TWI748650B - Build system, method and computer program product thereof by using particle swarm optimization (pso) method for capacity distribution of renewable energies and energy storage systems of a micro-grid - Google Patents

Build system, method and computer program product thereof by using particle swarm optimization (pso) method for capacity distribution of renewable energies and energy storage systems of a micro-grid Download PDF

Info

Publication number
TWI748650B
TWI748650B TW109132064A TW109132064A TWI748650B TW I748650 B TWI748650 B TW I748650B TW 109132064 A TW109132064 A TW 109132064A TW 109132064 A TW109132064 A TW 109132064A TW I748650 B TWI748650 B TW I748650B
Authority
TW
Taiwan
Prior art keywords
particle swarm
value
parameter
energy storage
particle
Prior art date
Application number
TW109132064A
Other languages
Chinese (zh)
Other versions
TW202213254A (en
Inventor
劉力源
沈勁彣
侯孟辰
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW109132064A priority Critical patent/TWI748650B/en
Application granted granted Critical
Publication of TWI748650B publication Critical patent/TWI748650B/en
Publication of TW202213254A publication Critical patent/TW202213254A/en

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A build system, method and computer program product thereof by using Particle Swarm Optimization (PSO) method for capacity distribution of renewable energies and energy storage systems of a micro-grid are provided. The build system comprise: a user interface, an environmental parameter module, and a particle swarm algorithm module. The user interface configured to allow a user to input a basic parameter and a historical data. The environmental parameter module configured to receive the basic parameter and the historical data and convert them into a particle swarm parameter. The particle swarm algorithm module configured to according the particle swarm parameter with a particle swarm iterative method. When the number of the particle swarm iterative method is match a set value, an optimal solution is obtained and displayed on the user interface. The renewable energies and energy storage system with a lowest generation cost or highest capacity distribution is therefore obtained.

Description

基於粒子群演算法之微電網再生能源與儲能配比之建置系統、方法與電腦程式產品Construction system, method and computer program product of microgrid renewable energy and energy storage ratio based on particle swarm algorithm

本發明是有關於一種微電網建置系統,特別是關於一種基於粒子群演算法之微電網再生能源與儲能配比建置系統、方法與電腦程式產品。The present invention relates to a micro-grid construction system, in particular to a micro-grid renewable energy and energy storage configuration construction system, method and computer program product based on particle swarm algorithm.

隨著科技發展進步,導致地球暖化現象日趨嚴重,故世界各國皆積極發展再生能源,而再生能源的發電情況受限於環境氣候,具有間歇性與不確定性問題。當區域之再生能源占比逐漸提高時,一旦因環境氣候影響,勢必會衝擊電力系統運轉的穩定性。With the development and progress of science and technology, the phenomenon of global warming has become more and more serious. Therefore, all countries in the world are actively developing renewable energy, and the power generation of renewable energy is limited by the environment and climate, which has intermittent and uncertain problems. When the proportion of renewable energy in the region gradually increases, once the impact of the environment and climate is bound to affect the stability of the operation of the power system.

為了提升再生能源滲透率,同時增加系統運轉安全,發展微電網技術成為必要工作。然而微電網是將區域內的分散式能源與負載整合,並透過微電網關鍵技術達到區域內系統的平衡與穩定,必要時亦可與外部電力系統斷開而獨立運轉,因此微電網被視為提升區域內再生能源占比的一種手段,目前各國皆積極發展微電網關鍵技術,及建置微電網示範區。In order to increase the penetration rate of renewable energy and increase the safety of system operation, the development of microgrid technology has become a necessary task. However, the microgrid integrates distributed energy and loads in the region, and achieves the balance and stability of the regional system through the key technology of the microgrid, and can be disconnected from the external power system and operate independently if necessary. Therefore, the microgrid is regarded as As a means to increase the proportion of renewable energy in the region, countries are currently actively developing key microgrid technologies and establishing microgrid demonstration areas.

在習知決定微電網裝置容量方法中,會根據使用者之負載最大使用量與負載使用習慣,或根據既有可建置之面積與系統線徑容量,決定可安裝之太陽能板數量,進而以太陽能板最大發電量與負載最大使用量決定儲能系統或柴油發電機之裝置容量。此方式的缺點是當獨立運轉時,考量實際最大負載量與馬達性負載之加載情形,柴油發電機之裝置容量會建置過大。In the conventional method of determining the capacity of a microgrid device, the number of solar panels that can be installed is determined according to the user's maximum load usage and load usage habits, or according to the existing buildable area and system wire diameter capacity. The maximum power generation of solar panels and the maximum use of loads determine the capacity of the energy storage system or diesel generator. The disadvantage of this method is that when operating independently, considering the actual maximum load and the loading of the motor load, the capacity of the diesel generator will be built too large.

