TWI750559B - Light sensing system and nanostructure layer - Google Patents

Light sensing system and nanostructure layer Download PDF

Info

Publication number
TWI750559B
TWI750559B TW108147478A TW108147478A TWI750559B TW I750559 B TWI750559 B TW I750559B TW 108147478 A TW108147478 A TW 108147478A TW 108147478 A TW108147478 A TW 108147478A TW I750559 B TWI750559 B TW I750559B
Authority
TW
Taiwan
Prior art keywords
layer
total reflection
light
optical information
nanostructure
Prior art date
Application number
TW108147478A
Other languages
Chinese (zh)
Other versions
TW202125321A (en
Inventor
鍾潤文
傅旭文
鍾建屏
Original Assignee
大陸商廣州印芯半導體技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商廣州印芯半導體技術有限公司 filed Critical 大陸商廣州印芯半導體技術有限公司
Priority to TW108147478A priority Critical patent/TWI750559B/en
Publication of TW202125321A publication Critical patent/TW202125321A/en
Application granted granted Critical
Publication of TWI750559B publication Critical patent/TWI750559B/en

Links

Images

Abstract

A light sensing system having a structure including: a total reflection conductive layer having an upper surface and a lower surface, which configured to transmit in an optical information with total reflection in the total reflection conductive layer, wherein when an object contacts the upper surface of the total reflection conductive layer, the total reflection transmission of the optical information is destroyed and the optical information is output.; a light sensing layer is disposed below the total reflective conductive layer and configured to receive the optical information; a light output layer is disposed between the total reflection conductive layer and the light sensing layer, and directly or indirectly disposed on the lower surface of the total reflection conductive layer, the light output layer having a nano structure layer, the nano structure layer is configured to conduct the optical information which output from the total reflection conductive layer to the light sensor, and prevent the optical information from being reflected. Wherein, the light sensing layer is arranged directly or indirectly under the nano-structure layer, to receive the optical information which output by the nano-structure layer. Therefore, the invention can effectively improve the stability of the light sensing system, especially the accuracy of the light sensing layer.

Description

光感測系統及奈米結構層Optical sensing system and nanostructure layer

本發明係有關於一種光感測系統,特別是關於一種利用具有防反射之奈米結構層實現全屏幕屏下感測的光感測系統。The present invention relates to a light sensing system, in particular, to a light sensing system that utilizes an anti-reflection nano-structure layer to realize full-screen under-screen sensing.

近年來,指紋辨識發展再度掀起熱潮,目前市場上顯示屏幕屏下指紋辨識之應用,可分為傳統電容式指紋辨識、超音波指紋辨識、光學式指紋辨識等三種系統。In recent years, the development of fingerprint identification has set off an upsurge again. At present, the application of fingerprint identification under the display screen on the market can be divided into three systems: traditional capacitive fingerprint identification, ultrasonic fingerprint identification, and optical fingerprint identification.

其中,光學式指紋辨識系統應用領域最為廣泛,其優點在成本低、技術成熟並且較不受環境光所干擾。其主要原理為依靠感測器投射出光線,接著獲取反射後的光線並繪製指紋圖樣,最後與系統內存指紋圖像進行比對從而達到辨識功能。Among them, the optical fingerprint identification system is the most widely used, and its advantages are low cost, mature technology and less interference from ambient light. Its main principle is to rely on the sensor to project light, then obtain the reflected light and draw a fingerprint pattern, and finally compare it with the fingerprint image in the system memory to achieve the recognition function.

就目前而言,習知的光學式指紋辨識系統為了增加感測面積,一般採用薄膜電晶體之製程技術,應用a-Si/m-Si可吸收可見光波長產生電訊號之特性,將其作為光感測器以製造出大屏幕之光感測器。然而,由於a-Si/m-Si之量子效率不高,因而要取得較為強烈的光資訊以提升電資訊的轉換,因此如何提升所接收的光資訊之訊雜比則為研發人員應解決的問題之一。At present, in order to increase the sensing area of the conventional optical fingerprint identification system, the process technology of thin film transistor is generally used, and a-Si/m-Si can absorb the wavelength of visible light to generate electrical signals, and use it as a light source. sensor to create a large-screen light sensor. However, since the quantum efficiency of a-Si/m-Si is not high, it is necessary to obtain more intense optical information to improve the conversion of electrical information. Therefore, how to improve the signal-to-noise ratio of the received optical information is a problem that researchers should solve. one of the problems.

本發明為基於上述技術問題所完成者,可提供一種光感測系統,除了能有效的在不增加或少量增加屏幕厚度下提升光感測器之準確度,並能利用奈米結構層防止光資訊反射,從而提升光資訊之訊雜比。The present invention is accomplished based on the above-mentioned technical problems, and can provide a light sensing system, which can effectively improve the accuracy of the light sensor without increasing the thickness of the screen or a small amount, and can use a nanostructure layer to prevent light Information reflection, thereby improving the signal-to-noise ratio of optical information.

