TWI749416B - Method for diagnosing abnormality of equipment having variable rotation speeds - Google Patents
Method for diagnosing abnormality of equipment having variable rotation speeds Download PDFInfo
- Publication number
- TWI749416B TWI749416B TW108143789A TW108143789A TWI749416B TW I749416 B TWI749416 B TW I749416B TW 108143789 A TW108143789 A TW 108143789A TW 108143789 A TW108143789 A TW 108143789A TW I749416 B TWI749416 B TW I749416B
- Authority
- TW
- Taiwan
- Prior art keywords
- online
- value
- operating state
- characteristic value
- speed equipment
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
本發明是有關於一種變轉速設備異常監診方法。 The invention relates to a method for monitoring and diagnosing abnormalities in variable speed equipment.
為了對設備進行有效的維護與管理,通常會建置相關的監診系統來檢測設備是否發生異常。一般而言,監診系統會於設備進行線上作業時,對設備進行整體或局部的監測,以取得代表設備運轉狀態的訊號,再對這些訊號進行分析來判斷設備運轉是否異常。習知的異常監診方法對於定轉速設備而言,較能有效率地偵測出異常,並針對異常進行診斷。然而,針對變轉速設備而言,習知的異常監診方法則無法有效率地偵測出設備異常。 In order to maintain and manage the equipment effectively, a related monitoring and diagnosis system is usually built to detect whether the equipment is abnormal. Generally speaking, the monitoring system will monitor the equipment as a whole or in part when the equipment is operating online to obtain signals representing the operating status of the equipment, and then analyze these signals to determine whether the equipment is operating abnormally. The conventional abnormal monitoring method can detect abnormalities more efficiently for fixed-speed equipment, and diagnose the abnormalities. However, for variable-speed equipment, the conventional abnormal monitoring method cannot efficiently detect equipment abnormalities.
因此,需要一種變轉速設備異常監診方法,以有效率地偵測變轉速設備的異常運轉。 Therefore, there is a need for an abnormal monitoring method for variable-speed equipment to efficiently detect abnormal operation of the variable-speed equipment.
根據本發明之一方面,本發明之實施例提供一 種變轉速設備異常監診方法。此變轉速設備異常監診方法包含模型建立階段以及線上作業階段。在此變轉速設備異常監診方法中,首先進行模型建立階段。在模型建立階段中,首先獲取變轉速設備之複數筆歷史運轉資料,每一歷史運轉資料包含歷史轉速值以及相應之歷史運轉狀態訊號。然後,根據歷史運轉資料來計算歷史運轉狀態特徵值。接著,根據歷史運轉狀態特徵值來計算出高斯混合模型。然後,進行線上作業階段。在線上作業階段中,首先獲取變轉速設備於線上作業時之線上運轉資料,其中線上運轉資料包含線上轉速值以及相應之線上運轉狀態訊號。接著,根據線上運轉資料來計算至少一個線上運轉狀態特徵值。然後,根據高斯混合模型和線上運轉狀態特徵值來判斷變轉速設備於線上作業時是否出現異常。 According to one aspect of the present invention, the embodiments of the present invention provide a An abnormal monitoring method for variable speed equipment. This variable speed equipment abnormal monitoring method includes a model establishment phase and an online operation phase. In this abnormal monitoring method for variable speed equipment, the model establishment stage is first carried out. In the model building stage, first obtain a plurality of historical operating data of the variable speed equipment, and each historical operating data includes the historical speed value and the corresponding historical operating state signal. Then, calculate the characteristic value of the historical operating state based on the historical operating data. Next, the Gaussian mixture model is calculated based on the historical operating state characteristic values. Then, proceed to the online work phase. In the online operation phase, first obtain the online operation data of the variable speed equipment during online operation, where the online operation data includes the online rotation speed value and the corresponding online operation status signal. Then, at least one characteristic value of the online operation state is calculated according to the online operation data. Then, according to the Gaussian mixture model and the characteristic value of the online operating state, it is judged whether the variable speed equipment is abnormal during the online operation.
在一些實施例中,歷史運轉狀態訊號以及線上運轉狀態特徵值為變轉速設備之振動訊號。 In some embodiments, the historical operating state signal and the online operating state characteristic value are the vibration signals of the variable speed equipment.
在一些實施例中,模型建立階段更包含第一正規化步驟,以對歷史運轉狀態特徵值進行正規化。 In some embodiments, the model building stage further includes a first normalization step to normalize the historical operating state characteristic values.
