的深度學習模型訓練系統,其中該處理器依據該有效組中最大的該測試值與一原始值之間的差值獲得一有效區間值,並且依據該有效區間值的多個整數倍從該無效組中的該些測試值獲得該些訓練值。The deep learning model training system according to claim 8, wherein the processor obtains a valid interval value according to the difference between the largest test value in the valid set and an original value, and according to the plurality of valid interval values The training values are obtained in integer multiples from the test values in the null set. 如請求項8所述的深度學習模型訓練系統,其中該些測試影像集以一對一的方式對應於該些測試值,該些訓練影像集以一對一的方式對應於該些訓練值。The deep learning model training system of claim 8, wherein the test image sets correspond to the test values in a one-to-one manner, and the training image sets correspond to the training values in a one-to-one manner. 如請求項8所述的深度學習模型訓練系統,其中該些測試值為一等差數列。The deep learning model training system according to claim 8, wherein the test values are an arithmetic sequence. 如請求項8所述的深度學習模型訓練系統,其中該些測試值包括該原始影像集對應的一原始值。The deep learning model training system of claim 8, wherein the test values include an original value corresponding to the original image set. 如請求項12所述的深度學習模型訓練系統,其中該原始值對應的該測試影像集為部分的該原始影像集。The deep learning model training system of claim 12, wherein the test image set corresponding to the original value is a part of the original image set. 如請求項8所述的深度學習模型訓練系統,該處理器依據最大的該測試值與最小的該測試值之間的差值獲得一範圍值,依據各該測試值對應的該置信度是否小於該閥值將該些測試值分類於該無效組或該有效組,依據該無效組中的該些測試值與一原始值之間最小的差值獲得一無效邊界值,並且依據該原始值與該無效邊界值之間的差值除以該範圍值獲得該重要度。The deep learning model training system according to claim 8, wherein the processor obtains a range value according to the difference between the maximum test value and the minimum test value, and according to whether the confidence corresponding to each test value is less than The threshold classifies the test values into the invalid group or the valid group, obtains an invalid boundary value according to the smallest difference between the test values in the invalid group and an original value, and obtains an invalid boundary value according to the original value and the original value. The importance is obtained by dividing the difference between the invalid boundary values by the range value. 一種非暫態電腦可讀取儲存媒體,用於儲存一或多個軟體程式,該一或多個軟體程式包括多個指令,當該些指令由一電子裝置的一或多個處理電路執行時,將使該電子裝置進行一深度學習模型訓練方法,該深度學習模型訓練方法包括: 一測試影像集獲得步驟,依據多個測試值調整一原始影像集為多個測試影像集; 一模型測試步驟,輸入該些測試影像集至一第一深度學習模型進行測試,獲得多個置信度,該些置信度以一對一的方式對應於該些測試值; 一分組步驟,依據各該測試值對應的該置信度是否小於一閥值,將該些測試值分類於一無效組或一有效組; 一訓練值獲得步驟,依據該無效組中的該些測試值,獲得多個訓練值; 一訓練影像集獲得步驟,依據該些訓練值調整該原始影像集以獲得多個訓練影像集;及 一模型訓練步驟,輸入該原始影像集及該些訓練影像集至該第一深度學習模型進行訓練,獲得一第二深度學習模型。A non-transitory computer-readable storage medium for storing one or more software programs, the one or more software programs including a plurality of instructions when the instructions are executed by one or more processing circuits of an electronic device , will make the electronic device perform a deep learning model training method, and the deep learning model training method includes: a step of obtaining a test image set, adjusting an original image set into a plurality of test image sets according to a plurality of test values; a model testing step, inputting the test image sets to a first deep learning model for testing to obtain a plurality of confidence levels, the confidence levels corresponding to the test values in a one-to-one manner; a grouping step of classifying the test values into an invalid group or a valid group according to whether the confidence level corresponding to each of the test values is less than a threshold; a training value obtaining step, obtaining a plurality of training values according to the test values in the invalid group; a training image set obtaining step, adjusting the original image set according to the training values to obtain a plurality of training image sets; and In a model training step, the original image set and the training image sets are input to the first deep learning model for training to obtain a second deep learning model.
TW109111080A 2020-03-31 2020-03-31 Deep learning model training system, deep learning model training method, and non-transitory computer readable storage medium TWI750622B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109111080A TWI750622B (en) 2020-03-31 2020-03-31 Deep learning model training system, deep learning model training method, and non-transitory computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109111080A TWI750622B (en) 2020-03-31 2020-03-31 Deep learning model training system, deep learning model training method, and non-transitory computer readable storage medium

