TWI747943B - System for treatment of deposition reactor - Google Patents

System for treatment of deposition reactor Download PDF

Info

Publication number
TWI747943B
TWI747943B TW106129971A TW106129971A TWI747943B TW I747943 B TWI747943 B TW I747943B TW 106129971 A TW106129971 A TW 106129971A TW 106129971 A TW106129971 A TW 106129971A TW I747943 B TWI747943 B TW I747943B
Authority
TW
Taiwan
Prior art keywords
source
processing
reaction chamber
reactor
reactant
Prior art date
Application number
TW106129971A
Other languages
Chinese (zh)
Other versions
TW201812859A (en
Inventor
蘇維 浩克
艾瑞克 詹姆士 席羅
佛瑞德 阿羅寇薩伊
東 李
傑瑞德 李 威克勒
陳希翀
Original Assignee
荷蘭商Asm智慧財產控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/262,990 external-priority patent/US20160376700A1/en
Application filed by 荷蘭商Asm智慧財產控股公司 filed Critical 荷蘭商Asm智慧財產控股公司
Publication of TW201812859A publication Critical patent/TW201812859A/en
Application granted granted Critical
Publication of TWI747943B publication Critical patent/TWI747943B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A system and method for treating a deposition reactor are disclosed. The system and method remove or mitigate formation of residue in a gas-phase reactor used to deposit doped metal films, such as aluminum-doped titanium carbide films or aluminum-doped tantalum carbide films. The method includes a step of exposing a reaction chamber to a treatment reactant that mitigates formation of species that lead to residue formation.

Description

用於處理沉積反應器之系統 System for processing deposition reactor 【相關申請案之交叉參考】[Cross reference of related applications]

本申請案為2016年1月4日所申請且標題為「METHOD AND SYSTEM FOR TREATMENT OF DEPOSITION REACTOR」的美國專利申請案第14/987,420號的部分接續申請案;'420申請案為2014年1月28日所申請且標題為「METHOD FOR TREATMENT OF DEPOSITION REACTOR」的美國專利申請案第14/166,462號(現美國專利第9,228,259號)的分案申請;'462申請案主張2013年2月1日所申請且標題為「METHOD AND SYSTEM FOR TREATMENT OF DEPOSITION REACTOR」的美國臨時申請案第61/759,990號的權利。前述申請案的揭示內容特此以引用之方式併入至本文中。 This application is a partial continuation of the U.S. Patent Application No. 14/987,420 filed on January 4, 2016 and titled "METHOD AND SYSTEM FOR TREATMENT OF DEPOSITION REACTOR"; the '420 application is in January 2014 The divisional application of U.S. Patent Application No. 14/166,462 (current U.S. Patent No. 9,228,259) filed on the 28th and titled "METHOD FOR TREATMENT OF DEPOSITION REACTOR"; the '462 application claims filed on February 1, 2013 The right to apply for the U.S. Provisional Application No. 61/759,990 entitled "METHOD AND SYSTEM FOR TREATMENT OF DEPOSITION REACTOR". The disclosures of the aforementioned applications are hereby incorporated by reference.

本發明大體上係關於用於處理沉積反應器的方法及系統。更特定言之,本發明的例示性具體實例係關於用於減輕或移除氣相沉積反應器中之積聚的方法及系統。 The present invention generally relates to methods and systems for processing deposition reactors. More specifically, the illustrative examples of the present invention relate to methods and systems for reducing or removing accumulation in vapor deposition reactors.

經摻雜金屬膜(例如經摻雜的金屬碳化物、金屬氮化物、金屬硼化物及金屬矽化物,諸如摻鋁金屬碳化物)可用於多種應用。舉例而言,摻鋁碳化鈦及類似材料可用於金屬氧化物場效電晶體(metal oxide field effect transistor;MOSFET)或絕緣閘場效電晶體(insulated gated field effect transistor;IGFET)(諸如互補金屬氧化物半導體(complementary metal oxide semiconductor;CMOS)裝置)中的閘電極作為半導體或類似電子裝置的障壁層或填充材料,或作為其他應用中的塗層。 Doped metal films (for example, doped metal carbides, metal nitrides, metal borides, and metal silicides, such as aluminum-doped metal carbides) can be used in a variety of applications. For example, aluminum-doped titanium carbide and similar materials can be used for metal oxide field effect transistors (MOSFET) or insulated gated field effect transistors (IGFET) (such as complementary metal oxide field effect transistors). The gate electrode in a complementary metal oxide semiconductor (CMOS) device is used as a barrier layer or filling material for semiconductor or similar electronic devices, or as a coating in other applications.

當經摻雜金屬膜用作電子裝置之層或用作塗層時,其典型地使用諸如包括原子層沉積之化學氣相沉積技術的氣相沉積技術得以沉積。用於氣相沉積的前驅體常包括有機金屬化合物(例如,包括鋁)及金屬鹵化物化合物(例如,包括鈦或鉭)。不幸的是,有機金屬化合物的分解溫度可大大低於所要之經摻雜金屬膜之形成的溫度(例如,低超過200℃)。因此,在沉積程序期間前驅體分解產物或殘餘物可形成於沉積反應室中。殘餘物隨後可形成顆粒,其導致使用反應器所沉積之層中產生缺陷。另外,在存在金屬鹵化物化合物的情況下,一些分解產物可經歷聚合,且聚合產物可導致經沉積層中的額外缺陷。經沉積層中的多個缺陷大體上與反應器中所沉積之一定量的材料相關;層中缺陷的數量大體上隨多個沉積運行或所沉積材料之量增加而增加。 When the doped metal film is used as a layer of an electronic device or as a coating, it is typically deposited using a vapor deposition technique such as a chemical vapor deposition technique including atomic layer deposition. The precursors used for vapor deposition often include organometallic compounds (for example, including aluminum) and metal halide compounds (for example, including titanium or tantalum). Unfortunately, the decomposition temperature of the organometallic compound can be much lower than the temperature at which the desired doped metal film is formed (for example, lower than 200°C). Therefore, precursor decomposition products or residues may be formed in the deposition reaction chamber during the deposition process. The residue can then form particles, which lead to defects in the layers deposited using the reactor. In addition, in the presence of metal halide compounds, some decomposition products may undergo polymerization, and the polymerization products may cause additional defects in the deposited layer. The multiple defects in the deposited layer are generally related to a certain amount of material deposited in the reactor; the number of defects in the layer generally increases with multiple deposition runs or the amount of deposited material increases.

為減輕經沉積層中之缺陷的數量,在一定量的材料經沉積或多個基板已經加工之後,可在一段延長的時間(約數小時)內利用惰性氣體淨化反應器。此延長的淨化程序顯著降低沉積反應器的產出率且增加反應器的操作成本。 In order to reduce the number of defects in the deposited layer, after a certain amount of material has been deposited or multiple substrates have been processed, the reactor can be purged with inert gas for an extended period of time (about several hours). This prolonged purification procedure significantly reduces the output rate of the deposition reactor and increases the operating cost of the reactor.

因此,需要用於處理沉積反應器以減少或減輕顆粒形成(諸如由用於沉積經摻雜金屬膜之材料之前驅體分解產物的積聚所產生的顆粒)之改良的方法及系統。 Therefore, there is a need for improved methods and systems for treating deposition reactors to reduce or alleviate particle formation, such as particles produced by the accumulation of decomposition products of precursors of the material used to deposit the doped metal film.