本發明的目的在於提供一種具有全反射傳導層和奈米結構層的光感測系統,包括:全反射傳導層,配置為使光資訊在其中全反射傳遞,當物體接觸全反射傳導層的上表面時,破壞光資訊的全反射傳遞並輸出光資訊;光感測層,設置於全反射傳導層的下方,配置為接收光資訊;光輸出層,設置在全反射傳導層與光輸出層之間,並且直接或間接設置在全反射傳導層的下表面,該光輸出層具有奈米結構層,該奈米結構層配置為將全反射傳導層中所輸出的光資訊傳導至光感測層;其中,光感測層設置為直接或間接位於該奈米結構層下方,配置為接收該奈米結構層輸出的該光資訊。The object of the present invention is to provide a light sensing system with a total reflection conductive layer and a nanostructure layer, comprising: a total reflection conductive layer, configured to transmit optical information through total reflection therein, and when an object touches the top of the total reflection conductive layer When the surface is damaged, the total reflection of the optical information transmits and outputs the optical information; the light sensing layer is arranged under the total reflection conduction layer and is configured to receive the optical information; the light output layer is arranged between the total reflection conduction layer and the light output layer. and directly or indirectly disposed on the lower surface of the total reflection conductive layer, the light output layer has a nanostructure layer, and the nanostructure layer is configured to conduct the optical information output from the total reflection conductive layer to the light sensing layer wherein, the photo-sensing layer is disposed directly or indirectly under the nano-structure layer, and is configured to receive the optical information output by the nano-structure layer.

在本發明的一實施方式中,由外部光源輸出之光資訊具有較高的準直性,亦即其具有較小的發散角度,從而使得在全反射傳導層中全反射傳遞之光資訊傳遞較遠的距離,使得傳輸至光感測層之光資訊可以具有較高之訊雜比。In an embodiment of the present invention, the optical information output by the external light source has high collimation, that is, it has a small divergence angle, so that the optical information transmitted by total reflection in the total reflection conductive layer is transmitted more efficiently. The long distance enables the light information transmitted to the light sensing layer to have a higher signal-to-noise ratio.

較佳地,在本發明的一實施方式中,該發散角度的範圍介於0.3度至5度之間。Preferably, in an embodiment of the present invention, the divergence angle ranges from 0.3 degrees to 5 degrees.

在本發明的一實施方式中,該奈米結構層形成於該全反射傳導層的表面。In an embodiment of the present invention, the nanostructure layer is formed on the surface of the total reflection conductive layer.

較佳地,在本發明的一實施方式中,光輸出層以印壓方式設置於全反射層表面,用於防止全反射層中所輸出的光資訊反射,並且傳輸光資訊至光感測層。Preferably, in an embodiment of the present invention, the light output layer is disposed on the surface of the total reflection layer in a stamping manner to prevent reflection of the light information output from the total reflection layer and transmit the light information to the light sensing layer. .

較佳地,在本發明的另一實施方式中,光輸出層為薄膜,將該薄膜黏附於全反射層上,用於防止全反射層中所輸出的光資訊反射,並且傳輸光資訊至光感測層。Preferably, in another embodiment of the present invention, the light output layer is a thin film, and the thin film is adhered on the total reflection layer to prevent the reflection of the optical information output in the total reflection layer and transmit the optical information to the light. sensing layer.

本發明的另一目的在於提供一種具奈米結構層,用於上述之光感測系統中,其包含奈米結構,將全反射傳導層中所輸出的光資訊傳導至光感測層,該奈米結構層用於防止從全反射傳導層輸出的光資訊反射,進而造成光資訊的衰減。Another object of the present invention is to provide a nanostructured layer for use in the above-mentioned light sensing system. The nanostructure layer is used to prevent reflection of the optical information output from the total reflection conductive layer, thereby causing attenuation of the optical information.

在本發明的一實施方式中,該奈米結構可以由塑料製成。In one embodiment of the present invention, the nanostructures may be made of plastic.

在本發明的一實施方式中,該奈米結構的形狀可以為圓錐、四棱錐、三棱錐等錐形,或四棱柱、圓柱、橢圓柱等柱形,或以上任一之組合。In one embodiment of the present invention, the shape of the nanostructure may be a cone, such as a cone, a quadrangular pyramid, or a triangular pyramid, or a column such as a quadrangular prism, a cylinder, or an elliptical column, or any combination thereof.

在本發明的一實施方式中,奈米結構的形狀的直徑以及高度介於10nm至100nm之間。In one embodiment of the present invention, the diameter and height of the shape of the nanostructure are between 10 nm and 100 nm.

在本發明的一實施方式中,奈米結構之折射率小於全反射層之折射率。In one embodiment of the present invention, the refractive index of the nanostructure is smaller than the refractive index of the total reflection layer.

爲使熟悉該項技藝人士瞭解本發明之目的、特徵及功效,茲藉由下述具體實施例,並配合所附之圖式,對本發明詳加說明如下。In order for those skilled in the art to understand the purpose, features and effects of the present invention, the present invention is described in detail as follows by means of the following specific embodiments and in conjunction with the accompanying drawings.

在下文中,將參考附圖詳細地描述本發明的實施例。整份說明書中,相同的附圖標記基本上表示相同的元件。在下文的描述中,當確定相關的習知技術或配置的詳細描述將使本發明所公開的內容針對的技術混淆時,將省略其詳細描述。在描述幾個實施例時,本說明書中的介紹部分代表性地描述了相同的元件,並且在其他實施例中可以省略。Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Throughout the specification, the same reference numbers refer to substantially the same elements. In the following description, when it is determined that the detailed description of the related prior art or configuration will obscure the technology to which the present disclosure is directed, the detailed description thereof will be omitted. In describing several embodiments, the introductory portion of this specification typically describes the same elements, and may be omitted in other embodiments.