在一些實施例中,線上作業階段更包含第二正規化步驟,以對線上運轉狀態特徵值進行正規化。 In some embodiments, the online operation phase further includes a second normalization step to normalize the characteristic value of the online operation state.
在一些實施例中,歷史運轉資料皆對應至該轉速設備正常作業的情況。 In some embodiments, the historical operation data corresponds to the normal operation of the speed equipment.
在一些實施例中,模型建立階段更包含特徵篩選步驟,以從歷史運轉狀態特徵值中移除至少一個冗餘特徵值。 In some embodiments, the model building stage further includes a feature screening step to remove at least one redundant feature value from the historical operating state feature value.
在一些實施例中,前述之特徵篩選步驟包含:選取目標特徵值,其中此目標特徵值為歷史運轉狀態特徵值之一者;計算目標特徵值之熵(entropy)值,並判斷此熵值是否小於預設熵閥值;以及當熵值小於預設熵閥值時,判定目標特徵值為至少一冗餘特徵值,以將目標特徵值移除。 In some embodiments, the aforementioned feature screening step includes: selecting a target feature value, where the target feature value is one of the historical operating state feature values; calculating the entropy value of the target feature value, and determining whether the entropy value is Is less than the preset entropy threshold; and when the entropy is less than the preset entropy threshold, it is determined that the target feature value is at least one redundant feature value, so as to remove the target feature value.
在一些實施例中,前述之特徵篩選步驟更包含:選取第一目標特徵值以及第二目標特徵值,其中第一目標特徵值以及第二目標特徵值為歷史運轉狀態特徵值其中之二者;計算第一目標特徵值與第二目標特徵值間之平均相關係數(correlation coefficient);判斷平均相關係數是否大於預設係數閥值;當平均相關係數大於預設係數閥值時,判定第一目標特徵值和第二目標特徵值之一者為冗餘特徵值,以將其移除。 In some embodiments, the aforementioned feature screening step further includes: selecting a first target feature value and a second target feature value, wherein the first target feature value and the second target feature value are two of the historical operating state feature values; Calculate the average correlation coefficient between the first target feature value and the second target feature value; determine whether the average correlation coefficient is greater than the preset coefficient threshold; when the average correlation coefficient is greater than the preset coefficient threshold, determine the first target One of the feature value and the second target feature value is a redundant feature value to be removed.
在一些實施例中,前述根據高斯混合模型和線上運轉狀態特徵值來判斷變轉速設備於線上作業時是否出現異常之步驟包含:根據高斯混合模型之複數個邊界點來決定標準邊界線;判斷線上運轉狀態特徵值是否超過標準邊界線;當線上運轉狀態特徵值超過標準邊界線時,判定變轉速設備出現異常。 In some embodiments, the aforementioned step of judging whether the variable speed equipment is abnormal during online operation according to the Gaussian mixture model and the characteristic value of the online operating state includes: determining the standard boundary line according to the plurality of boundary points of the Gaussian mixture model; judging the line Whether the characteristic value of the operating state exceeds the standard boundary; when the characteristic value of the operating state on the line exceeds the standard boundary, it is determined that the variable speed equipment is abnormal.
在一些實施例中,根據高斯混合模型和線上運轉狀態特徵值來判斷該變轉速設備於線上作業時是否出現異常之步驟包含:根據高斯混合模型和線上運轉狀態特徵值來計算加權機率;判斷加權機率是否小於預設機率閥值;當加權機率小於預設機率閥值時,判定變轉速設備出現異常。 In some embodiments, the step of judging whether the variable speed equipment is abnormal during online operation according to the Gaussian mixture model and the characteristic value of the online operating state includes: calculating the weighted probability according to the Gaussian mixture model and the characteristic value of the online operating state; determining the weighting Whether the probability is less than the preset probability threshold; when the weighted probability is less than the preset probability threshold, it is determined that the variable speed equipment is abnormal.
