TWI750264B - Over-voltage protection loop and method for providing over-voltage protection - Google Patents

Over-voltage protection loop and method for providing over-voltage protection Download PDF

Info

Publication number
TWI750264B
TWI750264B TW106140861A TW106140861A TWI750264B TW I750264 B TWI750264 B TW I750264B TW 106140861 A TW106140861 A TW 106140861A TW 106140861 A TW106140861 A TW 106140861A TW I750264 B TWI750264 B TW I750264B
Authority
TW
Taiwan
Prior art keywords
voltage
node
overvoltage protection
loop
output
Prior art date
Application number
TW106140861A
Other languages
Chinese (zh)
Other versions
TW201834342A (en
Inventor
闕強 林
科 阮
哈赫 阮
彼得 奧黛爾
碩凡 宋
Original Assignee
美商格蘭電子公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/374,116 external-priority patent/US9742183B1/en
Priority claimed from US15/376,329 external-priority patent/US9735566B1/en
Application filed by 美商格蘭電子公司 filed Critical 美商格蘭電子公司
Publication of TW201834342A publication Critical patent/TW201834342A/en
Application granted granted Critical
Publication of TWI750264B publication Critical patent/TWI750264B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Systems and methods are disclosed for providing over-voltage protection for power converters. An over-voltage protection loop includes an error amplifier that maintains an external reference voltage within a highly precise range that can be used to provide a highly precise output voltage from the over-voltage protection loop. The over-voltage protection loop may also include feedback impedance that delays the output of the over-voltage protection loop. The delay may prevent the over-voltage protection loop from being engaged due to voltage transients output from a main servo loop circuit that provides a nominal output voltage under normal operation, thus allowing the threshold voltage and output voltage of the over-voltage protection loop to be set close to the nominal output voltage of the main servo loop circuit.

Description

過電壓保護環路及用於提供過電壓保護之方法 Overvoltage protection loop and method for providing overvoltage protection

本發明大體上係關於以一主動操作方式提供過電壓保護。 The present invention generally relates to providing overvoltage protection in an active mode of operation.

功率轉換器將電能自一個形式更改為另一形式。例如,一些功率轉換器將AC功率信號轉變為DC功率信號且反之亦然,而一些功率轉換器更改一輸入功率信號之頻率及/或電壓。一DC/DC轉換器將一輸入DC電壓轉換為一不同輸出DC電壓。此等轉換器通常包含經由一電壓源與一負載之間之一切換電路電耦合之一變壓器。此等轉換器亦通常由經設計使得該轉換器將輸出電壓維持於一預界定且高度精確之範圍內之一閉合環路反饋系統控制。然而若該反饋環路失效,則該輸出電壓可不受控制地增加直至該轉換器或該負載或該兩者受損。 Power converters change electrical energy from one form to another. For example, some power converters convert AC power signals to DC power signals and vice versa, while some power converters alter the frequency and/or voltage of an input power signal. A DC/DC converter converts an input DC voltage to a different output DC voltage. These converters typically include a transformer electrically coupled through a switching circuit between a voltage source and a load. These converters are also typically controlled by a closed loop feedback system designed so that the converter maintains the output voltage within a predefined and highly accurate range. However, if the feedback loop fails, the output voltage may increase uncontrollably until the converter or the load or both are damaged.

設計者將過電壓保護併入至功率轉換器系統內以防止一反饋環路失效進一步損壞變壓器電路或負載。過電壓保護可併入至其中在正常操作下使用一反饋環路來防止輸出電壓超過一特定等級之其他系統內。用於提供過電壓保護之傳統系統及方法包含使用一鎖存方案或一非鎖存方案之實施方案。在一鎖存方案中,當一過電壓情況出現時功率轉換器可關閉且(例如)藉由使得輸入功率循環而一直關閉直至重新啟動。在一非鎖存 方案中,當出現一過電壓情況時,該功率轉換器可經功率循環以重新啟動。然而若功率循環不校正該過電壓情況,則功率轉換器可繼續在一錯誤功率循環或對該功率轉換器及其負載施加應力之「打隔(hiccup)」模式中操作,因此犧牲電路之完整性且潛在減少其使用年限。再者,傳統系統在過電壓保護環路經接合以提供輸出電壓之前設置標稱操作電壓之130%或更多之一臨限值。一高電壓臨限值有必要防止過電壓保護環路之錯誤觸發,但其亦藉由施加一過高電壓而導致對轉換器及負載電路施加應力且可能損壞該轉換器及該負載電路。據此,用於提供過電壓保護之此等傳統方法導致未由該負載使用或若使用可導致對該轉換器或該負載之損壞之一輸出電壓。 Designers incorporate overvoltage protection into power converter systems to prevent a feedback loop failure from further damaging the transformer circuit or load. Overvoltage protection can be incorporated into other systems where under normal operation a feedback loop is used to prevent the output voltage from exceeding a certain level. Conventional systems and methods for providing overvoltage protection include implementations using a latching scheme or a non-latching scheme. In a latching scheme, the power converter can be shut down when an overvoltage condition occurs and shut down until restarted, eg, by cycling the input power. in a non-latching In the scheme, when an overvoltage condition occurs, the power converter can be power cycled to restart. However, if the power cycle does not correct the overvoltage condition, the power converter may continue to operate in an erroneous power cycle or a "hiccup" mode that stresses the power converter and its load, thus sacrificing circuit integrity and potentially reduce its useful life. Furthermore, conventional systems set a threshold value of 130% or more of the nominal operating voltage before the overvoltage protection loop is engaged to provide the output voltage. A high voltage threshold is necessary to prevent false triggering of the overvoltage protection loop, but it also causes stress on the converter and load circuit by applying an excessively high voltage and can damage the converter and the load circuit. Accordingly, these conventional methods for providing overvoltage protection result in an output voltage that is not used by the load or that, if used, could result in damage to the converter or the load.

用於一變壓器之一過電壓保護環路,該變壓器包含一主要時脈及反饋控制電路、一主要伺服環路及過電壓保護環路,可總結為包含:一過電壓繞組,其磁耦合至一磁芯,該過電壓繞組回應於該主要時脈及反饋控制電路中之一主要繞組上之一電流而經啟動以提供一次級側電壓供應;一誤差放大器,其電耦合至一第一節點及一第二節點,其中該誤差放大器根據一內部參考電壓使用該次級側電壓供應來維持該第二節點上之一第二電壓;一反饋阻抗,其電耦合至該第一節點及該第二節點,該反饋阻抗引入一時間延遲以將反饋自該第一節點提供至該第二節點;及一輸出電壓感測電路,其電耦合至至少該第二節點及一輸出節點,該輸出電壓感測電路基於該第二電壓控制該輸出節點處之一輸出電壓,其中該過電壓保護環路在一誤差情況下為該變壓器提供一輸出電壓。該反饋阻抗可使得該過電壓保護環路在一段時間內延遲為該變壓器提供該輸出電壓。該段時間 可比主要伺服環路輸出一電壓暫態之時間更長。由該過電壓保護環路提供之輸出電壓可在該伺服環路輸出之一標稱電壓之5%內。該電壓控制組件可包含一分路調節器。該輸出電壓感測電路可包含一第一電阻器及一第二電阻器,該第一電阻器具有一第一電阻且耦合至該第二節點及該輸出節點,且該第二電阻器具有一第二電阻且耦合至該第二節點及接地,其中該第一電阻及該第二電阻可係至少部分基於該誤差放大器將該第二節點之電壓維持於其處之一值。該誤差放大器可包含一運算放大器。該反饋阻抗可包含一電容器。該磁芯可磁耦合至該主要伺服環路。該磁芯可係可磁耦合至該過電壓保護環路及該主要時脈及反饋控制電路之一第一磁芯,且其中該主要伺服環路可磁耦合至一第二磁芯。 An overvoltage protection loop for a transformer, the transformer including a main clock and feedback control circuit, a main servo loop and an overvoltage protection loop, can be summarized as including: an overvoltage winding magnetically coupled to a magnetic core, the overvoltage winding activated in response to a current on a primary winding in the primary clock and feedback control circuit to provide a secondary side voltage supply; an error amplifier electrically coupled to a first node and a second node, wherein the error amplifier maintains a second voltage on the second node using the secondary side voltage supply according to an internal reference voltage; a feedback impedance electrically coupled to the first node and the first node Two nodes, the feedback impedance introduces a time delay to provide feedback from the first node to the second node; and an output voltage sensing circuit electrically coupled to at least the second node and an output node, the output voltage The sensing circuit controls an output voltage at the output node based on the second voltage, wherein the overvoltage protection loop provides an output voltage to the transformer under an error condition. The feedback impedance may cause the overvoltage protection loop to delay providing the output voltage to the transformer for a period of time. this period of time Can output a voltage transient longer than the main servo loop. The output voltage provided by the overvoltage protection loop may be within 5% of a nominal voltage of the servo loop output. The voltage control assembly may include a shunt regulator. The output voltage sensing circuit may include a first resistor and a second resistor, the first resistor having a first resistance and coupled to the second node and the output node, and the second resistor having a second A resistance is coupled to the second node and ground, wherein the first resistance and the second resistance can be based at least in part on the error amplifier maintaining the voltage of the second node at a value thereon. The error amplifier may include an operational amplifier. The feedback impedance may include a capacitor. The magnetic core can be magnetically coupled to the main servo loop. The magnetic core can be magnetically coupled to a first magnetic core of the overvoltage protection loop and the main clock and feedback control circuit, and wherein the main servo loop can be magnetically coupled to a second magnetic core.

