TWI748273B - Electro-optic device and method of operating the same - Google Patents

Electro-optic device and method of operating the same Download PDF

Info

Publication number
TWI748273B
TWI748273B TW108139230A TW108139230A TWI748273B TW I748273 B TWI748273 B TW I748273B TW 108139230 A TW108139230 A TW 108139230A TW 108139230 A TW108139230 A TW 108139230A TW I748273 B TWI748273 B TW I748273B
Authority
TW
Taiwan
Prior art keywords
particles
electro
color
optical device
stylus
Prior art date
Application number
TW108139230A
Other languages
Chinese (zh)
Other versions
TW202022471A (en
Inventor
史蒂芬 J 塔爾夫
麥可D 麥克克萊瑞
理查J 小波里尼
莎曼莎 莫瑞爾
Original Assignee
美商電子墨水股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商電子墨水股份有限公司 filed Critical 美商電子墨水股份有限公司
Publication of TW202022471A publication Critical patent/TW202022471A/en
Application granted granted Critical
Publication of TWI748273B publication Critical patent/TWI748273B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10522Electrophoretic layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0018Electro-optical materials
    • G02F1/0027Ferro-electric materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/1673Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by magnetophoresis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Human Computer Interaction (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一種電光裝置,其包括電泳介質,該電泳介質在流體中包含複數個粒子的分散物(dispersion),該等粒子係構成為在該流體內、在對應所施加的電場的方向上遷移。該等複數個粒子包含:具有第一電荷極性的第一電荷的第一種粒子、具有第二電荷極性的第二電荷的第二種粒子、和具有該第二電荷極性的第三電荷的第三種粒子。該第一電荷極性係與該第二電荷極性相反的,且該等第三種粒子係構成為在該流體內、在對應所施加的磁場梯度的方向上遷移。 An electro-optical device includes an electrophoretic medium containing a dispersion of a plurality of particles in a fluid, and the particles are configured to migrate in the fluid in a direction corresponding to an applied electric field. The plurality of particles include: a first type particle having a first charge with a first charge polarity, a second type particle with a second charge having a second charge polarity, and a third charge having the second charge polarity. Three kinds of particles. The polarity of the first charge is opposite to the polarity of the second charge, and the third particles are configured to migrate in the fluid in a direction corresponding to the applied magnetic field gradient.

Description

電光裝置及操作此電光裝置的方法 Electro-optical device and method of operating the electro-optical device

本申請案主張2018年10月30日申請的美國臨時申請案No.62/752,614的優先權,以參照的方式將其全部內容包含至本文中。 This application claims the priority of U.S. Provisional Application No. 62/752,614 filed on October 30, 2018, and the entire content of the application is incorporated herein by reference.

本文所述的技術涉及一種電光裝置,其包括電泳介質,該電泳介質含有帶電粒子和有磁反應性的粒子(magnetically responsive particles),其能夠利用專門的儀器(觸控筆(stylus)或列印頭)和相關的方法來運作(addressed)。 The technology described herein relates to an electro-optical device, which includes an electrophoretic medium containing charged particles and magnetically responsive particles, which can use a specialized instrument (stylus) or printing Head) and related methods to operate (addressed).

以參照的方式,將下述的所有的美國專利和已公開的申請案的全部內容併入本文中。 By way of reference, the entire contents of all the following U.S. patents and published applications are incorporated herein.

作為應用於材料或者顯示器的術語「電光」是以其在成像領域中的常規含義使用於本文中,係指具有第一和第二顯示狀態的材料,該第一和第二顯示狀態係至少一個光學性質不同,藉由向該材料施加電場使該材料從其第一顯示狀態轉變成其第二顯示狀態。雖然該光學性質通常是人眼可感覺到的顏色,但也可以是其他光學性質,諸如光學透射、反射、發光或在欲用於機器讀取的顯示的情況下,是在可見光範圍之外的電磁波長的反射變化的意義上的偽色(pseudo-color)。The term "electro-optics" as applied to materials or displays is used herein in its normal meaning in the imaging field, and refers to materials with first and second display states, the first and second display states being at least one The optical properties are different, and the material is transformed from its first display state to its second display state by applying an electric field to the material. Although the optical property is usually the color that the human eye can perceive, it can also be other optical properties, such as optical transmission, reflection, luminescence, or in the case of a display intended for machine reading, it is outside the range of visible light Pseudo-color in the sense of reflection changes of electromagnetic wavelengths.

術語「灰態」是以其在成像領域中的常規含義使用於本文中,係指像素的兩個極端的光學狀態中間的狀態,未必意指在這兩個極端狀態之間的黑-白轉變。例如,下述的數個E Ink的專利和已公開的申請案記載該等極端狀態為白和深藍的電泳顯示器,以至於中間的「灰態」實際上會是淺藍。當然,如上所述,光學狀態上的改變可能根本不是顏色改變。以下,可能使用術語「黑」和「白」來指顯示器的兩個極端的光學狀態,且應理解為通常包含並非嚴格黑和白的極端的光學狀態在內,例如前述的白和深藍狀態。以下,可能使用術語「單色」來表示只將像素驅動成其兩個極端的光學狀態而沒有介於其間的灰態的驅動方案。The term "gray state" is used in this article in its normal meaning in the imaging field, referring to the state between the two extreme optical states of the pixel, and does not necessarily mean the black-white transition between these two extreme states . For example, the following E Ink patents and published applications record electrophoretic displays with extreme states of white and dark blue, so that the "gray state" in the middle is actually light blue. Of course, as described above, the change in optical state may not be a color change at all. Hereinafter, the terms "black" and "white" may be used to refer to the two extreme optical states of the display, and should be understood to generally include extreme optical states that are not strictly black and white, such as the aforementioned white and dark blue states. Hereinafter, the term "monochrome" may be used to refer to a driving scheme that only drives the pixel to its two extreme optical states without an intervening gray state.

一些電光材料,就該等材料具有固態的外表面的意義而言是固態的,雖然該等材料可能(且往往確實)具有填充有液體或氣體的內部空間。以下,為了方便起見,可能將這種使用固態的電光材料的顯示器稱為「固態的電光顯示器」。因此,術語「固態的電光顯示器」包含旋轉雙色構件(member)顯示器、封裝電泳顯示器、微胞電泳顯示器和封裝液晶顯示器。Some electro-optical materials are solid in the sense that they have a solid outer surface, although they may (and often do) have internal spaces filled with liquid or gas. Hereinafter, for convenience, such a display using solid electro-optical materials may be referred to as a "solid electro-optical display." Therefore, the term "solid-state electro-optical display" includes rotating two-color member displays, packaged electrophoretic displays, microcell electrophoretic displays, and packaged liquid crystal displays.

術語「雙穩態」和「雙穩定性(bistability) 」是以其在領域中的常規含義使用於本文中,係指包括具有第一和第二顯示狀態的顯示元件的顯示器,該第一和第二顯示狀態係至少一個光學性質不同,而且在任何給定的元件藉由有限期間的定址脈衝(addressing pulse)而受到驅動以取得其第一或第二顯示狀態後,在該定址脈衝結束後,那個狀態會保留一段改變該顯示元件的狀態所需的該定址脈衝的最小期間的至少數倍(例如至少四倍)時間。美國專利No.7,170,670中指出一些具有灰階功能的粒子系的電泳顯示器不僅在其極端的黑態和白態下是穩定的,在其中間的灰態(gray state)下也是穩定的,而且一些其他類型的電光顯示器也有同樣的情形。雖然為了方便起見,本文可能使用術語「雙穩態」來涵蓋雙穩態和多穩態這兩種顯示器,但此種顯示器適合稱為「多穩態」而非雙穩態。The terms "bistability" and "bistability" are used herein in their conventional meanings in the field, and refer to displays including display elements having first and second display states, the first and The second display state is different in at least one optical property, and after any given element is driven by an addressing pulse of a finite period to obtain its first or second display state, after the addressing pulse ends , That state will remain for a period of at least several times (for example, at least four times) the minimum period of the address pulse required to change the state of the display element. U.S. Patent No. 7,170,670 pointed out that some electrophoretic displays with gray-scale function particles are not only stable in their extreme black and white states, but also stable in the middle gray state, and some Other types of electro-optical displays have the same situation. Although for convenience, this article may use the term "bistable" to cover both bistable and multi-stable displays, but such displays are appropriately called "multi-stable" rather than bistable.

作為多年來大量研究和開發主題的一種電光顯示器,係粒子系的電泳顯示器,其中,複數個帶電粒子在電場的影響下穿過流體移動。當與液晶顯示器相比時,電泳顯示器能夠具有以下屬性:良好的亮度和對比度、廣視角、狀態雙穩定性、和低功耗。然而,這些顯示器的長期影像品質的問題阻礙了它們的普及使用。例如,構成電泳顯示器的粒子傾向於沉降(settle),導致這些顯示器的使用壽命不足。An electro-optical display that has been the subject of a large number of research and development for many years is a particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field. When compared with a liquid crystal display, an electrophoretic display can have the following attributes: good brightness and contrast, wide viewing angle, state bistability, and low power consumption. However, the long-term image quality of these displays hinders their popular use. For example, particles constituting electrophoretic displays tend to settle, resulting in insufficient service life of these displays.

如上所述,電泳介質需要有流體存在。在大多數的電泳介質的先前技術中,此流體為液體,但電泳介質能夠使用氣相流體製造;參見例如Kitamura, T.等人,「類電子紙顯示器的電性調色劑運動(Electrical toner movement for electronic paper-like display)」,IDW Japan, 2001, Paper HCS1-1,和Yamaguchi, Y.等人,「使用以摩擦帶電方式帶電的絕緣性粒子的調色劑顯示器(Toner display using insulative particles charged triboelectrically) 」,IDW Japan, 2001, Paper AMD4-4)。亦可參見美國專利No. 7,321,459和7,236,291。這種氣體系的電泳介質,當在容許粒子沉降的方位(orientation)上使用該介質時,例如在將該介質配置在垂直平面上的招牌中,看起來容易受到與液體系的電泳介質同樣的起因於粒子沉降的問題影響。的確,粒子沉降的問題在氣體系的電泳介質中看起來比在液體系的電泳介質中還要嚴重,因為與液體流體相比,氣相懸浮流體較低的黏度會使該等電泳粒子更快地沉降。As mentioned above, the electrophoretic medium requires fluid to be present. In most of the prior art of electrophoretic media, the fluid is liquid, but the electrophoretic media can be manufactured using gas phase fluid; see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper displays (Electrical toner Movement for electronic paper-like display", IDW Japan, 2001, Paper HCS1-1, and Yamaguchi, Y. et al., "Toner display using insulative particles charged triboelectrically)", IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Nos. 7,321,459 and 7,236,291. Such a gas system electrophoresis medium, when the medium is used in an orientation that allows particles to settle, for example, in a signboard where the medium is arranged on a vertical plane, it seems that it is easily affected by the same as the liquid system electrophoresis medium. Caused by the problem of particle sedimentation. Indeed, the problem of particle sedimentation seems to be more serious in the electrophoretic medium of the gas system than in the electrophoresis medium of the liquid system, because the lower viscosity of the gas suspension fluid will make the electrophoretic particles faster than the liquid fluid. The land subsided.

大量轉讓給麻省理工學院(MIT)、E Ink公司、E Ink加州股份有限公司和相關公司或是在其名下的專利和申請案記載用於封裝的電泳介質和微胞電泳介質和其他電光介質的各種技術。封裝的電泳介質包括大量的小囊,每一個小囊本身包括內部相和圍繞該內部相的囊壁,該內部相在流體介質中含有可電泳移動的粒子。通常,該等囊本身係保持在聚合黏結劑(binder)中以形成位於兩電極之間的黏附層(coherent layer)。在微胞電泳顯示器中,該等帶電粒子和該流體未被封裝在微囊內,取而代之的是保留在形成在載體介質(通常是聚合薄膜)內的複數個凹部(cavities)內。記載在這些專利和申請案中的該等技術包含: (a)電泳粒子、流體和流體添加劑;參見例如美國專利No.7,002,728、7,679,814、9,759,980、和6,870,661; (b)囊、黏結劑和封裝製程;參見例如美國專利No.6,922,276和7,411,719; (c)微胞結構、壁材料、和形成微胞的方法;參見例如美國專利No.7,072,095和9,279,906; (d)用於填充和密封微胞的方法;參見例如美國專利No.7,144,942和7,715,088; (e)含有電光材料的薄膜和子組件;參見例如美國專利No.6,982,178和7,839,564; (f)用於顯示器中的背板、黏合劑層(adhesive layer)和其他輔助層以及方法;參見例如美國專利No.7,116,318和7,535,624; (g)顏色形成和顏色調節;參見例如美國專利No.7,075,502和7,839,564; (h)用於驅動顯示器的方法;參見例如美國專利No.7,012,600和7,453,445; (i)顯示器的應用;參見例如美國專利No.7,312,784和8,009,348、和美國專利申請案公開No. US2017/0336896;以及 (j)非電泳顯示器,如在美國專利No.6,241,921和美國專利申請案公開No.2015/0277160中所記載;和顯示器以外的封裝和微胞技術的應用;參見例如美國專利申請案公開No.2015/0005720和2016/0012710。Mass transfer to the Massachusetts Institute of Technology (MIT), E Ink, E Ink California, Inc. and related companies, or patents and applications under its name that record electrophoretic media and microcell electrophoresis media for packaging and other electro-optics Various technologies of the medium. The encapsulated electrophoretic medium includes a large number of small capsules, and each small capsule itself includes an internal phase and a capsule wall surrounding the internal phase. The internal phase contains electrophoretic movable particles in the fluid medium. Generally, the vesicles themselves are held in a polymeric binder to form a coherent layer between the two electrodes. In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated in microcapsules, but instead remain in a plurality of cavities formed in a carrier medium (usually a polymer film). The technologies documented in these patents and applications include: (a) Electrophoretic particles, fluids, and fluid additives; see, for example, U.S. Patent Nos. 7,002,728, 7,679,814, 9,759,980, and 6,870,661; (b) Capsule, adhesive and encapsulation process; see, for example, U.S. Patent Nos. 6,922,276 and 7,411,719; (c) The structure of micelles, wall materials, and methods of forming micelles; see, for example, U.S. Patent Nos. 7,072,095 and 9,279,906; (d) Methods for filling and sealing micelles; see, for example, U.S. Patent Nos. 7,144,942 and 7,715,088; (e) Films and sub-components containing electro-optical materials; see, for example, U.S. Patent Nos. 6,982,178 and 7,839,564; (f) Backplanes, adhesive layers and other auxiliary layers and methods used in displays; see, for example, U.S. Patent Nos. 7,116,318 and 7,535,624; (g) Color formation and color adjustment; see, for example, U.S. Patent Nos. 7,075,502 and 7,839,564; (h) A method for driving a display; see, for example, U.S. Patent Nos. 7,012,600 and 7,453,445; (i) Application of the display; see, for example, U.S. Patent Nos. 7,312,784 and 8,009,348, and U.S. Patent Application Publication No. US2017/0336896; and (j) Non-electrophoretic displays, as described in U.S. Patent No. 6,241,921 and U.S. Patent Application Publication No. 2015/0277160; and applications of packaging and microcell technology other than displays; see, for example, U.S. Patent Application Publication No. 2015/0005720 and 2016/0012710.