因此,如何能同時兼顧經濟性與穩定性的條件,並考量當地負載用電特性,找出各種發電裝置最適合的建置容量,成為業界所待解決之課題。Therefore, how to take into account the conditions of economy and stability at the same time, and consider the characteristics of local load power consumption, and find the most suitable building capacity for various power generation devices, has become a problem to be solved in the industry.

本發明提供一種基於粒子群演算法之微電網再生能源與儲能配比之建置系統、方法與電腦程式產品,係透過粒子群演算法以疊代方式進行搜尋計算,並逐步收斂至最佳解,藉以改善決定微電網裝置容量方法中,各種發電機之裝置容量建置過大的情形。The present invention provides a system, method and computer program product for building a microgrid renewable energy and energy storage ratio based on a particle swarm algorithm. The particle swarm algorithm is used to search and calculate in an iterative manner, and gradually converge to the best In order to improve the method of determining the device capacity of the microgrid, the situation that the device capacity of various generators is built too large.

在一實施例中,本發明提出一種基於粒子群演算法之微電網再生能源與儲能配比之建置系統,包含有:一使用者介面,提供一使用者輸入一基本參數與一歷史資料;一環境參數模組,接收該基本參數與該歷史資料並轉化為一粒子群參數;及一粒子群演算法模組,依據該粒子群參數,進行一粒子群疊代運算,當該粒子群疊代運算之次數符合一設定次數值時,產出一最佳解詳細參數,並於該使用者介面上顯示。In one embodiment, the present invention proposes a system for building a microgrid renewable energy and energy storage ratio based on a particle swarm algorithm, which includes: a user interface that provides a user to input a basic parameter and a historical data ; An environmental parameter module that receives the basic parameter and the historical data and converts it into a particle swarm parameter; and a particle swarm algorithm module that performs a particle swarm iterative operation based on the particle swarm parameter, when the particle swarm When the number of iterative operations meets a set value, a detailed parameter of the best solution is generated and displayed on the user interface.

在另一實施例中,本發明提出一種基於粒子群演算法之微電網再生能源與儲能配比之建置方法,該方法包含有下列步驟:引入一基本參數與一歷史資料;轉化該基本參數與該歷史資料為一粒子群參數;依據該粒子群參數與該歷史資料,進行一粒子群疊代運算;及當該粒子群疊代運算之次數符合一設定次數值時,產出一最佳解詳細參數,並於一使用者介面上顯示。In another embodiment, the present invention proposes a method for constructing a ratio of renewable energy to energy storage in a microgrid based on a particle swarm algorithm. The method includes the following steps: introducing a basic parameter and a historical data; transforming the basic parameter The parameter and the historical data are a particle swarm parameter; a particle swarm iterative operation is performed based on the particle swarm parameter and the historical data; and when the number of the particle swarm iterative operation matches a set value, a maximum Detailed parameters of the best solution are displayed on a user interface.

在另一實施例中,本發明提出一種電腦程式產品,係利用一電腦讀取該電腦程式產品後,執行基於粒子群演算法之微電網再生能源與儲能配比之建置方法。In another embodiment, the present invention proposes a computer program product, which uses a computer to read the computer program product and execute a method for constructing a microgrid renewable energy and energy storage ratio based on a particle swarm algorithm.

基於上述,在本發明之基於粒子群演算法之微電網再生能源與儲能配比之建置系統、方法與電腦程式產品中,係利用蒐集再生能源發電及負載用電資料,考量儲能電池、儲能轉換器容量與常備發電機組等限制條件,即可由粒子群演算法進行微電網之能源裝置容量配比計算,進而完成最低發電成本或最高再生能源占比的建置方案。Based on the above, in the system, method, and computer program product of the microgrid renewable energy and energy storage ratio construction based on the particle swarm algorithm of the present invention, the collection of renewable energy power generation and load power consumption data is used to consider the energy storage battery , Energy storage converter capacity and standing generator sets and other constraints, the particle swarm algorithm can calculate the energy device capacity ratio of the microgrid, and then complete the construction plan with the lowest power generation cost or the highest proportion of renewable energy.

為讓本發明能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the present invention more obvious and understandable, the following specific examples are given in conjunction with the accompanying drawings to describe in detail as follows.

以下結合附圖和實施例,對本發明的具體實施方式作進一步描述。以下實施例僅用於更加清楚地說明本發明的技術方案,而不能以此限制本發明的保護範圍。The specific implementation of the present invention will be further described below in conjunction with the accompanying drawings and embodiments. The following embodiments are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the protection scope of the present invention.