本發明的各種具體實例提供用於移除沉積反應器中的殘餘物或減輕該殘餘物的形成或另外轉化該殘餘物以使其產生較少顆粒的改良的方法及系統。更特定言之,例示性系統及方法減輕氣相沉積反應器中由用於經摻雜金屬膜(諸如包括碳、硼、矽、氮、鋁或其任何組合的金屬膜)的沉積中之一或多個前驅體的使用所產生的殘餘物的形成,轉化或移除該殘餘物。雖然下文更詳細論述了先前技術之各種缺點,但大體而言,方法及系統使用氣相反應物以減輕反應室中不合需要之殘餘物的形成,轉化或移除該殘餘物。藉由減輕不合需要之殘餘物的形成,轉化或移除該殘餘物,較少顆粒形成於反應器內且因此較少缺陷形成於經沉積的膜內。另外,反應器的基板產出率得以提高且操作反應器的成本得以減少。 Various embodiments of the present invention provide improved methods and systems for removing or reducing the formation of residues in a deposition reactor or otherwise converting the residues to produce fewer particles. More specifically, the exemplary system and method alleviate the use of doped metal films (such as metal films including carbon, boron, silicon, nitrogen, aluminum, or any combination thereof) in a vapor deposition reactor. The formation of residues resulting from the use of or multiple precursors, the conversion or removal of the residues. Although the various shortcomings of the prior art are discussed in more detail below, in general, methods and systems use gas phase reactants to reduce the formation of undesirable residues in the reaction chamber, convert or remove the residues. By mitigating the formation of undesirable residues, converting or removing the residues, fewer particles are formed in the reactor and therefore fewer defects are formed in the deposited film. In addition, the substrate yield rate of the reactor can be improved and the cost of operating the reactor can be reduced.

根據本發明的各種具體實例,處理反應器的方法包括以下步驟:將金屬鹵化物化學物質提供至沉積反應器的反應室,將選自由有機金屬化合物化學物質及鋁CVD化合物化學物質組成之群的金屬CVD前驅體提供至反應室,形成經摻雜金屬膜,將處理反應物化學物質提供至反應室,將反應室曝露於處理反應物化學物質以減輕包含金屬CVD前驅體之分解產物的顆粒的顆粒形成(例如,藉由減輕殘餘物積聚或藉由將殘餘物轉化為較不可能在反應器內形成顆粒的材料),及淨化反應室。該方法的沉積步驟可經重複以沉積所要量的經摻雜金屬膜或在利用處理反應物處理反應器之前加工所要數量的基板。根據此等具體實例的例示性態樣,處理反應物源包含選自由包含一或多個氫原子的化合物及包含鹵素(例如,氯、HCl)的化合物組成之群的化合物。根據各種態樣,處理反應物源包含選自由以下組成之群的化合物:氨、氫、矽烷(例如,矽烷、二矽烷或高階矽烷)、甲 烷、矽氫化物、硼氫化物、鹵代矽烷、鹵代硼烷、烯烴(例如,乙烯)、炔烴及肼及其衍生物(諸如烷基肼)等。且根據其他態樣,處理反應物源包含與金屬CVD源之分解產物具有相同化學式的化合物。可將處理反應物曝露於遠端或直接熱活化或電漿活化以形成活化物質。 According to various specific examples of the present invention, the method for treating the reactor includes the following steps: providing a metal halide chemical substance to the reaction chamber of the deposition reactor, and selecting a chemical substance selected from the group consisting of an organometallic compound chemical substance and an aluminum CVD compound chemical substance. The metal CVD precursor is provided to the reaction chamber to form a doped metal film, the processing reactant chemical substance is provided to the reaction chamber, and the reaction chamber is exposed to the processing reactant chemical substance to reduce the particles containing the decomposition product of the metal CVD precursor Particle formation (e.g., by reducing the accumulation of residues or by converting the residues into materials that are less likely to form particles in the reactor), and cleaning the reaction chamber. The deposition step of the method can be repeated to deposit a desired amount of doped metal film or process a desired number of substrates before treating the reactor with a treatment reactant. According to exemplary aspects of these specific examples, the processing reactant source includes a compound selected from the group consisting of a compound containing one or more hydrogen atoms and a compound containing a halogen (eg, chlorine, HCl). According to various aspects, the processing reactant source includes a compound selected from the group consisting of ammonia, hydrogen, silane (for example, silane, disilane, or higher-order silane), methane, silane hydride, borohydride, halogenated silane, Halogenated boranes, alkenes (for example, ethylene), alkynes, hydrazine and their derivatives (such as alkylhydrazine) and the like. And according to other aspects, the processing reactant source includes a compound having the same chemical formula as the decomposition product of the metal CVD source. The treatment reactant can be exposed remotely or directly thermally activated or plasma activated to form an activated substance.

根據本發明的其他例示性具體實例,用於處理沉積反應器的系統包括:包含反應室的反應器;流體地耦接至反應器的金屬鹵化物源;選自由流體地耦接至反應器的有機金屬化合物及鋁CVD化合物中之一或多者組成之群的金屬CVD源;耦接至反應器的處理反應物源;經組態以在將金屬CVD前驅體引入至反應室之前或此期間使用來自處理反應物源的處理反應物執行反應室處理的控制器;及耦接至反應器的真空泵。該系統可包括直接或遠端電漿及/或熱激發裝置以將活化反應物物質提供至反應室。根據此等具體實例的例示性態樣,處理反應物源包含選自由包含一或多個氫原子的化合物及包含鹵素(例如,氯、HCl)的化合物組成之群的化合物。根據各種態樣,處理反應物源包含選自由以下組成之群的化合物:氨、氫、一或多種矽烷、甲烷、矽氫化物、硼氫化物、鹵代矽烷、鹵代硼烷、烯烴(例如,乙烯)、炔烴及肼及其衍生物(諸如烷基肼)及類似者。且根據其他態樣,處理反應物源包含與金屬CVD源之分解產物(例如,金屬CVD源的β氫化物消除產物)具有相同化學式的材料。 According to other illustrative specific examples of the present invention, a system for processing a deposition reactor includes: a reactor containing a reaction chamber; a metal halide source fluidly coupled to the reactor; A metal CVD source consisting of one or more of an organometallic compound and an aluminum CVD compound; a processing reactant source coupled to the reactor; configured to before or during the introduction of the metal CVD precursor into the reaction chamber A controller that executes the reaction chamber processing using the processing reactant from the processing reactant source; and a vacuum pump coupled to the reactor. The system may include direct or remote plasma and/or thermal excitation devices to provide activated reactant materials to the reaction chamber. According to exemplary aspects of these specific examples, the processing reactant source includes a compound selected from the group consisting of a compound containing one or more hydrogen atoms and a compound containing a halogen (eg, chlorine, HCl). According to various aspects, the processing reactant source includes a compound selected from the group consisting of ammonia, hydrogen, one or more silanes, methane, silane hydrides, borohydrides, halogenated silanes, halogenated boranes, olefins (such as , Ethylene), alkynes and hydrazine and their derivatives (such as alkylhydrazine) and the like. According to other aspects, the processing reactant source includes a material having the same chemical formula as the decomposition product of the metal CVD source (for example, the β-hydride elimination product of the metal CVD source).