包含序數的術語,例如第一和第二,可以用於描述各種元件,但是該些元件不受術語的限制。這些術語僅用於區分一個元件與另一個元件。Terms including ordinal numbers, such as first and second, may be used to describe various elements, but those elements are not limited by the terms. These terms are only used to distinguish one element from another.

圖1為現有技術中習知的光學式指紋辨識系統,包含:光輸出器101、接觸介面102以及光感測器103,然而目前市面上的智慧型手機所使用的螢幕下光學式指紋辨識系統,受限於手機體積必須捨棄傳統的的光學照射系統,藉助手機面板的光作為光源。然而由於液晶顯示面板本身無法自體發光,因此具有螢幕下光學式指紋辨識的產品目前一般皆是採用有機發光顯示面板作為螢幕。使用有機發光顯示面板作為螢幕的智慧型手機,由於有機發光顯示面板一般藉由固態材料蒸鍍或液態材料旋轉塗覆等方法製成,因此像素與像素之間至少具有一間隔,因此能夠保證光線透過。當使用者手指接觸到螢幕時,藉由有機發光顯示面板的螢幕發出的光線會將手指區域照亮,反射後的光線再透過螢幕像素間隙傳輸至螢幕下的感測器,形成的圖像再與資料庫儲存的資料比對分析。1 is a conventional optical fingerprint identification system in the prior art, including an optical output device 101, a contact interface 102 and a light sensor 103. However, the under-screen optical fingerprint identification system currently used in smart phones on the market , limited by the size of the mobile phone, the traditional optical illumination system must be abandoned, and the light of the mobile phone panel is used as the light source. However, since the liquid crystal display panel itself cannot emit light by itself, the products with under-screen optical fingerprint recognition generally use the organic light-emitting display panel as the screen at present. Smartphones using organic light-emitting display panels as the screen, because organic light-emitting display panels are generally made by methods such as solid-state material evaporation or liquid material spin coating, there is at least a gap between pixels, so that light can be guaranteed. through. When the user's finger touches the screen, the light emitted by the screen of the organic light-emitting display panel will illuminate the finger area, and the reflected light will be transmitted to the sensor under the screen through the pixel gap of the screen, and the formed image will be regenerated. Compare and analyze the data stored in the database.

圖2為本發明之光感測系統的示意圖。如圖2中所示之光感測系統200包括:全反射傳導層201、光輸出層203以及光感測層204,其中,光輸出層203包含奈米結構層202。如圖2所示,將光資訊輸出至全反射層201中進行全反射傳遞,並且傳遞範圍可以達到全屏幕,而非僅使用光感測系統中的面板本身的光作為光感測系統之光源,因此可以在由液晶顯示面板或有機發光顯示面板作為螢幕的智慧型手機上,實現全屏指紋辨識。FIG. 2 is a schematic diagram of the light sensing system of the present invention. The light sensing system 200 shown in FIG. 2 includes: a total reflection conductive layer 201 , a light output layer 203 and a light sensing layer 204 , wherein the light output layer 203 includes a nanostructure layer 202 . As shown in FIG. 2, the optical information is output to the total reflection layer 201 for total reflection transmission, and the transmission range can reach the full screen, instead of only using the light of the panel itself in the optical sensing system as the light source of the optical sensing system , so it is possible to realize full-screen fingerprint recognition on a smartphone with a liquid crystal display panel or an organic light-emitting display panel as a screen.

較佳地,全反射傳導層201可以為玻璃、ITO或TFT等透明材料。Preferably, the total reflection conductive layer 201 may be a transparent material such as glass, ITO or TFT.

其中,如圖2所示,奈米結構層202設置在全反射傳導層201與光感測層204之間,並且直接或間接設置在全反射層201的下表面,光輸出層203配置為將全反射層201中所輸出的光資訊傳導至光感測層204,光輸出層203具有奈米結構層202,奈米結構層202用於將全反射傳導層201中所輸出的光資訊傳導至光感測層204,具有防止光資訊反射作用;光感測層204,可以設置在光輸出層204的上方或下方,其配置為接收光輸出層203所輸出的光資訊。Wherein, as shown in FIG. 2 , the nanostructure layer 202 is disposed between the total reflection conductive layer 201 and the light sensing layer 204, and is directly or indirectly disposed on the lower surface of the total reflection layer 201, and the light output layer 203 is configured to The optical information output in the total reflection layer 201 is conducted to the light sensing layer 204, and the light output layer 203 has a nanostructure layer 202. The nanostructure layer 202 is used to conduct the optical information output from the total reflection conduction layer 201 to The light sensing layer 204 has the function of preventing the reflection of light information; the light sensing layer 204 can be disposed above or below the light output layer 204 , and is configured to receive the light information output by the light output layer 203 .