100:變轉速設備異常監診方法 100: Abnormal monitoring method for variable speed equipment
110:模型建立階段 110: Model building stage
111~113:步驟 111~113: Step
112a~112b:步驟 112a~112b: steps
120:線上作業階段 120: Online operation stage
121~123:步驟 121~123: Steps
123a~123d:步驟 123a~123d: steps
123e~123h:步驟 123e~123h: steps
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:[圖1]係繪示根據本發明實施例之變轉速設備異常監診方法的流程示意圖。 In order to make the above and other objectives, features, advantages and embodiments of the present invention more obvious and understandable, the detailed description of the attached drawings is as follows: [FIG. 1] is a diagram showing the abnormal monitoring of the variable speed equipment according to the embodiment of the present invention Schematic flow diagram of the method.
[圖2]係繪示根據本發明實施例之計算歷史運轉狀態特徵值之步驟的流程示意圖;[圖3]係繪示根據本發明實施例之歷史運轉狀態特徵值;[圖4]係繪示根據本發明實施例之決定混合模型數量值的示意圖;[圖5]係繪示根據本發明實施例之根據高斯混合模型來判斷設備之作業是否異常之步驟的流程示意圖;[圖6]係繪示根據本發明實施例之計算標準邊界線的示意圖;以及[圖7]係繪示根據本發明實施例之根據高斯混合模型來判斷設備之作業是否異常之步驟的流程示意圖。 [Fig. 2] is a schematic flow chart showing the steps of calculating historical operating state characteristic values according to an embodiment of the present invention; [Fig. 3] is a drawing showing historical operating state characteristic values according to an embodiment of the present invention; [Fig. 4] is a drawing [Fig. 5] is a schematic diagram showing the flow diagram of determining whether the operation of the equipment is abnormal according to the Gaussian mixture model according to the embodiment of the present invention; [Fig. 6] A schematic diagram showing the calculation of a standard boundary line according to an embodiment of the present invention; and [FIG. 7] is a schematic flowchart showing the steps of judging whether the operation of the equipment is abnormal according to the Gaussian mixture model according to an embodiment of the present invention.
下文是以實施方式配合附圖作詳細說明,但所提供的實施方式並非用以限制本發明所涵蓋的範圍,而結構運作的描述非用以限制其執行的順序,任何由元件重新組合的結構,所產生具有均等功效的裝置,皆為本發明所涵蓋的 範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。 The following is a detailed description of the implementation with the accompanying drawings, but the provided implementation is not used to limit the scope of the present invention, and the description of the structure operation is not used to limit the order of its execution, any structure recombined by components , The devices produced with equal efficacy are all covered by the present invention Scope. In addition, the drawings are for illustrative purposes only, and are not drawn in accordance with the original dimensions.
關於本文中所使用之『第一』、『第二』、...等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。 Regarding the "first", "second", ... etc. used in this article, they do not particularly refer to the order or sequence, but only to distinguish elements or operations described in the same technical terms.
請參照圖1,其係繪示根據本發明實施例之變轉速設備異常監診方法100的流程示意圖。變轉速設備異常監診方法100係適用於轉速會發生變化的設備,例如冷卻水塔的冷卻風扇或是鼓風用的燃燒風扇。變轉速設備異常監診方法100包含模型建立階段110和線上作業階段120。模型建立階段110可收集變轉速設備的歷史運轉資料,並利用這些歷史運轉資料來建立設備運轉的模型。在線上作業階段120中,當設備上線進行作業時,可利用前述之模型來判斷設備是否發生異常。
Please refer to FIG. 1, which is a schematic flowchart of a
在模型建立階段110中,首先進行步驟111,以獲取變轉速設備之複數筆歷史運轉資料。每一歷史運轉資料包含歷史轉速值以及相應之歷史運轉狀態訊號。舉例而言,步驟111會紀錄變轉速設備在各個不同轉速下的運轉狀態訊號。運轉狀態訊號包含但不限定於振動訊號、聲音訊號或熱訊號等等。以振動訊號為例來說明,步驟111會紀錄變轉速設備在一轉速下,設備的振動加速度值對時間的關係(振動訊號)。在多個不同的設備轉速下,進行量測振動加速度值的量測,即可獲得前述的歷史運轉資料。