根據本發明的其他具體實例,處理沉積反應器的方法包括以下步驟:將金屬鹵化物化學物質提供至反應室一段時間;在將金屬鹵化物化學物質提供至反應室一段時間的步驟之後,將處理反應物化學物質提供至反應室一段時間;且在將處理反應物化學物質提供至反應室一段時間期 間或此之後,將金屬CVD前驅體化學物質提供至反應室以形成經摻雜金屬之層。在此情況下,在沉積步驟期間顆粒形成得以減輕(例如,經由殘餘物形成的減輕或經由殘餘物的稠密化)且可在沉積程序期間且視情況在沉積程序之後移除所形成的任何殘餘物。可與金屬CVD前驅體化學物質一起或在引入金屬CVD前驅體之前引入處理反應物。根據此等具體實例的例示性態樣,處理反應物化學物質包含以下各者中之一或多者:包括一或多個氫原子之氫化合物(例如,氫、HCl、一或多種矽烷、甲烷、乙烯及類似者)及包括鹵素之化合物(例如,氯、HCl)。可將處理反應物曝露於遠端或直接熱活化或電漿活化以形成活化物質。根據此等具體實例的額外態樣,將處理反應物化學物質提供至反應室的步驟包括提供與有機金屬化合物或鋁CVD化合物的分解產物具有相同化學成分的化合物之源。 According to other specific examples of the present invention, the method for processing a deposition reactor includes the following steps: providing a metal halide chemical substance to the reaction chamber for a period of time; after the step of providing the metal halide chemical substance to the reaction chamber for a period of time, processing The reactant chemical substance is provided to the reaction chamber for a period of time; and during or after the processing reactant chemical substance is provided to the reaction chamber for a period of time, the metal CVD precursor chemical substance is provided to the reaction chamber to form a layer of doped metal. In this case, particle formation is reduced during the deposition step (for example, through reduction in residue formation or through densification of residue) and any residue formed can be removed during the deposition process and optionally after the deposition process Things. The process reactants can be introduced with the metal CVD precursor chemistry or before the metal CVD precursor is introduced. According to the illustrative aspects of these specific examples, the processing reactant chemicals include one or more of the following: hydrogen compounds including one or more hydrogen atoms (for example, hydrogen, HCl, one or more silanes, methane , Ethylene and the like) and compounds including halogens (e.g., chlorine, HCl). The treatment reactant can be exposed remotely or directly thermally activated or plasma activated to form an activated substance. According to an additional aspect of these specific examples, the step of providing the processing reactant chemical substance to the reaction chamber includes providing a source of the compound having the same chemical composition as the decomposition product of the organometallic compound or the aluminum CVD compound.

根據其他例示性具體實例,系統包括控制器以執行本文中所揭示之方法中的步驟。 According to other illustrative specific examples, the system includes a controller to execute the steps in the methods disclosed herein.

前述發明內容及以下實施方式均僅為例示性及解釋性的,且不限制本發明或所主張之發明。 The foregoing summary of the invention and the following embodiments are only illustrative and explanatory, and do not limit the present invention or the claimed invention.

100‧‧‧系統 100‧‧‧System

102‧‧‧反應器 102‧‧‧Reactor

104‧‧‧反應室 104‧‧‧Reaction Chamber

105‧‧‧反應空間 105‧‧‧Reaction Space

106‧‧‧基板固持器 106‧‧‧Substrate holder

108‧‧‧氣體分佈系統 108‧‧‧Gas Distribution System

110‧‧‧金屬鹵化物源 110‧‧‧Metal halide source

112‧‧‧金屬化學氣相沉積(CVD)源 112‧‧‧Metal Chemical Vapor Deposition (CVD) Source

114‧‧‧處理反應物源 114‧‧‧Handle reactant source

116‧‧‧線 Line 116‧‧‧

118‧‧‧線 Line 118‧‧‧

120‧‧‧線 120‧‧‧line

122‧‧‧閥門 122‧‧‧Valve

124‧‧‧閥門 124‧‧‧Valve

126‧‧‧閥門 126‧‧‧Valve

128‧‧‧真空泵 128‧‧‧Vacuum pump

130‧‧‧載氣及/或淨化氣體源 130‧‧‧Carrier gas and/or purification gas source

132‧‧‧線 Line 132‧‧‧

134‧‧‧閥門 134‧‧‧Valve

136‧‧‧基板或工件 136‧‧‧Substrate or workpiece

138‧‧‧控制器 138‧‧‧controller

140‧‧‧遠端電漿源 140‧‧‧Remote plasma source

142‧‧‧熱激發源 142‧‧‧Thermal excitation source

200‧‧‧方法 200‧‧‧Method

202‧‧‧步驟 202‧‧‧Step

204‧‧‧步驟 204‧‧‧Step

206‧‧‧步驟 206‧‧‧Step

208‧‧‧步驟 208‧‧‧Step

210‧‧‧步驟 210‧‧‧Step

212‧‧‧步驟 212‧‧‧Step

214‧‧‧步驟 214‧‧‧Step

216‧‧‧步驟 216‧‧‧Step

300‧‧‧方法 300‧‧‧Method

302‧‧‧步驟 302‧‧‧Step

304‧‧‧步驟 304‧‧‧Step

306‧‧‧步驟 306‧‧‧Step

308‧‧‧步驟 308‧‧‧Step

310‧‧‧步驟 310‧‧‧Step

312‧‧‧步驟 312‧‧‧Step

600‧‧‧控制器 600‧‧‧controller

602‧‧‧匯流排 602‧‧‧Bus

604‧‧‧處理器 604‧‧‧Processor

606‧‧‧記憶體 606‧‧‧Memory

608‧‧‧視情況選用的通信介面 608‧‧‧Optional communication interface depending on the situation

610‧‧‧輸入裝置 610‧‧‧Input device

612‧‧‧輸出裝置 612‧‧‧Output device

參考實施方式及申請專利範圍且與以下說明性圖式結合而考慮時,可得出對本發明之具體實例的更加完整的理解。 A more complete understanding of the specific examples of the present invention can be obtained when considering the embodiments and the scope of patent application in conjunction with the following illustrative drawings.

圖1說明根據本發明之各種例示性具體實例的系統。 Figure 1 illustrates a system according to various illustrative embodiments of the present invention.

圖2說明根據本發明之例示性具體實例的方法。 Figure 2 illustrates a method according to an illustrative specific example of the present invention.

圖3說明根據本發明之例示性具體實例的另一方法。 Figure 3 illustrates another method according to an illustrative embodiment of the present invention.

圖4說明基於未經處理而加工之多個基板的基板上的多個 缺陷。 Figure 4 illustrates multiple defects on a substrate based on multiple substrates processed without processing.

圖5說明基於使用本文中所描述的處理進行加工之多個基板的基板上的多個缺陷。 Figure 5 illustrates multiple defects on a substrate based on multiple substrates processed using the processes described herein.

圖6示意性地說明根據本發明之例示性具體實例的控制器。 Fig. 6 schematically illustrates a controller according to an illustrative specific example of the present invention.