許多前述專利和申請案認識到在封裝的電泳介質中圍繞該等離散的微囊的該等壁能由連續相取代,由此產生所謂的聚合物分散型電泳顯示器,其中該電泳介質包括複數個離散的電泳流體液滴和連續相的聚合材料,而且即使沒有與每個單獨的液滴相結合的離散的囊膜,也可以將在這樣的聚合物分散型電泳顯示器內的離散的電泳流體液滴視為囊或微囊;參見例如前述美國專利No.6,866,760。因此,基於本申請案的目的,將這樣的聚合物分散型電泳介質視為封裝的電泳介質的子類。Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in the encapsulated electrophoretic medium can be replaced by a continuous phase, thereby producing a so-called polymer dispersion type electrophoretic display, wherein the electrophoretic medium includes a plurality of Discrete electrophoretic fluid droplets and continuous-phase polymer materials, and even if there is no discrete capsule combined with each individual droplet, the discrete electrophoretic fluid fluid in such a polymer dispersion electrophoretic display can be combined. Drops are considered capsules or microcapsules; see, for example, the aforementioned U.S. Patent No. 6,866,760. Therefore, based on the purpose of this application, such polymer dispersion electrophoretic media is regarded as a subclass of encapsulated electrophoretic media.

有多種系統可用於利用觸控筆來使電光顯示器運作。例如,能夠使用觸控筆來在某些平板電腦上做筆記。當使用者使該觸控筆越過該電光顯示器的表面上方時,該電光顯示器便根據由該電光顯示器所偵測到該觸控筆的位置而啟動了與該觸控筆越過其上方的像素相對應的那些像素。一些磁反應性顯示器可以利用含有磁鐵及/或產生磁場的觸控筆來運作。There are a variety of systems that can be used to use a stylus to make electro-optical displays work. For example, a stylus can be used to take notes on some tablets. When the user moves the stylus over the surface of the electro-optical display, the electro-optical display activates the corresponding pixels on which the stylus passes over it based on the position of the stylus detected by the electro-optical display. The corresponding pixels. Some magneto-responsive displays can operate with a stylus that contains magnets and/or generates a magnetic field.

現有的可寫電光顯示器系統在使用電泳介質所能提供的顏色數量上受到限制。由此,需要一種改良的基於電泳的可寫裝置,其能夠讓使用者產生具有多種顏色的影像。Existing writable electro-optical display systems are limited in the number of colors that can be provided using electrophoretic media. Therefore, there is a need for an improved electrophoresis-based writable device that can allow users to generate images with multiple colors.

在本發明的第一態樣中,一種電光裝置,包括:在觀看側上的第一表面;在該第一表面的相反側上的第二表面;電泳介質,配置在透光導電層與像素電極的陣列之間,且在流體中包括複數個粒子,該等複數個粒子包括:(1)具有第一顏色、第一電荷極性的第一電荷的第一種粒子;(2)具有第二顏色、第二電荷極性的第二電荷的第二種粒子;和(3)具有第三顏色、該第二電荷極性的第三電荷的第三種粒子,其中該第一、第二和第三顏色係彼此不同的,該第一電荷極性係與該第二電荷極性相反,該等複數個粒子係構成為在該流體內、在對應所施加的電場的方向上遷移,該等第三種粒子係構成為在該流體內、在對應所施加的磁場梯度的方向上遷移,該第二種粒子具有電場臨界值(threshold),使得(a)在該透光導電層與像素電極之間施加電壓電位差(voltage potential difference)以產生比該電場臨界值還強的電場而具有驅動該等第二種粒子鄰接該透光導電層的極性,進而使與該像素電極相對應的像素在該第一表面顯示該第二顏色;(b)在該透光導電層與像素電極之間施加電壓電位差以產生比該電場臨界值還強的電場而具有驅動該等第一種粒子鄰接該透光導電層的極性,進而使與該像素電極相對應的像素在該第一表面顯示該第一顏色;(c)一旦該第一顏色被顯示在該第一表面,在該透光導電層與像素電極之間施加電壓電位差以產生比該電場臨界值還弱的電場,具有驅動該等第三種粒子鄰接該透光導電層的極性,進而使與該像素電極相對應的像素顯示該第三顏色。In a first aspect of the present invention, an electro-optical device includes: a first surface on the viewing side; a second surface on the opposite side of the first surface; an electrophoretic medium disposed on the light-transmitting conductive layer and the pixel Between the arrays of electrodes and the fluid includes a plurality of particles, the plurality of particles include: (1) a first type of particle with a first color and a first charge polarity; (2) a second type of particle Color, a second-charged second particle of a second charge polarity; and (3) a third color, a third-charged particle of the second charge polarity, wherein the first, second, and third particles The colors are different from each other, the polarity of the first charge is opposite to the polarity of the second charge, the plurality of particles are configured to migrate in the fluid in the direction corresponding to the applied electric field, and the third type of particles The system is configured to migrate in the fluid in a direction corresponding to the applied magnetic field gradient, and the second kind of particles have an electric field threshold, so that (a) a voltage is applied between the light-transmitting conductive layer and the pixel electrode The voltage potential difference generates an electric field stronger than the critical value of the electric field and has the polarity to drive the second particles to abut the light-transmitting conductive layer, so that the pixel corresponding to the pixel electrode is on the first surface. Display the second color; (b) applying a voltage potential difference between the light-transmitting conductive layer and the pixel electrode to generate an electric field that is stronger than the critical value of the electric field to drive the first particles to abut the light-transmitting conductive layer Polarity, so that the pixel corresponding to the pixel electrode displays the first color on the first surface; (c) Once the first color is displayed on the first surface, between the light-transmissive conductive layer and the pixel electrode The voltage potential difference is applied to generate an electric field weaker than the critical value of the electric field, which has the polarity to drive the third particles to abut the light-transmitting conductive layer, so that the pixel corresponding to the pixel electrode displays the third color.

在本發明的另一態樣中,一種操作電光裝置的方法,其中該電光裝置包括:(a)在觀看側上的第一表面;(b)在該第一表面的相反側上的第二表面;(c)電泳介質,配置在透光導電層與像素電極的陣列之間,且在流體中包括複數個粒子,該等複數個粒子包括:(1)具有第一顏色、第一電荷極性的第一電荷的第一種粒子;(2)具有第二顏色、第二電荷極性的第二電荷的第二種粒子;和(3)具有第三顏色、該第二電荷極性的第三電荷的第三種粒子,其中該第一、第二和第三顏色係彼此不同的,其中該第一電荷極性係與該第二電荷極性相反的,其中該等複數個粒子係構成為在該流體內、在對應所施加的電場的方向上遷移,且其中該等第三種粒子係構成為在該流體內、在對應所施加的磁場梯度的方向上遷移,包括以下步驟:(A)以包括磁性頂端的觸控筆接觸該裝置的第一表面上的第一位置以使第三種粒子朝向該第一位置遷移;和(B)以該包括磁性頂端的觸控筆再次接觸該裝置的該第一表面上的該第一位置以使第二種粒子朝向該第一位置遷移。In another aspect of the present invention, a method of operating an electro-optical device, wherein the electro-optical device includes: (a) a first surface on the viewing side; (b) a second surface on the opposite side of the first surface Surface; (c) an electrophoretic medium, which is arranged between the light-transmitting conductive layer and the array of pixel electrodes, and includes a plurality of particles in the fluid, the plurality of particles include: (1) having a first color and a first charge polarity The first particle of the first charge; (2) The second particle of the second charge with the second color and the second charge polarity; and (3) The third charge with the third color and the second charge polarity The third kind of particles, wherein the first, second and third colors are different from each other, wherein the first charge polarity is opposite to the second charge polarity, and the plurality of particles are formed in the flow The body moves in the direction corresponding to the applied electric field, and the third particles are configured to move in the fluid in the direction corresponding to the applied magnetic field gradient, including the following steps: (A) to include The stylus with the magnetic tip contacts the first position on the first surface of the device to make the third particles migrate towards the first position; and (B) the stylus with the magnetic tip contacts the device again with the stylus The first position on the first surface allows the second type of particles to migrate toward the first position.

以下,進一步說明上述的態樣和實施例、以及附加的態樣和實施例。本發明的其他態樣將藉由以下的說明而易於理解。本申請案不限於此形式,因此這些態樣及/或實施例可以單獨使用、一起使用、或以兩個以上的任何組合來使用。Hereinafter, the above-mentioned aspects and embodiments, as well as additional aspects and embodiments are further explained. Other aspects of the present invention will be easily understood by the following description. The application is not limited to this form, so these aspects and/or embodiments can be used alone, together, or in any combination of two or more.

本發明的各種實施例涉及可電性和磁性運作的電泳介質和粒子系的電光顯示器。本發明的各種實施例可構成為同時提供全面(global)和局部運作能力。可以使用該全面運作能力來創造出單色狀態(solid color state),例如白色或黑色,因而被視為「抹除(erase)」狀態。該全面運作狀態可以是可電性控制的。例如,該顯示器可以在該顯示器的粒子系的電光層的相對側上包含電極,且可以操作該等電極以創造出合適的電場而將該墨(ink)設定為均勻的顏色狀態。該顯示器可以包含供控制施予該等電泳粒子的該電場用的控制器。該控制器可以施加靜態電場或隨時間變動的電場(time-dependent electric field),即波形。該局部運作能力可以藉由一個以上的產生電場或磁場的書寫器具(writing implements)來提供。在本文中使用的術語「書寫器具」包含觸控筆。Various embodiments of the present invention relate to electro-optical displays of electrophoretic media and particle systems that can operate electrically and magnetically. Various embodiments of the present invention can be configured to provide both global and partial operational capabilities. This full operational capability can be used to create a solid color state, such as white or black, which is considered an "erase" state. The overall operating state can be electrically controllable. For example, the display may include electrodes on opposite sides of the electro-optical layer of the particle system of the display, and the electrodes may be operated to create a suitable electric field to set the ink to a uniform color state. The display may include a controller for controlling the electric field applied to the electrophoretic particles. The controller can apply a static electric field or a time-dependent electric field, which is a waveform. This local operating capability can be provided by more than one writing implements that generate electric or magnetic fields. The term "writing instrument" used in this article includes a stylus.

在本文中使用的將粒子稱為「磁性」、「有磁反應性的」、「對磁場梯度有反應」、「可磁性運作的」和「構成為在該流體內、在對應所施加的磁場梯度的方向上遷移」的該等用語是同義的。它們係指一旦施加磁場梯度就會在該液體分散介質中遷移且可能形成鏈的粒子。在科學文獻中,這樣的粒子可能被稱為磁泳粒子(magnetophoretic particles)。As used in this article, particles are referred to as "magnetic", "magnetically reactive", "responsive to magnetic field gradients", "operable magnetically", and "constituted in the fluid to correspond to the applied magnetic field The terms "shift in the direction of the gradient" are synonymous. They refer to particles that migrate in the liquid dispersion medium and may form chains once a magnetic field gradient is applied. In the scientific literature, such particles may be called magnetophoretic particles.

根據本發明的一個實施例,電泳介質可以包括複數個帶電粒子的分散物(dispersion)。該等複數個電泳粒子較佳為包含至少三組不同的粒子:光散射白色顏料、光散射磁性著色顏料、和黑色顏料。該著色顏料可以是白色或黑色以外的任何顏色。在較佳實施例中,該著色顏料是紅色或黃色。為了控制各組帶電粒子穿越該分散流體(dispersion fluid)的移動度(mobility),一組以上的粒子可以包含具有聚合物塗層的核顏料,該聚合物塗層通常是被接枝或吸附在該等顏料粒子的表面的聚合物,諸如美國專利申請案公開號2015/0103394和2016/0085121中所記載者。各組帶電粒子之間,該等核顏料的直徑及/或該等塗層的厚度可以是不同的。According to an embodiment of the present invention, the electrophoretic medium may include a dispersion of a plurality of charged particles. The plurality of electrophoretic particles preferably include at least three different groups of particles: light-scattering white pigments, light-scattering magnetic colored pigments, and black pigments. The colored pigment may be any color other than white or black. In a preferred embodiment, the colored pigment is red or yellow. In order to control the mobility of each group of charged particles through the dispersion fluid, more than one group of particles may contain a core pigment with a polymer coating, which is usually grafted or adsorbed on The surface polymers of the pigment particles are, for example, those described in U.S. Patent Application Publication Nos. 2015/0103394 and 2016/0085121. The diameters of the core pigments and/or the thickness of the coatings can be different among the groups of charged particles.

