TWI748476B - Dissolvable ulvan polysaccharide microneedles - Google Patents

Dissolvable ulvan polysaccharide microneedles Download PDF

Info

Publication number
TWI748476B
TWI748476B TW109117298A TW109117298A TWI748476B TW I748476 B TWI748476 B TW I748476B TW 109117298 A TW109117298 A TW 109117298A TW 109117298 A TW109117298 A TW 109117298A TW I748476 B TWI748476 B TW I748476B
Authority
TW
Taiwan
Prior art keywords
ulva
microneedle
polysaccharide
mold
ulva polysaccharide
Prior art date
Application number
TW109117298A
Other languages
Chinese (zh)
Other versions
TW202143950A (en
Inventor
黃意真
李亦淇
佳欣 陳
Original Assignee
國立臺灣海洋大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣海洋大學 filed Critical 國立臺灣海洋大學
Priority to TW109117298A priority Critical patent/TWI748476B/en
Priority to CN202110549655.4A priority patent/CN113712896A/en
Application granted granted Critical
Publication of TWI748476B publication Critical patent/TWI748476B/en
Publication of TW202143950A publication Critical patent/TW202143950A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • A61K36/05Chlorophycota or chlorophyta (green algae), e.g. Chlorella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Medicinal Preparation (AREA)

Abstract

The invention relates to a dissolvable ulvan polysaccharide microneedle patch, which comprises a microneedle part and a substrate part. The microneedle part is made of Ulvan polysaccharide.

Description

可溶性石蓴多醣微針Soluble Ulva Polysaccharide Microneedles

本發明係關於一種經皮傳送活性物質的微針貼片,特別是一種含有石蓴多醣的微針貼片。 The present invention relates to a microneedle patch for transdermal delivery of active substances, especially a microneedle patch containing Ulva polysaccharide.

經皮輸藥系統(Transdermal drug delivery,TDD)利用皮膚作為門戶將生物活性物質或藥物輸送到體循環中,除了方便使用者使用之外,同時避免因口服用藥而由胃腸道引起的降解或首渡效應(first pass liver effects)。然而,經皮輸藥系統需要克服皮膚最外層的角質層屏障,以將生物活性物質或藥物輸送至體內。 Transdermal drug delivery (TDD) uses the skin as a gateway to deliver biologically active substances or drugs to the systemic circulation. In addition to being convenient for users, it also avoids degradation or first crossing caused by the gastrointestinal tract due to oral medication. Effects (first pass liver effects). However, the transdermal drug delivery system needs to overcome the stratum corneum barrier of the outermost layer of the skin in order to deliver biologically active substances or drugs into the body.

微針技術是以具有微小尺寸的針在皮膚中形成可逆的微小通道,以將不能滲透至皮膚內的各種大分子藥物或活性物質輸送至體內,故能有效促進輸送效率。然而,以金屬或矽所製備的微針,除了可能刺激受試者皮膚內的神經而造成受試者的不適外,也可能在皮膚內脫落而變成尖銳的生物危害廢物,因此有安全上的疑慮。 The microneedle technology uses a needle with a tiny size to form a reversible tiny channel in the skin to transport various macromolecular drugs or active substances that cannot penetrate the skin into the body, so it can effectively promote the delivery efficiency. However, microneedles made of metal or silicon may not only irritate the nerves in the subject’s skin and cause discomfort to the subject, but also may fall off in the skin and become sharp biohazard waste, so it is safe doubt.

可溶性微針(dissolving microneedle)為利用水溶性或生物可降解高分子為材料所製成的微針。這類型的微針將藥物或活性物質包覆其中,待微針 穿刺皮膚角質層後,藉由微針的融化而釋放出藥物或活性物質,因此不會有金屬或矽所製成的微針在皮膚中脫落所造成的安全問題。 Dissolving microneedles are microneedles made of water-soluble or biodegradable polymers. This type of microneedle coats the drug or active substance in it, and the microneedle After piercing the stratum corneum of the skin, the microneedles will melt to release drugs or active substances, so there will be no safety problems caused by the microneedles made of metal or silicon falling off the skin.

然而,可溶性微針常有機械強度不足的問題,無法有效穿透皮膚的角質層。此外,可溶性微針的溶解速率也會影響藥物傳輸的時間與效率,若微針溶解的速率太慢,可能不利於藥物的傳輸。再者,大多數的可溶性微針僅為載體,需包覆有效成分才能發揮效用,增加製作程序的複雜度及不確定性。因此,仍需開發改良上述缺點的可溶性微針。 However, soluble microneedles often suffer from insufficient mechanical strength and cannot effectively penetrate the stratum corneum of the skin. In addition, the dissolution rate of the soluble microneedles will also affect the time and efficiency of drug delivery. If the dissolution rate of the microneedles is too slow, it may not be conducive to drug delivery. Furthermore, most of the soluble microneedles are only carriers, and need to be coated with active ingredients to be effective, which increases the complexity and uncertainty of the manufacturing process. Therefore, there is still a need to develop soluble microneedles that can improve the above shortcomings.

於一方面,本發明涉及一種石蓴多醣用於製備滲透皮膚用的微針之用途。 In one aspect, the present invention relates to the use of Ulva polysaccharide for preparing microneedles for skin penetration.

於另一方面,本發明涉及一種可溶性石蓴多醣微針,係以石蓴多醣所製成。 In another aspect, the present invention relates to a soluble Ulva polysaccharide microneedle, which is made of Ulva polysaccharide.

於又一方面,本發明涉及一種製備可溶性石蓴多醣微針的方法。 In yet another aspect, the present invention relates to a method for preparing soluble Ulva polysaccharide microneedles.

於再一方面,本發明涉及一種可溶性石蓴多醣微針貼片,包含一微針部以及一背板部,該微針部係以石蓴多醣所製成。 In another aspect, the present invention relates to a soluble Ulva polysaccharide microneedle patch, comprising a microneedle part and a backing part, and the microneedle part is made of Ulva polysaccharide.

於又一方面,本發明涉及一種製備可溶性石蓴多醣微針貼片的方法。 In yet another aspect, the present invention relates to a method for preparing a soluble Ulva polysaccharide microneedle patch.

本發明係以下面的實施例予以示範闡明,但本發明不受下述實施例所限制。 The present invention is illustrated by the following examples, but the present invention is not limited by the following examples.

1:母模板 1: Mother template

20:液態聚二甲基矽氧烷(PDMS) 20: Liquid polydimethylsiloxane (PDMS)

21:聚二甲基矽氧烷(PDMS)負向模具 21: Polydimethylsiloxane (PDMS) negative mold

211:微針部模具 211: Micro-needle mold

2111:針尖部模具 2111: Needle tip mold

2112:針底部模具 2112: Needle bottom mold

212:背板部模具 212: Back plate mold

3:石蓴多醣溶液 3: Ulva polysaccharide solution

4:聚乙烯吡咯烷酮(PVP)/羧甲基纖維素鈉(CMC)混合液 4: Polyvinylpyrrolidone (PVP) / sodium carboxymethyl cellulose (CMC) mixed liquid

5:石蓴多醣微針貼片 5: Ulva polysaccharide microneedle patch

51:微針部 51: Microneedle

52:背板部 52: Backboard

圖1所示為石蓴多醣微針貼片的製備流程。 Figure 1 shows the preparation process of the Ulva polysaccharide microneedle patch.

圖2所示為以解剖顯微鏡以不同角度觀察不同濃度的石蓴多醣溶液製備的微針貼片的外觀之結果;圖2A-1、圖2A-2、圖2A-3所示分別為以0度角、45度角、90度角觀察以4%(w/v)石蓴多醣溶液製備的微針貼片的外觀;圖2B-1、圖2B-2、圖2B-3所示分別為以0度角、45度角、90度角觀察以5%(w/v)石蓴多醣溶液製備的微針貼片的外觀;圖2C-1、圖2C-2、圖2C-3所示分別為以0度角、45度角、90度角觀察以6%(w/v)石蓴多醣溶液製備的微針貼片的外觀。 Figure 2 shows the results of observing the appearance of microneedle patches prepared with different concentrations of Ulva polysaccharide solution under a dissecting microscope from different angles; Figure 2A-1, Figure 2A-2, and Figure 2A-3 show the results with 0 Observe the appearance of the microneedle patch prepared with 4% (w/v) Ulva polysaccharide solution at angles of degrees, 45 degrees, and 90 degrees; Figure 2B-1, Figure 2B-2, and Figure 2B-3 respectively are Observe the appearance of the microneedle patch prepared with 5% (w/v) Ulva polysaccharide solution at 0 degree angle, 45 degree angle and 90 degree angle; shown in Figure 2C-1, Figure 2C-2, and Figure 2C-3 The appearance of the microneedle patch prepared with 6% (w/v) Ulva polysaccharide solution was observed at an angle of 0 degrees, 45 degrees, and 90 degrees, respectively.

圖3所示為以掃描式電子顯微鏡以不同角度觀察不同濃度的石蓴多醣溶液製備的微針貼片的外觀之結果;圖3A-1、圖3A-2所示分別為以0度角、90度角觀察以4%(w/v)石蓴多醣溶液製備的微針貼片的外觀;圖3B-1、圖3B-2所示分別為以0度角、90度角觀察以5%(w/v)石蓴多醣溶液製備的微針貼片的外觀;圖3C-1、圖3C-2所示分別為以0度角、90度角觀察以6%(w/v)石蓴多醣溶液製備的微針貼片的外觀。 Figure 3 shows the results of observing the appearance of the microneedle patch prepared with different concentrations of Ulva polysaccharide solution with a scanning electron microscope from different angles; Figure 3A-1 and Figure 3A-2 show the results at a 0 degree angle, Observe the appearance of the microneedle patch prepared with 4% (w/v) Ulva polysaccharide solution at a 90 degree angle; Fig. 3B-1 and Fig. 3B-2 show the observation at a 0 degree angle and a 90 degree angle with 5% (w/v) The appearance of the microneedle patch prepared from the Ulva polysaccharide solution; Figure 3C-1 and Figure 3C-2 show the observation at a 0 degree angle and a 90 degree angle with 6% (w/v) Ulva The appearance of the microneedle patch prepared from the polysaccharide solution.

圖4所示為石蓴多醣微針的機械強度曲線圖。 Figure 4 shows the mechanical strength curve of Ulva polysaccharide microneedles.

圖5所示為以石蓴多醣微針進行豬皮穿刺試驗10秒的結果;圖5A所示為試驗後豬皮的外觀;圖5B為圖5A的放大圖;圖5C為試驗後石蓴多醣微針的外觀;圖5D為圖5C的放大圖。 Figure 5 shows the results of a 10-second pig skin puncture test with Ulva polysaccharide microneedles; Figure 5A shows the appearance of the pig skin after the test; Figure 5B is an enlarged view of Figure 5A; Figure 5C shows the Ulva polysaccharide after the test The appearance of the microneedle; Figure 5D is an enlarged view of Figure 5C.