100:功率轉換器 100: Power Converter

102:主要時脈及反饋控制件 102: Main clock and feedback controls

102a:第一主要時脈及反饋控制件 102a: First main clock and feedback control

102b:第二主要時脈及反饋控制件 102b: Second main clock and feedback control

104:磁芯 104: Magnetic core

104a:第一磁芯 104a: first magnetic core

104b:第二磁芯 104b: second magnetic core

106:主要伺服環路 106: Main Servo Loop

108:過電壓保護環路 108: Overvoltage protection loop

110:第一主要繞組 110: The first main winding

112:第一次級繞組 112: The first secondary winding

114:第二次級繞組 114: Second secondary winding

200:功率轉換器 200: Power Converter

210:第二主要繞組 210: Second main winding

301:次級磁性通信器 301: Secondary Magnetic Communicator

302:過電壓保護誤差放大器 302: Overvoltage Protection Error Amplifier

303:反饋阻抗 303: Feedback Impedance

305:電壓參考 305: Voltage Reference

307:參考線 307: Reference Line

308:輸出電壓感測電路 308: Output voltage sensing circuit

320:主要磁性通信器 320: Primary Magnetic Communicator

322:主要時脈及反饋控制件 322: Main clock and feedback controls

340:主要次級磁性通信器 340: Primary Secondary Magnetic Communicator

342:主要誤差放大器 342: Primary Error Amplifier

344:主要反饋 344: Primary Feedback

346:主要電壓參考 346: Primary Voltage Reference

348:主要輸出電路 348: Main output circuit

501:電壓參考 501: Voltage Reference

503:線 503: Line

505:反饋連接 505: Feedback Connection

601:運算放大器 601: Operational Amplifier

607:電壓參考 607: Voltage Reference

701:信號Vout 701: Signal V out

703:信號Vin 703: Signal V in

705:第一時間段 705: First time period

707:點 707: Point

709:剩餘時間段 709: Remaining time period

801:信號Vout 801: Signal V out

803:第一時間段 803: First time period

805:點 805: point

807:第二時間段 807: Second time period

809:點 809: point

811:剩餘時間段 811: Remaining time period

901:信號Vout 901: Signal V out

903:第一時間段 903: The first time period

905:第一點 905: The first point

907:第二時間段 907: Second time period

909:點 909: point

911:剩餘時間段 911: Remaining time period

1001:信號VIn 1001: Signal V In

1003:信號Vout 1003: Signal V out

1005:第一時間段 1005: First time period

1007:點 1007: point

1009:延遲階段 1009: Delay Phase

1011:剩餘時間段 1011: Remaining time period

1101:信號Iout 1101: Signal I out

1103:信號Vout 1103: Signal V out

1105:線/3.45伏特臨限值 1105: Line/3.45 Volt Threshold

1107:點 1107: point

1109:電壓暫態 1109: Voltage Transient

1201:信號Iout 1201: Signal I out

1203:信號Vout 1203: Signal V out

A:節點 A: Node

B:節點 B: Node

C:節點 C:node

C1:電容器 C1: Capacitor

C2:電容器 C2: Capacitor

C3:電容器 C3: Capacitor

C4:電容器 C4: Capacitor

C5:電容器 C5: Capacitor

D:節點 D: node

D1:二極體 D1: Diode

D2:二極體 D2: Diode

D3:二極體 D3: Diode

D4:二極體 D4: Diode

D5:二極體 D5: Diode

D6:二極體 D6: Diode

D7:二極體 D7: Diode

D8:二極體 D8: Diode

D11:二極體 D11: Diode

E:節點 E: node

F:節點 F: Node

FBP:取樣開關控制節點 FBP: sampling switch control node

G:節點 G: node

H:節點 H: node

J:節點 J: Node

L1:主要側繞組 L1: Primary side winding

L2:主要側繞組 L2: Primary side winding

L3:次級側繞組 L3: Secondary side winding

L4:過電壓繞組 L4: Overvoltage winding

M1:開關 M1: switch

R1:電阻器 R1: Resistor

R2:電阻器 R2: Resistor

R3:電阻器 R3: Resistor

R4:電阻器 R4: Resistor

R5:電阻器 R5: Resistor

R6:電阻器 R6: Resistor

R7:電阻器 R7: Resistor

R8:電阻器 R8: Resistor

VCCP:主要側電壓 V CCP : Primary side voltage

VCCS1:主要伺服供應電壓 V CCS1 : Main servo supply voltage

VCCS2:次級側電壓供應 V CCS2 : Secondary side voltage supply

VEA:輸出電壓/誤差信號 V EA : output voltage/error signal

VEA1:輸出信號/輸出電壓 V EA1 : output signal/output voltage

VEA2:電壓 V EA2 : Voltage

VFB:返馳電壓/主要側反饋信號 V FB : flyback voltage/primary side feedback signal

Vout:過電壓輸出信號/輸出電壓 V out : Overvoltage output signal/output voltage

VREF1:參考電壓 V REF1 : reference voltage

U1:積體電路 U1: Integrated Circuit

U2:運算放大器 U2: Operational Amplifier

在圖式中,相同參考數字識別類似元件或動作。圖式中之元件之大小及相對位置不必按比例繪製。例如,各種元件之形狀及角度未按比例繪製,且此等元件之部分可任意放大且經定位以提升圖式辨認性。此外,繪製之元件之特定形狀不必意欲傳達關於該等特定元件之真實形狀之任何資訊,且可為易於在圖式中辨識之目的而單獨經選擇。 In the drawings, the same reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes and angles of various elements are not drawn to scale, and portions of these elements may be arbitrarily enlarged and positioned to improve drawing legibility. Furthermore, the particular shapes of elements as drawn are not necessarily intended to convey any information about the actual shape of those particular elements, and may be selected separately for ease of identification in the drawings.

圖1係根據至少一繪示之實施方案之繪示用於一功率轉換器之電壓控制之組件之一方塊圖。 1 is a block diagram illustrating components for voltage control of a power converter, according to at least one illustrated implementation.

圖2係根據至少一繪示之實施方案之繪示用於使用兩個磁芯之一功率轉換器之電壓控制之組件之一方塊圖。 2 is a block diagram illustrating components for voltage control of a power converter using two magnetic cores, according to at least one illustrated implementation.

圖3係根據一個繪示之實施方案之繪示用於一磁性反饋隔離器、一磁芯、一主要伺服環路及一過電壓保護環路之電壓控制之組件之一方塊圖。 3 is a block diagram illustrating components for voltage control of a magnetic feedback isolator, a magnetic core, a main servo loop, and an overvoltage protection loop, according to one illustrated implementation.

圖4係根據一個繪示之實施例之繪示用於一過電壓保護環路之電壓控制之組件之一方塊圖。 4 is a block diagram illustrating components for voltage control of an overvoltage protection loop, according to one illustrated embodiment.

圖5係根據一個繪示之實施方案之磁耦合至使用一分路調節器之一過電壓保護環路之一雙向磁性反饋隔離器之一低階電路圖。 5 is a low-level circuit diagram of a magnetic coupling to a bidirectional magnetic feedback isolator using an overvoltage protection loop of a shunt regulator, according to one illustrated embodiment.

圖6係根據一個繪示之實施方案之使用一運算放大器來提供一輸出電壓之一保護過電壓伺服環路之一低階電路圖。 6 is a low-level circuit diagram of a protected overvoltage servo loop using an operational amplifier to provide an output voltage, according to one illustrated implementation.

圖7係根據一個繪示之實施方案之展示具有一操作過電壓保護環路之一功率轉換器之一輸出電壓節點處在其中該主要伺服環路之輸出電壓經修整以超過該操作過電壓保護環路在其處接合之臨限電壓之一時間段期間之一電壓信號之一圖。 7 is a representation of an output voltage node of a power converter with an operational overvoltage protection loop at an output voltage node where the output voltage of the main servo loop is trimmed to exceed the operational overvoltage protection, according to one illustrated implementation A graph of a voltage signal during a time period of the threshold voltage at which the loop is spliced.

圖8係根據一個繪示之實施方案之展示具有一操作過電壓保護環路之一功率轉換器之一輸出電壓節點處在其中該主要伺服環路之反饋控制突然斷開之一時間段期間之一電壓信號之一圖。 8 is a diagram showing an output voltage node of a power converter with an operating overvoltage protection loop during a period of time in which feedback control of the main servo loop is abruptly turned off, according to one illustrated implementation A graph of a voltage signal.

圖9係根據一個繪示之實施方案之展示具有一操作過電壓保護環路之一功率轉換器之一輸出電壓節點處在其中該主要伺服環路之輸出電壓已中斷而導致一暫時下降且接著引發主要伺服環路之輸出電壓之大量增加之一時間段期間之一電壓信號之一圖。 9 is a representation of an output voltage node of a power converter with an operating overvoltage protection loop at an output voltage node where the output voltage of the main servo loop has been interrupted causing a temporary dip and then, according to one illustrated implementation A plot of a voltage signal during a time period that causes a large increase in the output voltage of the main servo loop.

圖10係根據一個繪示之實施方案之展示具有一操作過電壓保護環路之一功率轉換器之一輸出電壓節點處在其中該主要伺服環路在轉換器啟動之前已停用,使得過電壓保護環路在啟動後即控制輸出電壓之一時間段期間之一電壓信號之一圖。 10 is a representation of an output voltage node of a power converter with an operating overvoltage protection loop at an output voltage node where the main servo loop is disabled before the converter starts up, allowing overvoltage, according to one illustrated implementation A graph of a voltage signal during a period of time that the protection loop controls the output voltage after startup.

圖11係根據一個繪示之實施方案之展示具有一操作過電壓保護環路之一功率轉換器之一輸出電壓節點處之電壓信號之一圖,其中當 輸出電壓歸因於負載電流階躍引發之電壓暫態而超過一臨限電壓時該功率轉換器不接合過電壓保護環路。 11 is a graph showing the voltage signal at an output voltage node of a power converter with an operating overvoltage protection loop, according to one illustrated implementation, where when The power converter does not engage the overvoltage protection loop when the output voltage exceeds a threshold voltage due to voltage transients induced by load current steps.

圖12係根據一個繪示之實施方案之展示具有一操作過電壓保護環路之一功率轉換器之一輸出電壓節點在其中主要伺服環路之輸出電壓經修整以超過一臨限電壓或失去控制從而引發輸出電壓失控之一時間段期間之一圖,其中該操作過電壓保護環路具有設置為主要伺服環路之標稱輸出電壓之5%內之一臨限電壓。 12 is a representation of an output voltage node of a power converter with an operating overvoltage protection loop in which the output voltage of the main servo loop is trimmed to exceed a threshold voltage or to run out of control, according to one illustrated implementation A graph during a time period resulting in an output voltage runaway where the operating overvoltage protection loop has a threshold voltage set to within 5% of the nominal output voltage of the main servo loop.

在以下描述中,闡述某些特定細節以提供對各種揭示之實施例或實施方案之一全面瞭解。然而熟習相關技術者將意識到,實施例或實施方案可在無一或多個此等特定細節或具有其他方法、組件、材料等等之情況下實踐。在其他例項中,未展示或詳細描述與各種實施例或實施方案相關聯之已知結構以避免不必要地阻礙實施例或實施方案之描述。 In the following description, certain specific details are set forth in order to provide a thorough understanding of one of the various disclosed embodiments or implementations. Those skilled in the relevant art will recognize, however, that an embodiment or implementation may be practiced without one or more of these specific details or with other methods, components, materials, etc. . In other instances, well-known structures associated with the various embodiments or implementations have not been shown or described in detail to avoid unnecessarily obstructing the description of the embodiments or implementations.

除非本文另外需要,否則在以下整個說明書及申請專利範圍中,詞語「包括」與「包含」係同義的,且係包含或開放式的(即,不排除另外未描述之元件或方法動作)。 Unless otherwise required herein, throughout the following specification and claims, the words "comprising" and "comprising" are synonymous and inclusive or open ended (ie, not excluding otherwise undescribed elements or method acts).

在此說明書中參考「一個實施例」、「一實施例」、「一個實施方案」或「一實施方案」意謂結合實施例或實施方案描述之一特定特徵、結構或特性包含於至少一實施例或實施方案中。因此,在本說明書中之各種地方出現之術語「在一個實施例中」、「在一實施例中」、「一個實施方案」或「一實施方案」不必皆係指相同實施例或實施方案。此外,在一或多個實施例或實施方案中可以任何適合之方式組合特定特徵、結構或特性。 Reference in this specification to "one embodiment," "an embodiment," "one implementation," or "an implementation" means that a particular feature, structure, or characteristic described in connection with the example or implementation is included in at least one implementation examples or embodiments. Thus, appearances of the terms "in one embodiment," "in an embodiment," "one embodiment," or "an embodiment" in various places in this specification are not necessarily all referring to the same embodiment or embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments or implementations.

如在此說明書及隨附申請專利範圍中所使用,除非本文另外明確指示,否則單數形式「一」(a、an)及「該」包含複數指示物。亦應注意,除非本文另外明確指示,否則術語「或」通常採用其最廣泛意義,即意謂「及/或」。 As used in this specification and the appended claims, the singular forms "a" (a, an) and "the" include plural referents unless the context clearly dictates otherwise. It should also be noted that the term "or" is generally employed in its broadest sense, ie, meaning "and/or", unless the context clearly dictates otherwise.

本文提供之本發明之標題及摘要僅係為方便起見且不解譯實施例或實施方案之範疇或意義。 The titles and abstracts of the invention provided herein are for convenience only and do not interpret the scope or meaning of the examples or implementations.