較佳地,圖3為本發明一實施例之外部光源205輸出光資訊的示意圖,如圖3所示,外部光源205輸出光資訊時該光資訊具有發散角θ,當發散角θ愈大時代表光外部光源205的準直性愈低,造成光資訊在全反射傳導層201中全反射傳遞時,較晚傳輸的光資訊可能因為發散角θ而與較早傳輸的光資訊重疊產生雜訊,使光資訊的訊雜比降低。反之,當發散角θ愈小時代表外部光源205的準直性愈高,由於光資訊集中使得光資訊的行進距離可以較長而不易產生雜訊,能夠有效提升光資訊的訊雜比。根據本發明一實施例的外部光源205所輸出之光資訊的發散角介於0.3度至5度之間,較佳為0.4度至4度之間,例如:0.5度或3度。如此一來,根據本發明一實施例的外部光源205具有較佳的準直性並且發散角較小,有效提升訊雜比使光線集中,使得指紋影像辨識更為清晰以及精確。Preferably, FIG. 3 is a schematic diagram of an external light source 205 outputting optical information according to an embodiment of the present invention. As shown in FIG. 3 , when the external light source 205 outputs optical information, the optical information has a divergence angle θ, and when the divergence angle θ is larger, It means that the collimation of the external light source 205 is lower, so that when the optical information is transmitted through total reflection in the total reflection conductive layer 201, the later transmitted optical information may overlap with the earlier transmitted optical information due to the divergence angle θ to generate noise. , which reduces the signal-to-noise ratio of optical information. Conversely, when the divergence angle θ is smaller, the collimation of the external light source 205 is higher. Due to the concentration of the optical information, the traveling distance of the optical information can be longer and noise is not easily generated, which can effectively improve the signal-to-noise ratio of the optical information. The divergence angle of the light information output by the external light source 205 according to an embodiment of the present invention is between 0.3 degrees and 5 degrees, preferably between 0.4 degrees and 4 degrees, such as 0.5 degrees or 3 degrees. In this way, the external light source 205 according to an embodiment of the present invention has better collimation and a smaller divergence angle, which effectively improves the signal-to-noise ratio and concentrates the light, making fingerprint image recognition clearer and more accurate.

較佳地,圖4為根據本發明一實施例之奈米結構層的示意圖,如圖4所示,奈米結構層202包含奈米結構400,配置為防止從全反射傳導層201中所輸出的光資訊傳輸至奈米結構400中時產生反射或者雜訊,造成該光資訊的衰減或降低其訊雜比。Preferably, FIG. 4 is a schematic diagram of a nanostructure layer according to an embodiment of the present invention. As shown in FIG. 4 , the nanostructure layer 202 includes a nanostructure 400 configured to prevent output from the total reflection conductive layer 201 . When the optical information is transmitted into the nanostructure 400, reflection or noise is generated, which causes the attenuation of the optical information or reduces its signal-to-noise ratio.

其中,奈米結構400的形狀可以為圓錐、四棱錐、三棱錐等錐形,或四棱柱、圓柱、橢圓柱等柱形,或以上任一之組合。需要進一步說明的是,從在可見光區域的波長380nm至700nm的所有區域內得到充分地低反射特性的觀點出發,奈米結構400的高度將影響不同波長的可見光的反射率,特別是在可見光中長波長的區域中會顯著變化,因此,根據本發明的一實施例,奈米結構400高度介於10nm至100nm之間,較佳為20nm至90nm之間,例如:30nm或80nm。The shape of the nanostructure 400 may be a cone such as a cone, a quadrangular pyramid, or a triangular pyramid, or a column such as a quadrangular prism, a cylinder, or an elliptical column, or a combination of any of the above. It should be further explained that, from the viewpoint of obtaining sufficiently low reflection characteristics in all regions of the visible light region with wavelengths of 380 nm to 700 nm, the height of the nanostructure 400 will affect the reflectivity of visible light of different wavelengths, especially in visible light. There is a significant change in the long wavelength region. Therefore, according to an embodiment of the present invention, the height of the nanostructure 400 is between 10 nm and 100 nm, preferably between 20 nm and 90 nm, such as 30 nm or 80 nm.

另外,該些奈米結構400的形狀之間的間距的大小若相較於可見光的波長極小時,則間距的大小不會影響反射光的特性,然而當間距的大小接近可見光的波長下限即380nm時,在可見光中短波長的區域之反射率會有明顯的影響,因此,根據本發明的一實施例,奈米結構400直徑介於10nm至100nm之間,較佳為20nm至90nm之間,例如:30nm或80nm。In addition, if the distance between the shapes of the nanostructures 400 is extremely small compared to the wavelength of visible light, the distance will not affect the characteristics of the reflected light. , the reflectivity in the short wavelength region of visible light will have a significant impact. Therefore, according to an embodiment of the present invention, the diameter of the nanostructure 400 is between 10 nm and 100 nm, preferably between 20 nm and 90 nm, For example: 30nm or 80nm.

較佳地,根據本發明的一實施例,該些奈米結構400的形狀與輸入的光資訊之間的角度,可以根據光感測層203的配置進行調整,亦即不同的光感測元件作為光感測層203時可以具有不同的角度,同時根據不同的光感測層203所感測到影像也可以透過軟體之演算法進行調整以及校正,使得每個方向所取得的指紋影像具備一致性。Preferably, according to an embodiment of the present invention, the angle between the shape of the nanostructures 400 and the input optical information can be adjusted according to the configuration of the photo-sensing layer 203 , that is, different photo-sensing elements. As the photo-sensing layer 203, it can have different angles, and at the same time, according to the images sensed by different photo-sensing layers 203, it can also be adjusted and corrected through software algorithms, so that the fingerprint images obtained in each direction are consistent. .