圖6所示為以石蓴多醣微針穿刺豬皮不同時間後,石蓴多醣微針的外觀變化;圖6A所示為進行穿刺試驗10秒後的石蓴多醣微針的外觀;圖6B所示為進行穿刺試驗30秒後的石蓴多醣微針的外觀;圖6C所示為進行穿刺試驗60秒後的石蓴多醣微針的外觀;圖6D所示為進行穿刺試驗120秒後的石蓴多醣微針的外觀。 Figure 6 shows the appearance of Ulva polysaccharide microneedles after puncturing pig skin with Ulva polysaccharide microneedles for different times; Figure 6A shows the appearance of Ulva polysaccharide microneedles 10 seconds after the puncture test; Figure 6B shows Figure 6C shows the appearance of the Ulva polysaccharide microneedles after 30 seconds of the puncture test; Figure 6C shows the appearance of the Ulva polysaccharide microneedles after 60 seconds of the puncture test; Figure 6D shows the appearance of the Ulva polysaccharide microneedles after the puncture test for 120 seconds The appearance of Ulva polysaccharide microneedles.

圖7所示為不同濃度的石蓴多醣微針在水中60分鐘內的石蓴多醣溶出率。 Figure 7 shows the dissolution rate of Ulva polysaccharides with different concentrations of Ulva polysaccharide microneedles in water within 60 minutes.

圖8所示為以雷射掃描共軛焦顯微鏡觀察包覆螢光染劑羅丹明6G(Rhodamine 6G,R6G)的石蓴多醣微針穿刺豬皮10分鐘後,石蓴多醣微針在豬皮內的擴散深度;圖8A所示為豬皮的3D重建圖像;圖8B所示為豬皮在不同的z軸高度下進行掃描所顯示之螢光染劑擴散的結果;1~27分別表示Z軸深度為0、20、40、60、80、100、120、140、160、180、200、220、240、260、280、300、320、340、360、380、400、420、440、460、480、500、520μm。 Figure 8 shows the observation of Ulva polysaccharide microneedles coated with the fluorescent dye Rhodamine 6G (Rhodamine 6G, R6G) under a laser scanning conjugate focus microscope for 10 minutes. Ulva polysaccharide microneedles are on the pig skin after 10 minutes Figure 8A shows the 3D reconstructed image of pig skin; Figure 8B shows the results of fluorescent dye diffusion displayed by scanning pig skin at different z-axis heights; 1-27 respectively Z axis depth is 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520μm.

圖9所示為以石蓴多醣微針穿刺豬皮3小時,於不同時間點上分析石蓴多醣滲透豬皮的結果;圖9A所示為石蓴多醣的累積釋放含量曲線圖;圖9B所示為石蓴多醣的累積釋放率曲線圖。 Figure 9 shows the results of puncturing pig skin with Ulva polysaccharide microneedles for 3 hours, and analyzing the results of Ulva polysaccharide infiltration into pig skin at different time points; Figure 9A shows the cumulative release content curve of Ulva polysaccharide; Figure 9B shows Shown as the cumulative release rate curve of Ulva polysaccharides.

本發明以石蓴多醣作為可溶性微針的材料,不僅具有足夠的機械強度,可有效穿透皮膚的角質層,且本發明之可溶性石蓴多醣微針的溶解速率快,有利於藥物的傳輸。更重要的是,石蓴多醣本身具有抗氧化、抗發炎、抗腫瘤等生物活性,不僅只是作為載體,本身即為有效成分,不需包覆其他活性成分即可發揮效用。 The present invention uses Ulva polysaccharide as the material of the soluble microneedle, which not only has sufficient mechanical strength, can effectively penetrate the stratum corneum of the skin, and the dissolution rate of the soluble Ulva polysaccharide microneedle of the present invention is fast, which is beneficial to drug delivery. More importantly, Ulva polysaccharide itself has anti-oxidation, anti-inflammatory, anti-tumor and other biological activities. It not only acts as a carrier, but also acts as an active ingredient. It can be effective without coating other active ingredients.

因此,本發明提供一種石蓴多醣用於製備滲透皮膚用的微針之用途。 Therefore, the present invention provides a use of Ulva polysaccharide for preparing microneedles for skin penetration.

本發明並提供一種可溶性石蓴多醣微針,係以石蓴多醣所製成。 The invention also provides a soluble ulva polysaccharide microneedle, which is made of ulva polysaccharide.

本發明並提供一種可溶性石蓴多醣微針貼片,包含一微針部以及一背板部,該微針部係以石蓴多醣所製成。 The present invention also provides a soluble Ulva polysaccharide microneedle patch, which comprises a microneedle part and a backing part, and the microneedle part is made of Ulva polysaccharide.

於某些具體實施例中,該可溶性石蓴多醣微針係以約3.5~6.5%(w/v)的石蓴多醣溶液所製成,較佳為約3.5%、約3.6%、約3.7%、約3.8%、約3.9%、 約4.0%、約4.1%、約4.2%、約4.3%、約4.4%、約4.5%、約4.6%、約4.7%、約4.8%、約4.9%、約5.0%、約5.1%、約5.2%、約5.3%、約5.4%、約5.5%、約5.6%、約5.7%、約5.8%、約5.9%、約6.0%、約6.1%、約6.2%、約6.3%、約6.4%、約6.5%(w/v),或為約3.5~6.5%(w/v)任一濃度,不限為整數之濃度,例如,但不限於4.56%(w/v);於某些較佳具體實施例中,該可溶性石蓴多醣微針係以約4%、約5%,或約6%的石蓴多醣所製成。 In some embodiments, the soluble ulva polysaccharide microneedles are made of about 3.5~6.5% (w/v) ulva polysaccharide solution, preferably about 3.5%, about 3.6%, about 3.7% , About 3.8%, about 3.9%, About 4.0%, about 4.1%, about 4.2%, about 4.3%, about 4.4%, about 4.5%, about 4.6%, about 4.7%, about 4.8%, about 4.9%, about 5.0%, about 5.1%, about 5.2 %, about 5.3%, about 5.4%, about 5.5%, about 5.6%, about 5.7%, about 5.8%, about 5.9%, about 6.0%, about 6.1%, about 6.2%, about 6.3%, about 6.4%, About 6.5% (w/v), or about 3.5~6.5% (w/v) any concentration, not limited to an integer concentration, for example, but not limited to 4.56% (w/v); in some preferred In a specific embodiment, the soluble Ulva polysaccharide microneedles are made with about 4%, about 5%, or about 6% Ulva polysaccharide.

於某些具體實施例中,該背板部可由,但不限於,以下材料之一所製成:一澱粉(starch)與明膠(gelatin)之組合材料、一聚乙烯醇(polyvinyl alcohol,PVA)與蔗糖(sucrose)之組合材料、一幾丁聚醣(chitosan),以及一聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)與羧甲基纖維素鈉(sodium carboxymethyl cellulose,CMC)之組合材料。 In some specific embodiments, the back plate may be made of, but not limited to, one of the following materials: a combination of starch (starch) and gelatin (gelatin), and a polyvinyl alcohol (PVA) Combination material with sucrose, a chitosan (chitosan), and a combination material of polyvinylpyrrolidone (PVP) and sodium carboxymethyl cellulose (CMC).

於某些具體實施例中,該背板部係以該聚乙烯吡咯烷酮(PVP)與羧甲基纖維素鈉(CMC)之組合材料(PVP/CMC)所製成。聚乙烯吡咯烷酮(PVP)可加強背板的硬度,而羧甲基纖維素鈉(CMC)可加強背板的彈性;二者的比例可依實際需求調整。於某些具體實施例中,該PVP/CMC的比例為約1:10至約10:1(w/w),較佳為約1:1、約1:2、約1:3、約1:4、約1:5、約1:6、約1:7、約1:8、約1:9、約1:10、約2:1、約3:1、約4:1、約5:1、約6:1、約7:1、約8:1、約9:1、約10:1(w/w),或為約1:10至約10:1(w/w)任一比例,不限為整數之比例,例如,但不限於1:3.56(w/w);於某些較佳具體實施例中,該PVP/CMC的比例為約1:4(w/w)。 In some embodiments, the back plate is made of a combination material (PVP/CMC) of the polyvinylpyrrolidone (PVP) and sodium carboxymethyl cellulose (CMC). Polyvinylpyrrolidone (PVP) can enhance the hardness of the backplane, and sodium carboxymethyl cellulose (CMC) can enhance the flexibility of the backplane; the ratio of the two can be adjusted according to actual needs. In some embodiments, the ratio of PVP/CMC is about 1:10 to about 10:1 (w/w), preferably about 1:1, about 1:2, about 1:3, about 1. :4, about 1:5, about 1:6, about 1:7, about 1:8, about 1:9, about 1:10, about 2:1, about 3:1, about 4:1, about 5 :1, about 6:1, about 7:1, about 8:1, about 9:1, about 10:1 (w/w), or about 1:10 to about 10:1 (w/w) A ratio, not limited to an integer ratio, for example, but not limited to 1:3.56 (w/w); in some preferred embodiments, the PVP/CMC ratio is about 1:4 (w/w) .

於某些具體實施例中,該溶液還包含其他生物活性物質。 In some embodiments, the solution also contains other biologically active substances.

本發明並提供一種製備可溶性石蓴多醣微針的方法,包含下列步驟:(i)提供一微針模具,該微針模具包含一微針部模具,該微針部模具包含一針尖部模具以及一針底部模具;(ii)將一包含約3.5~6.5%(w/v)石蓴多醣的溶液加 至該微針部模具中,使該包含約3.5~6.5%(w/v)石蓴多醣的溶液乾燥形成一微針部;以及(iii)將該微針部與該微針模具分離,以得到該可溶性石蓴多醣微針。 The present invention also provides a method for preparing soluble Ulva polysaccharide microneedles, including the following steps: (i) providing a microneedle mold, the microneedle mold including a microneedle mold, the microneedle mold including a needle tip mold, and A needle bottom mold; (ii) Add a solution containing about 3.5~6.5% (w/v) Ulva polysaccharide Into the microneedle mold, the solution containing about 3.5~6.5% (w/v) Ulva polysaccharide is dried to form a microneedle portion; and (iii) the microneedle portion is separated from the microneedle mold to The soluble Ulva polysaccharide microneedles are obtained.

本發明並提供一種製備可溶性石蓴多醣微針貼片的方法,包含下列步驟:(i)提供一微針模具,該微針模具包含一微針部模具以及一背板部模具,該微針部模具包含一針尖部模具以及一針底部模具,該背板部模具與該針底部模具相連;(ii)將一包含約3.5~6.5%(w/v)石蓴多醣的溶液加至該微針部模具中,使該包含約3.5~6.5%(w/v)石蓴多醣的溶液乾燥形成一微針部;(iii)將一背板部材料溶液加至該微針模具的該背板部模型中,使該背板部材料溶液乾燥形成一背板部;以及(iv)將該微針部連同該背板部與該微針模具分離,以得到該可溶性石蓴多醣微針貼片。 The present invention also provides a method for preparing a soluble Ulva polysaccharide microneedle patch, comprising the following steps: (i) providing a microneedle mold, the microneedle mold comprising a microneedle part mold and a back plate part mold, the microneedle The mold includes a needle tip mold and a needle bottom mold, and the back plate mold is connected to the needle bottom mold; (ii) a solution containing about 3.5~6.5% (w/v) Ulva polysaccharide is added to the micro In the needle mold, the solution containing about 3.5~6.5% (w/v) Ulva polysaccharide is dried to form a microneedle; (iii) a solution of backing material is added to the backing of the microneedle mold In the part model, drying the backing material solution to form a backing part; and (iv) separating the microneedle part together with the backing part from the microneedle mold to obtain the soluble ulva polysaccharide microneedle patch .