Publications (2)

Publication Number Publication Date
TW202139075A TW202139075A (en) 2021-10-16
TWI750622B true TWI750622B (en) 2021-12-21

Family

ID=79601195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109111080A TWI750622B (en) 2020-03-31 2020-03-31 Deep learning model training system, deep learning model training method, and non-transitory computer readable storage medium

Country Status (1)

Country Link
TW (1) TWI750622B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114510715B (en) * 2022-01-14 2022-10-14 中国科学院软件研究所 Method and device for testing functional safety of model, storage medium and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109446188A (en) * 2018-10-17 2019-03-08 大国创新智能科技(东莞)有限公司 Follow-up auditing method and robot system based on big data and deep learning
TW201918913A (en) * 2017-11-01 2019-05-16 香港商阿里巴巴集團服務有限公司 Machine processing and text correction method and device, computing equipment and storage media
CN109767467A (en) * 2019-01-22 2019-05-17 Oppo广东移动通信有限公司 Image processing method, device, electronic equipment and computer readable storage medium
CN109948727A (en) * 2019-03-28 2019-06-28 北京周同科技有限公司 The training and classification method of image classification model, computer equipment and storage medium
US10423861B2 (en) * 2017-10-16 2019-09-24 Illumina, Inc. Deep learning-based techniques for training deep convolutional neural networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10423861B2 (en) * 2017-10-16 2019-09-24 Illumina, Inc. Deep learning-based techniques for training deep convolutional neural networks
TW201918913A (en) * 2017-11-01 2019-05-16 香港商阿里巴巴集團服務有限公司 Machine processing and text correction method and device, computing equipment and storage media
CN109446188A (en) * 2018-10-17 2019-03-08 大国创新智能科技(东莞)有限公司 Follow-up auditing method and robot system based on big data and deep learning
CN109767467A (en) * 2019-01-22 2019-05-17 Oppo广东移动通信有限公司 Image processing method, device, electronic equipment and computer readable storage medium
CN109948727A (en) * 2019-03-28 2019-06-28 北京周同科技有限公司 The training and classification method of image classification model, computer equipment and storage medium

Also Published As

Publication number Publication date
TW202139075A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
WO2021082743A1 (en) Video classification method and apparatus, and electronic device
WO2020155518A1 (en) Object detection method and device, computer device and storage medium
WO2020119527A1 (en) Human action recognition method and apparatus, and terminal device and storage medium
WO2017096753A1 (en) Facial key point tracking method, terminal, and nonvolatile computer readable storage medium
WO2022041598A1 (en) Remote sensing image segmentation method and system, terminal, and storage medium
WO2019137038A1 (en) Method for determining point of gaze, contrast adjustment method and device, virtual reality apparatus, and storage medium
CN110889446A (en) Face image recognition model training and face image recognition method and device
CN112183501B (en) Depth counterfeit image detection method and device
WO2022237153A1 (en) Target detection method and model training method therefor, related apparatus, medium, and program product
CN115294409A (en) Video compression method, system and medium for security monitoring
WO2019091402A1 (en) Method and device for age estimation
WO2021164550A1 (en) Image classification method and apparatus
CN115661943B (en) Fall detection method based on lightweight attitude assessment network
TW201250608A (en) Image comparison system and method
TWI803243B (en) Method for expanding images, computer device and storage medium
CN112884721B (en) Abnormality detection method, abnormality detection system and computer-readable storage medium
CN107590460A (en) Face classification method, apparatus and intelligent terminal
WO2020147408A1 (en) Facial recognition model evaluation method and apparatus, and storage medium and computer device
WO2019120025A1 (en) Photograph adjustment method and apparatus, storage medium and electronic device
TWI750622B (en) Deep learning model training system, deep learning model training method, and non-transitory computer readable storage medium
CN111191685A (en) Method for dynamically weighting loss function
JP2023510945A (en) Scene identification method and apparatus, intelligent device, storage medium and computer program
CN108985331A (en) Target counting method based on countermeasure generation network
US20230401670A1 (en) Multi-scale autoencoder generation method, electronic device and readable storage medium
WO2023102844A1 (en) Method and apparatus for determining pruning module, and computer-readable storage medium