在本發明的較佳實施例中,該黑色顏料和該光散射磁性著色顏料具有相同的電荷極性,同時該白色顏料具有相反的極性,且只有該光散射磁性著色顏料對磁場梯度有反應,即在該分散流體內、在對應所施加的磁場梯度的方向上移動。In a preferred embodiment of the present invention, the black pigment and the light-scattering magnetic coloring pigment have the same charge polarity, while the white pigment has the opposite polarity, and only the light-scattering magnetic coloring pigment is responsive to the magnetic field gradient, namely It moves in the direction corresponding to the applied magnetic field gradient within the dispersion fluid.

該白色粒子中所使用的該核顏料可以是如電泳顯示器領域中所熟知的高折射率的金屬氧化物。該白色粒子的材料的範例包含但不限於:無機顏料,諸如TiO2 ,ZrO2 ,ZnO,Al2 O3 ,Sb2 O3 ,BaSO4 ,PbSO4 或其類似者。The core pigment used in the white particles may be a metal oxide with a high refractive index as well known in the field of electrophoretic displays. Examples of the material of the white particles include, but are not limited to, inorganic pigments, such as TiO 2 , ZrO 2 , ZnO, Al 2 O 3 , Sb 2 O 3 , BaSO 4 , PbSO 4 or the like.

該黑色粒子的用作該核顏料的材料包含但不限於:CI顏料黑26或28或其類似者(例如,鐵酸錳(manganese ferrite)黑尖晶石或亞鉻酸銅(copper chromite)黑尖晶石)或碳黑。The material of the black particles used as the core pigment includes but is not limited to: CI Pigment Black 26 or 28 or the like (for example, manganese ferrite black spinel or copper chromite black Spinel) or carbon black.

該等著色顏料粒子較佳為非黑色且非白色,而可以具有諸如紅色、綠色、藍色、洋紅色、青綠色或黃色的顏色。該光散射磁性著色顏料的用作該核顏料的材料包含但不限於:CI顏料PR 254、PR122、PR149、PG36、PG58、PG7、PB28、PB15:3、PY138、PY150、PY155或PY20。它們是顏色索引手冊「新顏料應用技術」(CMC出版社股份有限公司,1986)和「印墨技術」(CMC出版社股份有限公司,1984)中所記載的常用有機顏料。具體範例包含:Clariant Hostaperm Red D3G 70-EDS、Hostaperm Pink E-EDS、PV fast red D3G、Hostaperm red D3G 70、Hostaperm Blue B2G-EDS、Hostaperm Yellow H4G-EDS、Hostaperm Green GNX、BASF Irgazine red L 3630、Cinquasia Red L 4100HD、和Irgazin Red L 3660HD;太陽化學酞菁藍、酞菁綠、二芳基黃或二芳基AAOT黃。複合磁性粒子的範例可以包含美國專利No.7,130,106中記載的材料。The colored pigment particles are preferably non-black and non-white, and may have colors such as red, green, blue, magenta, cyan, or yellow. The material used as the core pigment of the light-scattering magnetic color pigment includes but is not limited to: CI pigment PR 254, PR122, PR149, PG36, PG58, PG7, PB28, PB15:3, PY138, PY150, PY155 or PY20. They are commonly used organic pigments described in the color index manuals "New Pigment Application Technology" (CMC Press Co., Ltd., 1986) and "Ink Technology" (CMC Press Co., Ltd., 1984). Specific examples include: Clariant Hostaperm Red D3G 70-EDS, Hostaperm Pink E-EDS, PV fast red D3G, Hostaperm red D3G 70, Hostaperm Blue B2G-EDS, Hostaperm Yellow H4G-EDS, Hostaperm Green GNX, BASF Irgazine red L 3630, Cinquasia Red L 4100HD, and Irgazin Red L 3660HD; Solar Chemical Phthalocyanine Blue, Phthalocyanine Green, Diaryl Yellow or Diaryl AAOT Yellow. Examples of composite magnetic particles may include the materials described in US Patent No. 7,130,106.

除了該等顏色外,該等第一、第二和第三種帶電粒子還可以具有其他不同的光學特徵,諸如光學透射、反射、發光或在欲用於機器讀取的顯示的情況下,是在可見光範圍之外的電磁波長的反射變化的意義上的偽色。In addition to these colors, the first, second, and third charged particles can also have other different optical characteristics, such as optical transmission, reflection, luminescence, or in the case of a display intended for machine reading, False color in the sense of changes in the reflection of electromagnetic wavelengths outside the visible range.

該等複數個帶電顏料粒子可以帶有自然電荷或者藉由電荷控制劑的存在來使其帶電。The plurality of charged pigment particles may be naturally charged or charged by the presence of a charge control agent.

該流體中的該等帶電粒子的百分比可以變更。例如,在含有三種粒子的分散物中,該黑色粒子可以佔該電泳流體的體積的約0.1%至10%,較佳為0.5%至5%;該白色粒子可以佔該流體的體積的約1%至50%,較佳為5%至15%;且該著色粒子可以佔該流體的體積的約2%至20%,較佳為1%至10%。The percentage of the charged particles in the fluid can be changed. For example, in a dispersion containing three kinds of particles, the black particles may account for about 0.1% to 10% of the volume of the electrophoretic fluid, preferably 0.5% to 5%; the white particles may account for about 1% of the volume of the fluid. % To 50%, preferably 5% to 15%; and the colored particles may account for about 2% to 20% of the volume of the fluid, preferably 1% to 10%.

根據本發明的該等各種實施例所製造的該電泳介質可以進一步包含一個以上的其他可選擇的成分,諸如未帶電的中性浮力粒子(諸如美國專利申請案2015/0103394中所記載的那些物質)、電荷控制劑、和界面活性劑。The electrophoretic medium manufactured according to the various embodiments of the present invention may further contain one or more other optional components, such as uncharged neutral buoyant particles (such as those described in U.S. Patent Application 2015/0103394 ), charge control agents, and surfactants.

在本發明的較佳實施例中,流體為非極性溶劑。內部分散有該等複數個粒子的該分散流體可以是透明且無色的溶劑。就高粒子移動度而言,該溶劑較佳為具有低黏度和在約2至約30(較佳為約2至約15)的範圍內的介電常數。合適的介電性溶劑的範例包含:烴(諸如異鏈烷烴(Isopar)、十氫萘(DECALIN)、5-亞乙基-2-降冰片烯、脂肪油、石蠟油、矽液),芳香烴(諸如甲苯、二甲苯、苯基二甲苯基乙烷、十二烷基苯或烷基萘)、鹵化溶劑(諸如全氟十氫萘、全氟甲苯、全氟二甲苯、二氯三氟甲苯、3,4,5-三氯三氟苯、氯五氟苯、二氯壬烷或五氯苯)、及全氟化溶劑(諸如來自3M公司,St.Paul Minn.的FC-43、FC-70或FC-5060)、低分子量含鹵素聚合物(諸如來自TCI美國,Portland,Oreg.的聚(全氟環氧丙烷)),聚(三氟氯乙烯)(諸如來自Halocarbon Product公司,River Edge,N.J.的Halocarbon Oils)、全氟聚烷基醚(諸如來自Ausimont的Galden或者來自DuPont,Del.的Krytox油和潤滑脂K-Fluid系列)、來自Dow-corning的基於聚二甲基矽氧烷的矽酮油(DC-200)。 In a preferred embodiment of the present invention, the fluid is a non-polar solvent. The dispersion fluid in which the plurality of particles are dispersed may be a transparent and colorless solvent. In terms of high particle mobility, the solvent preferably has a low viscosity and a dielectric constant in the range of about 2 to about 30 (preferably about 2 to about 15). Examples of suitable dielectric solvents include: hydrocarbons (such as isoparaffin (Isopar), decalin (DECALIN), 5-ethylidene-2-norbornene, fatty oil, paraffin oil, silicon liquid), aromatic Hydrocarbons (such as toluene, xylene, phenylxylylethane, dodecylbenzene or alkylnaphthalene), halogenated solvents (such as perfluorodecalin, perfluorotoluene, perfluoroxylene, dichlorotrifluoro Toluene, 3,4,5-trichlorotrifluorobenzene, chloropentafluorobenzene, dichlorononane or pentachlorobenzene), and perfluorinated solvents (such as FC-43, from 3M Company, St. Paul Minn.) FC-70 or FC-5060), low molecular weight halogen-containing polymers (such as poly(perfluoropropylene oxide) from TCI USA, Portland, Oreg.), poly(chlorotrifluoroethylene) (such as from Halocarbon Products, River Edge, NJ's Halocarbon Oils), perfluoropolyalkyl ethers (such as Galden from Ausimont or Krytox oils and greases K-Fluid series from DuPont, Del.), polydimethylsiloxane-based from Dow-corning Silicone oil with oxane (DC-200).

如上所述,本發明的較佳實施例中的兩種帶電顏料粒子可以帶有相反的電荷極性。另外,可以使該第三種帶電顏料粒子稍微帶電。術語「稍微帶電」意在指該等粒子的電荷程度小於該等較強的帶電粒子的電荷強度的約50%,較佳為約5%至約30%。在一個實施例中,該電荷強度可以以界面電位(zeta potential)的形式來測量。在一個實施例中,該界面電位係藉由具有CSPU-100訊號處理單元的Colloidal Dynamics AcoustoSizerΠM,ESA EN# Attn流通胞(flow through cell)(K:127)來測定。在測試前輸入儀器常數,諸如樣品中所使用的溶劑的密度、溶劑的介電常數、溶劑中的聲速、溶劑的粘度,它們全部是在測試溫度(25℃)下的常數。將顏料樣品分散在該溶劑(其通常是具有少於12個碳原子的烴流體)中,並稀釋至5~10重量%之間。該樣品還以該電荷控制劑對該等粒子為1:10的重量比含有電荷控制劑(Solsperse® 17000,得自Lubrizol Corporation,Berkshire Hathaway公司)。測定該經稀釋的樣品的質量,然後將該樣品裝入該流通胞中以測定該界面電位。As described above, the two charged pigment particles in the preferred embodiment of the present invention may have opposite charge polarities. In addition, the third type of charged pigment particles can be slightly charged. The term "slightly charged" means that the degree of charge of the particles is less than about 50% of the charge intensity of the stronger charged particles, preferably about 5% to about 30%. In one embodiment, the charge intensity can be measured in the form of zeta potential. In one embodiment, the interface potential is measured by a Colloidal Dynamics AcoustoSizer ΠM, ESA EN# Attn flow through cell (K: 127) with a CSPU-100 signal processing unit. Enter the instrument constants before the test, such as the density of the solvent used in the sample, the dielectric constant of the solvent, the speed of sound in the solvent, and the viscosity of the solvent, all of which are constants at the test temperature (25°C). The pigment sample is dispersed in the solvent (which is usually a hydrocarbon fluid with less than 12 carbon atoms) and diluted to between 5-10% by weight. The sample also contains a charge control agent (Solsperse® 17000, available from Lubrizol Corporation, Berkshire Hathaway) at a weight ratio of the charge control agent to the particles of 1:10. The mass of the diluted sample is measured, and then the sample is loaded into the flow cell to determine the interface potential.

在本發明的內容中,術語「臨界電壓」或「電場臨界值」係定義為:當從與一群粒子的顏色狀態不同的顏色狀態驅動像素時,可施加於該群粒子一段時間(通常不長於30秒鐘,較佳為不長於15秒鐘)而不會使該等粒子出現在該像素的該觀看側的最大電場。在本申請案中,術語「觀看側」係指影像能被觀看者看到的顯示層中的該第一表面。In the context of the present invention, the term "critical voltage" or "electric field critical value" is defined as: when a pixel is driven from a color state different from the color state of a group of particles, it can be applied to the group of particles for a period of time (usually not longer than 30 seconds, preferably no longer than 15 seconds) without the particles appearing at the maximum electric field on the viewing side of the pixel. In this application, the term "viewing side" refers to the first surface in the display layer where the image can be seen by the viewer.

該臨界電壓或電場臨界值是該等帶電粒子的固有特徵或者是由添加劑所引發的性質。The threshold voltage or electric field threshold is an inherent characteristic of the charged particles or a property induced by additives.

在前一種情況下,該臨界電壓或電場臨界值係取決於相反的帶電粒子之間或粒子與某些基板表面之間的某種吸引力產生。In the former case, the threshold voltage or the threshold value of the electric field depends on the attraction between oppositely charged particles or between the particles and the surface of certain substrates.

在由添加劑所引發的臨界電壓或電場臨界值的情況下,可以添加引發或強化電泳流體的臨界特徵(threshold characteristics)的臨界劑(threshold agent)。該臨界劑可以是任何材料,其可溶於或分散於該溶劑、或該電泳流體和載體的溶劑混合物中,或者引發與該等帶電粒子的電荷相反的電荷。該臨界劑可以是對所施加的電壓的變化敏感的或不敏感的。該術語「臨界劑」大體上可以包含染料或顏料、電解質或聚電解質(polyelectrolytes)、聚合物、寡聚物、界面活性劑、電荷控制劑和其類似者。關於該臨界劑的其他資訊可以在美國專利No.8,115,729中找到。In the case of the threshold voltage or the threshold value of the electric field caused by the additive, a threshold agent that initiates or strengthens the threshold characteristics of the electrophoretic fluid can be added. The critical agent can be any material that can be dissolved or dispersed in the solvent, or the solvent mixture of the electrophoretic fluid and the carrier, or induce a charge opposite to the charge of the charged particles. The critical agent may be sensitive or insensitive to changes in the applied voltage. The term "critical agent" can generally include dyes or pigments, electrolytes or polyelectrolytes, polymers, oligomers, surfactants, charge control agents, and the like. Additional information about the critical agent can be found in US Patent No. 8,115,729.