於某些具體實施例中,該溶液中的石蓴多醣濃度為約3.5~6.5%(w/v),較佳為約3.5%、約3.6%、約3.7%、約3.8%、約3.9%、約4.0%、約4.1%、約4.2%、約4.3%、約4.4%、約4.5%、約4.6%、約4.7%、約4.8%、約4.9%、約5.0%、約5.1%、約5.2%、約5.3%、約5.4%、約5.5%、約5.6%、約5.7%、約5.8%、約5.9%、約6.0%、約6.1%、約6.2%、約6.3%、約6.4%、約6.5%(w/v),或為約3.5~6.5%(w/v)任一濃度,不限為整數之濃度,例如,但不限於4.56%(w/v);於某些較佳具體實施例中,該溶液中的石蓴多醣濃度為約4%、約5%,或約6%。 In some embodiments, the concentration of Ulva polysaccharide in the solution is about 3.5~6.5% (w/v), preferably about 3.5%, about 3.6%, about 3.7%, about 3.8%, about 3.9% , About 4.0%, about 4.1%, about 4.2%, about 4.3%, about 4.4%, about 4.5%, about 4.6%, about 4.7%, about 4.8%, about 4.9%, about 5.0%, about 5.1%, about 5.2%, about 5.3%, about 5.4%, about 5.5%, about 5.6%, about 5.7%, about 5.8%, about 5.9%, about 6.0%, about 6.1%, about 6.2%, about 6.3%, about 6.4% , About 6.5% (w/v), or about 3.5~6.5% (w/v) any concentration, not limited to an integer concentration, for example, but not limited to 4.56% (w/v); in some relatively In a preferred embodiment, the concentration of Ulva polysaccharide in the solution is about 4%, about 5%, or about 6%.

於某些具體實施例中,該背板部材料為下列之一:一澱粉與明膠之組合材料、一聚乙烯醇(PVA)與蔗糖之組合材料、一幾丁聚醣,以及一聚乙烯吡咯烷酮(PVP)與羧甲基纖維素鈉(CMC)之組合材料。 In some embodiments, the backing material is one of the following: a combination material of starch and gelatin, a combination material of polyvinyl alcohol (PVA) and sucrose, a chitosan, and a polyvinylpyrrolidone (PVP) and carboxymethyl cellulose sodium (CMC) combination material.

於某些具體實施例中,該背板部材料為該聚乙烯吡咯烷酮(PVP)與羧甲基纖維素鈉(CMC)之組合材料,且該聚乙烯吡咯烷酮(PVP)與羧甲基纖維素鈉(CMC)的組合物溶液的比例為約1:10至約10:1(w/w),較佳為約1:1、約1:2、約1:3、約1:4、約1:5、約1:6、約1:7、約1:8、約1:9、約1:10、約2:1、約3:1、約 4:1、約5:1、約6:1、約7:1、約8:1、約9:1、約10:1(w/w),或為約1:10至約10:1(w/w)任一比例,不限為整數之比例,例如,但不限於1:3.56(w/w);於某些較佳具體實施例中,該PVP/CMC的比例為約1:4(w/w)。 In some embodiments, the backing material is a combination material of the polyvinylpyrrolidone (PVP) and sodium carboxymethylcellulose (CMC), and the polyvinylpyrrolidone (PVP) and sodium carboxymethylcellulose The ratio of the composition solution of (CMC) is about 1:10 to about 10:1 (w/w), preferably about 1:1, about 1:2, about 1:3, about 1:4, about 1. :5, about 1:6, about 1:7, about 1:8, about 1:9, about 1:10, about 2:1, about 3:1, about 4:1, about 5:1, about 6:1, about 7:1, about 8:1, about 9:1, about 10:1 (w/w), or about 1:10 to about 10:1 (w/w) Any ratio is not limited to an integer ratio, for example, but not limited to 1:3.56 (w/w); in some preferred embodiments, the ratio of PVP/CMC is about 1: 4(w/w).

除非另有定義,本文使用的所有技術及科學術語具有與本發明所屬領域中的技術人員所通常理解相同的含義。 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which the present invention belongs.

如本文所用,除非上下文另有明確規定,單數形式「一」、「一個」,以及「該」包括複數參照物。因此,例如,提及「一個部件」包括本領域技術人員已知的多個這樣的部件及其等同物。 As used herein, unless the context clearly dictates otherwise, the singular forms "a", "an", and "the" include plural references. Thus, for example, reference to "a component" includes a plurality of such components and their equivalents known to those skilled in the art.

如本文所用,「大約」、「約」或「近似」通常意指在給定值或範圍內的20%以內,較佳在10%以內,更佳在5%以內。本文所給之數量為近似值,其代表若無明確說明時,可以推斷是指術語「大約」、「約」或「近似」。 As used herein, "about", "about" or "approximately" generally means within 20% of a given value or range, preferably within 10%, more preferably within 5%. The quantities given in this article are approximate, and unless explicitly stated, they can be inferred to refer to the terms "approximately", "approximately" or "approximately".

如本文所用,術語「石蓴多醣(Ulvan polysaccharide)」意指由石蓴屬(Ulva)藻類的細胞壁中以熱水(100~121℃)萃取出的水溶性複合酸性硫酸多醣,其主要成分為硫酸鹽(Sulfate)、鼠李糖(Rhamnose)、木糖(Xylose)、葡萄糖醛酸(Glucuronic acid),以及艾杜糖醛酸(Iduronic acid);石蓴多醣的主要結構為重複的二醣Type A(即,葡萄醣醛酸3-硫酸鹽,Glucurorhamnose 3-sulphate,A3s)以及Type B(即艾杜糖鼠李糖3-硫酸鹽,Iduronorhamnose 3-sulphate,B3s)以線性的方式組成,Type A與Type B的化學結構式如下所示:

Figure 109117298-A0305-02-0008-6
A:[->4-β-D-Glcp-(1->4)-α-L-Rhap3S-(1->]n;B:[->4-α-L-Idop-(1->4)-α-L-Rhap3S-(1->]n。石蓴多醣具有抗氧化(Li等人(2018)Antioxidant and antihyperlipidemic activities of purified polysaccharides from Ulva pertusa.Journal of Applied Phycology 30,2619-2627.)、抗凝劑(Adrien等人(2019),Anticoagulant Activity of Sulfated Ulvan Isolated from the Green Macroalga Ulva rigida.Mar Drugs 17,291-329.)、抗腫瘤(Abd-Ellatef等人(2017),Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis,enhancement of antioxidant defense system,and suppression of inflammation.Breast Cancer(Dove Med Press) 9,67-83.),以及免疫調節(Tabarsa等人(2018),Water-soluble polysaccharides from Ulva intestinalis:Molecular properties,structural elucidation and immunomodulatory activities.J Food Drug Anal 26,599-608)等生理活性,此外,富含鼠李醣的多醣類表現出抗發炎、降低細菌貼附、防止紫外線損傷、刺激細胞增殖以及膠原蛋白合成等生理活性(Adrien等人(2016),Pilot production of ulvans from Ulva sp.and their effects on hyaluronan and collagen production in cultured dermal fibroblasts.Carbohydrate Polymers 157,1306-1314.;de Araujo等人(2016),Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca.Int JBiol Macromol 92,820-830.)。石蓴多醣可從石蓴屬(Ulva)藻類中萃取或分離,石蓴屬(Ulva)藻類包含,但不限於,魚棲台石蓴(Ulva acanthophora)、阿南德氏石蓴(Ulva anandii)、窄葉石蓴(Ulva angusta)、阿氏石蓴(Ulva arasakii)、阿莫里加石蓴(Ulva armicalicana)、綠石蓴(Ulva atroviridis)、薄葉石蓴(Ulva attenuata)、貝特石蓴(Ulva beytensis)、雙面石蓴(Ulva bifrons)、短柄石蓴(Ulva brevistipitata)、球石蓴(Ulva bulbosa)、緬甸石蓴(Ulva burmanica)、柔石蓴(Ulva byssoides)、加州石蓴(Ulva californica)、蝶形石蓴(Ulva chaetomorphoides)、格石蓴(Ulva clathrata)、渥紅石蓴(Ulva coccinea)、扁石蓴(Ulva compressa)、族石蓴(Ulva conglobata)、羊角石蓴(Ulva cornucopiae)、角石蓴(Ulva cornuta)、科夫龍石蓴(Ulva covelongensis)、厚石蓴(Ulva crassa)、厚膜石蓴(Ulva crassimembrana)、拱石蓴(Ulva curvata)、椰棗石蓴(U.dactylifera)、鋸齒石蓴(Ulva denticulata)、秀剛石蓴(Ulva elegans)、艾米氏石蓴(Ulva elminthoides)、腸形石蓴(Ulva enteromorpha)、直石蓴(Ulva erecta)、寬石蓴(Ulva expansa)、裂片石蓴(U.fasciata)、窗石蓴(Ulva fenestrata)、曲石蓴(Ulva fiexuosa)、膠石蓴(Ulva gelatinosa)、雙生石蓴(Ulva geminoidea)、巨石蓴(U.gigantea)、大石蓴(Ulva grandis)、亨德石蓴(Ulva hendayensis)、勾石蓴(Ulva hookeriana)、霍克石蓴(Ulva hopkirkii)、腸石蓴(Ulva intestinalis)、類口服石蓴(Ulva intestinoides)、絞石蓴(Ulva intricata)、管狀石蓴(Ulva intybacea)、加唾石蓴(Ulva javanica)、科林石蓴(Ulva kylinii)、萬石蓴(U.lactuca)、萬葉石蓴(Ulva lactucaefolia)、亮綠石蓴(Ulva laetevirens)、朗吉石蓴(Ulva laingii)、線石蓴(Ulva linearis)、舌石蓴(Ulva lingulata)、鏈石蓴(Ulva linkiana)、緣管石蓴(Ulva linza)、里皮石蓴(Ulva lippii)、濱海石蓴(Ulva litoralis)、海岸石蓴(Ulva littorea)、裂石蓴(Ulva lobata)、滑石蓴(Ulva lubrica)、替代石蓴(Ulva marginata)、微球石蓴(Ulva micrococca)、米亞塔石蓴(Ulva myriotrema)、那不勒斯石蓴(Ulva neapolitana)、線蟲石蓴(Ulva nematoidea)、歐尼石蓴(Ulva ohnoi)、撤石蓴(Ulva olivacea)、撤除石蓴(Ulva olivaceum)、太平洋石蓴(Ulva pacifica)、匙形石蓴(Ulva papenfussii)、奇形石蓴(Ulva paradoxa)、小石蓴(Ulva parva)、微小石蓴(Ulva parvula)、潘騰石蓴(Ulva patengensis)、狹帶石蓴(Ulva percursa)、孔石蓴(Ulva pertusa)、菲氏石蓴(Ulva phyllosa)、拍石蓴(Ulva popenguinensis)、韭葉石蓴(Ulva porrifolia)、闊石蓴(Ulva procera)、深石蓴(Ulva profunda)、游石蓴(Ulva prolifera)、假曲石蓴(Ulva pseudocurvata)、假林氏石蓴(Ulva pseudolinza)、剛石蓴(Ulva pulchra)、紫絲石蓴 (Ulva purpurascens)、奎隆石蓴(Ulva quilonensis)、福狀石蓴(Ulva radiata)、拉爾夫石蓴(Ulva ralfsii)、毛茛石蓴(Ulva ranunculata)、網紋石蓴(Ulva reticulata)、拉科石蓴(Ulva rhacodes)、硬石蓴(Ulva hardica)、切石蓴(Ulva rotundata)、魯本斯石蓴(Ulva rubens)、塞弗拉石蓴(Ulva saifullahii)、斯凱戈爾石蓴(Ulva scagelii)、斯堪的納維亞石蓴(Ulva scandinavica)、賽瑞石蓴(Ulva sericea)、齒葉石蓴(Ulva serrata)、單葉石蓴(Ulva simplex)、索倫森石蓴(Ulva sorensenii)、紡石蓴(Ulva spinulosa)、狹葉石蓴(Ulva stenophylla)、柄石蓴(Ulva stipitata)、海邊石蓴(Ulva sublittoralis)、針葉石蓴(Ulva subulata)、帶狀石蓴(Ulva taeniata)、細葉石蓴(Ulva tenera)、四角石蓴(Ulva quadgona)、絞線石蓴(Ulva torta)、荸養石蓴(Ulva tuberosa)、臍狀石蓴(Ulva umbilicata)、芒石蓴(Ulva uncialis)、鉤刺石蓴(Ulva uncinata)、松蘿石蓴(Ulva usneoides)、囊狀石蓴(Ulva utricularis)、革質石蓴(Ulva utriculosa)、卵形石蓴(Ulva uvoides),以及紫花瓣石蓴(Ulva ventricosa)。 As used herein, the term "Ulvan polysaccharide" means a water-soluble compound acidic sulfuric polysaccharide extracted with hot water (100~121℃) from the cell wall of Ulva algae. Its main components are Sulfate, Rhamnose, Xylose, Glucuronic acid, and Iduronic acid; the main structure of Ulva polysaccharide is a repetitive disaccharide Type A (i.e., Glucurorhamnose 3-sulphate, A3s) and Type B (i.e. Iduronorhamnose 3-sulphate, B3s) are composed in a linear manner, Type A The chemical structure with Type B is as follows:
Figure 109117298-A0305-02-0008-6
A: [->4-β-D-Glc p -(1->4)-α-L-Rha p 3S-(1->] n ; B: [->4-α-L-Ido p- (1->4)-α-L-Rha p 3S-(1->] n . Ulva polysaccharides have antioxidant properties (Li et al. (2018) Antioxidant and antihyperlipidemic activities of purified polysaccharides from Ulva pertusa. Journal of Applied Phycology 30 , 2619-2627.), anticoagulant (Adrien et al. (2019), Anticoagulant Activity of Sulfated Ulvan Isolated from the Green Macroalga Ulva rigida. Mar Drugs 17 , 291-329.), anti-tumor (Abd-Ellatef et al. (2017), Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation. Breast Cancer (Dove Med Press) 9 ,67-83.), and immune regulation (Tabarsa et al. Human (2018), Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. J Food Drug Anal 26 , 599-608) and other physiological activities. In addition, rhamnose-rich polysaccharides exhibit anti- Inflammation, reducing bacterial adhesion, preventing UV damage, stimulating cell proliferation and collagen synthesis and other physiological activities (Adrien et al. (2016), Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured derm al fibroblasts. Carbohydrate Polymers 157 , 1306-1314.; de Araujo et al. (2016), Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca. Int JBiol Macromol 92 , 820-830.). Ulva polysaccharides can be extracted or separated from Ulva (Ulva ) algae. Ulva ( Ulva ) algae include, but are not limited to, Ulva acanthophora (Ulva acanthophora), Ulva anandii (Ulva anandii), narrow-leaved Ulva (Ulva angusta), Apgar Ulva (Ulva arasakii), amoxicillin Riga Ulva (Ulva armicalicana), Greenstone water shield (Ulva atroviridis), thin leaves Ulva (Ulva attenuata), Beit Ulva (Ulva beytensis , Ulva bifrons , Ulva brevistipitata , Ulva bulbosa , Ulva burmanica , Ulva byssoides , Ulva byssoides, Ulva californica , Ulva chaetomorphoides , Ulva clathrata , Ulva coccinea , Ulva compressa , Ulva conglobata , Ulva cornuia ), Ulva cornuta (Ulva cornuta), Ulva covelongensis (Ulva covelongensis), Ulva crassa (Ulva crassa), Ulva crassimembrana (Ulva crassimembrana), Ulva curvata (Ulva curvata), Ulva palma (U. dactylifera , Ulva denticulata , Ulva elegans , Ulva elminthoides , Ulva enteromorpha , Ulva erecta , Ulva erecta Ulva expansa ), Ulva lobata (U.fasciata), Ulva fenestrata (Ulva fenestrata), Ulva fiexuosa (Ulva fiexuosa), Ulva gelatinosa (Ulva gelatinosa), Ulva gemini (Ulvainoidea), U. gigantea), water shield stone (Ulva grandis), Hendrick Ulva (Ulva hendayensis), hook Ulva (Ulva hookeriana), Hawke Ulva (Ul va hopkirkii ), Ulva intestinalis (Ulva intestinalis), Oral Ulva intestinoides (Ulva intestinoides), Ulva intricata (Ulva intricata), Ulva intybacea (Ulva intybacea), Ulva intestinalis, Ulva javanica Ulva kylinii , U.lactuca , Ulva lactucaefolia , Ulva laetevirens , Ulva laingii , Ulva linearis , Tongue Ulva lingulata , Ulva linkiana , Ulva linza , Ulva lippii , Ulva litoralis , Ulva littorea , Ulva littorea Ulva lobata , Ulva lubrica , Ulva marginata , Ulva micrococca , Ulva myriotrema , Ulva neapolitana , Ulva neapolitana Ulva nematoidea , Ulva ohnoi , Ulva olivacea , Ulva olivaceum , Ulva pacifica , Ulva papenfussii (Ulva paradoxa), stone water shield (Ulva parva), small Ulva (Ulva parvula), Pan Teng Ulva (Ulva patengensis), tape Ulva (Ulva percursa), hole Ulva (Ulva pertusa), the Philippine's Ulva (Ulva phyllosa), beat Ulva (Ulva popenguinensis), leek leaf Ulva (Ulva porrifolia), wide Ulva (Ulva procera), deep Ulva (Ulva profunda), visit Ulva (Ulva prolifera), fake song Ulva (Ulva pseudocurvata , Ulva pseudolinza , Ulva pulchr a ), Ulva purpurascens (Ulva purpurascens), Ulva quilonensis (Ulva quilonensis), Ulva radiata (Ulva radiata), Ulva ralfsii (Ulva ralfsii), Ulva ranunculata (Ulva ranunculata), net Ulva reticulata , Ulva rhacodes , Ulva hardica , Ulva rotundata , Ulva rubens , Ulva rubens, Ulva saifullahii , Ulva scagelii (Ulva scagelii), Ulva scandinavica (Ulva scandinavica), Ulva sericea (Ulva sericea), Ulva serrata (Ulva serrata), Ulva simplex (Ulva simplex) ), Ulva sorensenii (Ulva sorensenii), Ulva spinulosa (Ulva spinulosa), Ulva stenophylla (Ulva stenophylla), Ulva stipitata , Ulva stipitata, Ulva sublittoralis , Ulva conifer ( Ulva subulata , Ulva taeniata , Ulva tenera , Ulva quadgona , Ulva torta , Ulva tuberosa , Ulva Ulva ( Ulva umbilicata ), Ulva uncialis (Ulva uncialis), Ulva uncinata (Ulva uncinata), Ulva usneoides (Ulva usneoides), Ulva cystic (Ulva utricularis ), Ulva Ulva, Ulva utriculosa Oval Ulva ( Ulva uvoides ) and Purple Petal Ulva ( Ulva ventricosa ).

如本文所用,術語「背板部」意指連接微針底部的底座,使微針固定排列以形成貼片形式,便於使用者使用。 As used herein, the term "back plate" refers to the base connected to the bottom of the microneedles, so that the microneedles are fixedly arranged to form a patch form, which is convenient for the user to use.

如本文所用,術語「滲透皮膚」意指可穿透皮膚角質層(厚度約10-40μm)。本發明之石蓴多醣微針可穿透皮膚角質層,而將活性物質送至表皮層(厚度約50-150μm)及真皮層(厚度約1.5-4mm)。 As used herein, the term "permeable skin" means that it can penetrate the stratum corneum (thickness of about 10-40 μm). The Ulva polysaccharide microneedle of the present invention can penetrate the stratum corneum of the skin and deliver the active substance to the epidermal layer (about 50-150 μm in thickness) and the dermis layer (about 1.5-4 mm in thickness).

如本文所用,術語「微針的高度」或「微針部的高度」意指自一微針針尖至該微針底部的垂直距離。本發明之石蓴多醣微針可穿透皮膚角質層,將活性物質送至表皮層及真皮層,故本發明之石蓴多醣微針的高度多於皮膚角質層加上表皮層的厚度。於某些具體實施例中,本發明之石蓴多醣微針的高度不小於200微米(μm),較佳為約200μm、約250μm、約300μm、約350μm、約400μm、約450μm、約500μm、約550μm、約600μm、約650μm、約700μm, 或為不小於200μm的任一高度,不限為整數之高度,例如,但不限於652.67μm;於某些較佳具體實施例中,該微針的高度為約650μm。 As used herein, the term "microneedle height" or "microneedle portion height" means the vertical distance from the tip of a microneedle to the bottom of the microneedle. The Ulva polysaccharide microneedle of the present invention can penetrate the skin stratum corneum and deliver active substances to the epidermis and dermis. Therefore, the height of the Ulva polysaccharide microneedle of the present invention is greater than the thickness of the skin stratum corneum plus the epidermal layer. In some embodiments, the height of the Ulva polysaccharide microneedles of the present invention is not less than 200 microns (μm), preferably about 200 μm, about 250 μm, about 300 μm, about 350 μm, about 400 μm, about 450 μm, about 500 μm, About 550μm, about 600μm, about 650μm, about 700μm, Or any height not less than 200 μm, not limited to an integer height, for example, but not limited to 652.67 μm; in some preferred embodiments, the height of the microneedle is about 650 μm.