請參閱圖1, 圖1為本發明之微電網再生能源與儲能配比之建置系統方塊圖。微電網再生能源與儲能配比之建置系統400主要由使用者介面100、環境參數模組200及粒子群演算法模組300所組成。實際上,微電網再生能源與儲能配比之建置系統400可透過具有資料運算、儲存、顯示與人機介面功能的電腦設備來實現。Please refer to FIG. 1. FIG. 1 is a block diagram of a system for constructing a microgrid renewable energy and energy storage ratio of the present invention. The construction system 400 for the ratio of renewable energy and energy storage in the microgrid is mainly composed of a user interface 100, an environmental parameter module 200, and a particle swarm algorithm module 300. In fact, the construction system 400 of the microgrid renewable energy and energy storage ratio can be realized by a computer device with data calculation, storage, display, and human-machine interface functions.

使用者介面100,可提供使用者輸入至少一筆基本參數與至少一筆歷史資料。較佳者,使用者介面100是由圖形化介面實現,藉以提供一簡潔明瞭的方式讓使用者進行操作,並以圖表清楚地呈現粒子群演算法模組300所產生的計算結果。所述的歷史資料可以是微電網所在場域之歷年每小時日照量值、日照時數值、風速值及/或負載用量值等。The user interface 100 can provide the user to input at least one basic parameter and at least one historical data. Preferably, the user interface 100 is implemented by a graphical interface, so as to provide a concise and clear way for the user to operate, and to clearly present the calculation result generated by the particle swarm algorithm module 300 in a chart. The historical data may be the hourly sunshine value, sunshine hour value, wind speed value and/or load consumption value of the field where the microgrid is located.

環境參數模組200,與使用者介面100進行資料傳輸連結。環境參數模組200可接收所述的基本參數與歷史資料,並轉化為粒子群參數。實際上,環境參數模組200可以透過將接收的資料匯製成為一個Excel表格檔案,再透過電腦程式直接讀Excel表格檔案進行計算的方式來實現。The environmental parameter module 200 is connected to the user interface 100 for data transmission. The environmental parameter module 200 can receive the basic parameters and historical data, and convert them into particle swarm parameters. In fact, the environmental parameter module 200 can be implemented by compiling the received data into an Excel table file, and then directly reading the Excel table file through a computer program for calculation.

粒子群演算法模組300,分別與使用者介面100及環境參數模組200進行資料傳輸連結。粒子群演算法模組300可由粒子參數初始化單元310、參數計算單元320、參數比較單元330與粒子群疊代運算單元340所組成。需說明的是,本發明實施例中的粒子群演算法模組300係採用粒子群演算法(Particle Swarm Optimization, PSO)來實現。The particle swarm algorithm module 300 is respectively connected to the user interface 100 and the environmental parameter module 200 for data transmission. The particle swarm algorithm module 300 may be composed of a particle parameter initialization unit 310, a parameter calculation unit 320, a parameter comparison unit 330, and a particle swarm iterative operation unit 340. It should be noted that the particle swarm algorithm module 300 in the embodiment of the present invention is implemented by using a particle swarm optimization (PSO) algorithm.

在粒子群演算法模組300的演算過程中,每個粒子個體能夠記住自己當前所找到的最好位置,稱為粒子最佳適應值(pbest)。另外,每個粒子個體還能記住群體中所有粒子找到的最好位置,稱為群體最佳適應值(gbest)。實際上,粒子群演算法模組300可由程序式(Procedural)程式語言,例如,C語言或類似的程式語言來實現。In the calculation process of the particle swarm algorithm module 300, each individual particle can remember the best position it currently finds, which is called the particle best fitness value (pbest). In addition, each individual particle can remember the best position found by all particles in the group, which is called the best fitness value of the group (gbest). In fact, the particle swarm algorithm module 300 can be implemented by a procedural programming language, for example, C language or similar programming languages.

粒子參數初始化單元310,可將環境參數模組200轉換後的粒子群參數,在一個區域的上下邊界值間進行隨機初始化運算。也就是說,先讓粒子群隨機分布於特定範圍後,以取得各粒子對應的初始值。The particle parameter initialization unit 310 can perform random initialization operations between the upper and lower boundary values of a region on the particle swarm parameters after the environmental parameter module 200 has been converted. In other words, first let the particle swarm be randomly distributed in a specific range to obtain the initial value corresponding to each particle.

參數計算單元320,與粒子參數初始化單元310進行資料傳輸連結。參數計算單元320係依據粒子參數初始化單元310隨機初始化運算後的粒子群參數和歷史資料,計算產出一筆平均單位發電成本值。The parameter calculation unit 320 is connected to the particle parameter initialization unit 310 for data transmission. The parameter calculation unit 320 calculates and outputs an average unit power generation cost value according to the particle swarm parameters and historical data after random initialization by the particle parameter initialization unit 310.