應瞭解為簡單及清楚起見而說明圖式中的元件,且該等元件不必按比例繪製。舉例而言,可相對於其他元件誇示圖式中一些元件的尺寸以幫助提高對所說明的本發明之具體實例的理解。 It should be understood that the elements in the drawings are explained for simplicity and clarity, and the elements are not necessarily drawn to scale. For example, the size of some elements in the drawings may be exaggerated relative to other elements to help improve the understanding of the specific examples of the present invention described.

下文所提供之方法及系統之例示性具體實例的描述僅為例示性的且僅欲用於說明的目的;以下描述不意欲限制本發明或申請專利範圍的範疇。此外,對具有所陳述之特徵的多個具體實例的敍述不意欲排除具有額外特徵的其他具體實例或併有所陳述特徵之不同組合的其他具體實例。 The description of illustrative specific examples of the method and system provided below is only illustrative and intended for illustrative purposes only; the following description is not intended to limit the scope of the present invention or the scope of the patent application. In addition, the description of multiple specific examples with the stated features is not intended to exclude other specific examples with additional features or other specific examples with different combinations of stated features.

本文中所描述的方法及系統可用於減輕用於沉積經摻雜金屬膜(例如包括碳、硼、矽及/或氮的膜)之反應器中之殘餘物的形成,移除及/或轉化該殘餘物,若不進行此等操作,則在沉積程序期間該殘餘物積聚及/或產生顆粒。相比於僅在類似沉積程序之後淨化的反應器,使用本文中所描述的方法及系統導致自殘餘物之顆粒形成的減少且因此導致更高的產出率及沉積反應器之操作成本的降低。 The methods and systems described herein can be used to alleviate the formation, removal and/or conversion of residues in reactors used to deposit doped metal films (for example, films including carbon, boron, silicon, and/or nitrogen) The residue, if these operations are not performed, will accumulate and/or produce particles during the deposition process. The use of the method and system described herein results in a reduction in particle formation from residues and therefore in higher yields and a reduction in the operating cost of the deposition reactor compared to a reactor that is only cleaned after a similar deposition procedure .

現轉向圖1,其說明如本文中所描述之用於減輕沉積殘餘物積聚的系統100。系統100包括:反應器102,其包括反應室104(包括反應空間105、基板固持器106及氣體分佈系統108);金屬鹵化物源110;金屬 化學氣相沉積(chemical vapor deposition;CVD)源112;處理反應物源114;將源110至源114連接至反應器102的線116、118、120;插入於源110至源114與反應器102之間的閥門122、124及126;控制器138;真空泵128;視情況經由線132及閥門134耦接至反應器102的載氣及/或淨化氣體源130;視情況遠端電漿源140;及視情況熱激發源142。 Turning now to FIG. 1, it illustrates a system 100 for mitigating the accumulation of deposit residues as described herein. The system 100 includes: a reactor 102, which includes a reaction chamber 104 (including a reaction space 105, a substrate holder 106, and a gas distribution system 108); a metal halide source 110; and a metal chemical vapor deposition (CVD) source 112 Process the reactant source 114; connect the source 110 to the source 114 to the lines 116, 118, 120 of the reactor 102; insert the valves 122, 124, and 126 between the source 110 to the source 114 and the reactor 102; the controller 138 A vacuum pump 128; a carrier gas and/or purge gas source 130 coupled to the reactor 102 via a line 132 and a valve 134 as appropriate; a remote plasma source 140 as appropriate; and a thermal excitation source 142 as appropriate.

反應器102可為獨立反應器或叢集性工具的一部分。另外,反應器102可專用於如本文中所描述的經摻雜金屬沉積及處理程序,或反應器102可用於其他程序,例如用於其他層沉積及/或蝕刻加工。舉例而言,反應器102可包括典型地用於物理氣相沉積(physical vapor deposition;PVD)、化學氣相沉積(chemical vapor deposition;CVD)及/或原子層沉積(atomic layer deposition;ALD)加工的反應器,且可包括遠端或直接熱激發、直接電漿及/或遠端電漿設備(例如,遠端電漿源140及/或遠端熱激發源142)。在沉積或處理程序期間使用熱或電漿活化設備自源110至源114中之一或多者產生激發分子或激發物質以提昇來自源110至源114之反應物的反應性。雖然利用送至視情況選用之遠端電漿源140的所有反應物說明,但情況不必如此。舉例而言,來自具有載氣或不具有載氣之處理反應物源的氣體可被送至遠端電漿源140。藉助於一實例,反應器102包括適用於ALD沉積的反應器。適用於系統100的例示性ALD反應器描述於美國專利第8,152,922號中,其內容特此以引用之方式併入至本文中,且在內容上與本發明不衝突。 The reactor 102 may be a stand-alone reactor or part of a cluster tool. In addition, the reactor 102 may be dedicated to doped metal deposition and processing procedures as described herein, or the reactor 102 may be used in other procedures, such as for other layer deposition and/or etching processes. For example, the reactor 102 may include processes typically used for physical vapor deposition (PVD), chemical vapor deposition (CVD), and/or atomic layer deposition (ALD). The reactor can include remote or direct thermal excitation, direct plasma and/or remote plasma equipment (for example, remote plasma source 140 and/or remote thermal excitation source 142). During the deposition or processing procedure, thermal or plasma activation equipment is used to generate excitation molecules or substances from one or more of the source 110 to the source 114 to enhance the reactivity of the reactants from the source 110 to the source 114. Although all the reactants sent to the optional remote plasma source 140 are used for illustration, this need not be the case. For example, gas from a processing reactant source with or without carrier gas can be sent to the remote plasma source 140. By way of an example, the reactor 102 includes a reactor suitable for ALD deposition. An exemplary ALD reactor suitable for use in the system 100 is described in US Patent No. 8,152,922, the content of which is hereby incorporated by reference, and does not conflict with the present invention in content.

基板固持器106經設計以在加工期間將基板或工件136固持於合適的位置。根據各種例示性具體實例,固持器106可形成直接電漿電 路的一部分。另外或替代地,固持器106可在加工期間經加熱、冷卻或處於環境加工溫度下。 The substrate holder 106 is designed to hold the substrate or workpiece 136 in place during processing. According to various illustrative specific examples, the holder 106 may form part of a direct plasma circuit. Additionally or alternatively, the holder 106 may be heated, cooled, or at ambient processing temperature during processing.

雖然以區塊形式說明氣體分佈系統108,但氣體分佈系統108可為相對複雜的且經設計以混合來自源110及/或源112之蒸氣或氣體及來自諸如氣體源130之一或多個源的載氣/淨化氣體,隨後將氣體混合物分佈至反應器102的剩餘部分。另外,系統108可經組態以向室104提供垂直(如所說明)或水平的氣體流。例示性氣體分佈系統描述於美國專利第8,152,922號中。藉助於實例,分佈系統108可包括簇射頭。氣體分佈系統可形成直接電漿源的一部分。 Although the gas distribution system 108 is illustrated in the form of blocks, the gas distribution system 108 may be relatively complex and designed to mix vapor or gas from the source 110 and/or the source 112 and from one or more sources such as the gas source 130 The carrier gas/purification gas is then distributed to the remainder of the reactor 102. Additionally, the system 108 can be configured to provide a vertical (as illustrated) or horizontal flow of gas to the chamber 104. An exemplary gas distribution system is described in U.S. Patent No. 8,152,922. By way of example, the distribution system 108 may include shower heads. The gas distribution system can form part of the direct plasma source.