本發明之一或多個實施方案提供用於與反饋控制一起操作而作為一功率轉換器之部分之伺服環路之過電壓保護。由當伺服環路之一輸出電壓超過一臨限電壓(諸如,例如當反饋控制失效時可發生)時接合之一過電壓保護環路提供過電壓保護。在一些實施方案中,該過電壓保護環路之臨限電壓及輸出電壓可係相同的。該過電壓保護環路之臨限電壓及輸出電壓可由維持該過電壓保護環路中之兩個節點之間之一高度精確之電壓差之一電壓控制器控制。此一電壓控制器可包含(例如)使用一積體電路實施或視情況使用一運算放大器及相關聯之電路組件實施之一分路調節器(例如,電阻器、電容器、電感器,如以下所討論)。在一些實施方案中,該過電壓保護環路之輸出電壓係基於由一特定節點處之電壓控制結構維持之一高度精確之電壓;此外,可藉由使用電阻器或其他電阻件之適當組態改變過電壓保護環路之輸出電壓及/或臨限電壓。 One or more embodiments of the present invention provide overvoltage protection for a servo loop operating with feedback control as part of a power converter. Overvoltage protection is provided by engaging an overvoltage protection loop when an output voltage of one of the servo loops exceeds a threshold voltage, such as may occur, for example, when feedback control fails. In some implementations, the threshold voltage and output voltage of the overvoltage protection loop may be the same. The threshold voltage and output voltage of the overvoltage protection loop can be controlled by a voltage controller that maintains a highly accurate voltage difference between two nodes in the overvoltage protection loop. Such a voltage controller may include, for example, a shunt regulator (eg, resistors, capacitors, inductors, as described below) implemented using an integrated circuit or optionally implemented using an operational amplifier and associated circuit components discuss). In some implementations, the output voltage of the overvoltage protection loop is based on a highly accurate voltage maintained by a voltage control structure at a particular node; in addition, by using a suitable configuration of resistors or other resistive elements Change the output voltage and/or threshold voltage of the overvoltage protection loop.

在一些實施方案中,可藉由將一阻抗引入至過電壓保護環路之電壓控制器結構之反饋組件內而使得該過電壓保護環路之啟動延遲。可(例如)藉由電阻器及/或電容器之各種組合提供該反饋阻抗。提供該反饋阻抗之組件之值及組態可係至少部分基於伺服環路需要之延遲量。該延遲量(例如)可係基於可預期為自在正常操作下為功率轉換器提供輸出功率之 一主要伺服環路輸出之電壓暫態之特性。在此情況中,可針對一充足時間段設置該延遲,使得即使當主要伺服環路之電壓輸出經歷暫時超過用於接合過電壓保護環路之電壓臨限值之一電壓暫態時,功率轉換器仍可繼續使用該電壓輸出。在一些實施方案中,此延遲階段可達400μs。 In some implementations, the start-up of the overvoltage protection loop can be delayed by introducing an impedance into the feedback component of the voltage controller structure of the overvoltage protection loop. The feedback impedance can be provided, for example, by various combinations of resistors and/or capacitors. The value and configuration of the components that provide the feedback impedance can be based, at least in part, on the amount of delay required by the servo loop. The amount of delay can, for example, be based on a value that can be expected to provide output power to the power converter under normal operation. A characteristic of the voltage transient at the output of the main servo loop. In this case, the delay can be set for a sufficient period of time so that even when the voltage output of the main servo loop experiences a voltage transient that temporarily exceeds the voltage threshold for engaging the overvoltage protection loop, the power conversion The controller can continue to use this voltage output. In some embodiments, this delay period can be up to 400 μs.

電壓控制結構及反饋阻抗允許將過電壓保護環路的臨限值設置為主要伺服環路之標稱輸出電壓的105%內。不像傳統過電壓保護環路,本文描述之過電壓保護環路包含一電壓控制結構,其輸出一高度穩定且精確的電壓,且允許當前過電壓保護環路有利地將一操作輸出電壓提供至負載且不犧牲負載的完整性或持久性。另外,本文描述之過電壓保護環路包含一反饋阻抗,其在伺服環路的輸出電壓超過一臨限電壓之後的一時間段內,使得過電壓保護環路延遲被功率轉換器接合。該反饋阻抗防止過電壓保護環路由於具有暫時超過臨限電壓之峰值的電壓暫態而被接合。據此,該反饋阻抗可防止過電壓保護環路歸因於電壓暫態而錯誤地跳脫,因此允許將過電壓保護環路之臨限值設置為接近標稱輸出電壓(例如5%內)之一值。最終,如本文將討論,可使用亦經耦合至伺服環路之相同磁芯來實施過電壓保護環路之操作,因此最小化用於實施過電壓保護環路之佔用面積及花費。 The voltage control structure and feedback impedance allow the threshold value of the overvoltage protection loop to be set to within 105% of the nominal output voltage of the main servo loop. Unlike conventional overvoltage protection loops, the overvoltage protection loop described herein includes a voltage control structure that outputs a highly stable and accurate voltage and allows current overvoltage protection loops to advantageously provide an operating output voltage to load without sacrificing the integrity or durability of the load. Additionally, the overvoltage protection loop described herein includes a feedback impedance that delays engagement of the overvoltage protection loop by the power converter for a period of time after the output voltage of the servo loop exceeds a threshold voltage. The feedback impedance prevents the overvoltage protection loop from being engaged due to voltage transients with peaks that temporarily exceed the threshold voltage. Accordingly, this feedback impedance prevents the overvoltage protection loop from tripping erroneously due to voltage transients, thus allowing the overvoltage protection loop threshold to be set close to the nominal output voltage (eg, within 5%) one value. Ultimately, as will be discussed herein, the operation of the overvoltage protection loop can be implemented using the same magnetic core that is also coupled to the servo loop, thus minimizing the footprint and cost for implementing the overvoltage protection loop.

圖1係根據至少一繪示之實施方案之繪示一功率轉換器100之組件之一方塊圖。在一些實施方案中,功率轉換器100包含一主要時脈及反饋控制件102、一磁芯104、一主要伺服環路106,及一過電壓保護環路108。磁芯104提供主要時脈及反饋控制件102與主要伺服環路106之間之使用第一主要繞組110及第一次級繞組112的磁性耦合。磁芯104亦提供主要時脈及反饋控制件102與過電壓保護環路108之間之使用第一主要繞 組110及第二次級繞組114的磁性耦合。使用磁芯104來磁耦合主要伺服環路106及過電壓保護環路108允許過電壓保護環路108藉由無需提供一額外磁芯而佔據功率轉換器100內之一較小佔用面積。 1 is a block diagram illustrating components of a power converter 100 according to at least one illustrated implementation. In some implementations, the power converter 100 includes a main clock and feedback control 102 , a magnetic core 104 , a main servo loop 106 , and an overvoltage protection loop 108 . Magnetic core 104 provides magnetic coupling between primary clock and feedback control 102 and primary servo loop 106 using first primary winding 110 and first secondary winding 112 . The magnetic core 104 also provides the primary clock and the use of the first primary winding between the feedback control 102 and the overvoltage protection loop 108 . Magnetic coupling of group 110 and second secondary winding 114 . Using magnetic core 104 to magnetically couple main servo loop 106 and overvoltage protection loop 108 allows overvoltage protection loop 108 to occupy a smaller footprint within power converter 100 by not having to provide an additional magnetic core.

主要時脈及反饋控制件102包含可使用一或多個主要繞組110而被施加至磁芯104之一主要側電壓,且使得在磁芯104中建立一磁化能量,如以下所討論。磁芯104中之磁化能量導致分別使用主要伺服環路106及過電壓保護環路108中之一或多個次級繞組112及114來傳遞主要側電壓。該傳遞之電壓為主要伺服環路106及過電壓保護環路108提供次級側電壓供應。在正常操作條件下,主要伺服環路106為功率轉換器提供反饋。輸出功率具有可用於驅動一負載之一標稱電壓。然而,在一誤差情況期間,諸如(例如)當主要伺服環路106之反饋控制已發生故障時,由主要伺服環路106提供之輸出電壓可不受控制地增加。在此情況中,功率轉換器100可接合過電壓保護環路108,以為負載提供輸出電壓。如本文所描述,由過電壓保護環路108提供的電壓可係在主要伺服環路106於正常操作期間供應之標稱電壓的5%內。 The main clock and feedback control 102 includes a main side voltage that can be applied to the magnetic core 104 using one or more main windings 110 and causes a magnetizing energy to build up in the magnetic core 104, as discussed below. The magnetizing energy in the magnetic core 104 results in the use of one or more secondary windings 112 and 114 in the primary servo loop 106 and the overvoltage protection loop 108, respectively, to deliver the primary side voltage. The delivered voltage provides the secondary side voltage supply for the primary servo loop 106 and the overvoltage protection loop 108 . Under normal operating conditions, the primary servo loop 106 provides feedback to the power converter. The output power has a nominal voltage that can be used to drive a load. However, during an error condition, such as, for example, when the feedback control of the primary servo loop 106 has failed, the output voltage provided by the primary servo loop 106 may increase uncontrollably. In this case, the power converter 100 may engage the overvoltage protection loop 108 to provide the output voltage to the load. As described herein, the voltage provided by the overvoltage protection loop 108 may be within 5% of the nominal voltage supplied by the main servo loop 106 during normal operation.

圖2係根據至少一繪示之實施方案之繪示使用兩個磁芯之一功率轉換器之組件之一方塊圖。在此實施方案中,一功率轉換器200具有一第一主要時脈及反饋控制件102a及一第二主要時脈及反饋控制件102b。第一主要時脈及反饋控制件102a使用第一主要繞組110及第一次級繞組112經由一第一磁芯104a磁耦合至主要伺服環路106。第二主要時脈及反饋控制件102b使用第二主要繞組210及第二次級繞組114經由一第二磁芯104b磁耦合至過電壓保護環路108。在此實施方案中,第一主要時脈及反饋控制件102a及第二主要時脈及反饋控制件102b之輸出可係相同 的。替代地,第一主要時脈及反饋控制件102a及第二主要時脈及反饋控制件102b之輸出可係不同的。另外,功率轉換器200中之主要伺服環路106及過電壓保護環路108可分別以與功率轉換器100中之主要伺服環路106及過電壓保護環路108相同之方式操作。 FIG. 2 is a block diagram illustrating components of a power converter using two magnetic cores, according to at least one illustrated implementation. In this implementation, a power converter 200 has a first primary clock and feedback control 102a and a second primary clock and feedback control 102b. The first primary clock and feedback control 102a is magnetically coupled to the primary servo loop 106 via a first magnetic core 104a using the first primary winding 110 and the first secondary winding 112. The second primary clock and feedback control 102b is magnetically coupled to the overvoltage protection loop 108 via a second magnetic core 104b using the second primary winding 210 and the second secondary winding 114 . In this implementation, the outputs of the first primary clock and feedback control 102a and the second primary clock and feedback control 102b may be the same of. Alternatively, the outputs of the first primary clock and feedback control 102a and the second primary clock and feedback control 102b may be different. Additionally, the main servo loop 106 and the overvoltage protection loop 108 in the power converter 200 may operate in the same manner as the main servo loop 106 and the overvoltage protection loop 108 in the power converter 100, respectively.