在本發明實施例中,所述的粒子群參數可以例如是一筆粒子位置值、一筆粒子速度值、一筆位置參數限制上限值、一筆一位置參數限制下限值、一筆速度參數上限值、一筆個數參數最佳歷史位置值及一筆群體參數最佳歷史位置值等資料。所述的粒子群參數之種類可以對應於一組太陽能板、一組風機、一組儲能轉換器及一組儲能電池。所述的粒子位置值可以對應於一組太陽能板建置容量值、一組風機建置容量值、一組儲能電池建置容量值與一組儲能轉換器建置容量值。所述的粒子速度值可以對應於一組太陽能板建置容量變化量、一組風機建置容量變化量、一組儲能電池建置容量變化量與一組儲能轉換器建置容量變化量。In the embodiment of the present invention, the particle swarm parameters may be, for example, a stroke of particle position value, a stroke of particle velocity value, a stroke of position parameter upper limit value, a stroke of position parameter limit lower limit, a stroke of velocity parameter upper limit value, Data such as the best historical position value of a number of parameters and the best historical position value of a group of parameters. The types of the particle swarm parameters can correspond to a group of solar panels, a group of fans, a group of energy storage converters, and a group of energy storage batteries. The particle position value may correspond to a set of solar panel building capacity values, a set of wind turbine building capacity values, a set of energy storage battery building capacity values, and a set of energy storage converter building capacity values. The particle velocity value may correspond to a set of solar panel building capacity changes, a set of wind turbine building capacity changes, a set of energy storage battery build capacity changes, and a set of energy storage converter build capacity changes. .

參數比較單元330,與參數計算單元320進行資料傳輸連結。參數比較單元330用以逐次比較每筆平均單位發電成本值,藉以產出一筆當前比較運算後的最小平均單位發電成本值。The parameter comparison unit 330 is connected to the parameter calculation unit 320 for data transmission. The parameter comparison unit 330 is used to sequentially compare each average unit power generation cost value, so as to generate a minimum average unit power generation cost value after the current comparison operation.

粒子群疊代運算單元340分別與使用者介面100、環境參數模組200、參數計算單元320及參數比較單元330進行資料傳輸連結。粒子群疊代運算單元340依據參數比較單元330產出的最小值逐次進行粒子群疊代運算,並於粒子群疊代運算的次數符合一個設定次數值時,產出最佳解詳細參數。所述的最佳解詳細參數可以是一筆單位發電成本值及/或一筆再生能源佔比值。需說明的是,所述的設定次數值可為系統預設值,或者由使用者輸入決定。較佳者,粒子群疊代運算單元340會於使用者介面100以圖形、圖案、圖表及/或數字方式顯示所述的最佳解詳細參數。The particle swarm iterative computing unit 340 is connected to the user interface 100, the environmental parameter module 200, the parameter calculation unit 320, and the parameter comparison unit 330 for data transmission, respectively. The particle swarm iterative operation unit 340 successively performs the particle swarm iterative operation according to the minimum value generated by the parameter comparison unit 330, and generates the best solution detailed parameter when the number of the particle swarm iterative operation meets a set value. The detailed parameter of the optimal solution may be a unit power generation cost value and/or a renewable energy percentage value. It should be noted that the set value of the number of times can be a system default value or determined by user input. Preferably, the particle swarm iterative computing unit 340 displays the detailed parameters of the optimal solution on the user interface 100 in graphs, patterns, charts, and/or numbers.

舉例來說,若設定粒子數量值為n個,則參數計算單元320計算時會有n個不同配比進行搜索,並得到n個發電成本計算結果,再由參數比較單元330在計算結果中找出最低的發電成本及其對應的容量配比,並作為下次調整配比方向的參考。For example, if the number of particles is set to n, the parameter calculation unit 320 will search for n different ratios during calculation, and obtain n power generation cost calculation results, and then the parameter comparison unit 330 will search for the calculation results. The lowest power generation cost and its corresponding capacity ratio will be calculated and used as a reference for the next adjustment of the ratio.

請一併參閱圖1與圖2,圖2係為本發明實施例之微電網再生能源與儲能配比之建置方法流程圖。另外,本發明實施例的電腦程式產品,係指將電腦可讀取程式指令記錄於電腦可讀取儲存媒介(例如,光碟片、隨機存取記憶體、唯讀記憶體、快閃記憶體、硬碟或雲端伺服器等)上,而所述的電腦可讀取程式指令可用於使電腦設備實現如微電網再生能源與儲能配比之建置方法的功能。Please refer to FIG. 1 and FIG. 2 together. FIG. 2 is a flowchart of a method for constructing a microgrid renewable energy and energy storage ratio according to an embodiment of the present invention. In addition, the computer program product of the embodiment of the present invention refers to recording computer-readable program instructions on a computer-readable storage medium (for example, optical disc, random access memory, read-only memory, flash memory, Hard disk or cloud server, etc.), and the computer-readable program instructions can be used to enable computer equipment to implement functions such as a method for constructing a micro-grid renewable energy and energy storage ratio.