金屬鹵化物源110包括一或多種氣體或變為氣態的材料(其包括金屬及鹵化物)。例示性金屬包括鈦、鉭及鈮。例示性鹵化物包括氯及溴。舉例而言,源110可包括鈦氯化物(例如,TiCl4)、鉭氯化物(例如,TaCl5)及鈮氯化物(例如,NbCl5)中之一或多者。來自源110的氣體可曝露於熱及/或遠端電漿及/或直接電漿源以形成活化物質或激發物質,諸如包括氯、鈦、鉭及鈮中之一或多者的離子及/或自由基。術語「活化物質」包括前驅體及可在將前驅體曝露於任何熱及/或電漿程序期間形成的任何離子及/或自由基。另外,當結合化合物使用術語「化學物質」時,無論該化合物(例如,反應物)是否已曝露於熱或電漿活化,該術語包括該化合物及任何活化物質。 The metal halide source 110 includes one or more gases or materials that become gaseous (including metals and halides). Exemplary metals include titanium, tantalum, and niobium. Exemplary halides include chlorine and bromine. For example, the source 110 may include one or more of titanium chloride (e.g., TiCl 4 ), tantalum chloride (e.g., TaCl 5 ), and niobium chloride (e.g., NbCl 5 ). The gas from the source 110 may be exposed to heat and/or remote plasma and/or direct plasma sources to form activated or excited species, such as ions and/or one or more of chlorine, titanium, tantalum, and niobium. Or free radicals. The term "activated species" includes precursors and any ions and/or free radicals that can be formed during exposure of the precursor to any thermal and/or plasma process. In addition, when the term "chemical substance" is used in conjunction with a compound, regardless of whether the compound (eg, reactant) has been exposed to heat or plasma activation, the term includes the compound and any activating substance.

金屬CVD源112包括與反應性物質反應或形成反應性物質的一或多種氣體或變為氣態的物質,該等反應性物質與來自金屬鹵化物源110的化合物或物質反應以形成摻雜金屬之膜的經沉積層,諸如摻鋁碳化鈦 或摻鋁碳化鉭、其他碳炔、氮化物、矽化物或硼化物的層。舉例而言,金屬CVD源112可包括有機金屬化合物及/或鋁CVD化合物,諸如氫化鋁化合物。例示性合適的有機金屬化合物包括三甲基鋁(trimethylaluminum;TMA)、三乙基鋁(triethylaluminum;TEA)、三異丁基鋁(triisobutylaluminum;TIBA)、二乙基氯化鋁(diethylaluminum chloride;DEACL)、二乙基氫化鋁(diethylaluminum hydride;DMAH)及三叔丁基鋁(tritertiarybutylaluminum;TTBA)。例示性鋁CVD氫化鋁化合物包括三甲胺氫化鋁(trimethylamine alane;TMAA)、三乙胺氫化鋁(triethylamine alane;TEAA)、二甲基乙胺氫化鋁(dimethyl ethylamine alane;DMEAA)、三甲胺氫化鋁硼烷(trimethylaminealane borane;TMAAB)及甲基吡咯啶氫化鋁(methylpyrrolidine alane;MPA)。 The metal CVD source 112 includes one or more gases or substances that react with a reactive substance or form a reactive substance or become a gaseous substance, and the reactive substance reacts with a compound or substance from the metal halide source 110 to form a doped metal. The deposited layer of the film, such as a layer of aluminum-doped titanium carbide or aluminum-doped tantalum carbide, other carbyne, nitride, silicide, or boride. For example, the metal CVD source 112 may include organometallic compounds and/or aluminum CVD compounds, such as aluminum hydride compounds. Exemplary suitable organometallic compounds include trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA), diethylaluminum chloride (DEACL) ), diethylaluminum hydride (DMAH) and tritertiarybutylaluminum (TTBA). Exemplary aluminum CVD aluminum hydride compounds include trimethylamine aluminum hydride (trimethylamine alane; TMAA), triethylamine aluminum hydride (triethylamine alane; TEAA), dimethyl ethylamine alane (DMEAA), and trimethylamine aluminum hydride Borane (trimethylaminealane borane; TMAAB) and methylpyrrolidine alane (MPA).

有機金屬化合物及氫化鋁化合物的使用可為有利的,因為該等化合物允許原子層沉積,該原子層沉積允許所要材料之層的精確、保形、自限的沉積。然而,有機前驅體在膜沉積溫度下或低於此溫度下易分解。實際上,一些前驅體在低於膜形成之溫度200℃(或更多)的溫度下分解。因此,化合物可在到達基板136之前分解為不合需要的產物,導致室104內(例如,在反應空間105內)形成殘餘物,例如在諸如簇射頭的氣體分佈系統108處或附近。如上所述,殘餘物形成可在之後引起使經沉積金屬膜中產生缺陷的顆粒形成。 The use of organometallic compounds and aluminum hydride compounds can be advantageous because these compounds allow atomic layer deposition, which allows precise, conformal, self-limiting deposition of layers of desired materials. However, organic precursors are easily decomposed at or below the film deposition temperature. In fact, some precursors decompose at a temperature of 200°C (or more) below the temperature at which the film is formed. Therefore, the compound may decompose into undesirable products before reaching the substrate 136, causing residues to form within the chamber 104 (e.g., within the reaction space 105), for example at or near a gas distribution system 108 such as a shower head. As described above, residue formation can later cause the formation of particles that cause defects in the deposited metal film.

舉例而言,許多有機金屬化合物可經歷β氫化物消除反應,其中鍵結至金屬中心的烷基被轉換成相對應的金屬氫化物及烯烴化合物。烯烴化合物的形成(尤其在氣體分佈系統108處或附近)可導致包括 有機材料及無機材料的殘餘物積聚。另外,分解產物可聚合(例如,在存在來自金屬鹵化物源110之物質的情況下),其可引起額外或替代殘餘物形成。 For example, many organometallic compounds can undergo β-hydride elimination reactions, in which alkyl groups bonded to the metal center are converted into corresponding metal hydrides and olefin compounds. The formation of olefin compounds (especially at or near the gas distribution system 108) can result in the accumulation of residues including organic and inorganic materials. In addition, the decomposition products may polymerize (e.g., in the presence of material from the metal halide source 110), which may cause the formation of additional or alternative residues.

來自源112的氣體可曝露於直接及/或遠端熱激發源(例如,遠端激發源142)及/或直接電漿源(例如,使用氣體分佈系統108及基板固持器106的部分作為電極)及/或遠端電漿源140以形成活化物質,諸如離子及/或自由基。 The gas from the source 112 may be exposed to a direct and/or remote thermal excitation source (for example, the remote excitation source 142) and/or a direct plasma source (for example, using the gas distribution system 108 and parts of the substrate holder 106 as electrodes ) And/or remote plasma source 140 to form activated species, such as ions and/or free radicals.