較佳地,根據本發明的一實施例,奈米結構400可以由塑料製成。Preferably, according to an embodiment of the present invention, the nanostructure 400 may be made of plastic.

較佳地,根據本發明的一實施例,光輸出層203可以用壓印方式設置於全反射傳導層201的下表面。需要進一步說明的是,根據本發明的一實施例,可以藉由化學及/或物理程序硬化壓印材料。並且,根據本發明的另一實施例,可以藉由電磁輻射及/或藉由溫度硬化壓印材料。Preferably, according to an embodiment of the present invention, the light output layer 203 may be disposed on the lower surface of the total reflection conductive layer 201 by embossing. It should be further noted that, according to an embodiment of the present invention, the imprinting material may be hardened by chemical and/or physical procedures. Also, according to another embodiment of the present invention, the embossing material can be hardened by electromagnetic radiation and/or by temperature.

較佳地,根據本發明的一實施例,當光輸出層203以壓印方式設置於全反射傳導層201的下表面時,奈米結構400所使用的材料之折射率,可以小於全反射傳導層201之折射率。因此,奈米結構400所使用的材料之折射率可以介於1.2至1.55之間,較佳為介於1.3至1.51之間,例如該材料之折射率為1.45。Preferably, according to an embodiment of the present invention, when the light output layer 203 is disposed on the lower surface of the total reflection conduction layer 201 by imprinting, the refractive index of the material used in the nanostructure 400 may be smaller than the total reflection conduction layer. Refractive index of layer 201 . Therefore, the refractive index of the material used in the nanostructure 400 may be between 1.2 and 1.55, preferably between 1.3 and 1.51. For example, the refractive index of the material is 1.45.

較佳地,根據本發明的另一實施例,光輸出層203為薄膜,厚度介於10nm至1000nm之間,其可以貼附於全反射傳導層201的下表面。此時,奈米結構400所使用的材料之折射率,可以小於全反射傳導層201之折射率,因此奈米結構400所使用的材料之折射率可以介於1.2至1.55之間,較佳為介於1.3至1.51之間,例如該材料之折射率為1.45。Preferably, according to another embodiment of the present invention, the light output layer 203 is a thin film with a thickness between 10 nm and 1000 nm, which can be attached to the lower surface of the total reflection conductive layer 201 . At this time, the refractive index of the material used in the nanostructure 400 may be smaller than the refractive index of the total reflection conductive layer 201, so the refractive index of the material used in the nanostructure 400 may be between 1.2 and 1.55, preferably Between 1.3 and 1.51, for example, the refractive index of the material is 1.45.

在本發明一實施方式中,如圖5A所示,光感測系統510包含:全反射傳導層201、奈米結構層202、液晶顯示面板511、背光板512以及光感測層204。其中,如圖5A所示,外部光源513包含液晶顯示面板511、背光板512以及光感測層204。需要進一步說明的是,根據本發明一實施例的光感測層204為透明的光感測層,因此其可以設置於液晶顯示面板511與背光板512之間。In an embodiment of the present invention, as shown in FIG. 5A , the light sensing system 510 includes: a total reflection conductive layer 201 , a nanostructure layer 202 , a liquid crystal display panel 511 , a backlight 512 and a light sensing layer 204 . Wherein, as shown in FIG. 5A , the external light source 513 includes a liquid crystal display panel 511 , a backlight panel 512 and a light sensing layer 204 . It should be further noted that the light sensing layer 204 according to an embodiment of the present invention is a transparent light sensing layer, so it can be disposed between the liquid crystal display panel 511 and the backlight panel 512 .

具體地,如圖5A所示,首先,外部光源513輸出光資訊至全反射傳導層201中使其全反射傳遞,當物體接觸全反射傳導層201時,破壞該光資訊的全反射傳遞,使得全反射傳導層201輸出該光資訊至設置於下方的奈米結構層202,其中,奈米結構層202具有防反射的奈米結構400;接著,光資訊藉由奈米結構層202穿透液晶顯示面板511後傳導至光感測層203;最後,藉由光感測層204實現指紋影像辨識。Specifically, as shown in FIG. 5A , first, the external light source 513 outputs optical information to the total reflection conductive layer 201 for total reflection transmission. When the object touches the total reflection conductive layer 201 , the total reflection transmission of the optical information is destroyed, so that the total reflection transmission of the optical information is destroyed. The total reflection conductive layer 201 outputs the optical information to the nanostructure layer 202 disposed below, wherein the nanostructure layer 202 has anti-reflection nanostructures 400; then, the optical information penetrates the liquid crystal display through the nanostructure layer 202 The panel 511 is then conducted to the light sensing layer 203 ; finally, the fingerprint image recognition is realized by the light sensing layer 204 .