圖3係根據一個繪示之實施方案之繪示一主要時脈及反饋控制件102、一磁芯104、一主要伺服環路106及一過電壓保護環路108之組件之一方塊圖。主要時脈及反饋控制件102包含一主要磁性通信器320及一主要時脈及反饋控制件322。將一主要側電壓VCCP供應至主要磁性通信器320而為磁芯104供能。使用一或多個次級磁性通信器301及340將此電壓傳遞至主要伺服環路106及過電壓保護環路108,如以下所討論。並非持續地將主要側電壓VCCP供應至主要磁性通信器320。相反,主要時脈及反饋控制件322中之一信號(諸如)通過一切換組件控制將主要側電壓VCCP供應至主要磁性通信器320。在未將主要側電壓VCCP供應至主要磁性通信器320之時間段可被稱為其中已傳遞至主要伺服環路106或過電壓保護環路108之電壓經由一次級繞組返回至主要時脈及反饋控制件102作為一返馳電壓之一「返馳階段」。主要時脈及反饋控制件322可使用此返馳電壓(例如,VFB)監測且提供關於由主要伺服環路106及/或過電壓保護環路108提供之輸出電壓之反饋。 3 is a block diagram illustrating components of a primary clock and feedback control 102, a magnetic core 104, a primary servo loop 106, and an overvoltage protection loop 108, according to one illustrated implementation. The main clock and feedback control 102 includes a main magnetic communicator 320 and a main clock and feedback control 322 . A primary side voltage V CCP is supplied to primary magnetic communicator 320 to power magnetic core 104 . This voltage is communicated to the primary servo loop 106 and the overvoltage protection loop 108 using one or more secondary magnetic communicators 301 and 340, as discussed below. The main side voltage V CCP is not continuously supplied to the main magnetic communicator 320 . Instead, one of the main clock and feedback controls 322 controls the supply of the main side voltage V CCP to the main magnetic communicator 320 , such as through a switching element. The period of time when the primary side voltage V CCP is not being supplied to the primary magnetic communicator 320 may be referred to as the time period in which the voltage that has been delivered to the primary servo loop 106 or the overvoltage protection loop 108 is returned to the primary clock via the secondary winding and The feedback control 102 acts as one of the "flyback phases" of a flyback voltage. Primary clock and feedback control 322 can use this flyback voltage (eg, V FB ) to monitor and provide feedback on the output voltage provided by primary servo loop 106 and/or overvoltage protection loop 108 .

主要伺服環路106包含一主要次級磁性通信器340、一主要誤差放大器342、一主要反饋344及一主要電壓參考346。主要次級磁性通信器340通過一或多個次級繞組(例如,第一次級繞組112)磁耦合至磁芯104。據此,當將主要側電壓VCCP供應至主要時脈及反饋控制件102中之主要磁性通信器320時,將主要側電壓VCCP傳遞至主要次級磁性通信器 340中之一繞組(例如,第一次級繞組112)作為一主要伺服供應電壓VCCS1。另外,主要次級磁性通信器340可在其中未將主要供應側電壓VCCP供應至主要磁性通信器320之返馳階段期間提供一電壓。在該返馳階段期間,主要次級磁性通信器340自主要誤差放大器342接收輸出電壓(例如,VEA)且將此電壓提供至主要磁性通信器320作為主要磁性通信器320供應至主要時脈及反饋控制件102中之主要時脈及反饋控制件322之返馳電壓(VFB)。 The primary servo loop 106 includes a primary secondary magnetic communicator 340 , a primary error amplifier 342 , a primary feedback 344 and a primary voltage reference 346 . The primary secondary magnetic communicator 340 is magnetically coupled to the magnetic core 104 through one or more secondary windings (eg, the first secondary winding 112). Accordingly, when the primary side voltage VCCP is supplied to the primary magnetic communicator 320 in the primary clock and feedback control 102, the primary side voltage VCCP is delivered to one of the windings in the primary secondary magnetic communicator 340 (eg, , the first secondary winding 112) serves as a main servo supply voltage V CCS1 . Additionally, the primary secondary magnetic communicator 340 may provide a voltage during the flyback phase in which the primary supply side voltage V CCP is not supplied to the primary magnetic communicator 320 . During this flyback phase, primary secondary magnetic communicator 340 receives an output voltage (eg, V EA ) from primary error amplifier 342 and provides this voltage to primary magnetic communicator 320 as primary magnetic communicator 320 supplies the primary clock and the main clock in the feedback control 102 and the flyback voltage (V FB ) of the feedback control 322 .

主要次級磁性通信器340將主要伺服供應電壓VCCS1提供至主要電壓參考346。主要電壓參考346亦電連接至主要誤差放大器342且將一參考電壓(VRef)供應至主要誤差放大器342。主要誤差放大器342之輸出連接至主要反饋344且返回至主要誤差放大器342作為一反饋信號。亦將該反饋信號提供至主要輸出電路348,該主要輸出電路348將輸出電壓Vout提供至主要伺服環路106。主要誤差放大器342基於該反饋信號與自主要電壓參考346接收之參考電壓VRef之間之差異而提供其輸出電壓VEAPrimary secondary magnetic communicator 340 provides primary servo supply voltage V CCS1 to primary voltage reference 346 . The main voltage reference 346 is also electrically connected to the main error amplifier 342 and supplies a reference voltage (V Ref ) to the main error amplifier 342 . The output of main error amplifier 342 is connected to main feedback 344 and returned to main error amplifier 342 as a feedback signal. The feedback signal is also provided to the main output circuit 348 which provides the output voltage V out to the main servo loop 106 . The main error amplifier 342 provides its output voltage V EA based on the difference between the feedback signal and the reference voltage V Ref received from the main voltage reference 346 .

過電壓保護環路108包含一過電壓次級磁性通信器301、一過電壓保護誤差放大器302、一反饋阻抗303、一電壓參考305及一輸出電壓感測電路308。磁性通信器301磁耦合至磁芯104。磁芯104繼而磁耦合至主要時脈及反饋控制件102。據此,當將主要側電壓VCCP供應至主要時脈及反饋控制件102中之主要磁性通信器320時,將主要側電壓VCCP傳遞至過電壓次級磁性通信器301中之一繞組(例如,第二次級繞組114)作為一次級側電壓供應VCCS2。另外,過電壓次級磁性通信器301可在其中未將主要供應側電壓VCCP供應至主要磁性通信器320之一返馳階段期間將一電壓提供至過電壓保護環路108。在該返馳階段期間,過電壓次級磁性通信器 301可提供關於供應至主要時脈及反饋控制件102中之反饋控制322之一主要側反饋信號VFB之一電壓VEA2The overvoltage protection loop 108 includes an overvoltage secondary magnetic communicator 301 , an overvoltage protection error amplifier 302 , a feedback impedance 303 , a voltage reference 305 and an output voltage sensing circuit 308 . Magnetic communicator 301 is magnetically coupled to magnetic core 104 . The magnetic core 104 is then magnetically coupled to the main clock and feedback control 102 . Accordingly, when the primary side voltage V CCP is supplied to the primary magnetic communicator 320 in the primary clock and feedback control 102, the primary side voltage V CCP is delivered to one of the windings in the overvoltage secondary magnetic communicator 301 ( For example, the second secondary winding 114) supplies V CCS2 as the primary side voltage. Additionally, the overvoltage secondary magnetic communicator 301 may provide a voltage to the overvoltage protection loop 108 during a flyback phase in which the primary supply side voltage V CCP is not supplied to the primary magnetic communicator 320 . During the flyback phase, the overvoltage secondary magnetic communicator 301 may provide a voltage V EA2 with respect to a primary side feedback signal V FB supplied to the feedback control 322 in the primary clock and feedback control 102 .

過電壓次級磁性通信器301將參考電壓VCCS2提供至亦電連接至過電壓保護放大器302之電壓參考305。在一些實施方案中,過電壓保護放大器302可為控制其輸出處之電壓及所得電流以維持一參考線307上之一穩定電壓Vref之一分路調節器,如以下進一步詳細討論。反饋阻抗303提供允許一反饋信號自過電壓保護誤差放大器302之輸出傳遞至相同誤差放大器302之輸入之一連接。然而,反饋阻抗303包含諸如引入反饋信號之一傳遞延遲之電容器及/或電阻器之組件。此傳遞延遲防止過電壓保護環路108錯誤地在主要伺服環路106輸出一電壓暫態之一動態回應時間或階段期間跳脫。亦將該反饋信號提供至輸出電壓感測電路308以提供過電壓輸出信號VoutOvervoltage secondary magnetic communicator 301 provides reference voltage V CCS2 to voltage reference 305 which is also electrically connected to overvoltage protection amplifier 302 . In some implementations, the overvoltage protection amplifier 302 may be a shunt regulator that controls the voltage and resulting current at its output to maintain a regulated voltage Vref on a reference line 307, as discussed in further detail below. Feedback impedance 303 provides a connection that allows a feedback signal to pass from the output of overvoltage protected error amplifier 302 to the input of the same error amplifier 302 . However, feedback impedance 303 includes components such as capacitors and/or resistors that introduce a transfer delay of the feedback signal. This propagation delay prevents the overvoltage protection loop 108 from tripping erroneously during a dynamic response time or phase of the main servo loop 106 outputting a voltage transient. The feedback signal is also provided to the output voltage sensing circuit 308 to provide the overvoltage output signal V out .

圖4係根據一個繪示之實施方案之經由一磁芯104磁耦合至一主要伺服環路106之一主要時脈及反饋控制件102之一低階電路圖。磁芯104具有與主要時脈及反饋控制件102相關聯之主要側繞組L1及L2及與主要伺服環路106相關聯之一次級側繞組L3。繞組L1位於節點A與B之間,繞組L2位於節點C與D之間且繞組L3位於節點E與F之間。繞組L1、L2及L3之匝比可為適合用於一特定應用之任何匝比,例如1:1:1、1:1:2等等。可在耦合至一開關M1之一閘極節點之一取樣開關控制節點FBP處提供一固定頻率脈衝信號。開關M1可為任何類型之適合開關(例如,MOSFET,絕緣閘極雙極電晶體(IGBT))。 4 is a low-level circuit diagram of a main clock and feedback control 102 magnetically coupled to a main servo loop 106 via a magnetic core 104, according to one illustrated implementation. Magnetic core 104 has primary side windings L1 and L2 associated with primary clock and feedback control 102 and a secondary side winding L3 associated with primary servo loop 106 . Winding L1 is located between nodes A and B, winding L2 is located between nodes C and D and winding L3 is located between nodes E and F. The turns ratio of windings L1 , L2 and L3 can be any turns ratio suitable for a particular application, such as 1:1:1, 1:1:2, etc. A fixed frequency pulse signal may be provided at a sampling switch control node FBP coupled to a gate node of a switch M1. Switch M1 can be any type of suitable switch (eg, MOSFET, insulated gate bipolar transistor (IGBT)).

當接通開關M1時,繞組L1被耦合至一主要側電壓供應VCCP。此使得在磁芯104中建立一磁化能量。此時,跨繞組L2之節點C及 D的電壓在一二極體D11的陽極處係負的,使得二極體D11不是導電的。當接通開關M1時,電壓VCCP自A至B傳遞至E至F,接著由二極體D5及D7峰值充電至電容器C3內,以供應次級側供應電壓VCCS1。在正常操作期間,次級側供應電壓VCCS1可具有一標稱值。 When switch M1 is turned on, winding L1 is coupled to a primary side voltage supply V CCP . This causes a magnetization energy to build up in the magnetic core 104 . At this time, the voltage across nodes C and D of winding L2 is negative at the anode of a diode D11, making diode D11 non-conductive. When switch M1 is turned on, voltage V CCP passes from A to B to E to F, which is then peak charged by diodes D5 and D7 into capacitor C3 to supply secondary side supply voltage V CCS1 . During normal operation, the secondary side supply voltage V CCS1 may have a nominal value.