在一個範例中,該電泳介質可以含有:具有負極性的第一電荷的白色顏料粒子、具有正極性的第二電荷的黑色顏料粒子、和具有正極性的第三電荷的紅色顏料粒子。若使該紅色顏料粒子稍微帶電,如上所述,即,該紅色顏料粒子具有比該黑色和該白色顏料粒子上的該等電荷還弱的電荷,則該等黑色粒子為了移動至該電泳介質的該觀看側而可能需要施加於整個電泳介質的「臨界電壓」,而不是該等紅色粒子移動至該電泳介質的觀看側所需的較低的電壓。同樣地,當在該透光導電層與像素電極之間所施加的電壓電位差產生比該電場臨界值還弱的電場而具有驅動該等紅色粒子鄰接該透光導電層的極性時,可能比該等紅色粒子與該等白色粒子之間的靜電吸引力還小的該等黑色粒子與該等白色粒子之間的強大的靜電吸引力,可以造成該等紅色粒子遷移而鄰接該透光導電層。在該透光導電層與像素電極之間施加電壓電位差以產生比該電場臨界值還強的電場(而具有驅動該等黑色粒子鄰接該透光導電層的極性),可以充分克服該白色與黑色粒子之間的該靜電吸引力並造成該等黑色粒子遷移而鄰接該透光導電層。In one example, the electrophoretic medium may contain white pigment particles with a first charge of negative polarity, black pigment particles with a second charge of positive polarity, and red pigment particles with a third charge of positive polarity. If the red pigment particles are slightly charged, as described above, that is, the red pigment particles have a weaker charge than the charges on the black and white pigment particles, then the black particles are required to move to the electrophoretic medium. The viewing side may require a "critical voltage" applied to the entire electrophoretic medium instead of the lower voltage required for the red particles to move to the viewing side of the electrophoretic medium. Similarly, when the voltage potential difference applied between the light-transmitting conductive layer and the pixel electrode generates an electric field that is weaker than the critical value of the electric field and has the polarity that drives the red particles to abut the light-transmitting conductive layer, it may be more The strong electrostatic attraction between the black particles and the white particles that is smaller than the electrostatic attraction between the red particles and the white particles can cause the red particles to migrate to abut the light-transmitting conductive layer. Applying a voltage potential difference between the light-transmitting conductive layer and the pixel electrode to generate an electric field stronger than the critical value of the electric field (and having the polarity to drive the black particles to abut the light-transmitting conductive layer) can fully overcome the white and black The electrostatic attraction between the particles causes the black particles to migrate to abut the light-transmitting conductive layer.

該等三種帶電粒子可以具有多種尺寸。在一個實施例中,該等三種粒子中的一種大於另外兩種。例如,該等黑色和白色粒子都可以是相對小的且它們的尺寸(藉由動態光散射來測試)可以在約50nm至約800nm(更佳為約200nm至約700nm)的範圍內,而該等著色粒子較佳為比該等黑色粒子和該等白色粒子大約2至約50倍且更佳為約2至約10倍。該等數值係相當於對應的顏料粒子的平均直徑。The three kinds of charged particles can have various sizes. In one embodiment, one of the three particles is larger than the other two. For example, the black and white particles can be relatively small and their size (tested by dynamic light scattering) can be in the range of about 50nm to about 800nm (more preferably about 200nm to about 700nm), and the The iso-colored particles are preferably about 2 to about 50 times and more preferably about 2 to about 10 times larger than the black particles and the white particles. These values correspond to the average diameter of the corresponding pigment particles.

如以上所說明的,可以將根據本發明的各種實施例的該電泳介質包含至利用一個以上的書寫器具的可寫電光顯示器。該書寫器具可以是手持式。該等書寫器具中的至少一個可以產生電場及/或磁極,其在該書寫器具所在的局部區域內造成該顯示器的光學狀態的改變。該光學狀態的改變可以包含該等白色、著色的、及/或黑色粒子在該顯示器內的移動。As explained above, the electrophoretic medium according to various embodiments of the present invention can be incorporated into a writable electro-optical display using more than one writing instrument. The writing instrument may be hand-held. At least one of the writing instruments can generate an electric field and/or a magnetic pole, which causes a change in the optical state of the display in the local area where the writing instrument is located. The change in the optical state may include the movement of the white, colored, and/or black particles in the display.

現在參照圖1,根據本發明的一個實施例的顯示器可以包括分散物,該分散物包括位於第一導電層100與第二導電層102之間的複數個電泳粒子。如圖1所示,該顯示器係從上方觀看;因此,該第一導電層100可以是透光導電材料的連續層,諸如銦錫氧化物。該第二導電層102可能是透光的或不透光的。例如,該層102可以以包括像素電極的陣列(諸如TFT陣列)的基板的形式提供。該顯示器可以進一步包括觸摸感測層101(諸如觸摸感測器)用於感測書寫器具114的接觸。Referring now to FIG. 1, a display according to an embodiment of the present invention may include a dispersion including a plurality of electrophoretic particles between the first conductive layer 100 and the second conductive layer 102. As shown in FIG. 1, the display is viewed from above; therefore, the first conductive layer 100 may be a continuous layer of light-transmitting conductive material, such as indium tin oxide. The second conductive layer 102 may be light-transmissive or opaque. For example, the layer 102 may be provided in the form of a substrate including an array of pixel electrodes, such as a TFT array. The display may further include a touch sensing layer 101 (such as a touch sensor) for sensing the contact of the writing implement 114.

例如,該等電泳粒子可以包括:帶負電白色顏料粒子104、帶正電黑色顏料粒子108、和帶正電光散射磁性著色顏料粒子106。如本領域的具有通常知識者所能理解的,在一些範例中,該等粒子的該等電荷極性可能是相反的,諸如該等白色顏料帶正電,然而該等黑色和磁性粒子帶負電。若該可寫顯示器意在包含醒目提示(highlighting)的功能,則例如,該等磁性粒子106的顏色可以是紅色。For example, the electrophoretic particles may include: negatively charged white pigment particles 104, positively charged black pigment particles 108, and positively charged light-scattering magnetic colored pigment particles 106. As those skilled in the art can understand, in some examples, the polarity of the charges of the particles may be opposite, such as the white pigments are positively charged, but the black and magnetic particles are negatively charged. If the writable display is intended to include a highlighting function, for example, the color of the magnetic particles 106 may be red.

現在參照圖1至3,根據本發明的一個實施例的顯示器可以跟三個不同的觸控筆110、112和114組合。觸控筆110可以是磁性觸控筆,用於書寫該醒目提示的顏色。觸控筆112可以是非磁性的且用於書寫黑色,同時觸控筆114可以是非磁性的且用於書寫白色。或者是,可以將這三個功能全部包含在單一的書寫器具中。例如,單一的觸控筆可以具有一個用於做醒目提示的磁性端、和可以在書寫黑色或者白色之間切換的相對端。在圖1至3中,該等觸控筆係例示成具有類似形狀的半球形頂端;然而,本文所述的書寫器具的書寫頂端不限於任何特定的形狀。例如,每個觸控筆可以具有可被該觸摸感測層偵測的獨特的頂端形狀,以便該顯示器能夠識別正在使用哪個觸控筆。Referring now to FIGS. 1 to 3, the display according to an embodiment of the present invention can be combined with three different styluses 110, 112, and 114. The stylus 110 may be a magnetic stylus for writing the eye-catching color. The stylus 112 may be non-magnetic and used for writing black, while the stylus 114 may be non-magnetic and used for writing white. Or, all three functions can be included in a single writing instrument. For example, a single stylus may have a magnetic end for making eye-catching reminders, and an opposite end that can be switched between writing black or white. In FIGS. 1 to 3, the stylus pens are exemplified as hemispherical tips with similar shapes; however, the writing tips of the writing instruments described herein are not limited to any specific shape. For example, each stylus may have a unique tip shape that can be detected by the touch sensing layer, so that the display can recognize which stylus is being used.

對所有的三個探針選項來說,該觸摸感測層101不僅可以進行感測,還可以記錄書寫的位置,以便將此資訊數位化並儲存在記憶體內,從而可以由使用者自行決定將所書寫的影像加以儲存、擷取和顯示。For all three probe options, the touch sensing layer 101 can not only sense, but also record the writing position, so that this information can be digitized and stored in the memory, so that the user can decide to change The written image is stored, captured and displayed.

根據本發明的操作顯示器的一個方法,可以利用或不利用書寫器具來控制顯示在該顯示器的各種位置上的光學狀態。圖1所示的第一光學狀態可以藉由以下方式來達成:用觸控筆114接觸該顯示器的表面,以使該觸摸感測層101識別觸控筆114和其位置。在此位置,將電壓施加在電極層100與102之間,使得電極層102相對於電極100是負的。其結果,將該等白色粒子104朝向該顯示器的觀看側驅動而在被該觸控筆114接觸的區域附近顯示白色光學狀態。例如,可以將該負電壓施加在電極層100與只有電極層102的跟觸控筆114的位置相對應的區域內的該等像素電極之間。依此方式,例如,可以將觸控筆114用作「抹除觸控筆」來達成黑色或紅色影像的局部抹除。全面抹除,例如,可以藉由以下方式來達成:在不使用該觸控筆下,同時在電極層102內的每個像素電極與電極層100之間施加負電壓。According to a method of operating a display of the present invention, a writing instrument can be used or not to control the optical states displayed on various positions of the display. The first optical state shown in FIG. 1 can be achieved by the following method: touching the surface of the display with the stylus 114 so that the touch sensing layer 101 recognizes the stylus 114 and its position. At this position, a voltage is applied between the electrode layers 100 and 102 so that the electrode layer 102 is negative with respect to the electrode 100. As a result, the white particles 104 are driven toward the viewing side of the display to display a white optical state near the area contacted by the stylus 114. For example, the negative voltage can be applied between the electrode layer 100 and the pixel electrodes in the area corresponding to the position of the stylus 114 where only the electrode layer 102 is located. In this way, for example, the stylus 114 can be used as an "erasing stylus" to achieve partial erasing of black or red images. Full erasure can be achieved by, for example, the following method: without using the stylus, a negative voltage is applied between each pixel electrode in the electrode layer 102 and the electrode layer 100 at the same time.

圖2所示的第二光學狀態可以藉由以下方式來達成:用觸控筆110接觸該顯示器的表面。如前面說明的,觸控筆的種類和位置可由該觸摸感測層101偵測。當觸控筆110被識別時,該電泳流體沒有被電性切換(即,沒有電壓差被施加在電極100與102之間)。更確切地說,該著色磁性粒子106係在由該觸控筆110的接近所產生的該磁場梯度中移動。這樣的移動通常提供「鏈粒子(chained-particle)」狀態,其中一些位於該觀看側的粒子(例如,圖2中的白色顏料粒子104)已經被該等著色粒子106取代。The second optical state shown in FIG. 2 can be achieved by the following method: touching the surface of the display with a stylus pen 110. As described above, the type and position of the stylus can be detected by the touch sensing layer 101. When the stylus 110 is recognized, the electrophoretic fluid is not electrically switched (ie, no voltage difference is applied between the electrodes 100 and 102). More specifically, the colored magnetic particles 106 move in the magnetic field gradient generated by the approach of the stylus 110. Such movement usually provides a "chained-particle" state, in which some particles on the viewing side (for example, the white pigment particles 104 in FIG. 2) have been replaced by the colored particles 106.

在一些實施例中,包含在觸控筆110中的磁鐵可以是永久磁鐵。該磁鐵可以具有任何合適的型態,包含但不限於:釹鐵硼、釤鈷、鋁鎳鈷磁鐵(alnico)、陶瓷和肥粒鐵磁鐵、或其組合。雖然可以將該磁鐵配置在該觸控筆的任何位置,但較佳為將該磁鐵定位成使其磁場與該觸控筆的頂端對齊(co-aligned)。根據一些實施例,該磁鐵可以是電磁鐵。在這樣的情況下,可以將合適的電源配置在該觸控筆內或者與該觸控筆電性連接且該磁鐵在該觸控筆內。再者,該磁鐵可以具有任何合適的形狀,包含立方形或環狀。根據一些實施例,該磁鐵將會在該等磁性粒子上產生在約10與50高斯之間的場梯度強度。In some embodiments, the magnet included in the stylus 110 may be a permanent magnet. The magnet can have any suitable type, including but not limited to: neodymium iron boron, samarium cobalt, alnico magnet (alnico), ceramics and ferrite magnets, or a combination thereof. Although the magnet can be arranged at any position of the stylus, it is preferable to position the magnet so that its magnetic field is co-aligned with the tip of the stylus. According to some embodiments, the magnet may be an electromagnet. In this case, a suitable power source can be configured in the stylus or electrically connected to the stylus and the magnet is in the stylus. Furthermore, the magnet can have any suitable shape, including cube or ring. According to some embodiments, the magnet will generate a field gradient between about 10 and 50 Gauss on the magnetic particles.

圖3所示的第三光學狀態可以藉由以下方式來達成:用觸控筆112接觸該顯示器的表面,以使該觸摸感測層101識別觸控筆112和其位置。在此位置,將電壓施加在電極層100與102之間,使得電極層102相對於電極100是正的。其結果,將該等黑色粒子104朝向該顯示器的觀看側驅動而在被該觸控筆112接觸的區域附近顯示黑色光學狀態。例如,可以將該正電壓施加在電極層100與只有電極層102的跟觸控筆112的位置相對應的區域內的該等像素電極之間。依此方式,例如,可以將觸控筆112用作「書寫觸控筆」,以至於使用者可以使用該顯示器來做筆記。The third optical state shown in FIG. 3 can be achieved by the following method: touching the surface of the display with the stylus pen 112 so that the touch sensing layer 101 recognizes the stylus 112 and its position. At this position, a voltage is applied between the electrode layers 100 and 102 so that the electrode layer 102 is positive with respect to the electrode 100. As a result, the black particles 104 are driven toward the viewing side of the display to display a black optical state near the area contacted by the stylus pen 112. For example, the positive voltage can be applied between the electrode layer 100 and the pixel electrodes in the area corresponding to the position of the stylus 112 of the electrode layer 102 only. In this way, for example, the stylus 112 can be used as a "writing stylus" so that the user can use the display to take notes.