雖然圖5A顯示了光感測系統510的一種實施方式,但本發明不限於此,圖5B為根據本發明另一實施例的光感測系統520包含:全反射傳導層201、奈米結構層202、有機發光顯示面板521以及光感測層204。其特徵在於使用有機發光顯示面板521時,能夠有效減少光感測系統520的厚度,使得其應用範圍更為廣泛。然而,如圖5A和圖5B所示的光發射器120的實施方式中,皆將光感測層204設置於液晶顯示面板511或有機發光顯示面板521下方,造成光感測層204對於指紋影像辨識的清晰度以及精確性下降。Although FIG. 5A shows an embodiment of the light sensing system 510, the present invention is not limited thereto, and FIG. 5B shows the light sensing system 520 according to another embodiment of the present invention including: a total reflection conductive layer 201, a nanostructure layer 202 , the organic light emitting display panel 521 and the light sensing layer 204 . It is characterized in that when the organic light emitting display panel 521 is used, the thickness of the light sensing system 520 can be effectively reduced, so that its application range is wider. However, in the embodiments of the light emitter 120 shown in FIG. 5A and FIG. 5B , the light sensing layer 204 is disposed under the liquid crystal display panel 511 or the organic light emitting display panel 521 , so that the light sensing layer 204 is sensitive to fingerprint images. The clarity and accuracy of the recognition is reduced.

因此,如圖5C所示,根據本發明另一實施例的光感測系統530包含:全反射傳導層201、奈米結構層202、光感測層204、液晶顯示面板511以及背光板512。其中,如圖5A所示,外部光源513包含液晶顯示面板511和背光板512。如此一來,可以有提升效光感測層204對於指紋影像辨識的清晰度以及精確性,然而本發明不限於此。Therefore, as shown in FIG. 5C , a light sensing system 530 according to another embodiment of the present invention includes: a total reflection conductive layer 201 , a nanostructure layer 202 , a light sensing layer 204 , a liquid crystal display panel 511 and a backlight 512 . Wherein, as shown in FIG. 5A , the external light source 513 includes a liquid crystal display panel 511 and a backlight panel 512 . In this way, the clarity and accuracy of fingerprint image recognition by the effective light sensing layer 204 can be improved, but the present invention is not limited to this.

進一步地,如圖5D所示,在本發明的另一實施例中,光感測系統540包含:全反射傳導層201、奈米結構層202、光感測層203以及有機發光顯示面板521。如此一來,同時提升效光感測層204對於指紋影像辨識的清晰度以及精確性,並有效減少光感測系統540的厚度。Further, as shown in FIG. 5D , in another embodiment of the present invention, the light sensing system 540 includes: a total reflection conductive layer 201 , a nanostructure layer 202 , a light sensing layer 203 and an organic light emitting display panel 521 . In this way, the clarity and accuracy of fingerprint image recognition by the effective light sensing layer 204 are improved, and the thickness of the light sensing system 540 is effectively reduced.

藉此,本發明具有以下之實施功效及技術功效:Thereby, the present invention has the following implementation effect and technical effect:

其一,本發明藉由全反射傳導層201使光資訊在其中全反射傳遞,而非使用面板的光作為光源,同時透過將光感測層204設置於液晶顯示面板511與背光板512之間,如此一來,不論採用有機發光顯示面板或液晶顯示面板作為螢幕,皆可以實現螢幕下光學式指紋辨識,從而提升根據本發明一實施例的光感測系統的泛用性。First, the present invention uses the total reflection conductive layer 201 to transmit light information through total reflection, instead of using the light of the panel as the light source, and at the same time, by disposing the light sensing layer 204 between the liquid crystal display panel 511 and the backlight panel 512 In this way, whether an organic light-emitting display panel or a liquid crystal display panel is used as the screen, the optical fingerprint recognition under the screen can be realized, thereby improving the versatility of the light sensing system according to an embodiment of the present invention.

其二,本發明藉由具有防反射奈米結構400之奈米結構層202,進而提高由全反射傳導層201輸出至光感測層204的光資訊之雜訊比,使得光感測層204對於指紋影像辨識的清晰度以及精確性得到提升。Second, the present invention improves the noise ratio of the optical information output from the total reflection conductive layer 201 to the photo-sensing layer 204 by the nano-structure layer 202 having the anti-reflection nano-structure 400, so that the photo-sensing layer 204 The clarity and accuracy of fingerprint image recognition has been improved.

其三,本發明進一步透過將光感測層204直接設置於奈米結構層202下方,有效提升光感測層204之辨識速度和精準度。Thirdly, the present invention further effectively improves the identification speed and accuracy of the photo-sensing layer 204 by disposing the photo-sensing layer 204 directly under the nano-structure layer 202 .

以上係藉由特定的具體實施例說明本發明之實施方式,所屬技術領域具有通常知識者可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。The embodiments of the present invention are described above by means of specific embodiments. Those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification.

以上所述僅為本發明之較佳實施例,並非用以限定本發明之範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之專利範圍內。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed in the present invention shall be included in the following patent scope Inside.