可使用次級側供應電壓VCCS1為一運算放大器U2供電。運算放大器U2具有一正輸入及一負輸入,且提供一輸出信號VEA1。輸出信號VEA1通過電阻器R8及電容器C5返回饋入至運算放大器U2之負輸入且接收為一反饋電壓。運算放大器U2在其正輸入上接收一參考電壓Vref1。因此,輸出信號VEA1係該反饋電壓與參考電壓之間之差異。在此組態中,運算放大器U2力求提供將反饋電壓之值維持地盡可能接近參考電壓Vref1之值之一輸出電壓VEA1。自該反饋電壓提供輸出電壓Vout。特定言之,輸出電壓Vout係基於根據以下方程式之電阻器R5及R7之關係:Vout=[(R5+R7)/R5]*Vref1 An operational amplifier U2 can be powered using the secondary side supply voltage V CCS1 . The operational amplifier U2 has a positive input and a negative input, and provides an output signal V EA1 . The output signal V EA1 is fed back through resistor R8 and capacitor C5 to the negative input of operational amplifier U2 and received as a feedback voltage. The operational amplifier U2 receives a reference voltage Vref1 on its positive input. Therefore, the output signal V EA1 is the difference between the feedback voltage and the reference voltage. In this configuration, the operational amplifier U2 seeks to provide an output voltage V EA1 that maintains the value of the feedback voltage as close as possible to the value of the reference voltage V ref1 . The output voltage V out is provided from this feedback voltage. Certain words, output voltage V out based on the following equation based on the relationship of the resistors R5 and R7: V out = [(R5 + R7) / R5] * V ref1

當切斷開關M1時,儲存於磁芯104中之磁化能量以一返馳電壓之形式返回。由一誤差信號VEA經由二極體D6及D8箝制該電壓。在該返馳時間期間,由跨節點C及D反射且接著通過二極體D11峰值充電至電容器C4內之電壓將誤差信號VEA返回饋入至磁芯104之主要側以形成主要側反饋信號VFB。可提供一電阻器R6來控制電容器C4之放電速率。 When the switch M1 is turned off, the magnetizing energy stored in the magnetic core 104 is returned in the form of a flyback voltage. The voltage is clamped by an error signal V EA via diodes D6 and D8. During this flyback time, the error signal V EA is fed back into the primary side of the core 104 by the voltage reflected across nodes C and D and then peaked into capacitor C4 by diode D11 to form the primary side feedback signal VFB . A resistor R6 may be provided to control the discharge rate of capacitor C4.

圖5係根據一個繪示之實施方案之經由磁芯104磁耦合至一過電壓保護環路108之主要時脈及反饋控制件102之一低階電路圖。磁芯104具有與主要時脈及反饋控制件102相關聯之主要側繞組L1及L2及與過電壓保護環路108相關聯之一過電壓繞組L4。繞組L1位於節點A與B之間,繞組L2位於節點C與D之間,且過電壓繞組L4位於節點G與H之間。 繞組L1、L2及L4之匝比可為適合用於一特定應用之任何匝比,例如1:1:1、1:1:2等等。可在耦合至一開關M1之一閘極節點之一取樣開關控制節點FBP處提供一固定頻率脈衝信號。開關M1可為任何類型之適合開關(例如,MOSFET、IGBT)。 5 is a low-level circuit diagram of the main clock and feedback controls 102 magnetically coupled to an overvoltage protection loop 108 via the magnetic core 104, according to one illustrated implementation. Magnetic core 104 has primary side windings L1 and L2 associated with primary clock and feedback control 102 and an overvoltage winding L4 associated with overvoltage protection loop 108 . Winding L1 is located between nodes A and B, winding L2 is located between nodes C and D, and overvoltage winding L4 is located between nodes G and H. The turns ratio of windings L1 , L2 and L4 can be any turns ratio suitable for a particular application, such as 1:1:1, 1:1:2, and so on. A fixed frequency pulse signal may be provided at a sampling switch control node FBP coupled to a gate node of a switch M1. Switch M1 can be any type of suitable switch (eg, MOSFET, IGBT).

當接通開關M1時,磁芯104之繞組L1被耦合至一主要側電壓供應VCCP。此使得在磁芯104中建立一磁化能量。此時,跨繞組L2之節點C及D的電壓在一二極體D11的陽極處係負的,使得二極體D11不是導電的。當接通開關M1時,電壓VCCP自A至B傳遞至G至H,接著由二極體D2及D3峰值充電至電容器C2內,以提供次級側供應電壓VCCS2。在其中L4中之繞組數目等於L3中之繞組數目的實施方案中,電壓VCCS2可大約等於電壓VCCS1When switch M1 is turned on, winding L1 of magnetic core 104 is coupled to a primary side voltage supply V CCP . This causes a magnetization energy to build up in the magnetic core 104 . At this time, the voltage across nodes C and D of winding L2 is negative at the anode of a diode D11, making diode D11 non-conductive. When switch M1 is turned on, voltage V CCP passes from A to B to G to H, which is then peak charged by diodes D2 and D3 into capacitor C2 to provide secondary side supply voltage V CCS2 . In which the number of windings L4, L3 is equal to the number of windings in the embodiment, may be approximately equal to the voltage V CCS2 voltage V CCS1.

在過電壓保護環路108中,由一積體電路U1、電阻器R2及R3及一電容器C1形成一分路調節器。該分路調節器之一陰極經連接至節點I。積體電路U1在圖5中表示為具有由線503供應之一外部參考電壓Vref之一電壓參考501。積體電路U1亦包含維持一內部參考電壓之一內部電壓供應。積體電路U1控制自節點I進入其陰極之電流流動,以使得參考線503上之外部參考電壓Vref與內部電壓供應提供之內部參考電壓匹配。在一些實施方案中,諸如由TL431裝置家族中之積體電路提供之可用於形成一分路調節器的內部參考電壓係2.5伏特。一反饋連接505提供積體電路UI之陰極處之節點I與用於積體電路U1之參考線503處之節點J之間之一電連接。反饋連接505允許節點I處的條件通過參考線503返回饋入至積體電路U1。然而,當電容器C1充電時,電容器C1延遲反饋自節點I至節點J的傳遞。反饋連接505經歷的延遲量取決於電容器C1的特性(例如,導電板之 電容、尺寸及組態等等)。 In the overvoltage protection loop 108, a shunt regulator is formed by an integrated circuit U1, resistors R2 and R3, and a capacitor C1. A cathode of the shunt regulator is connected to node I. Integrated circuit U1 is shown in FIG. 5 as having a voltage reference 501 supplied by line 503 with an external reference voltage V ref . The integrated circuit U1 also includes an internal voltage supply that maintains an internal reference voltage. The integrated circuit U1 controls the current flow from node I into its cathode so that the external reference voltage Vref on the reference line 503 matches the internal reference voltage provided by the internal voltage supply. In some implementations, the internal reference voltage that can be used to form a shunt regulator, such as provided by integrated circuits in the TL431 family of devices, is 2.5 volts. A feedback connection 505 provides an electrical connection between node I at the cathode of IC UI and node J at reference line 503 for IC U1. Feedback connection 505 allows the condition at node I to be fed back to integrated circuit U1 via reference line 503 . However, when capacitor C1 charges, capacitor C1 delays the transfer of feedback from node I to node J. The amount of delay experienced by the feedback connection 505 depends on the characteristics of capacitor C1 (eg, capacitance, size and configuration of the conductive plates, etc.).

經置於次級側電壓供應VCCS2與U1之陰極之間的電阻器R4提供用於節點I之一上拉電壓及用於積體電路U1之偏壓電流。在節點I處提供的電流及電壓應足以啟動作為一分路調節器的積體電路U1。在一些實施方案中,節點I處之需要啟動作為一分路調節器之積體電路U1的電壓可至少部分基於維持在匹配積體電路U1內之內部參考電壓之外部參考電壓Vref處的節點J。據此,電阻器R4之電阻可係基於預期之次級側供應電壓VCCS2,以及對積體電路U1之電壓與電流需求。 A pull-up voltage for node I and bias current for integrated circuit U1 is provided via resistor R4 placed between secondary side voltage supply V CCS2 and the cathode of U1. The current and voltage provided at node I should be sufficient to start the integrated circuit U1 as a shunt regulator. In some implementations, the voltage at node I required to activate the integrated circuit U1 as a shunt regulator may be based at least in part on the node maintained at an external reference voltage Vref that matches the internal reference voltage within the integrated circuit U1 J. Accordingly, the resistance of resistor R4 can be based on the expected secondary-side supply voltage V CCS2 , and the voltage and current demands on IC U1 .

電阻器R2及電阻器R3使得能夠基於Vref之值調整輸出電壓Vo。輸出電壓Vo係藉由以下方程式與參考線503上之參考電壓Vref相關聯:Vout=[(R1+R2)/R1]*Vref2 方程式2 Resistor R2 and resistor R3 enable the output voltage V o to be adjusted based on the value of V ref . The output voltage V o is related to the reference voltage V ref on the reference line 503 by the following equation: V out =[(R1+R2)/R1]*V ref2 Equation 2

在一些實施方案中,將Vref之值設置為2.5伏特。據此,可根據方程式1修改R1及R2之值以為過電壓保護環路108提供所要輸出電壓Vo。再者,由於分路調節器可精確地控制Vref以將其維持於電壓值之一窄範圍內(例如,在設定電壓值之0.5%至2%內),該分路調節器可同樣精確地控制輸出電壓Vo以將其維持於電壓之一窄範圍內。 In some implementations, the value of Vref is set to 2.5 volts. Accordingly, the values of R1 and R2 can be modified according to Equation 1 to provide the desired output voltage V o for the overvoltage protection loop 108 . Furthermore, since the shunt regulator can precisely control Vref to maintain it within a narrow range of voltage values (eg, within 0.5% to 2% of the set voltage value), the shunt regulator can be equally accurate Ground controls the output voltage V o to maintain it within a narrow range of voltages.

當切斷開關M1時,儲存於磁芯104中之磁化能量藉由跨節點G及H反射之電壓返回至磁芯104之次級側。二極體D1及二極體D4將此電壓引導至節點I,從而獲得關於主要時脈及反饋控制件102中之主要側反饋信號VFB之電壓之一電壓VEA2。在一些實施方案中,節點I處之電壓VEA2在返馳時間期間足以接合作為一分路調節器之積體電路U1及相關聯之組件。據此,如以上所討論,電壓VEA2應足以維持在匹配積體電路U1內之 內部參考電壓之一外部參考電壓Vref處之節點J。在此情況中,如以上所討論,可根據方程式1修改R1及R2以在返馳階段期間為過電壓保護環路108提供所要輸出電壓VoWhen the switch M1 is turned off, the magnetizing energy stored in the magnetic core 104 is returned to the secondary side of the magnetic core 104 by the voltage reflected across nodes G and H. Diode D1 and diode D4 direct this voltage to node I to obtain a voltage V EA2 with respect to the voltage of the primary clock and primary side feedback signal V FB in feedback control 102 . In some implementations, the voltage V EA2 at node I is sufficient to engage the integrated circuit U1 and associated components as a shunt regulator during the flyback time. Accordingly, as discussed above, the voltage V EA2 should be sufficient to maintain node J at an external reference voltage V ref that matches the internal reference voltages within the integrated circuit U1 . In this case, as discussed above, Equation 1 can be modified according to R1 and R2 to provide 108 during the flyback phase of an overvoltage protection desired loop output voltage V o.