在以下的說明性實施例中更詳細地描述本發明。儘管實施例可以僅代表本發明的選定具體實施例,但是應當理解的是,以下實施例為說明性的而非限制性的。 The invention is described in more detail in the following illustrative examples. Although the embodiments may only represent selected specific embodiments of the present invention, it should be understood that the following embodiments are illustrative and not restrictive.

本發明進一步透過以下的實施例闡釋,其不應以任何方式被解釋為進一步的限縮。本申請案中引用的所有文件(包括參考文獻、核准的專利、公開的專利申請,以及一同在申請中的專利申請案)的整體內容,在此透過引用的方式明確地併入本案中。 The present invention is further illustrated through the following examples, which should not be construed as a further limitation in any way. The entire contents of all documents cited in this application (including references, approved patents, published patent applications, and patent applications that are also in the application) are hereby expressly incorporated into this case by reference.

實施例Example

實施例一 石蓴多醣之萃取Example 1 Extraction of Ulva Polysaccharide

將石蓴粉末(台灣肥料股份有限公司,台灣)溶於去離子水,於高溫(約100℃至約121℃)下進行萃取後,過濾並進行減壓濃縮,再進行冷凍乾燥得到石蓴多醣粉末。 Ulva powder (Taiwan Fertilizer Co., Ltd., Taiwan) was dissolved in deionized water, extracted at high temperature (about 100°C to about 121°C), filtered and concentrated under reduced pressure, and then freeze-dried to obtain Ulva polysaccharide powder.

實施例二 石蓴多醣微針貼片之製備Example 2 Preparation of Ulva Polysaccharide Microneedle Patch

以兩層澆鑄方法製備石蓴多醣微針貼片,製備步驟如圖1所示。首先,以具有類似金字塔形的3MTM微針板(聖保羅市,明尼蘇達州,美國)作為母模板1,將液態聚二甲基矽氧烷(polydimethylsiloxane,PDMS)20灌鑄於該母模板1上,待該液態聚二甲基矽氧烷(PDMS)20硬化後,將其與該母模板1分離,獲得一PDMS負向模具21,該PDMS負向模具21包含一微針部模具211以及一背板部模具212,該微針部模具211包含一針尖部模具2111以及一針底部模具2112。接著,將上述實施例一所得到的石蓴多醣粉末溶於去離子水,得到石蓴多醣溶液3。將不同濃度(4%、5%、6%(w/v))的石蓴多醣溶液3加入至該PDMS負向模具21中,離心15分鐘後於室溫下靜置隔夜乾燥以形成石蓴多醣微針貼片的微針部 51。接著,將聚乙烯吡咯烷酮(PVP)與羧甲基纖維素鈉(CMC)的混合液(PVP/CMC,比例為1:4(w/w))4加入至該PDMS負向模具21中,離心15分鐘後於室溫下靜置隔夜乾燥以形成石蓴多醣微針貼片的背板部52。待該PVP/CMC混合液4完全乾燥後,將該微針部51連同該背板部52與該PDMS負向模具21分離,得到石蓴多醣微針貼片5。 The Ulva polysaccharide microneedle patch was prepared by a two-layer casting method, and the preparation steps are shown in Figure 1. First, a 3M TM microneedle plate (St. Paul, Minnesota, USA) with a pyramid-like shape was used as the master template 1, and liquid polydimethylsiloxane (PDMS) 20 was cast on the master template 1. After the liquid polydimethylsiloxane (PDMS) 20 is cured, it is separated from the master template 1 to obtain a PDMS negative mold 21. The PDMS negative mold 21 includes a microneedle mold 211 and a The back plate mold 212 includes a needle tip mold 2111 and a needle bottom mold 2112. Next, the Ulva polysaccharide powder obtained in the above-mentioned Example 1 was dissolved in deionized water to obtain Ulva polysaccharide solution 3. The Ulva polysaccharide solution 3 of different concentrations (4%, 5%, 6%(w/v)) was added to the PDMS negative mold 21, centrifuged for 15 minutes, and left standing at room temperature overnight to dry to form Ulva The microneedle portion 51 of the polysaccharide microneedle patch. Next, the mixed solution (PVP/CMC, ratio 1:4 (w/w)) of polyvinylpyrrolidone (PVP) and sodium carboxymethylcellulose (CMC) 4 was added to the PDMS negative mold 21, and centrifuged After 15 minutes, it was allowed to stand at room temperature overnight to dry to form the back plate portion 52 of the Ulva polysaccharide microneedle patch. After the PVP/CMC mixture 4 is completely dried, the microneedle portion 51 and the back plate portion 52 are separated from the PDMS negative mold 21 to obtain the Ulva polysaccharide microneedle patch 5.

實施例三 石蓴多醣微針貼片的外觀觀察Example 3 Observation of the appearance of Ulva polysaccharide microneedle patch

利用解剖顯微鏡(Olympus公司,型號SZX16,日本)觀察上述實施例二所得到的石蓴多醣微針貼片的外觀。觀察角度分別為0度角(微針貼片與顯微鏡的載物台之間的角度為0度,亦即,微針貼片平放在顯微鏡的載物台上)、45度角(微針貼片與顯微鏡的載物台之間的角度為45度),以及90度角(微針貼片與顯微鏡的載物台之間的角度為90度)。 The appearance of the Ulva polysaccharide microneedle patch obtained in Example 2 above was observed with a dissecting microscope (Olympus, model SZX16, Japan). Observation angles are 0 degrees (the angle between the microneedle patch and the microscope stage is 0 degrees, that is, the microneedle patch lies flat on the microscope stage), 45 degrees (the microneedle The angle between the patch and the stage of the microscope is 45 degrees), and the angle of 90 degrees (the angle between the microneedle patch and the stage of the microscope is 90 degrees).

以不同濃度(4%、5%、6%(w/v))的石蓴多醣溶液製備的微針貼片的0度角觀察結果分別如圖2A-1、圖2B-1、圖2C-1所示,45度角觀察結果分別如圖2A-2、圖2B-2、圖2C-2所示,90度角觀察結果分別如圖2A-3、圖2B-3、圖2C-3所示。不論是4%(w/v)、5%(w/v),或6%(w/v)的石蓴多醣溶液製備的微針貼片,皆形成具有類似金字塔形的微針(如圖2A-2、圖2B-2、圖2C-2所示),且微針皆均勻的分佈在貼片上(如圖2A-1、圖2B-1、圖2C-1所示)並具有完整的針尖(如圖2A-3、圖2B-3、圖2C-3所示)。這些結果與作為母模板的3MTM微針板外觀一致。 The 0-degree observation results of microneedle patches prepared with different concentrations (4%, 5%, 6% (w/v)) of Ulva polysaccharide solutions are shown in Figure 2A-1, Figure 2B-1, and Figure 2C- As shown in 1, the 45-degree observation results are shown in Figure 2A-2, Figure 2B-2, and Figure 2C-2, and the 90-degree observation results are shown in Figure 2A-3, Figure 2B-3, and Figure 2C-3, respectively. Show. Whether 4% (w/v), 5% (w/v), or 6% (w/v) Ulva polysaccharide solution prepared microneedle patches, they all form microneedles with a pyramid-like shape (as shown in the figure) 2A-2, Figure 2B-2, Figure 2C-2), and the microneedles are evenly distributed on the patch (as shown in Figure 2A-1, Figure 2B-1, Figure 2C-1) and have complete The tip of the needle (as shown in Figure 2A-3, Figure 2B-3, and Figure 2C-3). These results are consistent with the appearance of the 3M TM microneedle plate as the master template.

另外,利用掃描式電子顯微鏡(Scanning electron microscope,SEM)(Hitachi公司,型號S-3400N,日本)由兩個不同的角度(0度角與90度角)觀察石蓴多醣微針的詳細外觀,並使用ImageJ軟體測量每個石蓴多醣微針的高度(針尖至針底的垂直距離)、針底的寬度、兩個微針針尖的間距,以及兩個微針針底邊緣的間距。本試驗重複三次(n=3),並計算各濃度微針樣品的平均值與標準差。 In addition, using a scanning electron microscope (Scanning electron microscope, SEM) (Hitachi, Model S-3400N, Japan) to observe the detailed appearance of the Ulva polysaccharide microneedles from two different angles (0 degree angle and 90 degree angle), And use ImageJ software to measure the height of each Ulva polysaccharide microneedle (the vertical distance from the tip to the bottom of the needle), the width of the bottom of the needle, the distance between the tips of the two microneedles, and the distance between the bottom edges of the two microneedles. This test was repeated three times (n=3), and the average value and standard deviation of each concentration of microneedle samples were calculated.

掃描式電子顯微鏡的觀察結果如圖3A-1至圖3C-2所示。由掃描式電子顯微鏡以0度角觀察可看出,不論是4%(w/v)、5%(w/v),或6%(w/v)的石蓴多醣溶液製備的微針貼片,皆形成具有類似金字塔形的微針(如圖3A-1、圖3B-1、圖3C-1所示)。而由掃描式電子顯微鏡以90度角觀察可看出,不論是4%(w/v)、5%(w/v),或6%(w/v)的石蓴多醣溶液製備的微針貼片,其上的微針皆具有完整的針尖(如圖3A-2、圖3B-2、圖3C-2所示)。 The observation results of the scanning electron microscope are shown in Figure 3A-1 to Figure 3C-2. Observed by a scanning electron microscope at an angle of 0 degrees, it can be seen that whether it is a microneedle patch prepared with 4% (w/v), 5% (w/v), or 6% (w/v) Ulva polysaccharide solution The sheets all form microneedles with a pyramid-like shape (as shown in Fig. 3A-1, Fig. 3B-1, and Fig. 3C-1). Observed by a scanning electron microscope at a 90 degree angle, it can be seen that whether it is a microneedle prepared with 4% (w/v), 5% (w/v), or 6% (w/v) Ulva polysaccharide solution The patch and the microneedles on it all have complete needle tips (as shown in Fig. 3A-2, Fig. 3B-2, and Fig. 3C-2).

以ImageJ軟體測量的微針尺寸結果如表1所示,並且與作為母模板的3MTM微針板的微針尺寸進行比較。整體而言,不論是4%(w/v)、5%(w/v),或6%(w/v)石蓴多醣微針,其高度、寬度、高寬比都相當接近母模板的微針高度、寬度、高寬比,而且與母模板的微針高度、寬度的差異,皆在母模板的微針高度、寬度的10%以內。表示本發明之石蓴多醣微針貼片與作為母模板的3MTM微針板具有相似的外觀性質。 The results of the microneedle size measured by ImageJ software are shown in Table 1, and compared with the microneedle size of the 3M TM microneedle plate as a master template. Overall, whether it is 4% (w/v), 5% (w/v), or 6% (w/v) Ulva polysaccharide microneedles, the height, width, and aspect ratio are quite close to those of the master template. The height, width, and aspect ratio of the microneedle, and the difference between the height and width of the microneedle of the mother template, are all within 10% of the height and width of the microneedle of the mother template. It means that the Ulva polysaccharide microneedle patch of the present invention has similar appearance properties to the 3M TM microneedle plate as the mother template.