In the
接著,進行步驟112,以根據歷史運轉資料來計算歷史運轉狀態特徵值。在本發明之一些實施例中,可根
據預設之複數個頻寬範圍來計算歷史運轉狀態特徵值。請參照圖2,其係繪示根據本發明實施例之步驟112的流程示意圖。在步驟112中,首先進行步驟112a,以利用濾波器(例如帶通/帶拒濾波器)來根據前述預設頻寬範圍來將歷史運轉狀態訊號分頻。然後,進行步驟112b,以計算歷史運轉狀態訊號對應於每個頻寬範圍的歷史運轉狀態特徵值。在本發明之實施例中,歷史運轉狀態特徵值包含但不限定於均值、均方值、均方根值、偏度、峭度、峭度指標、偏態指標、亂度(Wiener entropy)。具體如下表一所示:
在上表一中,x i 表示歷史運轉狀態訊號(時域),
fi表示第i個頻率對應的能量,β表示峭度,fx表示偏度。再者,假設訊號數量為N,且預設頻寬範圍為:0~1K赫茲、1K~2K赫茲、...、5K~6K赫茲,則可獲得如圖3所示之歷史運轉狀態特徵值,其中圖3所示之歷史運轉狀態特徵值已被正規化。正規化的方程式如下:
在上述正規化的方程式中,表示第i筆資料的第J個特徵,μJ和σJ表示對應此特徵所算出的平均值與標準差,表示正規化後的值。值得一提的是,在本發明之其他實施例中,亦可以不分頻段。換句話說,圖3可以只有一個頻段,即全頻段0~6K赫茲。 In the above normalized equation, Represents the Jth feature of the i-th data, μ J and σ J represent the average value and standard deviation calculated corresponding to this feature, Represents the normalized value. It is worth mentioning that in other embodiments of the present invention, frequency bands may not be divided. In other words, Figure 3 can have only one frequency band, that is, the full frequency range is 0~6K Hz.
請回到圖1,在步驟112後,接著進行步驟113,以針對步驟112的頻寬範圍,根據歷史運轉狀態特徵值來計算出相應的高斯混合模型。為了使得高斯混合模型趨近於資料點的分佈狀況,需要先決定混合模型數量值M。決定混合模型數量值M的做法為不斷調整混合模型數量值M的大小,然後計算出高斯混合模型與其對應的赤井信息法則(Akaike Information Criterion)或貝氏信息準則(Bayesian information criterion;BIC)值。AIC和BIC的方程式如下:
在上述AIC值/BIC值的方程式中,Df和N分別是單一高斯分佈的參數(Free parameters)數量與資料點數量,,其係代表資料點,S i 代表轉速,i=1~N,μ m 代表高斯分佈中心,Σm代表共變異數矩陣,π m 代表與π相關的係數。資料點與高斯分佈中心之間的馬氏距離係表示如下:
如圖4所示,在計算出AIC值/BIC值曲線後,接著在AIC值/BIC值曲線的頭尾間取一條直線,然後找出曲線上距離直線最遠的點(即曲線反折點),如此即可決定混合模型數量值M的值。在圖4的實施例中,混合模型數量值M決定為6。 As shown in Figure 4, after calculating the AIC value/BIC value curve, then take a straight line between the beginning and the end of the AIC value/BIC value curve, and then find the point on the curve that is the farthest from the straight line (that is, the curve reflex point ), in this way, the value of the mixed model quantity value M can be determined. In the embodiment of FIG. 4, the number value M of the mixed model is determined to be 6.
另外,在本發明之一些實施例中,在步驟112和113之間可進行特徵篩選步驟,以將無用的冗餘特徵值移除。在本發明之一些實施例中,當前述歷史運轉資料皆為設備正常運轉的資料,則特徵篩選步驟可進行如下:首先從前述之歷史運轉狀態特徵值中選取一待處理的目標特徵值。然
後,計算此目標特徵值之熵(entropy)值,並判斷此熵值是否小於預設的熵閥值。在本實施例中,預設熵閥值為0.5,但本發明之實施例並不受限於此。當熵值小於預設熵閥值時,判定目標特徵值為冗餘的特徵值,並將此目標特徵值移除。
In addition, in some embodiments of the present invention, a feature screening step may be performed between
在本發明之一些實施例中,可再透過平均相關係數(correlation coefficient)來確認任兩特徵值之間的關係。具體而言,首先從歷史運轉狀態特徵值中任意選取出第一目標特徵值與第二目標特徵值間,並計算第一目標特徵值與第二目標特徵值間之平均相關係數。然後判斷此平均相關係數是否大於預設的係數閥值。當此平均相關係數大於預設係數閥值時,判定第一目標特徵值和第二目標特徵值之一者為冗餘特徵值,並將其移除。 In some embodiments of the present invention, the relationship between any two feature values can be confirmed through the average correlation coefficient. Specifically, firstly, the first target characteristic value and the second target characteristic value are randomly selected from the historical operating state characteristic values, and the average correlation coefficient between the first target characteristic value and the second target characteristic value is calculated. Then it is judged whether the average correlation coefficient is greater than the preset coefficient threshold. When the average correlation coefficient is greater than the preset coefficient threshold, it is determined that one of the first target characteristic value and the second target characteristic value is a redundant characteristic value, and it is removed.