首先,步驟S410,由使用者介面100引入一筆基本參數與一筆歷史資料。實際上,使用者介面100可藉由具有圖形化、觸控及/或非觸控操作功能的人機介面來實現。First, in step S410, a basic parameter and a historical data are introduced from the user interface 100. In fact, the user interface 100 can be realized by a man-machine interface with graphical, touch and/or non-touch operation functions.

接著,進行步驟S420,由環境參數模組200轉化所述的基本參數與歷史資料為粒子群參數。Next, proceed to step S420, where the environmental parameter module 200 converts the basic parameters and historical data into particle swarm parameters.

步驟S430,粒子群演算法模組300依據環境參數模組200轉化後的粒子群參數與歷史資料,進行一次的粒子群疊代運算。粒子群演算法模組300可透過改變粒子位置值(例如,太陽能板建置容量值、風機建置容量值、儲能電池建置容量值與儲能轉換器建置容量值),以當作一目標函數,並計算出當前的平均單位發電成本值的最小值。另外,若當前計算出的平均單位發電成本值小於前一次計算的結果,則確認趨向於平均單位發電成本值的最小值。In step S430, the particle swarm algorithm module 300 performs a particle swarm iterative calculation based on the particle swarm parameters and historical data converted by the environmental parameter module 200. The particle swarm algorithm module 300 can change the particle position value (for example, solar panel building capacity value, wind turbine building capacity value, energy storage battery building capacity value and energy storage converter building capacity value) to be regarded as An objective function, and calculate the minimum value of the current average unit power generation cost value. In addition, if the currently calculated average unit power generation cost value is less than the result of the previous calculation, it is confirmed that it tends to the minimum value of the average unit power generation cost value.

步驟S440,粒子群演算法模組300確認粒子群疊代運算之次數是否符合一個設定次數值?所述的設定次數值可為系統預設值,或者由使用者輸入決定。In step S440, the particle swarm algorithm module 300 confirms whether the number of particle swarm iteration operations meets a set number of times? The set number of times can be a system default value or determined by user input.

當於粒子群疊代運算之次數符合所述的設定次數值時,則進行步驟S450。當於粒子群疊代運算之次數未達到所述設定次數值時,則返回步驟S430。舉例來說,在粒子群演算法模組300每次的疊代運算中,由於粒子的移動受到自身目前為止所搜尋到的粒子最佳適應值(pbest),以及其它粒子到目前為止所搜尋到的最佳適應值(nbest)影響,因此,群體最佳適應值(gbest)即為該次疊代結果裡的最佳適應值(nbest)。When the number of iterative operations in the particle swarm meets the set value, step S450 is performed. When the number of iterative operations in the particle swarm has not reached the set value, return to step S430. For example, in each iteration of the particle swarm algorithm module 300, the movement of the particle is affected by the particle's best fitness value (pbest) that it has searched so far, and other particles searched so far. Therefore, the best fitness value (gbest) of the group is the best fitness value (nbest) in this iteration result.

步驟S450,粒子群演算法模組300產出一最佳解詳細參數,並於使用者介面100上顯示,以提供使用者評估採用最低發電成本或最高再生能源占比的建置方案。In step S450, the particle swarm algorithm module 300 generates a detailed parameter of the best solution, and displays it on the user interface 100 to provide the user with an evaluation of the construction solution with the lowest power generation cost or the highest proportion of renewable energy.

以下舉例說明,粒子群演算法模組300運算的實際情形,當第一次隨機分布的5個粒子計算完成後,便會開始進行疊代運算。粒子中的4個變數(可對應於太陽能板建置容量值、風機建置容量值、儲能電池建置容量值與儲能轉換器建置容量值)在搜尋求解的過程中,會參考本身的最佳經驗及群體的最佳經驗來調整每個變數的搜尋方向,直到完成多次(例如,5次)的疊代運算後,會得到每次的計算結果。The following example illustrates the actual operation of the particle swarm algorithm module 300. After the first calculation of five randomly distributed particles is completed, the iterative operation will start. The 4 variables in the particles (corresponding to the solar panel building capacity value, wind turbine building capacity value, energy storage battery building capacity value and energy storage converter building capacity value) will refer to themselves during the search and solution process The best experience of the group and the best experience of the group are used to adjust the search direction of each variable until after multiple iterations (for example, 5) are completed, the calculation result of each time will be obtained.

接著,粒子群演算法模組300會自動由所述的計算結果中找出最低發電成本下的再生能源裝置容量,並找出所有結果中的最高再生能源占比作為參考,讓使用者能了解該場域中哪一種再生能源的設置更具有經濟效益,以及在何種配置情況下能得到最高的再生能源發電比例。Then, the particle swarm algorithm module 300 will automatically find the capacity of the renewable energy device at the lowest power generation cost from the calculation results, and find the highest proportion of renewable energy in all the results as a reference, so that the user can understand Which type of renewable energy setting in this field is more economical, and under what configuration can get the highest proportion of renewable energy power generation.