Figure 109117298-A0305-02-0014-4
Figure 109117298-A0305-02-0014-4

實施例四 石蓴多醣微針貼片的機械性質測試Example 4 Mechanical property test of Ulva polysaccharide microneedle patch

利用萬能材料測試機(型號:H1KS,Tinius Olsen公司,美國)確認微針的機械性質。將上述實施例二所得到的以不同濃度(4%、5%、6%(w/v))的石蓴多醣溶液製備的微針貼片放置於該萬能材料測試機的不鏽鋼基板載台上,固定該貼片後,將測壓儀移動至距離該貼片10mm處,以10mm/min的恆定移動速度,測試本發明之石蓴多醣微針貼片的機械強度,記錄該測壓儀的力隨微針位移的變化,並繪製機械強度曲線圖(力-位移曲線圖)。 A universal material testing machine (model: H1KS, Tinius Olsen, USA) was used to confirm the mechanical properties of the microneedles. The microneedle patch prepared with the Ulva polysaccharide solution of different concentrations (4%, 5%, 6% (w/v)) obtained in the above example 2 was placed on the stainless steel substrate stage of the universal material testing machine After fixing the patch, move the pressure tester to a distance of 10mm from the patch, and test the mechanical strength of the Ulva polysaccharide microneedle patch of the present invention at a constant moving speed of 10mm/min, and record the pressure tester’s The force changes with the displacement of the microneedle, and the mechanical strength curve (force-displacement curve) is drawn.

石蓴多醣微針的機械強度曲線圖如圖4所示。以不同濃度(4%、5%、6%(w/v))的石蓴多醣溶液製備的微針貼片的斷裂力分別為2.73、2.64,以及2.74 N;亦即每支微針的斷裂力為約0.0075~0.0078 N/needle。微針的斷裂力代表壓下整支微針高度所需的力量。根據Lee等人先前的研究(Lee等人(2015).Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery.Journal of Materials Chemistry B 3,276-285),斷裂力約為0.005 N/needle的可溶性微針即已具有足夠的機械性質用於穿刺皮膚。而本發明之石蓴多醣微針的斷裂力高於Lee等人的微針的斷裂力,顯示本發明之石蓴多醣微針具有良好的機械性質。 The mechanical strength curve of Ulva polysaccharide microneedles is shown in Figure 4. The breaking force of the microneedle patch prepared with different concentrations (4%, 5%, 6%(w/v)) of Ulva polysaccharide solution was 2.73, 2.64, and 2.74 N; that is, the breakage of each microneedle The force is about 0.0075~0.0078 N/needle. The breaking force of the microneedle represents the force required to depress the entire height of the microneedle. According to the previous study of Lee et al. (Lee et al. (2015). Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. Journal of Materials Chemistry B 3 , 276-285), the breaking force is about 0.005 N/needle Soluble microneedles have sufficient mechanical properties for piercing the skin. The breaking force of the Ulva polysaccharide microneedles of the present invention is higher than that of the microneedles of Lee et al., indicating that the Ulva polysaccharide microneedles of the present invention have good mechanical properties.

實施例五 石蓴多醣微針貼片的穿刺試驗Example 5 Puncture test of Ulva polysaccharide microneedle patch

為了確認本發明之石蓴多醣微針是否具有穿刺皮膚的能力,本實施例以豬皮模擬人體皮膚進行微針穿刺試驗。首先,依照實施例二之方法製備含有麗絲胺綠(Lissamine Green B,LGB)染劑的石蓴多醣微針貼片,與實施例二所述方法唯一的差異僅在於,在製備微針部時,於4%(w/v)石蓴多醣溶液中加入終濃度為6g/L的LGB染劑。 In order to confirm whether the Ulva polysaccharide microneedle of the present invention has the ability to puncture the skin, this embodiment uses pig skin to simulate human skin to perform a microneedle puncture test. First, the Ulva polysaccharide microneedle patch containing Lissamine Green B (LGB) dye was prepared according to the method of Example 2. The only difference from the method described in Example 2 is that the preparation of the microneedle part At the time, add LGB dye with a final concentration of 6g/L to the 4% (w/v) Ulva polysaccharide solution.

進行穿刺試驗前先處理豬皮,先將冷凍的小豬耳朵皮膚解凍,並浸泡於二次蒸餾水(double distilled water,ddH2O);以擦手紙輕輕擦乾豬皮後,塗上除毛膏作用5分鐘以除掉微毛,清除除毛膏後若豬皮上還有未除掉的毛,則以剃刀剃除。接著,將處理好的豬皮以角質層面朝上的方式置於自行組裝的施用器上,並將已剪掉背板的含有LGB染劑的石蓴多醣微針放置於該豬皮表面上,利用該施用器使微針刺穿豬皮10秒。最後利用解剖顯微鏡觀察豬皮表面的狀態並算出穿刺的孔洞數,並以下式計算穿刺的成功率:[(豬皮上的孔洞數/微針總數)x 100%]。 Before the puncture test, treat the pigskin. Thaw the frozen skin of the pig’s ears and soak it in double distilled water (ddH 2 O); dry the pigskin with a paper towel, then apply the hair removal Apply the cream for 5 minutes to remove the micro-hairs. If there is still unremoved hair on the pig skin after removing the cream, shave it with a razor. Next, place the processed pigskin on a self-assembled applicator with the cutin surface facing upwards, and place the Ulva polysaccharide microneedles containing the LGB dye with the cut back plate on the surface of the pigskin. Using the applicator, the microneedles were pierced through the pig skin for 10 seconds. Finally, use a dissecting microscope to observe the state of the surface of the pigskin and calculate the number of puncture holes, and calculate the success rate of the puncture with the following formula: [(number of holes on the pigskin/total number of microneedles) x 100%].

豬皮穿刺試驗結果如圖5A至圖5D所示。以本發明之石蓴多醣微針穿刺豬皮10秒後,在豬皮上觀察到被微針穿刺後釋放的染劑所產生的藍色斑點(如圖5A及圖5B所示),表示本發明之石蓴多醣微針具有穿刺豬皮的能力,且該藍色斑點的數目代表微針穿刺豬皮的孔洞數。經計算後得到穿刺的成功率高達80%。此外,以解剖顯微鏡觀察進行穿刺試驗後的微針外觀,結果如圖5C及圖5D所示,觀察到微針針尖的損失,表示本發明之石蓴多醣微針在穿刺豬皮後可快速溶解。由本實施例之試驗可知,本發明之石蓴多醣微針具有足夠的機械強度以穿透豬皮的角質層屏障。 The results of the pigskin puncture test are shown in Figures 5A to 5D. After 10 seconds of puncturing pig skin with the Ulva polysaccharide microneedle of the present invention, blue spots produced by the dye released by the microneedle puncture were observed on the pig skin (as shown in Figure 5A and Figure 5B), indicating the present The invented Ulva polysaccharide microneedle has the ability to pierce pig skin, and the number of blue spots represents the number of holes for the microneedle to pierce pig skin. After calculation, the success rate of puncture is as high as 80%. In addition, the appearance of the microneedle after the puncture test was observed with a dissecting microscope. The results are shown in Figure 5C and Figure 5D. The loss of the microneedle tip was observed, indicating that the Ulva polysaccharide microneedle of the present invention can quickly dissolve after puncturing pig skin . It can be seen from the experiment of this embodiment that the Ulva polysaccharide microneedles of the present invention have sufficient mechanical strength to penetrate the stratum corneum barrier of pigskin.

實施例六 石蓴多醣微針的溶解試驗1Example 6 Dissolution test of Ulva polysaccharide microneedles 1

含有LGB染劑的石蓴多醣微針貼片以及豬皮穿刺試驗如實施例五所述進行,但增加不同的微針穿刺時間(10、30、60,以及120秒)。進行豬皮穿刺試驗後,以解剖顯微鏡觀察微針的外觀變化,以了解微針針尖溶解的狀況。接著,利用Image J軟體測量微針的高度變化,並以下式計算微針高度損失率:[(原始微針高度-穿刺後的微針高度)/原始微針高度x 100%];本試驗重複三次(n=3),並計算各樣品的平均值與標準差。 The Ulva polysaccharide microneedle patch containing LGB dye and the porcine skin puncture test were performed as described in Example 5, but with different microneedle puncture times (10, 30, 60, and 120 seconds). After the pigskin puncture test, the appearance changes of the microneedles were observed with a dissecting microscope to understand the dissolution of the microneedle tips. Then, use the Image J software to measure the height change of the microneedle, and calculate the loss rate of the microneedle height with the following formula: [(original microneedle height-microneedle height after puncture)/original microneedle height x 100%]; this test is repeated Three times (n=3), and calculate the average and standard deviation of each sample.

以不同時間(10、30、60,以及120秒)進行豬皮穿刺試驗後,微針的外觀變化分別如圖6A至圖6D所示,明顯觀察到微針的高度隨著穿刺時間的增加而變短。與微針的原始高度比較所計算出的微針高度損失率如表2所示,進行豬皮穿刺120秒後,微針針尖的高度已減少90%,表示本發明之石蓴多醣微針在穿透皮膚角質層屏障後,與皮膚中的組織間液接觸而快速溶解,將活性成分釋放於皮膚內,由皮膚吸收。 After the pigskin puncture test was carried out at different times (10, 30, 60, and 120 seconds), the appearance of the microneedles changed as shown in Figure 6A to Figure 6D. It was clearly observed that the height of the microneedles increased with the increase in puncture time. Become shorter. Compared with the original height of the microneedle, the calculated microneedle height loss rate is shown in Table 2. After 120 seconds of pigskin puncture, the height of the microneedle tip has been reduced by 90%, indicating that the Ulva polysaccharide microneedle of the present invention is in After penetrating the stratum corneum barrier of the skin, it quickly dissolves in contact with the interstitial fluid in the skin, and releases the active ingredients in the skin and is absorbed by the skin.