在本發明之一些實施例中,當前述歷史運轉資料為包含設備正常運轉和異常運轉的資料,則特徵篩選步驟可使用變異數分析法(Analysis of variance;ANOVA)或相互資訊法(Mutual Information;MI)來決定具有鑑別力的特徵值,並移除其他沒有鑑別力的冗餘特徵值。 In some embodiments of the present invention, when the aforementioned historical operation data includes data including normal operation and abnormal operation of the equipment, the feature selection step may use Analysis of Variance (ANOVA) or Mutual Information (Mutual Information); MI) to determine the discriminative eigenvalues, and remove other redundant eigenvalues that are not discriminatory.
請回到圖1,在模型建立階段110後,接著進行線上作業階段120。在線上作業階段120中,首先進行步驟121,以獲取變轉速設備於線上作業時之線上運轉資料。此線上運轉資料包含線上轉速值以及相應之線上運轉狀態訊號。然後,進行步驟122,以根據線上運轉資料來計算線上運轉狀態特徵值。由於步驟122與前述之步驟112類似,故
不在此進行贅述。接著,進行步驟123,以根據高斯混合模型和線上運轉狀態特徵值來判斷變轉速設備於線上作業時是否出現異常。
Please return to FIG. 1, after the
請參照圖5,其係繪示根據本發明一實施例之步驟123的流程示意圖。在步驟123中,首先進行步驟123a,以根據高斯混合模型之複數個邊界點來決定標準邊界線。在本實施例中,步驟123係訂定正常情況與異常情況的邊界線(即前述之標準邊界線)。例如,以馬氏距離為2的邊界的計算方法如圖6所示,將高斯混合模型邊界點連起來並保留最外圍的點,以得到正常上邊界。此正常上邊界即可作為標準邊界線。接著,進行步驟123b,以判斷線上運轉狀態特徵值是否超過標準邊界線。若線上運轉狀態特徵值超過標準邊界線,則進行步驟123c,以判定變轉速設備之作業出現異常。例如,當單一個線上運轉狀態特徵值超出此標準邊界線時,即可判斷設備發生異常。反之,則進行步驟123d,判定設備之作業正常。另外,考慮邊界點的數量可能會太多,可使用平滑曲線法(Spline)或多邊形化法(Polygonalization)來得到標準邊界線。
Please refer to FIG. 5, which is a schematic flowchart of
請參照圖7,其係繪示根據本發明另一實施例之步驟123的流程示意圖。在本實施例中,步驟123係使用加權機率來判斷設備是否發生異常。在本實施例之步驟123中,首先進行步驟123e,以根據高斯混合模型和線上運轉狀態特徵值來計算加權機率。加權機率P的計算方程式如下:
接著,進行步驟123f,以判斷加權機率是否小於預設機率閥值。在本實施例中,預設機率閥值為0.5,但本發明之實施例並不受限於此。當加權機率小於預設機率閥值時,進行步驟123g,以判定變轉速設備之作業出現異常。反之,則進行步驟123h,以判定變轉速設備之作業正常。
Then,
在一些實施例中,可利用加權機率來同時使用多個指標(特徵值)判斷變轉速設備之作業是否出現異常。以圖7所繪示之步驟123為例來說明,當圖7所繪示之步驟123同時採用多個指標來判斷變轉速設備之作業是否出現異常,則預設機率閥值可為0.01,而特徵值z i =[w*,其中w為轉速的權重,其值與建立高斯混合模型時一致。
In some embodiments, the weighted probability can be used to simultaneously use multiple indicators (characteristic values) to determine whether the operation of the variable speed equipment is abnormal. Take
由以上說明可知,本發明實施例之變轉速設備異常監診方法係利用高斯混合模型來判斷變轉速設備是否發生異常。針對不同的歷史運轉資料,本發明實施例提供了不同的特徵篩選步驟。例如,若歷史運轉資料只包含變轉速設備正常作業的資料,可利用熵值或平均相關係數來進行特徵的篩選。又例如,若歷史運轉資料包含變轉速設備正常和異常作業的資料,可利用變異數分析法或相互資訊法來進行特徵的篩選。另外,在本發明之一些實施例中,特徵篩選步驟不僅限於進行特徵的篩選,也可針對其他的描述子(例 如,頻段)來進行篩選。 It can be seen from the above description that the method for monitoring abnormality of the variable speed equipment in the embodiment of the present invention uses a Gaussian mixture model to determine whether the variable speed equipment is abnormal. For different historical operating data, the embodiment of the present invention provides different feature screening steps. For example, if the historical operating data only contains data about the normal operation of variable speed equipment, the entropy value or average correlation coefficient can be used to filter the characteristics. For another example, if the historical operating data includes data about normal and abnormal operations of a variable speed equipment, the variance analysis method or the mutual information method can be used to filter the characteristics. In addition, in some embodiments of the present invention, the feature screening step is not limited to feature screening, but can also target other descriptors (for example, For example, frequency band) to filter.
雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in several embodiments as above, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field to which the present invention pertains can do various things without departing from the spirit and scope of the present invention. Modifications and modifications, therefore, the scope of protection of the present invention shall be subject to the scope of the attached patent application.
100‧‧‧變轉速設備異常監診方法 100‧‧‧Abnormal monitoring method for variable speed equipment
110‧‧‧模型建立階段 110‧‧‧Model establishment stage
111~113‧‧‧步驟 111~113‧‧‧Step
120‧‧‧線上作業階段 120‧‧‧Online operation stage
121~123‧‧‧步驟 121~123‧‧‧Step
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108143789A TWI749416B (en) | 2019-11-29 | 2019-11-29 | Method for diagnosing abnormality of equipment having variable rotation speeds |
CN202010546081.0A CN112881044B (en) | 2019-11-29 | 2020-06-16 | Abnormality diagnosis method for variable rotation speed equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108143789A TWI749416B (en) | 2019-11-29 | 2019-11-29 | Method for diagnosing abnormality of equipment having variable rotation speeds |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202121093A TW202121093A (en) | 2021-06-01 |
TWI749416B true TWI749416B (en) | 2021-12-11 |
Family
ID=76042882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108143789A TWI749416B (en) | 2019-11-29 | 2019-11-29 | Method for diagnosing abnormality of equipment having variable rotation speeds |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112881044B (en) |
TW (1) | TWI749416B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI819824B (en) * | 2022-09-30 | 2023-10-21 | 中國鋼鐵股份有限公司 | Method for applying different rotation-speed-vibration thresholds to diagnose abnormality of equipment with variable rotation speeds |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200827739A (en) * | 2006-12-28 | 2008-07-01 | Optimaltest Ltd | Systems and methods for test time outlier detection and correction in integrated circuit testing |
TW201231330A (en) * | 2011-01-19 | 2012-08-01 | rong-zhong Chen | Vehicle engine operation status monitoring and adjusting method |
CN102768115A (en) * | 2012-06-27 | 2012-11-07 | 华北电力大学 | Method for dynamically monitoring health status of wind turbine gearbox in real time |
TW201405113A (en) * | 2012-07-23 | 2014-02-01 | rong-zhong Chen | Tuning method of monitoring vehicles operation |
CN103758696A (en) * | 2014-01-09 | 2014-04-30 | 华北电力大学 | SCADA (supervisory control and data acquisition) temperature parameter based wind turbine set security evaluation method |
CN107341349A (en) * | 2017-06-30 | 2017-11-10 | 上海交通大学 | Method, system, memory and the controller of blower fan health evaluating |
TW201911173A (en) * | 2017-07-28 | 2019-03-16 | 香港商阿里巴巴集團服務有限公司 | Index abnormality detecting method, device and electronic device |
TW201923584A (en) * | 2017-11-20 | 2019-06-16 | 財團法人資訊工業策進會 | Diagnostic method for machine and diagnostic system thereof |
TW201931167A (en) * | 2017-12-29 | 2019-08-01 | 香港商阿里巴巴集團服務有限公司 | Method and device for determining data anomaly |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06307921A (en) * | 1993-04-27 | 1994-11-04 | Toshiba Corp | Diagnostic monitoring system for rotating machine |
CN109909803B (en) * | 2019-04-17 | 2020-05-12 | 北京天泽智云科技有限公司 | Machine tool spindle abnormity detection method |
CN110222980A (en) * | 2019-06-05 | 2019-09-10 | 上海电气集团股份有限公司 | The health evaluating method and system of rail traffic bearing |
-
2019
- 2019-11-29 TW TW108143789A patent/TWI749416B/en active
-
2020
- 2020-06-16 CN CN202010546081.0A patent/CN112881044B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200827739A (en) * | 2006-12-28 | 2008-07-01 | Optimaltest Ltd | Systems and methods for test time outlier detection and correction in integrated circuit testing |