綜上所述,在本發明之基於粒子群演算法之微電網再生能源與儲能配比之建置系統中,利用所有粒子在一特定範圍內進行最佳適應值的搜索,並在搜索過程中參考群體及本身歷史經驗中最佳的位置,於下次疊代時調整飛行的速度及方向,並重複疊代直到滿足最終結束計算的條件,藉此產出最佳解詳細參數,進而提供最低發電成本或最高再生能源占比的建置方案。In summary, in the construction system of the microgrid renewable energy and energy storage ratio based on the particle swarm algorithm of the present invention, all particles are used to search for the best fitness value within a specific range, and in the search process The best position in the reference group and its own historical experience, adjust the speed and direction of the flight in the next iteration, and repeat the iteration until the conditions for the final end of the calculation are met, so as to produce the best solution detailed parameters, and then provide The construction plan with the lowest power generation cost or the highest proportion of renewable energy.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to those defined by the attached patent scope.

100:使用者介面100: User interface

200:環境參數模組200: Environmental parameter module

300:粒子群演算法模組300: Particle Swarm Algorithm Module

310:粒子參數初始化單元310: Particle parameter initialization unit

320:參數計算單元320: Parameter calculation unit

330:參數比較單元330: Parameter comparison unit

340:粒子群疊代運算單元340: Particle Swarm Iterative Operation Unit

400:微電網再生能源與儲能配比之建置系統400: Construction system of microgrid renewable energy and energy storage ratio

S410~S450:步驟S410~S450: steps

圖1為本發明之微電網再生能源與儲能配比之建置系統方塊圖;以及Fig. 1 is a block diagram of the system for constructing the ratio of renewable energy and energy storage in the microgrid of the present invention; and

圖2為本發明之微電網再生能源與儲能配比之建置方法流程圖。Figure 2 is a flow chart of the method for constructing the ratio of renewable energy and energy storage in the microgrid of the present invention.

100:使用者介面 100: User interface

200:環境參數模組 200: Environmental parameter module

300:粒子群演算法模組 300: Particle Swarm Algorithm Module

310:粒子參數初始化單元 310: Particle parameter initialization unit

320:參數計算單元 320: Parameter calculation unit

330:參數比較單元 330: Parameter comparison unit

340:粒子群疊代運算單元 340: Particle Swarm Iterative Operation Unit

400:微電網再生能源與儲能配比之建置系統 400: Construction system of microgrid renewable energy and energy storage ratio

Claims (11)