處理反應物源114包括一或多種氣體或變為氣態的材料,該等氣體和材料包括減輕反應器中之殘餘物的形成及/或以產生更少顆粒的方式(例如藉由使殘餘物稠密化)轉換殘餘物的化合物或物質。例示性化合物及物質可與鹵素(例如,Cl)端基分子上的鹵素(例如,在經沉積的膜上)反應以減輕不合需要之分解產物的形成。舉例而言,處理反應物源114可包括選自由包含一或多個氫原子的化合物及包含鹵素(例如,氯、HCl)的化合物組成之群的化合物。根據各種態樣,處理反應物源包含選自由以下組成之群的化合物:氨、氫、一或多種矽烷(例如,矽烷)、甲烷、矽氫化物、硼氫化物、鹵代矽烷、鹵代硼烷、烯烴(例如,乙烯)、炔烴及肼及其衍生物(諸如烷基肼)等。且根據其他態樣,處理反應物源包含與金屬CVD源的分解產物具有相同化學式(例如與金屬CVD源之β氫化物消除產物的化學式相同的化學式)的材料。 The processing reactant source 114 includes one or more gases or materials that become gaseous. The gases and materials include reducing the formation of residues in the reactor and/or in a manner that produces fewer particles (for example, by making the residues dense Chemical) A compound or substance that converts the residue. Exemplary compounds and substances can react with halogens (e.g., on deposited films) on halogen (e.g., Cl) terminal molecules to reduce the formation of undesirable decomposition products. For example, the processing reactant source 114 may include a compound selected from the group consisting of a compound containing one or more hydrogen atoms and a compound containing a halogen (eg, chlorine, HCl). According to various aspects, the processing reactant source includes a compound selected from the group consisting of ammonia, hydrogen, one or more silanes (for example, silane), methane, silicon hydride, borohydride, halogenated silane, halogenated boron Alkanes, alkenes (for example, ethylene), alkynes, hydrazine and their derivatives (such as alkylhydrazine), etc. And according to other aspects, the processing reactant source includes a material having the same chemical formula as the decomposition product of the metal CVD source (for example, the same chemical formula as the chemical formula of the β-hydride elimination product of the metal CVD source).

來自源114的氣體可曝露於熱及/或遠端電漿及/或直接電漿源以形成活化或激發物質,諸如包括氫及/或氯及/或其他活化物質中之一或多者的離子及/或自由基。 The gas from the source 114 may be exposed to heat and/or remote plasma and/or direct plasma sources to form an activated or excited substance, such as one or more of hydrogen and/or chlorine and/or other activated substances Ions and/or free radicals.

載氣或惰性源130包括在反應器102中相對不起反應的一或多種氣體或變為氣態的材料。例示性載氣及惰性氣體包含氮氣、氬氣、氦氣及其任何組合。 The carrier gas or inert source 130 includes one or more gases or materials that become gaseous that are relatively unreactive in the reactor 102. Exemplary carrier gases and inert gases include nitrogen, argon, helium, and any combination thereof.

遠端電漿源140可包括任何合適的遠端電漿單元。類似地,遠端熱激發源142及直接熱激發源可包括任何合適的熱激發設備,諸如燈、加熱器、雷射、其他光源及類似者。 The remote plasma source 140 may include any suitable remote plasma unit. Similarly, the remote thermal excitation source 142 and the direct thermal excitation source may include any suitable thermal excitation equipment, such as lamps, heaters, lasers, other light sources, and the like.

如圖1中所說明,控制器138可耦接至閥門122、124、126及134中之一或多者;真空源128;遠端電漿源140;及/或遠端熱激發源142。根據本發明的各種實例,控制器138經組態以使用來自處理反應物源的處理反應物執行反應室處理的一或多個操作。處理可發生在將金屬CVD前驅體引入至反應室之前或此期間。藉助於說明性實例,控制器138經組態以將金屬鹵化物化學物質自金屬鹵化物源110提供至反應空間105,將選自由有機金屬化合物化學物質及鋁CVD化合物化學物質組成之群的金屬CVD前驅體自金屬CVD源112提供至反應空間105,形成包含B、C、Si、N上覆基板136中之一或多者的經沉積的經摻雜金屬膜,視情況移除基板,將處理反應物化學物質自處理反應物源114提供至反應空間105,將反應空間105曝露於處理反應物化學物質以減輕包含金屬CVD前驅體之分解產物的顆粒的形成,且淨化反應室104。 As illustrated in FIG. 1, the controller 138 may be coupled to one or more of the valves 122, 124, 126, and 134; the vacuum source 128; the remote plasma source 140; and/or the remote thermal excitation source 142. According to various examples of the present invention, the controller 138 is configured to perform one or more operations of the reaction chamber processing using the processing reactant from the processing reactant source. The treatment can occur before or during the introduction of the metal CVD precursor into the reaction chamber. By means of an illustrative example, the controller 138 is configured to provide metal halide chemistry from the metal halide source 110 to the reaction space 105, adding a metal selected from the group consisting of organometallic compound chemistry and aluminum CVD compound chemistry. The CVD precursor is provided from the metal CVD source 112 to the reaction space 105 to form a deposited doped metal film including one or more of B, C, Si, and N overlying substrate 136. The substrate is removed as appropriate, and the The processing reactant chemical substance is provided from the processing reactant source 114 to the reaction space 105, and the reaction space 105 is exposed to the processing reactant chemical substance to reduce the formation of particles containing the decomposition products of the metal CVD precursor, and to purify the reaction chamber 104.

圖6示意性地說明根據本發明之至少一具體實例的控制器600,其適合用作控制器138。控制器600可經組態以執行本文中所描述之方法的一或多個或所有方法步驟。控制器600包括互連處理器604、一記憶體606、視情況選用的通信介面608、輸入裝置610及輸出裝置612的匯流 排602。匯流排602允許控制器600之組件之間進行通信。處理器604可包括解譯且執行編碼指令的一或多個處理單元或微處理器。在其他實施中,處理器604可藉由一或多個特殊應用積體電路(application-specific integrated circuit;ASIC)、場可程式化閘陣列(field programmable gate array;FPGA)或類似者得以實施或包括這些裝置。 FIG. 6 schematically illustrates a controller 600 according to at least one specific example of the present invention, which is suitable for use as the controller 138. The controller 600 may be configured to perform one or more or all method steps of the methods described herein. The controller 600 includes a bus 602 interconnecting a processor 604, a memory 606, an optional communication interface 608, an input device 610, and an output device 612. The bus 602 allows communication between the components of the controller 600. The processor 604 may include one or more processing units or microprocessors that interpret and execute encoded instructions. In other implementations, the processor 604 can be implemented by one or more application-specific integrated circuits (ASIC), field programmable gate array (FPGA), or the like. Including these devices.

記憶體606可包括隨機存取記憶體(random access memory;RAM)或另一類型的儲存用於由處理器604執行之資訊及指令的動態儲存裝置。記憶體606亦可包括唯讀記憶體(read-only memory;ROM)或另一類型的儲存用於處理器604之靜態資訊及指令的靜態儲存裝置。記憶體606可另外或替代地包括其他類型的磁或光學記錄媒體及其相對應的用於儲存資訊及/或指令的驅動。如本文中所使用,術語「記憶體」概括地包括暫存器、緩衝器及經組態以保存資料的其他資料建構。 The memory 606 may include random access memory (RAM) or another type of dynamic storage device that stores information and instructions for execution by the processor 604. The memory 606 may also include a read-only memory (ROM) or another type of static storage device that stores static information and instructions for the processor 604. The memory 606 may additionally or alternatively include other types of magnetic or optical recording media and their corresponding drives for storing information and/or commands. As used herein, the term "memory" broadly includes registers, buffers, and other data structures configured to store data.