在較佳實施例中,該等黑色顏料粒子108可以具有比該等光散射磁性著色顏料粒子106的直徑還小的直徑,其具有相同的電荷極性。例如,再度參照圖3,若該等黑色顏料粒子108和著色磁性粒子106都帶正電,則可以施加具有足夠強度及/或期間的正電壓來使該等較小的黑色粒子108穿過該等磁性粒子106之間的空間而遷移至該顯示器的該觀看側而遮蔽該等著色粒子106。In a preferred embodiment, the black pigment particles 108 may have a diameter smaller than the diameter of the light-scattering magnetic colored pigment particles 106, and they have the same charge polarity. For example, referring again to FIG. 3, if the black pigment particles 108 and colored magnetic particles 106 are both positively charged, a positive voltage with sufficient strength and/or duration can be applied to allow the smaller black particles 108 to pass through the The space between the magnetic particles 106 migrates to the viewing side of the display to shield the colored particles 106.

為了擷取包含具有由該等著色磁性粒子所提供的光學狀態的像素的儲存的影像,可能較佳的是該等著色磁性粒子具有比該等帶相同電性的(similarly charged)黑色粒子還高的移動度。這可以藉由以下方式來完成:將不同的聚合物塗層施加於該著色和黑色粒子及/或提供稍微帶電的黑色粒子。例如,參照圖4,將電壓施加在電極層100與102之間,使得電極層102相對於電極層100是正的。然而,該所施加的電壓的強度及/或期間低於預選的臨界值,使得著色磁性粒子106被驅動至該顯示器的該觀看側,而不是可能被凝集在一起的該等白色粒子104或黑色粒子108。為了在儲存的影像中提供具有由該等白色或黑色粒子所提供的光學狀態的像素,可以施加足夠強度及/或期間的負電壓以將該等白色粒子104驅動至該觀看表面,或者可以施加足夠強度及/或期間的正電壓以將該等黑色粒子108驅動至該等著色粒子106與該觀看表面之間(如圖5所示)。In order to capture stored images containing pixels with optical states provided by the colored magnetic particles, it may be preferable that the colored magnetic particles have a higher level than the similarly charged black particles The degree of mobility. This can be done by applying different polymer coatings to the colored and black particles and/or providing slightly charged black particles. For example, referring to FIG. 4, a voltage is applied between the electrode layers 100 and 102 so that the electrode layer 102 is positive with respect to the electrode layer 100. However, the intensity and/or duration of the applied voltage is lower than the preselected critical value, so that the colored magnetic particles 106 are driven to the viewing side of the display, instead of the white particles 104 or the black particles that may be agglomerated together. Particles 108. In order to provide pixels with the optical states provided by the white or black particles in the stored image, a negative voltage of sufficient intensity and/or duration can be applied to drive the white particles 104 to the viewing surface, or it can be applied A positive voltage of sufficient strength and/or duration to drive the black particles 108 between the colored particles 106 and the viewing surface (as shown in FIG. 5).

下面的表1彙整了根據本發明的實施例的在顯示器上書寫/擷取影像的各種模式的範例。W代表白色,K代表黑色,且R代表著色磁性粒子。Table 1 below summarizes examples of various modes of writing/capturing images on a display according to an embodiment of the present invention. W represents white, K represents black, and R represents colored magnetic particles.

表1:

Figure 108139230-A0304-0001
Table 1:
Figure 108139230-A0304-0001

該電光裝置,其包括:具有第一顏色、第一電荷極性的第一電荷的第一種粒子(在與該表相對應的範例中的帶正電白色粒子);具有第二顏色、第二電荷極性的第二電荷的第二種粒子(在與該表相對應的範例中,帶負電黑色粒子,其具有電場臨界值);具有第三顏色、該第二電荷極性的第三電荷的第三種粒子(在與該表相對應的範例中,帶負電紅色粒子,其構成為在該流體內、在對應所施加的磁場梯度的方向上遷移),能夠藉由包括以下步驟的方法來操作:(A)以第一和第二觸控筆中的一者接觸該裝置的該第一表面上的第一位置;(B)施加電場以使該第一種(白色)和第二種(黑色)粒子中的一者朝向該第一位置遷移;(C)以該第一和第二觸控筆中的一者接觸該顯示器的該第一表面上的第二位置;和(D)施加磁場梯度以使該等第三種粒子(紅色)朝向該第二位置遷移。The electro-optical device includes: a first type of particles with a first color and a first charge of a first charge polarity (positively charged white particles in the example corresponding to the table); and a second color, a second The second type of particle of the second charge of the charge polarity (in the example corresponding to the table, the negatively charged black particle, which has the critical value of the electric field); the third charge of the third charge with the third color and the second charge polarity Three kinds of particles (in the example corresponding to the table, negatively charged red particles, which are configured to migrate in the fluid in the direction corresponding to the applied magnetic field gradient), can be operated by a method including the following steps : (A) Touch one of the first and second stylus pens to the first position on the first surface of the device; (B) Apply an electric field to make the first (white) and second ( (Black) one of the particles migrates toward the first position; (C) contacting one of the first and second stylus pens with a second position on the first surface of the display; and (D) applying The magnetic field gradient causes the third particles (red) to migrate toward the second position.

在另一實施例中,該電光裝置包括電泳介質,該電泳介質包括帶負電白色粒子604、帶正電紅色粒子606、和帶正電黑色磁性粒子608。可觀察到:從該白色狀態開始(圖6),而以磁性觸控筆110接觸該電光顯示器的該可寫表面一次,產生灰色影像。該磁性觸控筆吸引該等磁性黑色粒子608並使其排成一行(aligned),如圖7所圖示的。在在該電光裝置的該可寫表面的有該灰色存在的相同位置上施加該磁性觸控筆超過一次後,該位置的顏色變成紅色。其圖示在圖8和圖9的照片中。以磁性觸控筆接觸以其白色狀態901為原始狀態的圖9的該電光裝置900並在其上書寫“magnetic addressing”的字902。該字呈現灰色。在該電光裝置900的另一位置,使用磁性觸控筆來繪製圖畫903。在該圖畫903的位置上,該觸控筆接觸該電光裝置數次。該圖畫903呈現紅色。該實施例的該電泳介質係使用Isopar E作為該電泳流體來製備,其包括:(a)作為電荷控制劑的Solsperse 19000(由Lubrizol提供)、(b)帶正電氧化鐵黑色磁性顏料(顏料黑11)、(c)帶負電二氧化鈦白色顏料(顏料白6)、和(d)帶負電紅色(顏料紅254)。在起始光學狀態為黑色的情況下,以磁性觸控筆接觸該電光顯示器的該可寫表面一次,產生紅色影像,其在將磁性觸控筆施加在該電光裝置的該可寫表面的相同位置超過一次後成為更亮的紅色。圖9顯示該顯示器的示範操作。In another embodiment, the electro-optical device includes an electrophoretic medium including negatively charged white particles 604, positively charged red particles 606, and positively charged black magnetic particles 608. It can be observed that starting from the white state (FIG. 6 ), and touching the writable surface of the electro-optical display with the magnetic stylus 110 once, a gray image is generated. The magnetic stylus attracts the magnetic black particles 608 and aligns them, as shown in FIG. 7. After applying the magnetic stylus more than one time to the same position on the writable surface of the electro-optical device where the gray color exists, the color of the position becomes red. It is illustrated in the photos in Figs. 8 and 9. A magnetic stylus is used to touch the electro-optical device 900 of FIG. 9 with its white state 901 as its original state and write the word "magnetic addressing" 902 on it. The word appears gray. At another location of the electro-optical device 900, a magnetic stylus is used to draw a picture 903. At the position of the picture 903, the stylus touches the electro-optical device several times. The picture 903 appears red. The electrophoretic medium of this embodiment is prepared by using Isopar E as the electrophoretic fluid, which includes: (a) Solsperse 19000 (provided by Lubrizol) as a charge control agent, (b) positively charged iron oxide black magnetic pigment (pigment) Black 11), (c) negatively charged titanium dioxide white pigment (Pigment White 6), and (d) negatively charged red (Pigment Red 254). When the initial optical state is black, touch the writable surface of the electro-optical display with a magnetic stylus once to produce a red image, which is the same as when the magnetic stylus is applied to the writable surface of the electro-optical device The position becomes brighter red after more than one position. Figure 9 shows an exemplary operation of the display.

此實施例記載一種包括(a)電泳介質的電光裝置,該電泳介質係配置在透光導電層與像素電極的陣列之間,且在流體中包括複數個粒子,該等複數個粒子包括:(1)具有第一顏色、第一電荷極性的第一電荷的第一種粒子;(2)具有第二顏色、第二電荷極性的第二電荷的第二種粒子;和(3)具有第三顏色、該第二電荷極性的第三電荷的第三種粒子,其中該第一、第二和第三顏色係彼此不同的,其中該第一電荷極性係與該第二電荷極性相反的,其中該等複數個粒子係構成為在該流體內、在對應所施加的電場的方向上遷移,且其中該等第三種粒子係構成為在該流體內、在對應所施加的磁場梯度的方向上遷移。此電光裝置能夠藉由包括以下步驟的方法來操作:(A)以包括磁性頂端的觸控筆接觸該裝置的第一表面上的第一位置以使第三種粒子朝向該第一位置遷移;和(B)以該包括磁性頂端的觸控筆再次接觸該裝置的該第一表面上的該第一位置以使第二種粒子朝向該第一位置遷移。該方法可讓使用者使用兩種不同的顏色來在裝置上書寫或畫圖。This embodiment records an electro-optical device including (a) an electrophoretic medium, the electrophoretic medium is disposed between a light-transmissive conductive layer and an array of pixel electrodes, and includes a plurality of particles in a fluid, and the plurality of particles include:( 1) A first type particle with a first color and a first charge polarity; (2) a second type particle with a second color and a second charge polarity; and (3) a third Color, the second charge polarity and the third charge particles, wherein the first, second and third colors are different from each other, wherein the first charge polarity is opposite to the second charge polarity, wherein The plurality of particles are configured to migrate in the fluid in a direction corresponding to the applied electric field, and the third type of particles are configured to move in the fluid in a direction corresponding to the applied magnetic field gradient migrate. The electro-optical device can be operated by a method including the following steps: (A) Touch a stylus with a magnetic tip to a first position on the first surface of the device so that the third particles migrate toward the first position; And (B) contacting the first position on the first surface of the device with the stylus including the magnetic tip again to make the second kind of particles migrate toward the first position. This method allows users to use two different colors to write or draw pictures on the device.

根據本發明的各種實施例的電泳介質的該等分散物可以被封裝。封裝的電泳介質包括大量的小囊,每一個小囊本身包括內部相和圍繞該內部相的囊壁,該內部相在流體介質中含有可電泳移動的粒子。通常,該等囊本身係保持在聚合黏結劑中以形成位於兩電極之間的黏附層。在微胞電泳顯示器中,該等帶電粒子和該流體未被封裝在微囊內,取而代之的是保留在形成在載體介質(通常是聚合薄膜)內的複數個凹部(cavities)內。如美國專利No.6,933,098所揭露,微胞可以以批次式製程或者連續式輥對輥製程來形成。後者提供連續、低成本、高產能的製造技術來製作隔間(compartments)。該等微胞可以利用壓紋、光微影法、接觸印刷、真空成形、或其他合適的方法來製造。在此構成中,可以將該等微胞夾在透光導電層與像素電極的陣列之間。在一個實施例中,該等微胞係分開製造,然後配置在該透光導電層與像素電極的陣列之間。例如,可以藉由壓紋來製造該微胞結構。該壓紋往往是藉由公模來完成,其可以是以輥、板或帶的形式。被壓紋的組成物(embossed composition)可以包括熱塑性物質、熱固性物質或其前驅物。該壓紋製程通常是在比該微胞材料的玻璃轉移溫度還高的溫度下實施。可以使用經加熱的公模、或該模所壓抵的經加熱的外殼基板(housing substrate)來控制該壓紋溫度和壓力。該公模往往是以諸如鎳的金屬形成。一旦形成,便以該電泳介質填充該等微胞。然後,將經填充的微胞密封並將該經密封的微胞積層在透光導電層與像素電極的陣列之間。The dispersions of electrophoretic media according to various embodiments of the present invention may be encapsulated. The encapsulated electrophoretic medium includes a large number of small capsules, and each small capsule itself includes an internal phase and a capsule wall surrounding the internal phase. The internal phase contains electrophoretic movable particles in the fluid medium. Usually, the capsules themselves are held in a polymeric adhesive to form an adhesive layer between the two electrodes. In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated in microcapsules, but instead remain in a plurality of cavities formed in a carrier medium (usually a polymer film). As disclosed in US Patent No. 6,933,098, the micelles can be formed in a batch process or a continuous roll-to-roll process. The latter provides continuous, low-cost, high-capacity manufacturing technology to make compartments. The micelles can be manufactured by embossing, photolithography, contact printing, vacuum forming, or other suitable methods. In this configuration, the micelles can be sandwiched between the light-transmitting conductive layer and the array of pixel electrodes. In one embodiment, the microcells are manufactured separately and then arranged between the transparent conductive layer and the array of pixel electrodes. For example, the microcellular structure can be manufactured by embossing. The embossing is often done by a male mold, which can be in the form of a roll, a plate, or a belt. The embossed composition may include a thermoplastic substance, a thermosetting substance or a precursor thereof. The embossing process is usually performed at a temperature higher than the glass transition temperature of the microcellular material. A heated male mold or a heated housing substrate against which the mold is pressed can be used to control the embossing temperature and pressure. The male mold is often formed of a metal such as nickel. Once formed, the micelles are filled with the electrophoretic medium. Then, the filled micelles are sealed and the sealed micelles are laminated between the light-transmitting conductive layer and the array of pixel electrodes.