Figure 109117298-A0305-02-0017-5
Figure 109117298-A0305-02-0017-5

實施例七 石蓴多醣微針的溶解試驗2Example 7 Dissolution test of Ulva polysaccharide microneedles 2

首先製備石蓴多醣標準品:配製10mg/mL的石蓴多醣溶液,然後連續稀釋共3次,利用ELISA reader測定各稀釋濃度的石蓴多醣標準品的OD610值,並繪製石蓴多醣濃度標準曲線,以計算各樣品中石蓴多醣的濃度。接著,將上述實施例二所得到的石蓴多醣微針貼片浸泡於2mL二次蒸餾水(ddH2O)中,於不同時間點(1、3、5、10、20、30、40,以及60分鐘)取出300μL水溶液作為分析樣品,並補回相同體積的ddH2O。將200μL的天青A加入100μL的樣品中,靜置反應5分鐘後以ELISA reader測定各樣品的OD610值,並以上述石蓴多醣濃度標準曲線計算各樣品中石蓴多醣的濃度。最後,以下式計算微針貼片的石蓴多醣含量的溶出率:[(在不同時間點取出之樣品的石蓴多醣含量/最大的石蓴 多醣含量(亦即溶解60分鐘後的樣品中的石蓴多醣含量)x 100%)];本試驗重複三次(n=3),並計算各濃度微針樣品的平均值與標準差。 First prepare the Ulva polysaccharide standard: prepare a 10mg/mL Ulva polysaccharide solution, and then serially dilute it for 3 times. Use an ELISA reader to determine the OD 610 value of the Ulva polysaccharide standard at each dilution, and draw the Ulva polysaccharide concentration standard Curve to calculate the concentration of Ulva polysaccharide in each sample. Next, the Ulva polysaccharide microneedle patch obtained in Example 2 above was immersed in 2 mL of double distilled water (ddH 2 O) at different time points (1, 3, 5, 10, 20, 30, 40, and 60 minutes) Take out 300 μL of the aqueous solution as an analysis sample, and make up the same volume of ddH 2 O. 200 μL of Azure A was added to 100 μL of samples, and after standing for 5 minutes, the OD 610 value of each sample was measured with an ELISA reader, and the concentration of Ulva polysaccharide in each sample was calculated using the standard curve of Ulva polysaccharide concentration. Finally, the following formula calculates the dissolution rate of the Ulva polysaccharide content of the microneedle patch: [(Ulva polysaccharide content of samples taken at different time points/Maximum Ulva polysaccharide content (that is, the dissolution rate in the sample after 60 minutes of dissolution) Ulva polysaccharide content) x 100%)]; This test was repeated three times (n=3), and the average and standard deviation of microneedle samples of various concentrations were calculated.

石蓴多醣含量的溶出率如圖7所示。於1分鐘內,各濃度(4%、5%、6%(w/v))的石蓴多醣微針貼片的石蓴多醣溶出率皆已達50%,並於30分鐘內完全溶解(溶出率為100%),表示本發明之石蓴多醣微針可快速且完全溶解,適合作為有效且安全的經皮輸送裝置提供人體使用。 The dissolution rate of Ulva polysaccharide content is shown in Figure 7. Within 1 minute, the dissolution rate of Ulva polysaccharide microneedle patch of various concentrations (4%, 5%, 6%(w/v)) reached 50%, and it was completely dissolved within 30 minutes ( The dissolution rate is 100%), which means that the Ulva polysaccharide microneedle of the present invention can be quickly and completely dissolved, and is suitable for use as an effective and safe transdermal delivery device for human use.

實施例八 石蓴多醣微針貼片的活性物質體外擴散深度試驗Example 8 In vitro diffusion depth test of active substance of Ulva polysaccharide microneedle patch

為了確認本發明之石蓴多醣微針穿刺皮膚溶解後,活性物質及/或藥物在皮膚內擴散的深度,本實施例同樣以豬皮模擬人體皮膚進行微針穿刺試驗。首先,依照實施例二之方法製備含有螢光染劑羅丹明6G(Rhodamine 6G,R6G)的石蓴多醣微針貼片,與實施例二所述方法唯一的差異僅在於,在製備微針部時,於4%(w/v)石蓴多醣溶液中加入終濃度為500mg/L的R6G染劑。 In order to confirm the depth of the active substance and/or drug diffusion in the skin after the microneedle puncture of Ulva polysaccharide of the present invention dissolves the skin, this embodiment also uses pig skin to simulate human skin to perform a microneedle puncture test. First, prepare the Ulva polysaccharide microneedle patch containing the fluorescent dye Rhodamine 6G (Rhodamine 6G, R6G) according to the method of Example 2. The only difference from the method described in Example 2 is that the preparation of the microneedle part At the time, add R6G dye with a final concentration of 500 mg/L to the 4% (w/v) Ulva polysaccharide solution.

豬皮穿刺試驗方法同實施例五所述,微針穿刺豬皮10分鐘後移除微針。接著,以雷射掃描共軛焦顯微鏡(confocal laser scanning microscope,CLSM,Nikon C2+,Nikon公司,日本)於激發光波長561nm下觀察螢光染劑R6G在豬皮內的擴散深度,在不同的z軸高度下進行掃描,並透過在不同的z軸高度重疊x軸與y軸的平面圖像獲得3D重建圖像。 The pigskin puncture test method is the same as that described in Example 5. The microneedles are removed after puncturing the pigskin for 10 minutes. Next, observe the diffusion depth of the fluorescent dye R6G in pig skin with a laser scanning conjugation microscope (CLSM, Nikon C2+, Nikon Company, Japan) at an excitation wavelength of 561nm. Scan under the axis height, and obtain a 3D reconstructed image by superimposing the x-axis and y-axis plane images at different z-axis heights.

R6G螢光染劑在豬皮內的3D重建圖像如圖8A所示。該3D重建圖像顯示,本發明之石蓴多醣微針最大皮膚穿透深度為約500μm,此深度約對應於人類皮膚的真皮層淺層。此外,豬皮在不同的z軸高度下進行掃描的結果如圖8B所示。石蓴多醣微針穿刺豬皮10分鐘後,由於石蓴多醣微針的可溶性質,活性物質/藥物(於本實施例中為石蓴多醣與R6G螢光染劑)在皮膚內會被釋放並擴散,其最大擴散深度約為520um(如圖6B所示)。由此可知,本發明之石蓴多醣 微針除了本身可以做為活性物質之外,亦可輔助其他活性物質及/或藥物輸送至真皮層,並能增強活性物質及/或藥物往皮膚更深層擴散的效率。 The 3D reconstructed image of R6G fluorescent dye in pig skin is shown in Figure 8A. The 3D reconstructed image shows that the maximum skin penetration depth of the ulva polysaccharide microneedle of the present invention is about 500 μm, which corresponds to the superficial dermal layer of human skin. In addition, the results of scanning pig skin at different z-axis heights are shown in Figure 8B. Ulva polysaccharide microneedles puncture pig skin for 10 minutes. Due to the soluble nature of Ulva polysaccharide microneedles, the active substance/drug (in this example, Ulva polysaccharide and R6G fluorescent dye) will be released in the skin. Diffusion, the maximum diffusion depth is about 520um (as shown in Figure 6B). It can be seen that the Ulva polysaccharide of the present invention In addition to being an active substance by itself, the microneedle can also assist the delivery of other active substances and/or drugs to the dermis, and can enhance the efficiency of the active substances and/or drugs to diffuse into the deeper layers of the skin.

實施例九 石蓴多醣微針貼片的體外經皮滲透試驗Example 9 In vitro transdermal penetration test of Ulva polysaccharide microneedle patch

為了確認本發明之石蓴多醣微針穿刺皮膚溶解後,活性物質及/或藥物是否滲透至皮膚內,本實施例同樣以豬皮模擬人體皮膚進行微針穿刺試驗,並以垂直式擴散槽(vertical diffusion cell,又稱Franz Cell)分析。 In order to confirm whether the active substance and/or the drug penetrated into the skin after the microneedle puncture of Ulva polysaccharide of the present invention is dissolved, this embodiment also uses pig skin to simulate human skin to perform a microneedle puncture test, and use a vertical diffusion groove ( Vertical diffusion cell, also known as Franz Cell) analysis.

使用實施例二所得到之以4%(w/v)的石蓴多醣溶液製備的微針貼片,以實施例五所述之方法進行豬皮穿刺試驗。微針穿刺豬皮30秒後,將豬皮移至含有17ml二次蒸餾水(ddH2O)的Franz Cell的受體槽,將溫度控制於37℃,連續攪拌。在不同時間點(2、5、10、20、30、40、60、90、120、150、180分鐘)取出400μL的樣品,並補回同樣體積的ddH2O。利用天青A(azure A)分光光度法測定微針釋放出的石蓴多醣含量。將100μL的天青A加入200μL的樣品中,靜置反應5分鐘,並以盤式酵素免疫分析儀(ELISA reader)測定波長610nm下的吸光值(OD610值)。此外,製備石蓴多醣標準品:配製10mg/mL的石蓴多醣溶液,然後連續稀釋共3次,利用ELISA reader測定各稀釋濃度的石蓴多醣標準品的OD610值,並繪製石蓴多醣濃度標準曲線,以計算各樣品中石蓴多醣的濃度。以下式計算石蓴多醣的累積釋放率:[(在不同時間點的石蓴多醣含量/最大的石蓴多醣含量)x 100%];本試驗重複三次(n=3),並計算各樣品的平均值與標準差。 Using the microneedle patch prepared with the 4% (w/v) Ulva polysaccharide solution obtained in Example 2, the pig skin puncture test was performed by the method described in Example 5. After the microneedle punctured the pig skin for 30 seconds, the pig skin was moved to the receiver tank of Franz Cell containing 17 ml of double distilled water (ddH 2 O), and the temperature was controlled at 37° C., and stirring was continued. At different time points (2, 5, 10, 20, 30, 40, 60, 90, 120, 150, 180 minutes) 400 μL of samples were taken out, and the same volume of ddH 2 O was replaced. The azure A (azure A) spectrophotometric method was used to determine the content of Ulva polysaccharides released from the microneedles. Add 100 μL of Azure A to a 200 μL sample, let it stand for 5 minutes, and measure the absorbance (OD 610 value) at a wavelength of 610 nm with a disc enzyme immunoassay (ELISA reader). In addition, prepare the Ulva polysaccharide standard: prepare a 10 mg/mL Ulva polysaccharide solution, and then serially dilute it for 3 times. Use an ELISA reader to determine the OD 610 value of the Ulva polysaccharide standard at each dilution, and plot the Ulva polysaccharide concentration Standard curve to calculate the concentration of Ulva polysaccharide in each sample. The following formula calculates the cumulative release rate of Ulva polysaccharides: [(Ulva polysaccharide content at different time points/maximum Ulva polysaccharide content) x 100%]; this test was repeated three times (n=3), and the sample’s Mean and standard deviation.

石蓴多醣微針在不同時間點的體外經皮滲透累積釋放量如圖9A所示,而累積釋放率則如圖9B所示。由圖9A及圖9B可知,在最初的60分鐘內微針快速釋放石蓴多醣,而後續緩慢釋放至3小時。微針在20分鐘時已經釋放出109.33±19.08μg(累積釋放率為約50%)的石蓴多醣,而至3小時後石蓴多醣的累積釋放量為201.05±21.09μg(累積釋放率為100%)。本實施例結果表示,本發明之石蓴多醣微針可在皮膚內快速溶解並成功地將石蓴多醣滲透至皮膚內。 The cumulative release amount of Ulva polysaccharide microneedle in vitro percutaneous penetration at different time points is shown in Figure 9A, and the cumulative release rate is shown in Figure 9B. It can be seen from Fig. 9A and Fig. 9B that the microneedle releases Ulva polysaccharides rapidly in the first 60 minutes, and slowly releases to 3 hours later. The microneedles had released 109.33±19.08μg (cumulative release rate of about 50%) of Ulva polysaccharide at 20 minutes, and the cumulative release of Ulva polysaccharide after 3 hours was 201.05±21.09μg (cumulative release rate of 100%). %). The results of this example show that the Ulva polysaccharide microneedles of the present invention can quickly dissolve in the skin and successfully penetrate the Ulva polysaccharide into the skin.