圖6係根據一個繪示之實施方案之使用一運算放大器601提供一輸出電壓之一過電壓保護環路之一低階電路圖。運算放大器601以及一電壓參考607代替圖5中展示之積體電路U1。運算放大器601自參考線503接收Vref信號且比較Vref與由電壓參考607提供之一參考電壓。在圖6中展示之負反饋組態中,運算放大器601將維持其於節點I處之輸出以使得線503上之反饋信號盡可能地接近參考電壓Vref。在一些實施方案中,例如,電壓參考607可輸出大約2.5伏特之一參考電壓。在此一實施方案中,運算放大器601將嘗試維持節點I處之電壓,使得由線503上之反饋信號提供之電壓盡可能地接近電壓參考607提供之2.5伏特。在此情況中,可根據以上方程式2基於R1及R2之值判定Vout之值。據此,在此實施方案中,可使用運算放大器601以及電阻器R1及R2精確地將Vout之值維持於電壓之一窄範圍內(例如,在Vout之標稱值之0.5%至2.0%內)。 6 is a low-level circuit diagram of an overvoltage protection loop using an operational amplifier 601 to provide an output voltage, according to one illustrated implementation. An operational amplifier 601 and a voltage reference 607 replace the integrated circuit U1 shown in FIG. 5 . Operational amplifier 601 receives the Vref signal from reference line 503 and compares Vref to a reference voltage provided by voltage reference 607 . In the negative feedback configuration shown in FIG. 6, the operational amplifier 601 will maintain its output at node I so that the feedback signal on line 503 is as close to the reference voltage Vref as possible. In some implementations, for example, the voltage reference 607 can output a reference voltage of about 2.5 volts. In such an implementation, op amp 601 will attempt to maintain the voltage at node I such that the voltage provided by the feedback signal on line 503 is as close as possible to the 2.5 volts provided by voltage reference 607. In this case, the value of V out can be determined based on the values of R1 and R2 according to Equation 2 above. Accordingly, in this embodiment, operational amplifier 601 may be used, and precisely the resistor values V out of R1 and R2 is maintained within a narrow range of one of the voltage (e.g., V out at a nominal value of 2.0 to 0.5% %Inside).

圖6中之剩餘組件以與圖5中之類似組件相同之方式起作用。據此,電阻器R4將一上拉電壓自節點H提供至VCCS2以為運算放大器601提供必要電壓。另外,電阻器R3及電容器C1提供一反饋延遲以提供參考線503上之電壓Vref信號,如先前所討論。 The remaining components in FIG. 6 function in the same manner as the similar components in FIG. 5 . Accordingly, resistor R4 provides a pull-up voltage from node H to V CCS2 to provide the necessary voltage for operational amplifier 601 . Additionally, resistor R3 and capacitor C1 provide a feedback delay to provide the voltage Vref signal on reference line 503, as previously discussed.

圖7係根據一個繪示之實施方案之展示具有一過電壓保護環路108之一功率轉換器之一輸出節點處在其中主要伺服環路106之輸出電壓經修整以超過用於接合過電壓保護環路108之臨限電壓之一時間段期間之一電壓信號之一圖。一信號Vout 701表示該功率轉換器之一輸出節點 處之隨時間變化之一電壓,且一信號Vin 703表示輸入至該功率轉換器內之一階躍信號。將主要伺服環路之輸出電壓設置為4.0伏特且將用於接合過電壓保護環路108之臨限值或設定點設置為3.8伏特。如圖7中所見,在一第一時間段705中,由主要伺服環路106之輸出提供信號Vout 701之功率。在此階段期間,主要伺服環路106之輸出電壓小於用於接合過電壓保護環路108之3.8電壓臨限值。然而,在點707處,主要伺服環路106之輸出電壓超過3.8電壓臨限值,在該點處功率轉換器自過電壓保護環路108供應Vout 701之功率。在圖7之圖中展示之剩餘時間段709中Vout 701之功率繼續來自過電壓保護環路108。 7 shows an output node of a power converter with an overvoltage protection loop 108 at an output node where the output voltage of the main servo loop 106 is trimmed to exceed that for engaging overvoltage protection, according to one illustrated implementation A graph of a voltage signal during a time period of the threshold voltage of the loop 108 . A signal V out 701 represents a time-varying voltage at an output node of the power converter, and a signal V in 703 represents a step signal input into the power converter. The output voltage of the main servo loop is set to 4.0 volts and the threshold or set point for engaging the overvoltage protection loop 108 is set to 3.8 volts. As seen in FIG. 7, during a first time period 705, the power of the signal V out 701 is provided by the output of the main servo loop 106. During this phase, the output voltage of the main servo loop 106 is less than the 3.8 voltage threshold for engaging the overvoltage protection loop 108 . However, at point 707 the output voltage of the main servo loop 106 exceeds the 3.8 voltage threshold, at which point the power converter supplies the power of V out 701 from the overvoltage protection loop 108 . Power for V out 701 continues to come from overvoltage protection loop 108 for the remainder of time period 709 shown in the graph of FIG. 7 .

圖8係根據一個繪示之實施方案之展示具有已接合之一操作過電壓保護環路108之一功率轉換器之一輸出節點處在其中主要伺服環路106之反饋控制斷接之一時間期間之一電壓信號之一圖。一信號Vout 801表示一功率轉換器之一輸出電壓節點處隨時間變化之一電壓。最初將主要伺服環路106之輸出電壓設置為3.3伏特,且將過電壓保護環路108之臨限值或設定點設置為3.8伏特。在一第一時間段803期間,由主要伺服環路106提供信號Vout 801之功率。然而在點805處,主要伺服環路106之反饋控制斷接,從而導致在一第二時間段807期間主要伺服環路106之電壓輸出快速增加超過3.8伏特。在此時間段期間,過電壓保護環路108中之反饋阻抗使得過電壓保護環路108之接合延遲。然而在點809處,該功率轉換器自過電壓保護環路108供應Vout 801之功率,在剩餘時間段811中繼續自過電壓保護環路108供應Vout 801之功率。 8 shows an output node of a power converter with an operating overvoltage protection loop 108 engaged during a time in which the feedback control of the main servo loop 106 is disconnected, according to one illustrated implementation One of the voltage signals is one of the graphs. A signal V out 801 represents a time-varying voltage at an output voltage node of a power converter. The output voltage of the main servo loop 106 is initially set to 3.3 volts, and the threshold or set point of the overvoltage protection loop 108 is set to 3.8 volts. During a first time period 803, the power of the signal V out 801 is provided by the main servo loop 106 . At point 805 , however, the feedback control of the main servo loop 106 is disconnected, causing the voltage output of the main servo loop 106 to rapidly increase over 3.8 volts during a second time period 807 . During this time period, the feedback impedance in the overvoltage protection loop 108 delays the engagement of the overvoltage protection loop 108 . However, at point 809, the power converter 108 from over-voltage protection loop power supply V out 801, the over-voltage protection from the continued power supply V out 801 loops 108 of the remaining 811 in the period.

圖9係根據一個繪示之實施方案之展示具有一操作過電壓保護環路108之一功率轉換器之一輸出電壓節點處之當已停用主要伺服環 路106之輸出電壓時之一電壓信號之一圖。一信號Vout 901表示一功率轉換器之一輸出電壓節點處隨時間變化之一電壓。最初將主要伺服環路106之輸出電壓設置為3.3伏特,且將過電壓保護環路108之臨限值或設定點設置為3.8伏特。在一第一時間段903期間,主要伺服環路106正常起作用,且提供3.3伏特之一輸出電壓。在第一點905處,主要伺服環路106中斷,首先引起電壓之一瞬間下降至小於1.0伏特。在一第二時間段907期間,主要伺服環路106之輸出電壓增加直至其最終到達且接著超過用於接合過電壓保護環路108之3.8電壓臨限值。在此階段期間,主要伺服環路106之輸出電壓繼續增加超過4.5伏特。在點909處,該功率轉換器接合過電壓保護環路108以提供信號Vout 901之功率,在該點處,信號Vout 901快速下降至過電壓保護環路108提供之3.8伏特輸出。在剩餘時間段911中,信號Vout 901之功率繼續由過電壓保護環路108提供。 9 is a diagram showing a voltage signal at an output voltage node of a power converter with an operating overvoltage protection loop 108 when the output voltage of the main servo loop 106 has been disabled, according to one illustrated implementation One of the pictures. A signal V out 901 represents a time-varying voltage at an output voltage node of a power converter. The output voltage of the main servo loop 106 is initially set to 3.3 volts, and the threshold or set point of the overvoltage protection loop 108 is set to 3.8 volts. During a first time period 903, the main servo loop 106 functions normally and provides an output voltage of 3.3 volts. At a first point 905, the main servo loop 106 breaks, first causing one of the voltages to momentarily drop to less than 1.0 volts. During a second time period 907 , the output voltage of the main servo loop 106 increases until it finally reaches and then exceeds the 3.8 voltage threshold for engaging the overvoltage protection loop 108 . During this phase, the output voltage of the main servo loop 106 continues to increase beyond 4.5 volts. At point 909 , the power converter engages the overvoltage protection loop 108 to provide the power of the signal V out 901 , at which point the signal V out 901 drops rapidly to the 3.8 volt output provided by the overvoltage protection loop 108 . During the remaining time period 911, the power of the signal V out 901 continues to be provided by the overvoltage protection loop 108 .

圖10係根據一個繪示之實施方案之展示具有一操作過電壓保護環路108之一功率轉換器之一輸出節點處在其中主要伺服環路106在功率轉換器啟動之前已停用而使得過電壓保護環路108經接合以在啟動後即提供輸出電壓之一時間段期間之一電壓信號之一圖。信號VIn 1001表示該功率轉換器之一輸入階躍信號,且信號Vout 1003表示該功率轉換器之輸出信號。信號VIn 1001在第一時間段1005期間關斷且在點1007處開啟。由於已停用主要伺服環路106,所以輸出電壓不受控制地增加直至其到達過電壓保護環路之設定點。在該點處,由過電壓保護環路108在一延遲階段1009之後提供信號Vout 1003之功率。然而,過電壓保護環路108可具有比主要伺服環路106之啟動時間更快之一啟動時間以最小化延遲階段1009。該快速啟動時間使得過電壓保護環路108能夠免受甚至可在操作之 前以及操作期間發生之過電壓失效之害。過電壓保護環路108在剩餘時間段1011中繼續提供信號Vout 1003之功率。 FIG. 10 shows an output node of a power converter with an operating overvoltage protection loop 108 at an output node where the main servo loop 106 is disabled prior to power converter startup so that the The voltage protection loop 108 is engaged to provide a map of a voltage signal during a time period of the output voltage immediately after startup. Signal V In 1001 represents an input step signal of the power converter, and signal V out 1003 represents the output signal of the power converter. Signal V In 1001 is turned off during first time period 1005 and turned on at point 1007 . Since the main servo loop 106 is disabled, the output voltage increases uncontrollably until it reaches the set point of the overvoltage protection loop. At this point, the power of the signal V out 1003 is provided by the overvoltage protection loop 108 after a delay period 1009 . However, the overvoltage protection loop 108 may have a faster startup time than that of the main servo loop 106 to minimize the delay stage 1009 . This fast start-up time enables the overvoltage protection loop 108 to be protected from overvoltage failures that can occur even before and during operation. The overvoltage protection loop 108 continues to provide the power of the signal V out 1003 for the remaining time period 1011 .