TW201231330A (en) * | 2011-01-19 | 2012-08-01 | rong-zhong Chen | Vehicle engine operation status monitoring and adjusting method |
CN102768115A (en) * | 2012-06-27 | 2012-11-07 | 华北电力大学 | Method for dynamically monitoring health status of wind turbine gearbox in real time |
TW201405113A (en) * | 2012-07-23 | 2014-02-01 | rong-zhong Chen | Tuning method of monitoring vehicles operation |
CN103758696A (en) * | 2014-01-09 | 2014-04-30 | 华北电力大学 | SCADA (supervisory control and data acquisition) temperature parameter based wind turbine set security evaluation method |
CN107341349A (en) * | 2017-06-30 | 2017-11-10 | 上海交通大学 | Method, system, memory and the controller of blower fan health evaluating |
TW201911173A (en) * | 2017-07-28 | 2019-03-16 | 香港商阿里巴巴集團服務有限公司 | Index abnormality detecting method, device and electronic device |
TW201923584A (en) * | 2017-11-20 | 2019-06-16 | 財團法人資訊工業策進會 | Diagnostic method for machine and diagnostic system thereof |
TW201931167A (en) * | 2017-12-29 | 2019-08-01 | 香港商阿里巴巴集團服務有限公司 | Method and device for determining data anomaly |
Also Published As
Publication number | Publication date |
---|---|
CN112881044A (en) | 2021-06-01 |
TW202121093A (en) | 2021-06-01 |
CN112881044B (en) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Attoui et al. | A new time–frequency method for identification and classification of ball bearing faults | |
TWI333170B (en) | Complex event evaluation systems and methods, and machine readable medium thereof | |
WO2013105164A1 (en) | Abnormal signal determining apparatus, abnormal signal determining method, and abnormal signal determining program | |
TWI749416B (en) | Method for diagnosing abnormality of equipment having variable rotation speeds | |
CN109858104A (en) | A kind of rolling bearing health evaluating and method for diagnosing faults and monitoring system | |
CN113225209B (en) | Network monitoring real-time early warning method based on time series similarity retrieval | |
US20240133391A1 (en) | Prediction method for stall and surging of axial-flow compressor based on deep autoregressive network | |
CN117889945B (en) | Highway bridge construction vibration testing method | |
CN117609929B (en) | Industrial production line fault online diagnosis method and system based on big data | |
TWI653410B (en) | Diagnosis method of pre-pressure of ball transmission assembly | |
CN117289778B (en) | Real-time monitoring method for health state of industrial control host power supply | |
TWI819824B (en) | Method for applying different rotation-speed-vibration thresholds to diagnose abnormality of equipment with variable rotation speeds | |
JPH09229762A (en) | Method and apparatus for monitoring of abnormality of instrument | |
CN107368457A (en) | The instantaneous Frequency Estimation method examined based on LoG operators and Grubbs | |
CN106204324A (en) | A kind of method determining that power plant's complex device key monitoring parameter and each parameters weighting distribute | |
JP2002323371A (en) | Sound diagnostic device and sound diagnostic method | |
CN114548555A (en) | Axial flow compressor stall surge prediction method based on deep autoregressive network | |
CN112237433B (en) | Electroencephalogram signal abnormity monitoring system and method | |
CN116292133A (en) | Method and device for detecting clearance abnormality of wind generating set | |
CN114033736A (en) | Fan fault monitoring system based on air pressure pulse signals | |
CN110006655A (en) | Aeroengine compressor monitoring method and monitoring system | |
CN107389342A (en) | The instantaneous Frequency Estimation method examined based on Roberts operators and Grubbs | |
CN114338206A (en) | DDOS attack detection method, device, equipment and storage medium | |
JP2022056121A (en) | State monitoring system and data analysis device | |
JP7396361B2 (en) | Abnormality determination device and abnormality determination method |