封裝的電泳顯示器通常不會遇到傳統電泳裝置的聚集和沉降失效模式,並且提供另外的優點,諸如能夠將該顯示器印刷或塗布在很多種柔性和剛性基板上。(使用該詞彙「印刷」係意在包含印刷和塗布的全部形式,包含但不限於:諸如補釘模塗布(patch die coating)的預先計量式塗布、狹縫或擠出塗布、滑動或層疊塗布、簾式淋塗;諸如輥上刮刀式塗布(knife over roll coating)、正向和逆向輥塗布的輥塗布;凹版式塗布;浸漬塗布;噴灑塗布;彎月面塗布;旋轉塗布;刷塗;氣刀塗布;絲網印刷製程;靜電印刷製程;熱印刷製程;噴墨印刷製程;電泳沉積(參見美國專利No.7,339,715);及其他類似技術。)因此,所產生的顯示器可以是柔性的。另外,因為能夠使用多種方法來印刷該顯示器介質,因此能夠便宜地製造該顯示器本身。Encapsulated electrophoretic displays generally do not encounter the aggregation and sedimentation failure modes of traditional electrophoretic devices, and provide additional advantages such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (The term "printing" is used to include all forms of printing and coating, including but not limited to: pre-metered coating such as patch die coating, slit or extrusion coating, sliding or layered coating , Curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; Air knife coating; screen printing process; electrostatic printing process; thermal printing process; inkjet printing process; electrophoretic deposition (see US Patent No. 7,339,715); and other similar technologies.) Therefore, the resulting display can be flexible. In addition, since various methods can be used to print the display medium, the display itself can be manufactured inexpensively.

也可以將其他類型的電光介質用於本發明的顯示器。Other types of electro-optical media can also be used for the display of the present invention.

三層式電光顯示器的製造一般涉及至少一個積層作業。例如,在數件前述MIT和E Ink專利和申請案中,記載用於製造封裝的電泳顯示器的製程,其中將黏結劑中的包括囊的封裝的電泳介質塗布在柔性基板上,該柔性基板包括塑膠薄膜上的銦錫氧化物(ITO)或類似的導電塗層(其作為最終顯示器的一個電極),將該囊/黏結劑塗層乾燥而形成緊密地附著於該基板的該電泳介質的黏附層。另外製備背板,該背板含有像素電極的陣列和適當的導體配置以將該等像素電極連接至驅動電路。為了形成該最終顯示器,使用積層黏合劑將上面具有該囊/黏結劑層的該基板積層於該背板。(能夠使用非常類似的製程來製備可與觸控筆或類似的可移動電極一起使用的電泳顯示器,其係藉由以諸如塑膠薄膜的簡單保護層取代該背板,該觸控筆或其他可移動電極能夠在該保護層上滑動。)在這樣的製程的一個較佳形式中,該背板本身係柔性的且藉由將該像素電極和導體印刷在塑膠薄膜或其他柔性基板上來製備。供利用此製程量產顯示器用的積層技術係使用積層黏合劑的輥積層。能夠與其他類型的電光顯示器一起使用類似的製造技術。例如,可以以與封裝的電泳介質實質相同的方式將微胞電泳介質積層於背板。The manufacture of three-layer electro-optical displays generally involves at least one layering operation. For example, in several of the aforementioned MIT and E Ink patents and applications, a process for manufacturing an encapsulated electrophoretic display is described, in which an encapsulated electrophoretic medium including a capsule in an adhesive is coated on a flexible substrate, and the flexible substrate includes Indium tin oxide (ITO) or similar conductive coating on the plastic film (which serves as an electrode of the final display), the capsule/adhesive coating is dried to form an adhesion of the electrophoretic medium tightly attached to the substrate Floor. In addition, a backplane is prepared which contains an array of pixel electrodes and a suitable conductor arrangement to connect the pixel electrodes to the driving circuit. In order to form the final display, the substrate with the capsule/adhesive layer thereon is laminated on the back plate using a laminated adhesive. (A very similar process can be used to prepare an electrophoretic display that can be used with a stylus or similar movable electrodes, by replacing the back plate with a simple protective layer such as a plastic film, the stylus or other The movable electrode can slide on the protective layer.) In a preferred form of such a process, the back plate itself is flexible and is prepared by printing the pixel electrodes and conductors on a plastic film or other flexible substrate. The lamination technology for mass production of displays using this process is roll lamination using lamination adhesives. Similar manufacturing techniques can be used with other types of electro-optical displays. For example, the microcellular electrophoresis medium can be layered on the back plate in substantially the same manner as the encapsulated electrophoretic medium.

前述的美國專利No.6,982,178記載一種組裝固態電光顯示器(包含封裝的電泳顯示器)的方法,其非常適合量產。基本上,此專利記載所謂的「前板積層體」(“FPL”),其依序包括:透光導電層;與該導電層電性接觸的固態電光介質層;黏合劑層;和剝離片(release sheet)。通常將該透光導電層載置於透光基板上,在能夠手動地將該基板纏繞在直徑10吋(254mm)的鼓輪(say)上而沒有永久變形的意義上,其較佳為柔性的。此專利和本文中使用術語「透光」,係指由其所指定的層讓足夠的光線通過以使觀察者看穿該層而觀察到該電光介質的顯示狀態的變化,其一般是透過該導電層和鄰接的基板(若存在的話)觀看;在該電光介質係在非可見光波長顯示出反射的變化的情況下,當然應將該術語「透光」解釋為意指相關的非可見光波長的透射。該基板通常是聚合薄膜且一般具有約1至約25密爾(mil)(25至634μm)範圍的厚度,較佳為約2至約10密爾(51至254μm)。該導電層適合為例如鋁或ITO的薄金屬或氧化金屬層,或可以是導電聚合物。塗布有鋁或ITO的聚(對苯二甲酸乙二酯)(PET)膜可由市面上取得,例如,來自E.I. du Pont de Nemours & Company, Wilmington DE的「鋁化Mylar」(“Mylar”為註冊商標),且這種市售材料可有效地用於該前板積層體。The aforementioned US Patent No. 6,982,178 describes a method for assembling a solid-state electro-optical display (including a packaged electrophoretic display), which is very suitable for mass production. Basically, this patent describes the so-called "front plate laminate" ("FPL"), which in turn includes: a light-transmitting conductive layer; a solid electro-optical dielectric layer in electrical contact with the conductive layer; an adhesive layer; and a release sheet (release sheet). Usually the light-transmitting conductive layer is placed on a light-transmitting substrate. In the sense that the substrate can be manually wound on a 10-inch (254mm) diameter drum (say) without permanent deformation, it is preferably flexible of. The term "translucent" used in this patent and in this article refers to a layer designated by it that allows enough light to pass through so that the observer can see through the layer and observe the change in the display state of the electro-optical medium, which generally passes through the conductive The layer and the adjacent substrate (if present) are viewed; in the case that the electro-optical medium shows a change in reflection at a non-visible light wavelength, of course the term "transparent" should be interpreted as meaning the transmission of the relevant non-visible light wavelength . The substrate is usually a polymeric film and generally has a thickness in the range of about 1 to about 25 mils (25 to 634 μm), preferably about 2 to about 10 mils (51 to 254 μm). The conductive layer is suitably a thin metal or oxide metal layer such as aluminum or ITO, or may be a conductive polymer. Poly(ethylene terephthalate) (PET) films coated with aluminum or ITO are commercially available, for example, "Aluminized Mylar" ("Mylar" is a registered trademark) from EI du Pont de Nemours & Company, Wilmington DE Trademark), and this commercially available material can be effectively used for the front plate laminate.

使用這種前板積層體的電光顯示器的組件可以藉由以下方式實現:從該前板積層體移除該剝離片,並在促成該黏合劑層有效地附著於該背板的條件下將該黏合劑層與該背板接觸,藉此將該黏合劑層、電光介質層和導電層牢牢地固定於該背板。因為該前板積層體可以被量產,因此此製程非常適合量產,通常使用輥對輥塗布技術,然後切割成具有與特定背板一起使用所需的任何尺寸的物件(piece)。The components of the electro-optical display using this front-plate laminate can be realized by removing the release sheet from the front-plate laminate, and under the condition that the adhesive layer is effectively attached to the back plate. The adhesive layer is in contact with the back plate, thereby firmly fixing the adhesive layer, the electro-optical medium layer and the conductive layer to the back plate. Because the front plate laminate can be mass-produced, this process is very suitable for mass production, usually using roll-to-roll coating technology, and then cutting into pieces with any size required for use with a specific backing plate.

美國專利No.7,561,324記載一種所謂的「雙剝離片」,其基本上是前述美國專利No.6,982,178的該前板積層體的簡化版。該雙剝離片的一種形式包括被夾在兩個黏合劑層之間的固態電光介質層,該等黏合劑層中的一個或兩個被剝離片覆蓋。該雙剝離片的另一種形式包括被夾在兩個黏合劑片之間的固態電光介質層。該雙剝離膜的兩種形式皆是意在用於與已述的由前板積層體組裝電光顯示器的製程大致類似的製程,但涉及兩個分開的積層作業(lamination);通常,在第一積層作業中,將該雙剝離片積層於前電極而形成前子組件(front sub-assembly),然後在第二積層作業中,將該前子組件積層於背板而形成該最終顯示器,然而,若需要的話,可以將這兩個積層作業的順序顛倒。US Patent No. 7,561,324 describes a so-called "double release sheet", which is basically a simplified version of the front plate laminate of the aforementioned US Patent No. 6,982,178. One form of the double release sheet includes a solid electro-optical medium layer sandwiched between two adhesive layers, one or two of the adhesive layers being covered by the release sheet. Another form of the double release sheet includes a solid electro-optical medium layer sandwiched between two adhesive sheets. The two forms of the double release film are intended to be used in a process roughly similar to the process of assembling an electro-optical display from the front plate laminate, but involves two separate laminations; usually, in the first In the lamination operation, the double release sheet is laminated on the front electrode to form a front sub-assembly, and then in the second lamination operation, the front sub-assembly is laminated on the back plate to form the final display. However, If necessary, you can reverse the order of these two build-up operations.

美國專利No.7,839,564記載一種所謂的「倒置式前板積層體(inverted front plane laminate)」,其為前述美國專利No.6,982,178中所記載的該前板積層體的變形。此倒置式前板積層體依序包括:透光保護層和透光導電層中的至少一個;黏合劑層;固態電光介質層;和剝離片。此倒置式前板積層體係用於形成電光顯示器,其具有:在該電光層與該前電極或前基板之間的積層黏合劑層;第二黏合劑層,其通常是薄的且可能存在或不存在於該電光層與背板之間。這種電光顯示器能夠結合良好的解析度和良好的低溫性能。U.S. Patent No. 7,839,564 describes a so-called "inverted front plane laminate", which is a deformation of the front plane laminate described in the aforementioned U.S. Patent No. 6,982,178. The inverted front plate laminate sequentially includes: at least one of a light-transmitting protective layer and a light-transmitting conductive layer; an adhesive layer; a solid electro-optical medium layer; and a release sheet. This inverted front plate build-up system is used to form an electro-optical display, which has: a build-up adhesive layer between the electro-optical layer and the front electrode or front substrate; a second adhesive layer, which is usually thin and may exist or It does not exist between the electro-optical layer and the backplane. This kind of electro-optical display can combine good resolution and good low temperature performance.

在上述的製程中,藉由真空積層來將帶有該電光層的該基板積層於該背板可能是有利的。真空積層係有效地將空氣從被積層的兩材料之間排出,從而避免不需要的氣泡出現在該最終顯示器中;這樣的氣泡可能會將令人討厭的非自然訊號(undesirable artifact)導入在該顯示器上所產生的影像中。然而,依此方式將電光顯示器的兩部分進行真空積層,特別是在使用封裝的電光介質的顯示器的情況下,會對所使用的該積層黏合劑課以嚴苛的要求。該積層黏合劑應該具有充分的黏合強度以將該電光層黏結於其所要積層的層(通常是電極層),而在封裝的電泳介質的情況下,該黏合劑應該具有充分的黏合強度以將該囊機械性地保持在一起。若該電光顯示器係欲作成柔性類型,該黏合劑應具有充分的柔軟度以在彎曲該顯示器時不會將缺陷導入該顯示器。在該積層溫度下,該積層黏合劑應具有適當的流動性質以確保高品質的積層,而在這點上,積層封裝的電泳和一些其他類型的電光介質的要求是非常困難的;為了避免該介質受損而不能將其曝露於實質較高的溫度下,因此該積層作業必須在不高於約130℃的溫度下進行,但該黏合劑的流動必須足以應付該含囊的層的相對不平坦的表面,該含囊的層的表面係因底下的囊而變得不平整。應該將該積層溫度確實保持成盡可能低,而室溫積層則是理想的,但是尚未找到可容許這種室溫積層的市售的黏合劑。該積層黏合劑應該是與該顯示器中的全部其他材料化學相容的。In the above-mentioned manufacturing process, it may be advantageous to laminate the substrate with the electro-optical layer on the backplane by vacuum lamination. The vacuum lamination system effectively exhausts air from between the two materials to be laminated, thereby preventing unwanted bubbles from appearing in the final display; such bubbles may introduce undesirable artifacts into the display In the image produced on the above. However, vacuum lamination of the two parts of the electro-optical display in this way, especially in the case of a display using an encapsulated electro-optical medium, imposes strict requirements on the laminated adhesive used. The laminated adhesive should have sufficient bonding strength to bond the electro-optic layer to the layer (usually the electrode layer) to be laminated, and in the case of the encapsulated electrophoretic medium, the adhesive should have sufficient bonding strength to The capsule is held together mechanically. If the electro-optical display is to be made into a flexible type, the adhesive should have sufficient flexibility so as not to introduce defects into the display when the display is bent. At the temperature of the build-up, the build-up adhesive should have appropriate flow properties to ensure high-quality build-up. At this point, the electrophoresis of the build-up package and the requirements of some other types of electro-optical media are very difficult; in order to avoid this The medium is damaged and cannot be exposed to a substantially higher temperature. Therefore, the lamination operation must be carried out at a temperature not higher than about 130°C, but the flow of the adhesive must be sufficient to cope with the relative temperature of the capsule-containing layer. A flat surface. The surface of the capsule-containing layer is uneven due to the underlying capsule. The temperature of the build-up layer should be kept as low as possible, and room-temperature build-up is ideal, but there is no commercially available adhesive that can tolerate such room-temperature build-up. The build-up adhesive should be chemically compatible with all other materials in the display.