通信介面608可包括用於處理經由現已知或待發展之資料協定傳輸的資料的協定堆疊。通信介面608可包括收發器類的裝置及允許控制器600經由射頻與其他裝置及/或系統通信的天線。通信介面608可另外或替代地包括至其他裝置的介面、埠或連接器。 The communication interface 608 may include a protocol stack for processing data transmitted via currently known or to-be-developed data protocols. The communication interface 608 may include a transceiver type device and an antenna that allows the controller 600 to communicate with other devices and/or systems via radio frequency. The communication interface 608 may additionally or alternatively include interfaces, ports, or connectors to other devices.

輸入610可包括准許操作員鍵入資訊至控制器600的一或多個裝置,諸如鍵盤、小鍵盤、滑鼠、筆、觸摸感應墊或觸摸感應屏、麥克風、一或多個生物測定機構及類似者。輸出612可包括輸出資訊至操作員的一或多個裝置,諸如顯示器、印表機埠、揚聲器或類似者。 The input 610 may include one or more devices that allow the operator to enter information into the controller 600, such as a keyboard, keypad, mouse, pen, touch sensitive pad or touch sensitive screen, microphone, one or more biometric mechanisms, and the like By. The output 612 may include one or more devices that output information to the operator, such as a display, printer port, speakers, or the like.

如本文中所描述,控制器600可回應於執行含於諸如記憶體606之電腦可讀媒體中之軟體指令的處理器604而執行某些操作。電腦可讀 媒體可被定義為物理記憶體裝置或邏輯記憶體裝置。邏輯記憶體裝置可包括單一物理記憶體裝置內或散佈於多個物理記憶體裝置的記憶體空間。可自另一電腦可讀媒體或經由通信介面608自另一裝置將軟體指令讀取入記憶體606中。含於記憶體606中的軟體指令可使處理器604執行本文中所描述的處理程序/方法。或者,固線式電路可用於代替軟體指令或與軟體指令組合以實施本文中所描述的處理程序。因此,本文中所描述的實施不限於硬體電路及軟體的任何特定組合。 As described herein, the controller 600 may perform certain operations in response to the processor 604 executing software instructions contained in a computer-readable medium such as the memory 606. Computer-readable media can be defined as physical memory devices or logical memory devices. The logical memory device may include a single physical memory device or a memory space dispersed among multiple physical memory devices. The software instructions can be read into the memory 606 from another computer-readable medium or from another device via the communication interface 608. The software instructions contained in the memory 606 enable the processor 604 to execute the processing procedures/methods described herein. Alternatively, a fixed-wire circuit can be used in place of or combined with software instructions to implement the processing procedures described herein. Therefore, the implementation described herein is not limited to any specific combination of hardware circuits and software.

圖2說明根據本發明之例示性具體實例的處理反應器的方法200。方法200包括以下步驟:提供金屬鹵化物化學物質(步驟202),提供金屬CVD前驅體化學物質(步驟204),形成經摻雜金屬膜(步驟206),提供處理反應物化學物質(步驟208),將反應室曝露於處理反應物化學物質(步驟210),視情況淨化反應器(步驟212)且若所要量之材料尚未經沉積(步驟214),則重複步驟202至步驟212,且若所要量之材料已經沉積(步驟214),則程序完成(步驟216)。儘管未單獨說明,但在處理步驟210之前可自反應室移除基板或工件,使得工件上的膜不曝露於處理反應物化學物質。或者,基板可曝露於處理反應物化學物質。 Figure 2 illustrates a method 200 of treating a reactor according to an illustrative embodiment of the present invention. The method 200 includes the following steps: providing a metal halide chemical substance (Step 202), providing a metal CVD precursor chemical substance (Step 204), forming a doped metal film (Step 206), and providing a processing reactant chemical substance (Step 208) , Exposing the reaction chamber to processing reactant chemicals (step 210), purifying the reactor as appropriate (step 212) and if the required amount of material has not yet been deposited (step 214), repeat steps 202 to step 212, and if required The amount of material has been deposited (step 214), and the procedure is complete (step 216). Although not separately illustrated, the substrate or workpiece can be removed from the reaction chamber before the processing step 210 so that the film on the workpiece is not exposed to the processing reactant chemicals. Alternatively, the substrate may be exposed to processing reactant chemicals.

步驟202包括將金屬鹵化物化學物質提供至反應室,且步驟204包括將金屬CVD前驅體化學物質提供至反應室。步驟202及步驟204可按任何次序執行或同時執行。另外,儘管僅用兩個反應物源說明,但例示性方法可包括使用超過兩種反應物。 Step 202 includes providing a metal halide chemical to the reaction chamber, and step 204 includes providing a metal CVD precursor chemical to the reaction chamber. Step 202 and step 204 can be performed in any order or simultaneously. In addition, although illustrated with only two reactant sources, exemplary methods may include the use of more than two reactants.

金屬鹵化物化學物質可包括上文所描述之與金屬鹵化物源110有關的化合物中之任一者。在步驟202期間,金屬鹵化物源可曝露於熱 活化程序及/或遠端及/或直接電漿源以產生包括活化物質的金屬鹵化物化學物質。類似地,金屬CVD前驅體可包括上文所述之與金屬CVD源112有關的任何化合物。且在步驟204期間,金屬CVD前驅體可曝露於熱活化程序及/或遠端及/或直接電漿源以產生包括活化物質的金屬CVD前驅體化學物質。 The metal halide chemical substance may include any of the above-described compounds related to the metal halide source 110. During step 202, the metal halide source may be exposed to a thermal activation process and/or a remote and/or direct plasma source to produce a metal halide chemical species including an activated species. Similarly, the metal CVD precursor may include any of the compounds described above in relation to the metal CVD source 112. And during step 204, the metal CVD precursor may be exposed to a thermal activation process and/or a remote and/or direct plasma source to generate a metal CVD precursor chemical substance including an activated substance.

在步驟206期間,形成金屬膜。舉例而言,金屬膜可包括摻鋁、摻矽及/或摻硼的碳化鈦、摻鋁、摻矽及/或摻硼的碳化鉭及/或摻鋁、摻矽及/或摻硼的碳化鈮或包括C、Si、B或N中之一或多者的其他金屬膜。 During step 206, a metal film is formed. For example, the metal film may include aluminum-doped, silicon-doped and/or boron-doped titanium carbide, aluminum-doped, silicon-doped and/or boron-doped tantalum carbide and/or aluminum-doped, silicon-doped and/or boron-doped carbide Niobium or other metal films including one or more of C, Si, B, or N.

在步驟208期間,為減輕殘餘物的形成及/或使殘餘物稠密化及/或轉化殘餘物以在反應室中形成較少顆粒,將處理反應物化學物質引入至反應室中。反應物化學物質可包括上文所述之與處理反應物源114有關的化合物中之任一者,且來自源之反應物可曝露於如本文中所描述的熱及/或電漿活化以形成包括活化物質的處理反應物化學物質。 During step 208, in order to reduce the formation of residues and/or to densify the residues and/or convert the residues to form fewer particles in the reaction chamber, processing reactant chemicals are introduced into the reaction chamber. The reactant chemistry can include any of the above-mentioned compounds related to the treatment of the reactant source 114, and the reactant from the source can be exposed to heat and/or plasma activation as described herein to form Process reactant chemicals including activated substances.