101:光輸出器 102:接觸介面 103:光感測器 200:光感測系統 201:全反射傳導層 202:奈米結構層 203:光輸出層 204:光感測層 205:外部光源 400:奈米結構 510:光感測系統 511:液晶顯示面板 512:背光板 513:外部光源 520:光感測系統 521:有機發光顯示面板 530:光感測系統 533:外部光源 540:光感測系統 θ:發散角101: Optical output device 102: Contact interface 103: Light sensor 200: Light Sensing System 201: Total reflection conductive layer 202: Nanostructured layers 203: Light output layer 204: Light Sensing Layer 205: External light source 400: Nanostructures 510: Light Sensing System 511: LCD panel 512: Backlight board 513: External light source 520: Light Sensing System 521: Organic Light Emitting Display Panel 530: Light Sensing System 533: External light source 540: Light Sensing System θ: divergence angle

圖1為現有技術中習知的光學式指紋辨識系統; 圖2為本發明之光感測系統的示意圖; 圖3為本發明一實施例之外部光源輸出光資訊的示意圖; 圖4為根據本發明一實施例之奈米結構層的示意圖; 圖5A為本發明的另一實施例之光感測系統的示意圖; 圖5B為本發明的另一實施例之光感測系統的示意圖; 圖5C為本發明的另一實施例之光感測系統的示意圖; 圖5D為本發明的另一實施例之光感測系統的示意圖。1 is an optical fingerprint identification system known in the prior art; 2 is a schematic diagram of the light sensing system of the present invention; 3 is a schematic diagram of an external light source outputting optical information according to an embodiment of the present invention; 4 is a schematic diagram of a nanostructured layer according to an embodiment of the present invention; 5A is a schematic diagram of a light sensing system according to another embodiment of the present invention; 5B is a schematic diagram of a light sensing system according to another embodiment of the present invention; 5C is a schematic diagram of a light sensing system according to another embodiment of the present invention; FIG. 5D is a schematic diagram of a light sensing system according to another embodiment of the present invention.

200:光感測系統200: Light Sensing System

201:全反射傳導層201: Total reflection conductive layer

202:奈米結構層202: Nanostructured layers

203:光感測層203: Light Sensing Layer

204:光輸出層204: Light output layer

Claims (12)

一種光感測系統,其結構包括:一全反射傳導層,具有一上表面與一下表面,用於使一光資訊在該全反射傳導層中全反射傳遞,其中,當一物體接觸該全反射傳導層的該上表面時,使該光資訊的全反射傳遞被破壞並輸出該光資訊;一光感測層,設置於該全反射傳導層的下方,用於為接收該光資訊;一光輸出層,設置在該全反射傳導層與該光感測層之間,並且直接或間接設置在該全反射傳導層的該下表面,該光輸出層具有一奈米結構層,該奈米結構層用於將該全反射傳導層中所輸出的該光資訊傳導至該光感測層,其具有防止光資訊反射作用;其中,該光感測層設置為直接或間接位於該奈米結構層下方,以接收該奈米結構層所輸出的該光資訊。 A light sensing system, the structure of which includes: a total reflection conductive layer, which has an upper surface and a lower surface, and is used for total reflection transmission of an optical information in the total reflection conductive layer, wherein when an object touches the total reflection When the upper surface of the conduction layer is used, the total reflection transmission of the optical information is destroyed and the optical information is output; a light sensing layer is arranged under the total reflection conduction layer for receiving the optical information; a light The output layer is arranged between the total reflection conduction layer and the light sensing layer, and is directly or indirectly arranged on the lower surface of the total reflection conduction layer, the light output layer has a nanostructure layer, the nanostructure The layer is used for conducting the optical information output from the total reflection conducting layer to the optical sensing layer, which has the function of preventing the reflection of optical information; wherein, the optical sensing layer is disposed directly or indirectly on the nanostructure layer below, to receive the optical information output by the nanostructure layer. 如申請專利範圍第1項所述的光感測系統,其中,該光感測層設置在該光輸出層下方。 The light sensing system of claim 1, wherein the light sensing layer is disposed under the light output layer. 如申請專利範圍第1項所述的光感測系統,其中,該奈米結構層形成於該光輸出層之一表面,該光輸出層位於全反射傳導層之下表面。 The light sensing system of claim 1, wherein the nanostructure layer is formed on a surface of the light output layer, and the light output layer is located on a lower surface of the total reflection conductive layer. 如申請專利範圍第1項所述的光感測系統,其中,該光輸出層以一壓印方式設置於該全反射傳導層的該下表面,以防止該全反射傳導層中所輸出的該光資訊反射,並且傳輸該光資訊至該光感測層。 The light sensing system according to claim 1, wherein the light output layer is disposed on the lower surface of the total reflection conductive layer in a stamping manner to prevent the output from the total reflection conductive layer. The optical information is reflected and transmitted to the optical sensing layer. 如申請專利範圍第1項所述的光感測系統,其中,該光輸出層為一薄膜,將該薄膜黏附於該全反射傳導層的該下表面,以防止該全反射傳導層中所輸出的該光資訊反射,並且傳輸該光資訊至該光感測層。 The light sensing system of claim 1, wherein the light output layer is a thin film, and the thin film is adhered to the lower surface of the total reflection conductive layer to prevent output from the total reflection conductive layer The optical information is reflected, and the optical information is transmitted to the optical sensing layer. 一種奈米結構層,係用與如申請專利範圍第1項所述的光感測系統,其包括一奈米結構,用於防止一全反射傳導層中所輸出的一光資訊反射,並且傳輸該光資訊至一光感測層。 A nanostructure layer, which is used in the light sensing system as described in claim 1, includes a nanostructure for preventing reflection of an optical information output in a total reflection conductive layer, and transmits it. The optical information is sent to a photo-sensing layer. 如申請專利範圍第6項所述的奈米結構層,其中,該奈米結構的形狀設置為錐形、柱形或以上任一之組合。 The nanostructure layer as claimed in claim 6, wherein the shape of the nanostructure is set as a cone shape, a column shape, or any combination thereof. 如申請專利範圍第6項所述的奈米結構層,其形成於該全反射傳導層的一下表面。 The nanostructure layer as described in item 6 of the claimed scope is formed on the lower surface of the total reflection conductive layer. 如申請專利範圍第7項所述的奈米結構層,其中,該奈米結構的形狀之直徑及其高度皆介於10nm至100nm之間。 The nanostructure layer according to claim 7, wherein the diameter and height of the shape of the nanostructure are both between 10 nm and 100 nm. 如申請專利範圍第7項所述的奈米結構層,其中,該奈米結構層由塑料製成。 The nanostructured layer as described in claim 7, wherein the nanostructured layer is made of plastic. 如申請專利範圍第7項所述的奈米結構層,其中,該奈米結構之折射率小於該全反射傳導層之折射率。 The nanostructure layer as described in claim 7, wherein the refractive index of the nanostructure is smaller than the refractive index of the total reflection conductive layer. 如申請專利範圍第11項所述的奈米結構層,其中,該奈米結構之折射率介於1.3至1.5之間。 The nanostructure layer according to claim 11, wherein the refractive index of the nanostructure is between 1.3 and 1.5.
TW108147478A 2019-12-24 2019-12-24 Light sensing system and nanostructure layer TWI750559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108147478A TWI750559B (en) 2019-12-24 2019-12-24 Light sensing system and nanostructure layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108147478A TWI750559B (en) 2019-12-24 2019-12-24 Light sensing system and nanostructure layer