圖11係根據一個繪示之實施方案之展示具有擁有一臨限電壓之一操作過電壓保護環路108之一功率轉換器之一輸出節點處在其中過電壓保護環路108甚至在其中主要伺服環路106之輸出電壓歸因於電壓暫態而超過一臨限電壓之動態回應時間或階段期間未干擾主要伺服環路106之輸出電壓之一時間段期間之一電壓信號之一圖。信號Iout 1101表示該功率轉換器在自0Amp至15Amp且返回至0Amp之一負載暫態期間之輸出負載電流。信號Vout 1103表示自功率轉換器輸出之電壓信號。在圖11中展示之整個時間段期間由主要伺服環路106之電壓輸出提供該功率轉換器之輸出信號Vout 1103。將主要伺服環路106之標稱電壓且因此將Vout 1103之標稱電壓設置為3.3伏特。線1105表示過電壓保護環路108之3.45伏特之設定點或臨限值。在點1107處,輸出負載電流Iout 1101自0Amp轉變至15Amp。此轉變使得在主要伺服環路106之輸出信號中發生一電壓暫態1109,其中主要伺服環路106之輸出電壓在一動態回應時間或階段期間暫時超過過電壓保護環路108之3.45伏特臨限值1105。如圖11中所見,電壓暫態1109超過3.45伏特臨限值1105約400μs。由於過電壓保護環路108中之反饋阻抗提供之延遲,功率轉換器不接合過電壓保護環路108以提供輸出電壓信號V1203FIG. 11 shows an output node of a power converter with an operating overvoltage protection loop 108 having a threshold voltage in which the overvoltage protection loop 108 is even in main servo, according to one illustrated implementation. A graph of a voltage signal during a period of time during which the output voltage of the loop 106 does not interfere with the output voltage of the main servo loop 106 due to voltage transients that exceed a threshold voltage during a dynamic response time or phase. Signal I out 1101 represents the output load current of the power converter during a load transient from 0Amp to 15Amp and back to 0Amp. Signal V out 1103 represents the voltage signal output from the power converter. The output signal V out 1103 of the power converter is provided by the voltage output of the main servo loop 106 during the entire time period shown in FIG. 11 . The nominal voltage of the main servo loop 106 and therefore the nominal voltage of V out 1103 is set to 3.3 volts. Line 1105 represents the set point or threshold of 3.45 volts for overvoltage protection loop 108 . At point 1107, the output load current Iout 1101 transitions from 0Amp to 15Amp. This transition causes a voltage transient 1109 to occur in the output signal of the main servo loop 106, where the output voltage of the main servo loop 106 temporarily exceeds the 3.45 volt threshold of the overvoltage protection loop 108 during a dynamic response time or phase The value is 1105. As seen in Figure 11, the voltage transient 1109 exceeds the 3.45 volt threshold 1105 for approximately 400 [mu]s. Due to the delay provided by the feedback impedance in the overvoltage protection loop 108, the power converter does not engage the overvoltage protection loop 108 to provide the output voltage signal V1203 .

圖12係根據一個繪示之實施方案之展示具有擁有設置為主要伺服環路之標稱輸出電壓之5%內之一臨限電壓之一操作過電壓保護環路108之一功率轉換器之一輸出節點處在其中主要伺服環路106之輸出電壓經修整以超過臨限電壓之一時間處之一電壓信號之一圖。信號Iout 1201 表示功率轉換器之一方波輸出負載電流,且信號Vout 1203表示自該功率轉換器輸出之電壓信號。由主要伺服環路106輸出之信號之標稱電壓已經修整至4.0伏特,而用於接合過電壓保護環路108之設定點或臨限值已設置為3.45伏特。據此,在圖12中展示之整個時間段期間,由過電壓保護環路108之電壓輸出提供功率轉換器之輸出信號Vout 1203。 12 shows one of the power converters having an operating overvoltage protection loop 108 having a threshold voltage set to within 5% of the nominal output voltage of the main servo loop, according to one illustrated implementation The output node is a graph of a voltage signal at a time where the output voltage of the main servo loop 106 is trimmed to exceed the threshold voltage. Signal I out 1201 represents a square wave output load current of the power converter, and signal V out 1203 represents the voltage signal output from the power converter. The nominal voltage of the signal output by the main servo loop 106 has been trimmed to 4.0 volts, and the set point or threshold for engaging the overvoltage protection loop 108 has been set to 3.45 volts. Accordingly, the output signal V out 1203 of the power converter is provided by the voltage output of the overvoltage protection loop 108 during the entire time period shown in FIG. 12 .

以上詳細描述已經由使用方塊圖、示意圖及實例而闡述裝置及/或程序之各種實施方案。只要此等方塊圖、示意圖及實例含有一或多個功能及/或操作,則熟習技術者將瞭解此等方塊圖、流程圖或實例內之各功能及/或操作可由廣泛硬體、軟體、韌體或實際上其等任何組合單獨及/或共同實施。 The foregoing detailed description has set forth various implementations of devices and/or processes using block diagrams, schematic diagrams, and examples. So long as these block diagrams, schematic diagrams and examples include one or more functions and/or operations, those skilled in the art will understand that each function and/or operation within such block diagrams, flow diagrams or examples can be implemented by a wide variety of hardware, software, The firmware, or indeed any combination thereof, is implemented individually and/or together.

熟習技術者將意識到本文陳述之諸多方法或演算法可採用額外動作、可省略一些動作及/或可以不同於指定順序之一順序執行動作。 Skilled artisans will appreciate that many of the methods or algorithms set forth herein may employ additional actions, may omit some actions, and/or may perform the actions in one of the orders specified.

以上描述之各種實施方案可經組合以提供進一步實施方案。以上描述之各種實施例可經組合以提供進一步實施例。在此說明書中涉及及/或在申請資料單中列出之所有美國專利、美國專利申請公開案、美國專利申請案、國外專利、國外專利申請案及非專利公開案(如果有)包含但不限制於:2014年4月29日發佈之名為「SWITCHED CAPACITOR HOLD-UP SCHEME FOR CONSTANT BOOST OUTPUT VOLTAGE,」之美國專利第8,710,820號;2016年8月16日發佈之名為「AC/DC POWER CONVERSION SYSTEM AND METHOD OF MANUFACTURE OF SAME,」之美國專利第9,419,538號;2011年7月18日申請之名稱為「POWER CONVERTER APPARATUS AND METHOD WITH COMPENSATION FOR LIGHT LOAD CONDITIONS」之美國專利申請案第13/185,142號;2014年9月2日發佈之名為「SELF SYNCHRONIZING POWER CONVERTER APPARATUS AND METHOD SUITABLE FOR AUXILIARY BIAS FOR DYNAMIC LOAD APPLICATIONS,」之美國專利第8,824,167號;2014年11月11日發佈之名為「INPUT CONTROL APPARATUS AND METHOD WITH INRUSH CURRENT,UNDER AND OVER VOLTAGE HANDLING,」之美國專利第8,885,308號;2014年9月9日發佈之名為「POWER CONVERTER APPARATUS AND METHOD WITH OUTPUT CURRENT SENSING AND COMPENSATION FOR CURRENT LIMIT/CURRENT SHARE OPERATION,」之美國專利第8,829,868號;2014年11月18日發佈之名為「OSCILLATOR APPARATUS AND METHOD WITH WIDE ADJUSTABLE FREQUENCY RANGE,」之美國專利第8,890,630號;2011年10月14日申請之名為「OUTPUT FILTER FOR USE WITH POWER CONVERTERS,FOR EXAMPLE DC/DC POWER CONVERTERS,FOR INSTANCE INTERPOINT MFP POL DC/DC POWER CONVERTERS,」之美國臨時專利申請案第61/547,327號;2014年10月21日申請之名為「IMPEDANCE COMPENSATION FOR OPERATIONAL AMPLIFIERS USED IN VARIABLE ENVIRONMENTS,」之美國專利第8,866,551號;2015年5月26日發佈之名為「DYNAMIC MANEUVERING CONFIGURATION FOR MULTIPLE CONTROL MODES IN A UNIFIED SERVO SYSTEM,」之美國專利第9,041,378號;2015年10月28日申請之名為「DYNAMIC MANEUVERING CONFIGURATION FOR MULTIPLE CONTROL MODES IN A UNIFIED SERVO SYSTEM,」之美國專利申請案第14/787,565號;2016年1月5發佈之名為「TRANSFORMER-BASED POWER CONVERTERS WITH 3D PRINTED MICROCHANNEL HEAT SINK,」之美國專利第9,230,726號;2015年10月13日發佈之名為「INTEGRATED TRI-STATE ELECTROMAGNETIC INTERFERENCE FILTER AND LINE CONDITIONING MODULE,」之美國專利第9,160,228號;2016年3月22日發佈之名為「AUTOMATIC ENHANCED SELF-DRIVEN SYNCHRONOUS RECTIFICATION FOR POWER CONVERTERS,」之美國專利第9,293,999號;2016年6月10日申請之名為「DYNAMIC SHARING AVERAGE CURRENT MODE CONTROL FOR ACTIVE-RESET AND SELF-DRIVEN SYNCHRONOUS RECTIFICATION FOR POWER CONVERTERS,」之美國專利申請案第15/178,968號,該等案件之全文以引起之方式併入本文中。若可能,實施例之態樣可經修改以採用各種專利、申請案及公開案之概念來提供進一步實施例。可鑒於以上詳細描述對實施方案作出此等及其他改變。 The various implementations described above can be combined to provide further implementations. The various embodiments described above can be combined to provide further embodiments. All U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, and non-patent publications (if any) referenced in this specification and/or listed in the Application Fact Sheet include But not limited to: U.S. Patent No. 8,710,820, entitled "SWITCHED CAPACITOR HOLD-UP SCHEME FOR CONSTANT BOOST OUTPUT VOLTAGE," issued on April 29, 2014; "AC/DC" issued on August 16, 2016 POWER CONVERSION SYSTEM AND METHOD OF MANUFACTURE OF SAME," U.S. Patent No. 9,419,538; filed on July 18, 2011, entitled "POWER CONVERTER APPARATUS AND METHOD WITH U.S. Patent Application Serial No. 13/185,142 for COMPENSATION FOR LIGHT LOAD CONDITIONS; U.S. Patent No. 8,885,308, issued November 11, 2014, entitled "INPUT CONTROL APPARATUS AND METHOD WITH INRUSH CURRENT, UNDER AND OVER VOLTAGE HANDLING,"; issued September 9, 2014, entitled "POWER CONVERTER APPARATUS AND METHOD WITH OUTPUT CURRENT SENSING AND COMPENSATION FOR CURRENT LIMIT/CURRENT SHARE OPERATION," US Patent No. 8,829,868; No. 8,890,630; U.S. Provisional Patent Application No. 61 entitled "OUTPUT FILTER FOR USE WITH POWER CONVERTERS, FOR EXAMPLE DC/DC POWER CONVERTERS, FOR INSTANCE INTERPOINT MFP POL DC/DC POWER CONVERTERS," filed October 14, 2011 /547,327; US Patent No. 8,866,551, filed October 21, 2014, entitled "IMPEDANCE COMPENSATION FOR OPERATIONAL AMPLIFIERS USED IN VARIABLE ENVIRONMENTS,"; issued May 26, 2015, entitled "DYNAMIC MANEUVERING CONFIGURATION FOR MULTIPLE CONTROL" MODES IN A UNIFIED SERVO SYSTEM," U.S. Patent No. 9,041,378 ;The name of the application filed on October 28, 2015 is "DYNAMIC" MANEUVERING CONFIGURATION FOR MULTIPLE CONTROL MODES IN A UNIFIED SERVO SYSTEM," U.S. Patent Application No. 14/787,565; U.S. Patent entitled "TRANSFORMER-BASED POWER CONVERTERS WITH 3D PRINTED MICROCHANNEL HEAT SINK," issued January 5, 2016 No. 9,230,726; U.S. Patent No. 9,160,228, issued October 13, 2015, entitled "INTEGRATED TRI-STATE ELECTROMAGNETIC INTERFERENCE FILTER AND LINE CONDITIONING MODULE,"; issued March 22, 2016, entitled "AUTOMATIC ENHANCED SELF- DRIVEN SYNCHRONOUS RECTIFICATION FOR POWER CONVERTERS," U.S. Patent No. 9,293,999; U.S. Patent Application "DYNAMIC SHARING AVERAGE CURRENT MODE CONTROL FOR ACTIVE-RESET AND SELF-DRIVEN SYNCHRONOUS RECTIFICATION FOR POWER CONVERTERS," filed June 10, 2016 Application No. 15/178,968, the full text of which is hereby incorporated by reference. If possible, aspects of the embodiments may be modified to employ concepts from various patents, applications, and publications to provide further embodiments. These and other changes can be made to the implementations in light of the above detailed description.