由此,已經敘述本申請案的技術的數個態樣和實施例,應理解的是,本領域的具有通常知識者可輕易想到各種變更、修改和改良。這樣的變更、修改和改良意在落於本申請案所述的技術的精神和範圍內。例如,本領域的具有通常知識者可輕易想出多種其他手段及/或結構來執行本文所述的功能及/或獲得本文所述的成果及/或一個以上的優點,而每個這樣的變形及/或修改皆視為落在本文所述的實施例的範圍內。那些本領域的具有通常知識者只要使用例行性實驗便可確認或者確定出許多本文所述的特定實施例的均等物。因此,應理解的是,前述實施例只是以範例的方式呈現,而可以在所附的申請專利範圍和其均等物的範圍內,以與已具體敘述的實施例不同的方法實施創新性實施例。另外,兩個以上的本文所述的特徵、系統、物品、材料、工具、及/或方法的任何組合,若這樣的特徵、系統、物品、材料、工具、及/或方法並非彼此不相容,便包含在本揭露的範圍內。Therefore, several aspects and embodiments of the technology of the present application have been described, and it should be understood that various changes, modifications and improvements can be easily thought of by those with ordinary knowledge in the art. Such changes, modifications and improvements are intended to fall within the spirit and scope of the technology described in this application. For example, a person with ordinary knowledge in the art can easily come up with a variety of other means and/or structures to perform the functions described herein and/or obtain the results described herein and/or more than one advantage, and each such variation And/or modifications are deemed to fall within the scope of the embodiments described herein. Those with ordinary knowledge in the field can confirm or determine many equivalents of the specific embodiments described herein by using routine experiments. Therefore, it should be understood that the foregoing embodiments are only presented as examples, and innovative embodiments may be implemented in different methods from the specifically described embodiments within the scope of the attached patent application and its equivalents. . In addition, any combination of two or more features, systems, articles, materials, tools, and/or methods described herein, if such features, systems, articles, materials, tools, and/or methods are not incompatible with each other , Is included in the scope of this disclosure.

100:第一導電層 101:觸摸感測層 102:第二導電層 104:帶負電白色顏料粒子 106:帶正電光散射磁性著色顏料粒子 108:帶正電黑色顏料粒子 110,112,114:觸控筆 114:書寫器具 604:帶負電白色粒子 606:帶正電紅色粒子 608:帶正電黑色磁性粒子 900:電光裝置 901:白色狀態 902:字 903:圖畫100: the first conductive layer 101: touch sensing layer 102: second conductive layer 104: Negatively charged white pigment particles 106: Positively charged light scattering magnetic colored pigment particles 108: Positively charged black pigment particles 110, 112, 114: stylus 114: writing utensils 604: Negatively charged white particles 606: Positively charged red particles 608: Positively charged black magnetic particles 900: Electro-optical device 901: white state 902: Word 903: picture

將參照以下的圖式來說明本申請案的各種態樣和實施例。應該理解的是,該等圖式未必按比例繪製。出現在多個圖式中的物件(items),係在它們所出現的全部圖式中皆賦予相同的參照符號。Various aspects and embodiments of this application will be described with reference to the following drawings. It should be understood that these drawings are not necessarily drawn to scale. Items that appear in multiple drawings are assigned the same reference symbols in all the drawings in which they appear.

圖1例示根據本發明的第一實施例的組合有第一觸控筆的可運作的電光顯示器(addressable electro-optic display)的剖面視圖。FIG. 1 illustrates a cross-sectional view of an addressable electro-optic display combined with a first stylus according to a first embodiment of the present invention.

圖2例示組合有第二觸控筆的圖1的該可運作的電光顯示器的剖面視圖。FIG. 2 illustrates a cross-sectional view of the operable electro-optical display of FIG. 1 combined with a second stylus.

圖3例示組合有第三觸控筆的圖1的該可運作的電光顯示器的剖面視圖。FIG. 3 illustrates a cross-sectional view of the operable electro-optical display of FIG. 1 combined with a third stylus.

圖4例示顯示第一光學狀態的圖1的該可運作的電光顯示器的剖面視圖。FIG. 4 illustrates a cross-sectional view of the operable electro-optical display of FIG. 1 showing a first optical state.

圖5例示顯示第二光學狀態的圖1的該可運作的電光顯示器的剖面視圖。FIG. 5 illustrates a cross-sectional view of the operable electro-optical display of FIG. 1 showing a second optical state.

圖6例示白色狀態下的該可運作的電光顯示器的剖面視圖。FIG. 6 illustrates a cross-sectional view of the operable electro-optical display in a white state.

圖7例示組合有第二觸控筆的圖6的該可運作的電光顯示器的剖面視圖(接觸該觸控筆一次)。FIG. 7 illustrates a cross-sectional view of the operable electro-optical display of FIG. 6 combined with a second stylus pen (touching the stylus once).

圖8例示組合有第二觸控筆的圖6的該可運作的電光顯示器的剖面視圖(接觸該觸控筆超過一次)。FIG. 8 illustrates a cross-sectional view of the operable electro-optical display of FIG. 6 combined with a second stylus (the stylus is touched more than once).

圖9表示被磁性觸控筆接觸而可以寫字和繪製圖畫的可運作的電光顯示器的照片。Figure 9 shows a photograph of an operable electro-optical display capable of writing and drawing pictures when touched by a magnetic stylus.

無。none.

Claims (20)

一種電光裝置,包括:在觀看側上的第一表面;在該第一表面的相反側上的第二表面;電泳介質,配置在透光導電層與像素電極的陣列之間,且包括在流體中的複數個粒子,該等複數個粒子包括:具有第一顏色、第一電荷極性的第一電荷的第一種粒子,其中該第一顏色是白色;具有第二顏色、第二電荷極性的第二電荷的第二種粒子;和具有第三顏色、該第二電荷極性的第三電荷的第三種粒子;其中該第一、第二和第三顏色係彼此不同;該第一電荷極性係與該第二電荷極性相反;該等複數個粒子係構成為響應於施加的電場在該流體內在一方向上遷移;該等第三種粒子係構成為響應於施加的磁場梯度在該流體內在一方向上遷移;該等第二種粒子對磁場梯度沒有反應;該第二種粒子具有電場臨界值(threshold),使得(a)在該透光導電層與像素電極之間施加電壓電位差(voltage potential difference)以產生比該電場臨界值還強且具有驅動鄰接該透光導電層的該等第二種粒子的極性之電場,會使與該像素電極相對應的像素在該第一表面顯示該第二顏色; (b)在該透光導電層與像素電極之間施加電壓電位差以產生比該電場臨界值還強且具有驅動鄰接該透光導電層的該等第一種粒子的極性之電場,會使與該像素電極相對應的像素在該第一表面顯示該第一顏色;(c)一旦該第一顏色被顯示在該第一表面,在該透光導電層與像素電極之間施加電壓電位差以產生比該電場臨界值還弱且具有驅動鄰接該透光導電層的該等第三種粒子的極性之電場,會使與該像素電極相對應的像素顯示該第三顏色;其中一旦該第一顏色被顯示在該第一表面的第一位置處,則以具有磁性頂端的第二觸控筆接觸該第一位置一次,會使該等第三種粒子朝向該第一位置遷移;及其中一旦第三種粒子由於以該第二觸控筆接觸該第一位置而朝向該第一位置遷移,則使用該第二觸控筆的來回移動再次以該第二觸控筆接觸該第一位置會使第二種粒子朝向該第一位置遷移。 An electro-optical device, comprising: a first surface on the viewing side; a second surface on the opposite side of the first surface; an electrophoretic medium, arranged between a light-transmitting conductive layer and an array of pixel electrodes, and including a fluid A plurality of particles in the plurality of particles, the plurality of particles include: a first type of particles having a first color, a first charge polarity, wherein the first color is white; a second color, a second charge polarity A second particle of a second charge; and a third particle of a third charge with a third color and a polarity of the second charge; wherein the first, second, and third color systems are different from each other; the polarity of the first charge The polarity of the second charge is opposite; the plurality of particles are configured to move in one direction in the fluid in response to an applied electric field; the third particles are configured to move in the fluid in response to an applied magnetic field gradient Migrate in one direction; the second kind of particles do not respond to the magnetic field gradient; the second kind of particles have an electric field threshold, so that (a) a voltage potential difference is applied between the light-transmitting conductive layer and the pixel electrode potential difference) to generate an electric field that is stronger than the critical value of the electric field and has the polarity to drive the second type particles adjacent to the light-transmitting conductive layer, so that the pixel corresponding to the pixel electrode displays the Second color (b) Applying a voltage potential difference between the light-transmitting conductive layer and the pixel electrode to generate an electric field that is stronger than the critical value of the electric field and has a polarity that drives the first type particles adjacent to the light-transmitting conductive layer, and The pixel corresponding to the pixel electrode displays the first color on the first surface; (c) Once the first color is displayed on the first surface, a voltage potential difference is applied between the light-transmissive conductive layer and the pixel electrode to generate An electric field that is weaker than the critical value of the electric field and has the polarity to drive the third particles adjacent to the light-transmitting conductive layer will cause the pixels corresponding to the pixel electrode to display the third color; wherein once the first color Is displayed at the first position on the first surface, touching the first position with a second stylus with a magnetic tip once will cause the third particles to migrate toward the first position; and once the first position The three kinds of particles migrate toward the first position due to the second stylus touching the first position, and then using the second stylus to move back and forth again to touch the first position with the second stylus to make The second kind of particles migrate towards the first position. 如請求項1的電光裝置,其中在以該第二觸控筆接觸該第一位置期間,該透光導電層及該等像素電極沒有在該第一位置處施加電場在該電泳介質上。 The electro-optical device of claim 1, wherein during the time when the second stylus is in contact with the first position, the light-transmitting conductive layer and the pixel electrodes do not apply an electric field on the electrophoretic medium at the first position. 如請求項1的電光裝置,其中以具有非磁性頂端的第一觸控筆接觸該第一表面的第二位置會使第一種粒子朝向該第二位置遷移,其中該第二位置與該第一位置相同或與該第一位置不同。 The electro-optical device of claim 1, wherein contacting the second position of the first surface with a first stylus with a non-magnetic tip causes the first type of particles to migrate toward the second position, wherein the second position and the first A position is the same or different from the first position. 如請求項3的電光裝置,其中以具有非磁性頂端的第三觸控筆接觸該第一表面的第三位置會使第二種粒子朝該第三位置遷移,其中該第三位置與該第一位置相同或與該第二位 置不同。 The electro-optical device of claim 3, wherein contacting the third position of the first surface with a third stylus with a non-magnetic tip causes the second kind of particles to migrate to the third position, wherein the third position and the third position One position is the same or the second position Set differently. 如請求項1的電光裝置,其中以該第二觸控筆接觸該第一表面的該第一位置,導致第三種粒子形成鏈。 The electro-optical device of claim 1, wherein the second stylus touches the first position on the first surface, causing the third type of particles to form a chain. 如請求項1的電光裝置,其中該第二顏色為黑色。 Such as the electro-optical device of claim 1, wherein the second color is black. 如請求項1的電光裝置,其中該第三顏色為紅色、綠色、藍色、洋紅色、青綠色或黃色。 Such as the electro-optical device of claim 1, wherein the third color is red, green, blue, magenta, cyan, or yellow. 如請求項1的電光裝置,其中該第三顏色為黑色,及該第二顏色紅色、綠色、藍色、洋紅色、青綠色或黃色。 Such as the electro-optical device of claim 1, wherein the third color is black, and the second color is red, green, blue, magenta, cyan, or yellow. 如請求項1的電光裝置,其中該等第三種粒子的平均直徑大於該等第二種粒子的平均直徑。 The electro-optical device of claim 1, wherein the average diameter of the particles of the third type is greater than the average diameter of the particles of the second type. 如請求項1的電光裝置,其中該流體為非極性溶劑。 The electro-optical device of claim 1, wherein the fluid is a non-polar solvent. 如請求項1的電光裝置,其中該裝置係構造成為當該非磁性頂端接觸該顯示器的表面時顯示至少一種顏色。 The electro-optical device of claim 1, wherein the device is configured to display at least one color when the non-magnetic tip contacts the surface of the display. 如請求項1的電光裝置,其中該裝置係構造成為顯示至少兩種顏色。 The electro-optical device of claim 1, wherein the device is configured to display at least two colors. 一種操作電光裝置的方法,其中該電光裝置包括:(a)在觀看側上的第一表面;(b)在該第一表面的相反側上的第二表面;(c)電泳介質,配置在透光導電層與像素電極的陣列之間,且包括在流體中的複數個粒子,該等複數個粒子包括:(1)具有第一顏色、第一電荷極性的第一電荷的第一種粒子,其中該第一顏色是白色;(2)具有第二顏色、第二電荷極性的第二電荷的第二種粒子;和(3)具有第三顏色、該第二電荷極性的第三電荷的第三種粒子;其中該第一、第二和第三顏色係彼此不同的;其中該第一電荷極性係與該第二電荷極性相反; 其中該等複數個粒子係構成響應於施加的電場為在該流體內在一方向上遷移;且其中該等第三種粒子係構成為響應於施加的磁場梯度在該流體內在一方向上遷移;該方法包括以下步驟:一旦該第一顏色被顯示在該第一表面的第一位置處,則以具有磁性頂端的第二觸控筆接觸該第一位置一次,以使第三種粒子朝向該第一位置遷移;一旦該第三種粒子由於以該第二觸控筆接觸該第一位置而朝向該第一位置遷移,則使用該第二觸控筆的來回移動再次以該第二觸控筆接觸該第一位置會使第二種粒子朝向該第一位置遷移。 A method of operating an electro-optical device, wherein the electro-optical device comprises: (a) a first surface on the viewing side; (b) a second surface on the opposite side of the first surface; (c) an electrophoretic medium arranged in A plurality of particles between the light-transmitting conductive layer and the pixel electrode array and included in the fluid, the plurality of particles including: (1) a first type of particle with a first color and a first charge polarity , Wherein the first color is white; (2) a second particle with a second color and a second charge with a second charge polarity; and (3) a third color with a third charge with the second charge polarity The third kind of particles; wherein the first, second and third colors are different from each other; wherein the polarity of the first charge is opposite to the polarity of the second charge; Wherein the plurality of particles are configured to migrate in a direction in the fluid in response to an applied electric field; and wherein the third particles are configured to migrate in a direction in the fluid in response to an applied magnetic field gradient; the The method includes the following steps: once the first color is displayed at the first position on the first surface, a second stylus with a magnetic tip is used to touch the first position once, so that the third particle faces the first position. A position shift; once the third particle moves toward the first position due to the second stylus contacting the first position, use the back and forth movement of the second stylus to move the second stylus again Contacting the first location causes the second type of particles to migrate toward the first location. 如請求項13之操作電光裝置的方法,其中在以該第二觸控筆接觸該第一位置期間,該透光導電層及該等像素電極沒有在該第一位置處施加電場在該電泳介質上。 The method for operating an electro-optical device according to claim 13, wherein during the time when the second stylus is in contact with the first position, the light-transmitting conductive layer and the pixel electrodes do not apply an electric field at the first position to the electrophoretic medium superior. 如請求項13之操作電光裝置的方法,更包括以下步驟:以具有非磁性頂端的第一觸控筆接觸該電光裝置之該第一表面上的第二位置以使第一種粒子朝向該第二位置遷移,其中該第二位置與該第一位置相同或與該第一位置不同。 For example, the method of operating an electro-optical device of claim 13, further comprising the following steps: contacting a second position on the first surface of the electro-optical device with a first stylus with a non-magnetic tip to make the first particles face the first Two positions are shifted, wherein the second position is the same as the first position or different from the first position. 如請求項13之操作電光裝置的方法,更包括以下步驟:以具有非磁性頂端的第三觸控筆接觸該電光裝置之該第一表面上的第三位置以使第二種粒子朝該第三位置遷移,其中該第三位置與該第二位置相同或與該第二位置不同。 For example, the method of operating an electro-optical device of claim 13, further comprising the steps of: contacting a third position on the first surface of the electro-optical device with a third stylus with a non-magnetic tip to make the second particles move toward the first surface of the electro-optical device. Three-position migration, wherein the third position is the same as the second position or different from the second position. 如請求項13之操作電光裝置的方法,當具有磁性 尖端的該第二觸控筆接觸該電光裝置之該觀看側上的第一表面上的第一位置一次時,第三種粒子形成鏈。 Such as the method of operating an electro-optical device in claim 13, when it is magnetic When the tip of the second stylus touches the first position on the first surface on the viewing side of the electro-optical device once, the third type of particles forms a chain. 如請求項13之操作電光裝置的方法,其中該第二顏色為黑色。 Such as the method of operating an electro-optical device of claim 13, wherein the second color is black. 如請求項13之操作電光裝置的方法,其中該第三顏色為紅色、綠色、藍色、洋紅色、青綠色或黃色。 For example, the method of operating an electro-optical device of claim 13, wherein the third color is red, green, blue, magenta, cyan or yellow. 如請求項13之操作電光裝置的方法,其中該第三顏色為黑色,及該第二顏色紅色、綠色、藍色、洋紅色、青綠色或黃色。For example, the method of operating an electro-optical device of claim 13, wherein the third color is black, and the second color is red, green, blue, magenta, cyan, or yellow.
TW108139230A 2018-10-30 2019-10-30 Electro-optic device and method of operating the same TWI748273B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862752614P 2018-10-30 2018-10-30
US62/752,614 2018-10-30