Publications (2)

Publication Number Publication Date
TW202125321A TW202125321A (en) 2021-07-01
TWI750559B true TWI750559B (en) 2021-12-21

Family

ID=77908291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108147478A TWI750559B (en) 2019-12-24 2019-12-24 Light sensing system and nanostructure layer

Country Status (1)

Country Link
TW (1) TWI750559B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10331939B2 (en) * 2017-07-06 2019-06-25 Shenzhen GOODIX Technology Co., Ltd. Multi-layer optical designs of under-screen optical sensor module having spaced optical collimator array and optical sensor array for on-screen fingerprint sensing
TW201929257A (en) * 2017-12-15 2019-07-16 友達光電股份有限公司 Sensing device
US10437974B2 (en) * 2015-06-18 2019-10-08 Shenzhen GOODIX Technology Co., Ltd. Optical sensing performance of under-screen optical sensor module for on-screen fingerprint sensing
TW201945664A (en) * 2018-03-22 2019-12-01 日商日東電工股份有限公司 Optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10437974B2 (en) * 2015-06-18 2019-10-08 Shenzhen GOODIX Technology Co., Ltd. Optical sensing performance of under-screen optical sensor module for on-screen fingerprint sensing
US10331939B2 (en) * 2017-07-06 2019-06-25 Shenzhen GOODIX Technology Co., Ltd. Multi-layer optical designs of under-screen optical sensor module having spaced optical collimator array and optical sensor array for on-screen fingerprint sensing
TW201929257A (en) * 2017-12-15 2019-07-16 友達光電股份有限公司 Sensing device
TW201945664A (en) * 2018-03-22 2019-12-01 日商日東電工股份有限公司 Optical device

Also Published As

Publication number Publication date
TW202125321A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CN107832752B (en) Fingerprint identification panel, full-screen fingerprint identification method and display device
US10503952B2 (en) Fingerprint identification display device
CN108764098B (en) Display panel and display device
ES2774312T3 (en) Screen with set of ultrasonic sensors on rear side
WO2018045813A1 (en) Fingerprint recognition device and electronic apparatus
TWI486844B (en) Optical touch device with scan ability
WO2018171178A1 (en) Fingerprint identification device, control method, touch display panel and touch display device
CN108227064B (en) Directional optical unit and display
US20110221705A1 (en) Touch object and proximate object sensing apparatus by selectively radiating light
US11410453B2 (en) Flexible display panel with fingerprint identification
US10402018B2 (en) Light-sensitive type touch panel, display device and touch positioning method
KR20170124160A (en) Flat Panel Display Embedding Optical Imaging Sensor
CN1853160A (en) Touch input screen using a light guide
WO2019223626A1 (en) Fingerprint recognition device
US9881199B2 (en) Fingerprint identification device
US11733572B2 (en) Image capturing apparatus
TW202037980A (en) Liquid crystal display device
WO2014103274A1 (en) Display control system and reading apparatus
CN108803781B (en) Flat panel display with optical imaging sensor
US20120242623A1 (en) Touch sensitive device and display device employing the same
TWI750559B (en) Light sensing system and nanostructure layer
US20180307377A1 (en) Touch substrate and touch display device
US20190035328A1 (en) Display device configured to measure light and adjust display brightness and a method of driving the same
CN113076785A (en) Optical sensing system and nanostructure layer
TWM605656U (en) Electronic device