一般而言,在以下申請專利範圍中,使用之術語不應解譯為將申請專利範圍限制於說明書及申請專利範圍中揭示之特定實施方案,而應解譯為包含所有可能之實施方案以及此等申請專利範圍所授權之等效物之完整範疇。據此,本揭示不限制該等申請專利範圍。 In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments and such etc. the full scope of equivalents granted by the scope of the patent application. Accordingly, the present disclosure does not limit the scope of these claims.

100:功率轉換器 100: Power Converter

102:主要時脈及反饋控制件 102: Main clock and feedback controls

104:磁芯 104: Magnetic core

106:主要伺服環路 106: Main Servo Loop

108:過電壓保護環路 108: Overvoltage protection loop

110:第一主要繞組 110: The first main winding

112:第一次級繞組 112: The first secondary winding

114:第二次級繞組 114: Second secondary winding

Claims (11)

一種用於一變壓器之過電壓保護環路,該變壓器包含一主要時脈及反饋控制電路、一主要伺服環路,及該過電壓保護環路,該過電壓保護環路包括: 一過電壓繞組,其經磁耦合至一磁芯,該過電壓繞組回應於該主要時脈及反饋控制電路中之一主要繞組上之一電壓而經啟動,以提供一次級側電壓供應; 一誤差放大器,其經電耦合至一第一節點及一第二節點,其中該誤差放大器根據一內部參考電壓而使用該次級側電壓供應來維持該第二節點上之一第二電壓; 一反饋阻抗,其在該第一節點與該第二節點之間經電耦合,該反饋阻抗引入一時間延遲,以將反饋自該第一節點提供至該第二節點;及 一輸出電壓感測電路,其經電耦合至至少該第二節點及一輸出節點,該輸出電壓感測電路基於該第二節點處之該第二電壓來控制該輸出節點處之一輸出電壓, 其中該過電壓保護環路在一誤差情況下,為該變壓器提供該輸出電壓。An overvoltage protection loop for a transformer, the transformer comprising a main clock and feedback control circuit, a main servo loop, and the overvoltage protection loop, the overvoltage protection loop comprising: an overvoltage winding , which is magnetically coupled to a magnetic core, and the overvoltage winding is activated in response to a voltage on a primary winding in the primary clock and feedback control circuit to provide a primary-side voltage supply; an error amplifier, which electrically coupled to a first node and a second node, wherein the error amplifier uses the secondary side voltage supply to maintain a second voltage on the second node according to an internal reference voltage; a feedback impedance at The first node and the second node are electrically coupled, the feedback impedance introduces a time delay to provide feedback from the first node to the second node; and an output voltage sensing circuit is electrically coupled to at least the second node and an output node, the output voltage sensing circuit controls an output voltage at the output node based on the second voltage at the second node, wherein the overvoltage protection loop is in an error condition down, supply the output voltage to the transformer. 如請求項1之過電壓保護環路,其中該反饋阻抗防止該過電壓保護環路在一段時間內干擾該主要伺服環路之一輸出,其中該段時間係比當該主要伺服環路輸出一電壓暫態之一動態回應時間更長。The overvoltage protection loop of claim 1, wherein the feedback impedance prevents the overvoltage protection loop from interfering with an output of the main servo loop for a period of time that is longer than when the main servo loop output an output One of the voltage transients has a longer dynamic response time. 如請求項1之過電壓保護環路,其中該過電壓保護環路之一啟動時間相對於該主要伺服環路之一啟動時間係更快。The overvoltage protection loop of claim 1, wherein an activation time of the overvoltage protection loop is faster than an activation time of the main servo loop. 如請求項2之過電壓保護環路,其中由該過電壓保護環路提供之該輸出電壓係在該主要伺服環路輸出之一標稱電壓之5%內。The overvoltage protection loop of claim 2, wherein the output voltage provided by the overvoltage protection loop is within 5% of a nominal voltage at the output of the main servo loop. 如請求項1之過電壓保護環路,其中該誤差放大器包括一分路調節器。The overvoltage protection loop of claim 1, wherein the error amplifier includes a shunt regulator. 如請求項5之過電壓保護環路,其中該輸出電壓感測電路包括一第一電阻器及一第二電阻器,該第一電阻器具有一第一電阻且經耦合至該第二節點及該輸出節點,且該第二電阻器具有一第二電阻且經耦合至該第二節點及接地,其中該第一電阻及該第二電阻係至少部分基於該誤差放大器將該第二節點之該第二電壓維持於其處之一值。The overvoltage protection loop of claim 5, wherein the output voltage sensing circuit includes a first resistor and a second resistor, the first resistor having a first resistance and coupled to the second node and the an output node, and the second resistor has a second resistance and is coupled to the second node and ground, wherein the first resistance and the second resistance are based at least in part on the second resistance of the second node by the error amplifier The voltage is maintained at one value there. 如請求項1之過電壓保護環路,其中該誤差放大器包括一運算放大器。The overvoltage protection loop of claim 1, wherein the error amplifier comprises an operational amplifier. 如請求項1之過電壓保護環路,其中該反饋阻抗包括一電容器。The overvoltage protection loop of claim 1, wherein the feedback impedance includes a capacitor. 如請求項1之過電壓保護環路,其中該磁芯經磁耦合至該主要伺服環路。The overvoltage protection loop of claim 1, wherein the magnetic core is magnetically coupled to the main servo loop. 如請求項1之過電壓保護環路,其中該磁芯係經磁耦合至該過電壓保護環路及該主要時脈及反饋控制電路之一第一磁芯,且其中該主要伺服環路經磁耦合至一第二磁芯。The overvoltage protection loop of claim 1, wherein the magnetic core is magnetically coupled to the overvoltage protection loop and a first magnetic core of the primary clock and feedback control circuit, and wherein the primary servo loop is Magnetically coupled to a second magnetic core. 一種使用一過電壓保護環路為一變壓器提供過電壓保護之方法,該變壓器包含一主要時脈及反饋控制電路、一主要伺服環路及該過電壓保護環路,該方法包括: 藉由啟動一過電壓繞組來提供一次級側電壓,回應於該主要時脈及反饋控制電路中之一主要繞組上之一電壓來啟動該過電壓繞組; 使用該次級側電壓來維持一誤差放大器之一第一節點上之一電壓,該誤差放大器經電耦合至一第一節點及一第二節點,其中根據該誤差放大器之一內部參考電壓來維持該第一節點上之該電壓; 將一時間延遲引入至通過一反饋阻抗自該第二節點傳輸至該第一節點之一反饋信號,該反饋阻抗在該第一節點與該第二節點之間經電耦合;且 使用經電耦合至至少該第一節點及一輸出節點之一輸出電壓感測電路,基於該第一節點處之該電壓來控制該輸出節點處之一輸出電壓, 其中該過電壓保護環路在一誤差情況下,為該變壓器提供該輸出電壓。A method of providing overvoltage protection for a transformer using an overvoltage protection loop, the transformer comprising a main clock and feedback control circuit, a main servo loop and the overvoltage protection loop, the method comprising: by starting an overvoltage winding to provide a primary-side voltage responsive to a voltage on a primary winding in the primary clock and feedback control circuit to activate the overvoltage winding; using the secondary-side voltage to maintain one of an error amplifier a voltage on a first node to which the error amplifier is electrically coupled to a first node and a second node, wherein the voltage on the first node is maintained according to an internal reference voltage of the error amplifier; delaying a time Introduce to a feedback signal transmitted from the second node to the first node through a feedback impedance, the feedback impedance is electrically coupled between the first node and the second node; and using the electrically coupled to at least the first node An output voltage sensing circuit at a node and an output node controls an output voltage at the output node based on the voltage at the first node, wherein the overvoltage protection loop is the transformer under an error condition supply this output voltage.
TW106140861A 2016-12-09 2017-11-24 Over-voltage protection loop and method for providing over-voltage protection TWI750264B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/374,116 2016-12-09
US15/374,116 US9742183B1 (en) 2016-12-09 2016-12-09 Proactively operational over-voltage protection circuit
US15/376,329 US9735566B1 (en) 2016-12-12 2016-12-12 Proactively operational over-voltage protection circuit
US15/376,329 2016-12-12

Publications (2)

Publication Number Publication Date
TW201834342A TW201834342A (en) 2018-09-16
TWI750264B true TWI750264B (en) 2021-12-21

Family

ID=62653126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106140861A TWI750264B (en) 2016-12-09 2017-11-24 Over-voltage protection loop and method for providing over-voltage protection

Country Status (3)

Country Link
CN (1) CN108233688B (en)
HK (1) HK1251085A1 (en)
TW (1) TWI750264B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332826A (en) * 2010-07-13 2012-01-25 昂宝电子(上海)有限公司 System and method for sensing and adjustment of primary side of flyback power converter
US20140192561A1 (en) * 2013-01-10 2014-07-10 Alcatel-Lucent Canada Inc. Control circuit for switching power converters with synchronous rectifiers
TW201521309A (en) * 2013-10-21 2015-06-01 Silergy Copr Overvoltage protection method and circuit for switching power supply output and switching power supply provided with the circuit
TW201601424A (en) * 2014-06-25 2016-01-01 台達電子企業管理(上海)有限公司 Power converter, short circuit protection circuit and control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332826A (en) * 2010-07-13 2012-01-25 昂宝电子(上海)有限公司 System and method for sensing and adjustment of primary side of flyback power converter
US20140022824A1 (en) * 2010-07-13 2014-01-23 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods of primary-side sensing and regulation for flyback power converter with high stability
US20140192561A1 (en) * 2013-01-10 2014-07-10 Alcatel-Lucent Canada Inc. Control circuit for switching power converters with synchronous rectifiers
TW201521309A (en) * 2013-10-21 2015-06-01 Silergy Copr Overvoltage protection method and circuit for switching power supply output and switching power supply provided with the circuit
TW201601424A (en) * 2014-06-25 2016-01-01 台達電子企業管理(上海)有限公司 Power converter, short circuit protection circuit and control method

Also Published As

Publication number Publication date
HK1251085A1 (en) 2019-01-18
CN108233688B (en) 2021-01-29
CN108233688A (en) 2018-06-29
TW201834342A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
US8988902B2 (en) Power converter controller IC having pins with multiple functions
US7760524B2 (en) Method and apparatus to reduce the volume required for bulk capacitance in a power supply
US9407155B2 (en) Isolated switching converter with secondary side modulation and control method
Hwu et al. Ultrahigh step-down converter
US8885308B2 (en) Input control apparatus and method with inrush current, under and over voltage handling
US10020742B2 (en) Hybrid boost-bypass function in two-stage converter
TWI789522B (en) Multi-output power converter and methods for sequencing output voltages in a mutli-output power converter system
CN107112889A (en) Starter controller for power converter
EP1605576A1 (en) Device and method for extending the input voltage range of a DC/DC converter
US20080246456A1 (en) Method and apparatus for controlling the maximum output power of a power converter
WO2013146339A1 (en) Switching power source device
US9099927B2 (en) Multi-voltage power supply and electronic apparatus including the same
US7723972B1 (en) Reducing soft start delay and providing soft recovery in power system controllers
US10445281B2 (en) Load detection apparatus and method for USB systems
CN104980050A (en) System and Method for Switched-Mode Power Supply
US8964412B2 (en) Split current mirror line sensing
US20120014141A1 (en) Reset voltage circuit for a forward power converter
KR20100105419A (en) Power supply apparatus
JP4946226B2 (en) DC-DC converter and power supply device
US9742183B1 (en) Proactively operational over-voltage protection circuit
US9735566B1 (en) Proactively operational over-voltage protection circuit
US9287789B2 (en) DC-to-DC converter input stage with capacitive current limit
US20130088896A1 (en) Switching control circuit and switching power supply apparatus
TWI750264B (en) Over-voltage protection loop and method for providing over-voltage protection
US20110156770A1 (en) Auto-restart circuit and auto-restart method