一種基於粒子群演算法之微電網再生能源與儲能配比之建置系統,包含:一使用者介面,提供一使用者輸入一基本參數與一歷史資料;一環境參數模組,接收該基本參數與該歷史資料並轉化為一粒子群參數;及一粒子群演算法模組,依據該粒子群參數,進行一粒子群疊代運算,當該粒子群疊代運算之次數符合一設定次數值時,產出一最佳解詳細參數,並於該使用者介面上顯示,該粒子群演算法模組包含有:一粒子參數初始化單元,用以將該粒子群參數在一區域之上下邊界值間做一隨機初始化運算;一參數計算單元,依據該隨機初始化運算後之該粒子群參數和該歷史資料,計算產出一平均單位發電成本值;一參數比較單元,用以逐次比較該平均單位發電成本值,以產出一最小值;及一粒子群疊代運算單元,依據該最小值逐次進行該粒子群疊代運算,並於該粒子群疊代運算之次數符合該設定次數值時,產出該最佳解詳細參數。 A construction system of microgrid renewable energy and energy storage ratio based on particle swarm algorithm, including: a user interface, providing a user to input a basic parameter and a historical data; an environmental parameter module to receive the basic The parameter and the historical data are converted into a particle swarm parameter; and a particle swarm algorithm module, according to the particle swarm parameter, performs a particle swarm iteration operation, when the number of the particle swarm iteration operation meets a set value At the time, a detailed parameter of the optimal solution is generated and displayed on the user interface. The particle swarm algorithm module includes: a particle parameter initialization unit for the upper and lower boundary values of the particle swarm parameter in a region Perform a random initialization operation; a parameter calculation unit, based on the particle swarm parameters after the random initialization operation and the historical data, calculate and output an average unit power generation cost value; a parameter comparison unit for successively comparing the average unit Generate a minimum value for the power generation cost; and a particle swarm iterative arithmetic unit that successively performs the particle swarm iterative operation according to the minimum value, and when the number of particle swarm iterative operations meets the set value, Output the detailed parameters of the best solution. 如請求項1所述之基於粒子群演算法之微電網再生能源與儲能配比之建置系統,其中該粒子群參數包含一粒子位置值、一粒子速度值、一位置參數限制上限值、一位置參數限制下限值、一速度參數上限值、一個數參數最佳歷史位置值及一群體參數最佳歷史位置值。 The construction system of the microgrid renewable energy and energy storage ratio based on the particle swarm algorithm as described in claim 1, wherein the particle swarm parameter includes a particle position value, a particle velocity value, and a position parameter upper limit value , A position parameter limit lower limit value, a speed parameter upper limit value, a number parameter best historical position value and a group parameter best historical position value. 如請求項2所述之基於粒子群演算法之微電網再生能源與儲能配比之建置系統,其中該粒子位置值包含有一太陽能板建置容量值、一風機建置容量值、一儲能電池建置容量值與一儲能轉換器建置容量值。 The construction system of the microgrid renewable energy and energy storage ratio based on the particle swarm algorithm described in claim 2, wherein the particle position value includes a solar panel construction capacity value, a wind turbine construction capacity value, and a storage capacity value. The built-in capacity value of the energy battery and the built-in capacity value of an energy storage converter. 如請求項3所述之基於粒子群演算法之微電網再生能源與儲能配比之建置系統,其中該粒子群演算法模組係透過改變該太陽能板建置容量值、該風機建置容量值、該儲能電池建置容量值與該儲能轉換器建置容量值,以計算出該平均單位發電成本值之該最小值,並作為一目標函數。 The construction system of microgrid renewable energy and energy storage ratio based on the particle swarm algorithm as described in claim 3, wherein the particle swarm algorithm module changes the solar panel construction capacity value and the wind turbine construction The capacity value, the built-up capacity value of the energy storage battery, and the built-up capacity value of the energy storage converter are used to calculate the minimum value of the average unit power generation cost value and use it as an objective function. 如請求項2所述之基於粒子群演算法之微電網再生能源與儲能配比之建置系統,其中該粒子速度值包含一太陽能板建置容量變化量、一風機建置容量變化量、一儲能電池建置容量變化量與一儲能轉換器建置容量變化量。 The construction system of the microgrid renewable energy and energy storage ratio based on the particle swarm algorithm described in claim 2, wherein the particle velocity value includes a solar panel construction capacity change, a wind turbine construction capacity change, An energy storage battery build capacity change amount and an energy storage converter build capacity change amount. 如請求項1所述之基於粒子群演算法之微電網再生能源與儲能配比之建置系統,其中該基本參數包含一再生能源建置成本值、一儲能能源建置成本值及一發電機建置成本值。 The construction system of microgrid renewable energy and energy storage ratio based on the particle swarm algorithm described in claim 1, wherein the basic parameters include a renewable energy construction cost value, an energy storage energy construction cost value, and a The value of generator construction cost. 如請求項1所述之基於粒子群演算法之微電網再生能源與儲能配比之建置系統,其中該歷史資料包含一微電網所在場域之歷年每小時日照量值、日照時數值、風速值及/或負載用量值。 The establishment system of the microgrid renewable energy and energy storage ratio based on the particle swarm algorithm as described in claim 1, wherein the historical data includes the hourly sunshine value, sunshine hour value, Wind speed value and/or load consumption value. 如請求項1所述之基於粒子群演算法之微電網再生能源與儲能配比之建置系統,其中該粒子群參數之種類包含有一太陽能板、一風機、一儲能轉換器及一儲能電池。 The construction system of microgrid renewable energy and energy storage ratio based on the particle swarm algorithm described in claim 1, wherein the types of the particle swarm parameters include a solar panel, a wind turbine, an energy storage converter and a storage Can battery. 如請求項1所述之基於粒子群演算法之微電網再生能源與儲能配比之建置系統,其中該最佳解詳細參數包含有一單位發電成本值及一再生能源佔比值。 As described in claim 1, the microgrid based on particle swarm algorithm construction system of renewable energy and energy storage ratio, wherein the detailed parameters of the optimal solution include a unit power generation cost value and a renewable energy ratio value. 一種基於粒子群演算法之微電網再生能源與儲能配比之建置方法,該方法包含有下列步驟: 引入一基本參數與一歷史資料;轉化該基本參數與該歷史資料為一粒子群參數;將該粒子群參數在一區域之上下邊界值間做一隨機初始化運算;依據該隨機初始化運算後之該粒子群參數和該歷史資料,計算產出一平均單位發電成本值;逐次比較該平均單位發電成本值,以產出一最小值;依據該最小值逐次進行一粒子群疊代運算;及當該粒子群疊代運算之次數符合一設定次數值時,產出一最佳解詳細參數,並於一使用者介面上顯示。 A method for constructing the ratio of renewable energy to energy storage in a microgrid based on particle swarm algorithm. The method includes the following steps: Introduce a basic parameter and a historical data; transform the basic parameter and the historical data into a particle swarm parameter; perform a random initialization operation on the particle swarm parameter between the upper and lower boundary values of a region; The particle swarm parameters and the historical data are used to calculate the output-average unit power generation cost value; the average unit power generation cost value is successively compared to produce a minimum value; a particle swarm iterative operation is successively performed according to the minimum value; and when the When the number of particle swarm iteration operations meets a set value, a detailed parameter of the best solution is generated and displayed on a user interface. 一種電腦程式產品,係利用一電腦讀取該電腦程式產品後,執行如請求項10所述之基於粒子群演算法之微電網再生能源與儲能配比之建置方法。A computer program product uses a computer to read the computer program product and execute the method for constructing the ratio of renewable energy and energy storage of a microgrid based on a particle swarm algorithm as described in claim 10.
TW109132064A 2020-09-17 2020-09-17 Build system, method and computer program product thereof by using particle swarm optimization (pso) method for capacity distribution of renewable energies and energy storage systems of a micro-grid TWI748650B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109132064A TWI748650B (en) 2020-09-17 2020-09-17 Build system, method and computer program product thereof by using particle swarm optimization (pso) method for capacity distribution of renewable energies and energy storage systems of a micro-grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109132064A TWI748650B (en) 2020-09-17 2020-09-17 Build system, method and computer program product thereof by using particle swarm optimization (pso) method for capacity distribution of renewable energies and energy storage systems of a micro-grid