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The above detailed description is a specific description of a possible embodiment of the present invention, but this embodiment is not intended to limit the scope of the patent of the present invention. Any equivalent implementation or modification that does not deviate from the technical spirit of the present invention shall be included in In the scope of the patent in this case.

綜上所述,本案所揭露之技術特徵已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。 In summary, the technical features disclosed in this case have fully met the statutory invention patent requirements for novelty and advancement. You file an application in accordance with the law, and I implore your office to approve this invention patent application to encourage invention and make it convenient.

Claims (9)

一種石蓴多醣用於製備滲透皮膚用的微針之用途。 Ulva polysaccharide is used to prepare microneedles for skin penetration. 一種可溶性石蓴多醣微針,係以100℃以上之溫度萃取而得之石蓴多醣所製成。 A soluble ulva polysaccharide microneedle is made of ulva polysaccharide extracted at a temperature above 100°C. 如請求項2所述之可溶性石蓴多醣微針,其中該可溶性石蓴多醣微針係以約3.5~6.5%(w/v)的石蓴多醣溶液所製成。 The soluble Ulva polysaccharide microneedles according to claim 2, wherein the soluble Ulva polysaccharide microneedles are made of about 3.5-6.5% (w/v) Ulva polysaccharide solution. 一種製備可溶性石蓴多醣微針的方法,包含下列步驟:(i)提供一微針模具,該微針模具包含一微針部模具,該微針部模具包含一針尖部模具以及一針底部模具;(ii)將一包含約3.5~6.5%(w/v)石蓴多醣的溶液加至該微針部模具中,使該包含約3.5~6.5%(w/v)石蓴多醣的溶液乾燥形成一微針部;以及(iii)將該微針部與該微針模具分離,以得到該可溶性石蓴多醣微針。 A method for preparing soluble Ulva polysaccharide microneedles, comprising the following steps: (i) providing a microneedle mold, the microneedle mold includes a microneedle mold, the microneedle mold includes a needle tip mold and a needle bottom mold (Ii) A solution containing about 3.5~6.5% (w/v) Ulva polysaccharide is added to the microneedle mold, and the solution containing about 3.5~6.5% (w/v) Ulva polysaccharide is dried Forming a microneedle part; and (iii) separating the microneedle part from the microneedle mold to obtain the soluble Ulva polysaccharide microneedles. 一種可溶性石蓴多醣微針貼片,包含一微針部以及一背板部,該微針部係以石蓴多醣所製成。 A soluble ulva polysaccharide microneedle patch comprises a microneedle part and a back plate part, and the microneedle part is made of ulva polysaccharide. 如請求項5所述之可溶性石蓴多醣微針貼片,其中該微針部係以約3.5~6.5%(w/v)的石蓴多醣溶液所製成。 The soluble Ulva polysaccharide microneedle patch according to claim 5, wherein the microneedle part is made of about 3.5-6.5% (w/v) Ulva polysaccharide solution. 如請求項5所述之可溶性石蓴多醣微針貼片,其中該背板部係以由下列材料所組成之群組所製成:一澱粉與明膠之組合材料、一聚乙烯醇(polyvinyl alcohol,PVA)與蔗糖之組合材料、一幾丁聚醣,以及一聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)與羧甲基纖維素鈉(sodium carboxymethyl cellulose,CMC)之組合材料。 The soluble Ulva polysaccharide microneedle patch according to claim 5, wherein the back plate part is made of a group consisting of the following materials: a combination material of starch and gelatin, a polyvinyl alcohol (polyvinyl alcohol) , PVA) and sucrose combination material, a chitosan, and a polyvinylpyrrolidone (polyvinylpyrrolidone, PVP) and sodium carboxymethyl cellulose (sodium carboxymethyl cellulose, CMC) combination material. 如請求項7所述之可溶性石蓴多醣微針貼片,其中該背板部係以一包含約1:10至約10:1(w/w)的聚乙烯吡咯烷酮(PVP)與羧甲基纖維素鈉(CMC)之組合物材料所製成。 The soluble Ulva polysaccharide microneedle patch according to claim 7, wherein the back plate part is made of a polyvinylpyrrolidone (PVP) and carboxymethyl group comprising about 1:10 to about 10:1 (w/w) Made of composite material of sodium cellulose (CMC). 一種製備可溶性石蓴多醣微針貼片的方法,包含下列步驟:(i)提供一微針模具,該微針模具包含一微針部模具以及一背板部模具,該微針部模具包含一針尖部模具以及一針底部模具,該背板部模具與該針底部模具相連;(ii)將一包含約3.5~6.5%(w/v)石蓴多醣的溶液加至該微針部模具中,使該包含約3.5~6.5%(w/v)石蓴多醣的溶液乾燥形成一微針部;(iii)將一包含約1:10至約10:1(w/w)的聚乙烯吡咯烷酮(PVP)與羧甲基纖維素鈉(CMC)的組合物溶液加至該微針模具的該背板部模型中,使該包含聚乙烯吡咯烷酮(PVP)與羧甲基纖維素鈉(CMC)的組合物溶液乾燥形成一背板部;以及(iv)將該微針部連同該背板部與該微針模具分離,以得到該可溶性石蓴多醣微針貼片。 A method for preparing a soluble Ulva polysaccharide microneedle patch, comprising the following steps: (i) providing a microneedle mold, the microneedle mold comprising a microneedle part mold and a back plate part mold, the microneedle part mold comprising a The needle tip mold and a needle bottom mold, the back plate mold is connected to the needle bottom mold; (ii) a solution containing about 3.5~6.5% (w/v) Ulva polysaccharide is added to the microneedle mold , The solution containing about 3.5~6.5% (w/v) Ulva polysaccharide is dried to form a microneedle part; (iii) a polyvinylpyrrolidone containing about 1:10 to about 10:1 (w/w) is dried (PVP) and sodium carboxymethyl cellulose (CMC) composition solution is added to the back plate model of the microneedle mold, so that the containing polyvinylpyrrolidone (PVP) and sodium carboxymethyl cellulose (CMC) The composition solution of is dried to form a backing part; and (iv) separating the microneedle part and the backing part from the microneedle mold to obtain the soluble ulva polysaccharide microneedle patch.
TW109117298A 2020-05-25 2020-05-25 Dissolvable ulvan polysaccharide microneedles TWI748476B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109117298A TWI748476B (en) 2020-05-25 2020-05-25 Dissolvable ulvan polysaccharide microneedles
CN202110549655.4A CN113712896A (en) 2020-05-25 2021-05-20 Soluble ulva polysaccharide microneedle, microneedle patch and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109117298A TWI748476B (en) 2020-05-25 2020-05-25 Dissolvable ulvan polysaccharide microneedles

Publications (2)

Publication Number Publication Date
TWI748476B true TWI748476B (en) 2021-12-01
TW202143950A TW202143950A (en) 2021-12-01

Family

ID=78672717

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109117298A TWI748476B (en) 2020-05-25 2020-05-25 Dissolvable ulvan polysaccharide microneedles

Country Status (2)

Country Link
CN (1) CN113712896A (en)
TW (1) TWI748476B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103893018A (en) * 2014-04-16 2014-07-02 华熙福瑞达生物医药有限公司 Soluble hyaluronic acid micro-needle patch
CN104650252A (en) * 2015-03-04 2015-05-27 广州市白云联佳精细化工厂 Efficient extraction method of ulva polysaccharide
TW201737903A (en) * 2016-04-07 2017-11-01 Nissha Printing Co Ltd Microneedle sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999084B1 (en) * 2012-12-11 2015-03-13 Amadeite EXTRACT OF ALGAE COMPRISING IN PARTICULAR SULFATED AND NON-SULFATED POLYANIONIC POLYSACCHARIDES AND USES THEREOF
FR3021535B1 (en) * 2014-05-27 2016-06-10 Oreal COSMETIC USE OF A SULFATE POLYSACCHARIDE
JP7179354B2 (en) * 2016-08-29 2022-11-29 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Topical formulations based on ionic species for skin treatments
FR3075644B1 (en) * 2017-12-27 2020-08-28 Oreal SULPHATED OLIGOSACCHARIDES AND THEIR COSMETIC USES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103893018A (en) * 2014-04-16 2014-07-02 华熙福瑞达生物医药有限公司 Soluble hyaluronic acid micro-needle patch
CN104650252A (en) * 2015-03-04 2015-05-27 广州市白云联佳精细化工厂 Efficient extraction method of ulva polysaccharide
TW201737903A (en) * 2016-04-07 2017-11-01 Nissha Printing Co Ltd Microneedle sheet

Also Published As

Publication number Publication date
TW202143950A (en) 2021-12-01
CN113712896A (en) 2021-11-30

Similar Documents

Publication Publication Date Title
Nguyen et al. Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin
Vora et al. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules
Sharma et al. Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies
Donnelly et al. Processing difficulties and instability of carbohydrate microneedle arrays
CN105107083B (en) Microneedle array containing proteoglycans
Gao et al. Transdermal delivery of therapeutics through dissolvable gelatin/sucrose films coated on PEGDA microneedle arrays with improved skin permeability
KR20100025509A (en) Microneedle device and method for producing the same
CN113332588B (en) Tip drug-loaded soluble microneedle patch for oral mucosa administration and preparation method thereof
Ruan et al. Microneedle-mediated transdermal nanodelivery systems: a review
CN109701152A (en) A kind of soluble microneedle patch and preparation method thereof loading drug
US20210386985A1 (en) Biodegradable microneedles for transdermal therapeutic agent delivery
Zhang et al. In vivo safety assessment, biodistribution and toxicology of polyvinyl alcohol microneedles with 160-day uninterruptedly applications in mice
Liu et al. Fabrication of rapidly separable microneedles for transdermal delivery of metformin on diabetic rats
US9833405B2 (en) Biodegradable microdepot delivery system for topical delivery
Su et al. Efficient delivery of nanoparticles to deep skin layers using dissolvable microneedles with an extended-length design
CN108524916B (en) Preparation method of soluble microneedle loaded with Chinese cobra neurotoxin
Li et al. Composite dissolvable microneedle patch for therapy of oral mucosal diseases
Lv et al. Collagen‐based dissolving microneedles with flexible pedestals: A transdermal delivery system for both anti‐aging and skin diseases
TWI748476B (en) Dissolvable ulvan polysaccharide microneedles
CN113041212B (en) Self-assembled gel acne-removing microneedle patch and preparation method and application thereof
Cao et al. Sustained release of insulin from silk microneedles
US11007358B2 (en) Microneedle sheet
Shi et al. Revealing drug release and diffusion behavior in skin interstitial fluid by surface-enhanced Raman scattering microneedles
CN110840823B (en) Transporter composite autolytic microneedle and preparation method thereof
TWI794035B (en) Anti-wrinkle composition, anti-wrinkle microneedle patch and preparation method thereof