Publications (2)

Publication Number Publication Date
TW202022471A TW202022471A (en) 2020-06-16
TWI748273B true TWI748273B (en) 2021-12-01

Family

ID=70325127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108139230A TWI748273B (en) 2018-10-30 2019-10-30 Electro-optic device and method of operating the same

Country Status (6)

Country Link
US (2) US11513413B2 (en)
EP (1) EP3874317A4 (en)
JP (1) JP7108794B2 (en)
CN (1) CN112912785B (en)
TW (1) TWI748273B (en)
WO (1) WO2020092190A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11221685B2 (en) * 2018-12-21 2022-01-11 E Ink Corporation Sub-threshold addressing and erasing in a magneto-electrophoretic writing medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200609637A (en) * 2004-05-28 2006-03-16 Koninkl Philips Electronics Nv Electrophoretic display panel
TW200613798A (en) * 2004-07-09 2006-05-01 Koninkl Philips Electronics Nv Light modulator
CN101075061A (en) * 2006-05-19 2007-11-21 施乐公司 Electrophoresis display medium, component and method for using the same component to display image
CN102422213A (en) * 2009-07-22 2012-04-18 纳诺布雷克株式会社 Display method and apparatus using the properties of photonic crystals
WO2014186449A1 (en) * 2013-05-14 2014-11-20 E Ink Corporation Colored electrophoretic displays
US9152005B2 (en) * 2012-10-12 2015-10-06 Fuji Xerox Co., Ltd. Particle dispersion for display, display medium, and display device
TW201636719A (en) * 2015-04-06 2016-10-16 電子墨水加利福尼亞有限責任公司 Driving methods for color display device
US20180267643A1 (en) * 2012-06-01 2018-09-20 E Ink Corporation Methods for updating electro-optic displays when drawing or writing on the display

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3009348A (en) 1957-11-12 1961-11-21 Lawrence L Colbert Combined bicycle pedal and lock
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US6866760B2 (en) 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
CA2330950A1 (en) 1998-05-12 1999-11-18 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US6933098B2 (en) 2000-01-11 2005-08-23 Sipix Imaging Inc. Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web
US7715088B2 (en) 2000-03-03 2010-05-11 Sipix Imaging, Inc. Electrophoretic display
AU2002250304A1 (en) 2001-03-13 2002-09-24 E Ink Corporation Apparatus for displaying drawings
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
WO2002079869A1 (en) 2001-04-02 2002-10-10 E Ink Corporation Electrophoretic medium with improved image stability
WO2002093245A1 (en) * 2001-05-15 2002-11-21 E Ink Corporation Electrophoretic displays containing magnetic particles
US20020188053A1 (en) 2001-06-04 2002-12-12 Sipix Imaging, Inc. Composition and process for the sealing of microcups in roll-to-roll display manufacturing
US7535624B2 (en) 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
US6982178B2 (en) 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US6850230B1 (en) * 2001-10-16 2005-02-01 Hewlett-Packard Development Company, L.P. Electronic writing and erasing pencil
US6525866B1 (en) 2002-01-16 2003-02-25 Xerox Corporation Electrophoretic displays, display fluids for use therein, and methods of displaying images
US7321459B2 (en) 2002-03-06 2008-01-22 Bridgestone Corporation Image display device and method
US7580180B2 (en) 2002-03-21 2009-08-25 Sipix Imaging, Inc. Magnetophoretic and electromagnetophoretic displays
JP2005524110A (en) 2002-04-24 2005-08-11 イー−インク コーポレイション Electronic display device
EP3056941B1 (en) 2002-09-03 2019-01-09 E Ink Corporation Electro-phoretic medium
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
TWI229230B (en) 2002-10-31 2005-03-11 Sipix Imaging Inc An improved electrophoretic display and novel process for its manufacture
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
US6831771B2 (en) 2003-01-08 2004-12-14 Sipix Imaging Inc. Electronic whiteboard using electrophoretic display
JP4433682B2 (en) 2003-03-20 2010-03-17 富士ゼロックス株式会社 Image forming system
US7339715B2 (en) 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
JP4579823B2 (en) 2003-04-02 2010-11-10 株式会社ブリヂストン Particles used for image display medium, image display panel and image display device using the same
US7130106B2 (en) 2004-07-12 2006-10-31 Xerox Corporation Sol-gel nanocoated particles for magnetic displays
US7453445B2 (en) 2004-08-13 2008-11-18 E Ink Corproation Methods for driving electro-optic displays
US7142350B2 (en) * 2004-10-07 2006-11-28 Hewlett-Packard Development Company, L.P. Color whiteboard stylus and display
US20150005720A1 (en) 2006-07-18 2015-01-01 E Ink California, Llc Electrophoretic display
JP2008293405A (en) 2007-05-28 2008-12-04 Fuji Xerox Co Ltd Data input system
US8174491B2 (en) 2007-06-05 2012-05-08 Fuji Xerox Co., Ltd. Image display medium and image display device
US20130141780A1 (en) * 2010-08-09 2013-06-06 Yoocharn Jeon System And Method For Tri-state Electro-optical Displays
TWI424350B (en) 2011-01-14 2014-01-21 E Ink Holdings Inc Active electromagnetic pen
US9513743B2 (en) * 2012-06-01 2016-12-06 E Ink Corporation Methods for driving electro-optic displays
US9239501B2 (en) 2012-07-26 2016-01-19 Innocom Technology(Shenzhen) Co., Ltd. Liquid crystal display device
US9279906B2 (en) 2012-08-31 2016-03-08 E Ink California, Llc Microstructure film
CN105264434B (en) * 2013-04-18 2018-09-21 伊英克加利福尼亚有限责任公司 Color display apparatus
US9759980B2 (en) 2013-04-18 2017-09-12 Eink California, Llc Color display device
JP6393748B2 (en) * 2013-05-17 2018-09-19 イー・インク・カリフォルニア・リミテッド・ライアビリティ・カンパニーE Ink California,Llc Color display device having color filter
JP5472524B1 (en) * 2013-10-08 2014-04-16 富士ゼロックス株式会社 Display medium drive device, display medium drive program, and display device
TWI534520B (en) 2013-10-11 2016-05-21 電子墨水加利福尼亞有限責任公司 Color display device
US9953588B1 (en) 2014-03-25 2018-04-24 E Ink Corporation Nano-particle based variable transmission devices
US10444553B2 (en) 2014-03-25 2019-10-15 E Ink California, Llc Magnetophoretic display assembly and driving scheme
TWI559915B (en) 2014-07-10 2016-12-01 Sipix Technology Inc Smart medication device
US10175550B2 (en) 2014-11-07 2019-01-08 E Ink Corporation Applications of electro-optic displays
EP3259641B1 (en) * 2015-02-18 2020-07-08 E Ink Corporation Addressable electro-optic display
US10388233B2 (en) 2015-08-31 2019-08-20 E Ink Corporation Devices and techniques for electronically erasing a drawing device
EP3362853A4 (en) * 2015-10-12 2018-10-31 E Ink California, LLC Electrophoretic display device
US10067731B2 (en) 2016-01-05 2018-09-04 Quirklogic, Inc. Method and system for representing a shared digital virtual “absolute” canvas
US10545622B2 (en) 2016-05-20 2020-01-28 E Ink Corporation Magnetically-responsive display including a recording layer configured for local and global write/erase
US10475397B2 (en) * 2016-06-20 2019-11-12 Lenovo (Singapore) Pte. Ltd. Systems and methods for determining whether to present content using electronic paper display
WO2018160546A1 (en) * 2017-02-28 2018-09-07 E Ink Corporation Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits
KR20190115652A (en) * 2018-04-03 2019-10-14 라인 페이 가부시키가이샤 Method and system for providing remittance function by recognizing content of message in messenger with remittance function

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200609637A (en) * 2004-05-28 2006-03-16 Koninkl Philips Electronics Nv Electrophoretic display panel
TW200613798A (en) * 2004-07-09 2006-05-01 Koninkl Philips Electronics Nv Light modulator
CN101075061A (en) * 2006-05-19 2007-11-21 施乐公司 Electrophoresis display medium, component and method for using the same component to display image
CN102422213A (en) * 2009-07-22 2012-04-18 纳诺布雷克株式会社 Display method and apparatus using the properties of photonic crystals
US20180267643A1 (en) * 2012-06-01 2018-09-20 E Ink Corporation Methods for updating electro-optic displays when drawing or writing on the display
US9152005B2 (en) * 2012-10-12 2015-10-06 Fuji Xerox Co., Ltd. Particle dispersion for display, display medium, and display device
WO2014186449A1 (en) * 2013-05-14 2014-11-20 E Ink Corporation Colored electrophoretic displays
TW201636719A (en) * 2015-04-06 2016-10-16 電子墨水加利福尼亞有限責任公司 Driving methods for color display device

Also Published As

Publication number Publication date
TW202022471A (en) 2020-06-16
EP3874317A4 (en) 2022-07-13
US20230048575A1 (en) 2023-02-16
CN112912785A (en) 2021-06-04
US11835835B2 (en) 2023-12-05
CN112912785B (en) 2023-07-04
JP2022500709A (en) 2022-01-04
EP3874317A1 (en) 2021-09-08
WO2020092190A1 (en) 2020-05-07
US20200133089A1 (en) 2020-04-30
JP7108794B2 (en) 2022-07-28
US11513413B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
JP6644116B2 (en) Color display device
JP6478986B2 (en) Color display device
TWI623801B (en) Color display device with color filters
CN112002286B (en) Driving method of color display device
JP6751148B2 (en) Polyhydroxy composition for sealing electrophoretic displays
JP2010072617A (en) Electrophoretic liquid and display element using the same
KR102609672B1 (en) Electro-optical displays and driving methods
JP7498307B2 (en) Electrophoretic Display Device
US11735127B2 (en) Electro-optic displays and driving methods
US11835835B2 (en) Electro-optic media and writable display incorporating the same
KR20180085808A (en) Branched polyol additive for electrophoretic medium
US11640803B2 (en) Method for driving electrophoretic display device
US10061123B2 (en) Surfactants for improving electrophoretic media performance
JP2010210856A (en) Image display medium, image display device, and method of driving image display medium
TWI673334B (en) Photo-thermally induced polymerization inhibitors for electrophoretic media
CN116601560A (en) Electrophoretic medium comprising fluorescent particles
TW202418264A (en) Electrophoretic displays