Publications (2)

Publication Number Publication Date
TWI748650B true TWI748650B (en) 2021-12-01
TW202213254A TW202213254A (en) 2022-04-01

Family

ID=80680859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132064A TWI748650B (en) 2020-09-17 2020-09-17 Build system, method and computer program product thereof by using particle swarm optimization (pso) method for capacity distribution of renewable energies and energy storage systems of a micro-grid

Country Status (1)

Country Link
TW (1) TWI748650B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903073A (en) * 2014-04-23 2014-07-02 河海大学 Planning method and system for optimizing micro-grid containing distributed power sources and stored energy
CN104392394A (en) * 2014-11-20 2015-03-04 四川大学 Detection method for energy storage margin of micro-grid
CN107546781A (en) * 2017-09-06 2018-01-05 广西电网有限责任公司电力科学研究院 Micro-capacitance sensor multiple target running optimizatin method based on PSO innovatory algorithms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903073A (en) * 2014-04-23 2014-07-02 河海大学 Planning method and system for optimizing micro-grid containing distributed power sources and stored energy
CN104392394A (en) * 2014-11-20 2015-03-04 四川大学 Detection method for energy storage margin of micro-grid
CN107546781A (en) * 2017-09-06 2018-01-05 广西电网有限责任公司电力科学研究院 Micro-capacitance sensor multiple target running optimizatin method based on PSO innovatory algorithms

Also Published As

Publication number Publication date
TW202213254A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
Perera et al. Redefining energy system flexibility for distributed energy system design
Mahbub et al. Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design
Feng et al. Optimizing electrical power production of hydropower system by uniform progressive optimality algorithm based on two-stage search mechanism and uniform design
Feng et al. Peak operation of hydropower system with parallel technique and progressive optimality algorithm
CN107730044A (en) A kind of hybrid forecasting method of renewable energy power generation and load
CN109560573B (en) Method and device for optimizing frequency controller parameters of variable-speed wind turbine generator
EP3343496A1 (en) Method and system for energy management in a facility
CN112784484B (en) Multi-objective optimization method and optimization system for regional comprehensive energy system
WO2023060815A1 (en) Energy storage capacity optimization configuration method for improving reliability of power distribution network
CN108335010A (en) A kind of wind power output time series modeling method and system
CN114696351A (en) Dynamic optimization method and device for battery energy storage system, electronic equipment and storage medium
CN112819279A (en) Planning evaluation method and system for expansion adaptability of distributed energy and power distribution network
CN115764931A (en) Automatic power generation control method, system, equipment and medium for power system
Li et al. Intraday multi-objective hierarchical coordinated operation of a multi-energy system
Li et al. Optimization of dynamic dispatch for multiarea integrated energy system based on hierarchical learning method
CN115882523A (en) Optimal operation method, system and equipment for power system with distributed energy storage
Abdul Kadir et al. Optimal placement and sizing of photovoltaic based distributed generation considering costs of operation planning of monocrystalline and thin-film technologies
Yin et al. Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids
US20200091765A1 (en) Methods and systems for assessing hosting capacity in a distribution system
Yin et al. Inspired lightweight robust quantum Q-learning for smart generation control of power systems
CN111193295A (en) Distribution network flexibility improvement robust optimization scheduling method considering dynamic reconfiguration
CN114595891A (en) Power distribution network voltage and power flow boundary crossing risk assessment method, system and equipment
TWI748650B (en) Build system, method and computer program product thereof by using particle swarm optimization (pso) method for capacity distribution of renewable energies and energy storage systems of a micro-grid
CN115528684A (en) Ultra-short-term load prediction method and device and electronic equipment
Bakirtzis et al. Storage management by rolling unit commitment for high renewable energy penetration