藉助於實例,處理反應物化學物質可包括氫氣,且可經由氣體分佈系統(例如,系統108)將氫氣引入至反應室(例如,反應室104)或反應空間(例如,反應空間105)中。另外或替代地,氫氣可曝露於遠端電漿以形成包括活化物質(諸如氫自由基)的處理反應物化學物質。根據例示性態樣,遠端電漿經組態以使得活化物質可到達氣體分佈系統(例如噴頭)之表面及靠近表面之系統的孔內,且與其中的材料反應。另外或作為替代例,步驟208可包括將諸如氯的鹵素或諸如氯自由基的鹵素活化物質提供至反應室/反應空間以減輕反應室/反應空間內殘餘物的形成。 By way of example, the processing reactant chemicals may include hydrogen, and the hydrogen may be introduced into the reaction chamber (for example, reaction chamber 104) or reaction space (for example, reaction space 105) via a gas distribution system (for example, system 108). Additionally or alternatively, hydrogen gas may be exposed to the remote plasma to form processing reactant chemicals that include activated species such as hydrogen radicals. According to an exemplary aspect, the remote plasma is configured so that the activated substance can reach the surface of the gas distribution system (such as a shower head) and the pores of the system close to the surface, and react with the material therein. Additionally or alternatively, step 208 may include providing a halogen such as chlorine or a halogen activating substance such as a chlorine radical to the reaction chamber/reaction space to reduce the formation of residues in the reaction chamber/reaction space.

根據其他具體實例,處理反應物化學物質包括氨,其可經受 或可不經受如本文中所描述的直接及/或遠端熱及/或直接及/或遠端電漿活化。氨被認為與經沉積材料的鹵素(例如,氯)端基表面反應,且減輕反應室/反應空間內分解產物的形成。 According to other specific examples, the treatment reactant chemical includes ammonia, which may or may not be subjected to direct and/or remote thermal and/or direct and/or remote plasma activation as described herein. Ammonia is believed to react with the halogen (e.g., chlorine) end group surface of the deposited material and reduce the formation of decomposition products in the reaction chamber/reaction space.

銨殘餘物反應物處理程序的例示性條件包括沉積約1250Å碳化物,隨後曝露於NH3 10分鐘,隨後淨化(移除殘餘物NH3)20分鐘,隨後沉積約1250Å碳化物,隨後曝露於NH3約10分鐘,隨後淨化(移除殘餘物NH3)約20分鐘。舉例而言,1250Å碳化物可按各50Å沉積於25個晶圓(一批晶圓)上。 Exemplary conditions for the ammonium residue reactant treatment procedure include deposition of approximately 1250Å carbide, followed by exposure to NH 3 for 10 minutes, followed by purification (removal of residual NH 3 ) for 20 minutes, followed by deposition of approximately 1250Å carbide, followed by exposure to NH 3 About 10 minutes, followed by purification (removal of residue NH 3 ) for about 20 minutes. For example, 1250Å carbide can be deposited on 25 wafers (a batch of wafers) at 50Å each.

據認為此程序轉化反應器中的殘餘物以提供較好黏著力,降低應力或甚至使其不易氧化以防止此殘餘膜自反應器表面脫落且落在晶圓上,因此降低晶圓缺陷位準。 It is believed that this procedure transforms the residue in the reactor to provide better adhesion, reduce stress or even make it difficult to oxidize to prevent the residual film from falling off the surface of the reactor and falling on the wafer, thereby reducing the wafer defect level .

儘管方法200被說明為包括決策或判定步驟214,但其可經組態以自動運行預定數量之步驟202至步驟212的循環。舉例而言,方法200可經組態以運行1、2、3、4、5或50次步驟202至步驟212的循環且當最後一次循環的步驟208結束時完成(步驟216)。或者,可基於直至預定量之經摻雜金屬膜得到沉積重複步驟202至步驟212。舉例而言,可運行步驟202至步驟212直至達到約20Å至約1250Å或約5Å至約5000Å的累積膜厚度。 Although the method 200 is illustrated as including a decision or decision step 214, it can be configured to automatically run a predetermined number of loops of step 202 to step 212. For example, the method 200 may be configured to run 1, 2, 3, 4, 5, or 50 cycles of steps 202 to 212 and complete when step 208 of the last cycle ends (step 216). Alternatively, step 202 to step 212 may be repeated based on the deposition of the doped metal film up to a predetermined amount. For example, steps 202 to 212 may be executed until a cumulative film thickness of about 20 Å to about 1250 Å or about 5 Å to about 5000 Å is reached.

圖4及圖5說明當反應器未經處理時(圖4)且當根據方法200利用氨作為處理反應物化學物質在上述條件下對反應器進行處理時(圖5)由基板之表面上的粒度儀計數的多個缺陷。 Figures 4 and 5 illustrate when the reactor is untreated (Figure 4) and when ammonia is used as a processing reactant chemical substance according to the method 200 when the reactor is processed under the above conditions (Figure 5) the surface of the substrate Multiple defects counted by the particle size analyzer.

圖3說明根據本發明之額外例示性具體實例的另一方法 300。方法300包括以下步驟:提供金屬鹵化物化學物質(步驟302),提供金屬CVD前驅體化學物質(步驟304),提供處理反應物化學物質(步驟306),形成經摻雜金屬膜(步驟308),判定所要量之材料是否已經沉積(步驟310),且若所要量之材料已經沉積,則完成程序(步驟312),且若所要量之材料尚未沉積,則重複步驟302至步驟310。儘管方法300未經說明,但其可在步驟312之前包括淨化步驟(例如,類似於步驟212)。 Figure 3 illustrates another method 300 according to an additional illustrative embodiment of the present invention. The method 300 includes the following steps: providing a metal halide chemical substance (step 302), providing a metal CVD precursor chemical substance (step 304), providing a processing reactant chemical substance (step 306), and forming a doped metal film (step 308) , It is determined whether the required amount of material has been deposited (step 310), and if the required amount of material has been deposited, the procedure is completed (step 312), and if the required amount of material has not been deposited, step 302 to step 310 are repeated. Although the method 300 is not illustrated, it may include a purification step before step 312 (e.g., similar to step 212).

步驟302及步驟304可與步驟202及步驟204相同,除了根據此等具體實例的例示性態樣,在步驟304之前執行步驟302。且根據其他態樣,在步驟302之後且在步驟304之前或與其同時執行步驟306。藉助於實例,可在步驟302期間將金屬鹵化物化學物質自金屬鹵化物源引入至反應室一段時間(例如,約800ms的脈衝)。接著在步驟306期間,將諸如氫、活化氫、一或多種矽烷、活化矽烷、乙烯及/或活化乙烯的處理反應物引入至反應室一段時間。在步驟306之後或在此期間,將金屬CVD反應物化學物質引入至反應室(例如,曝露約3.5秒)以形成經摻雜金屬膜。在步驟304之前或在此期間使用在步驟306期間的處理反應物化學物質之脈衝被認為減少經沉積材料之表面上的多個鹵化物端基物質且因此減少或消除殘餘物形成。 Step 302 and step 304 may be the same as step 202 and step 204, except that step 302 is executed before step 304 according to the illustrative aspects of these specific examples. And according to other aspects, step 306 is executed after step 302 and before step 304 or at the same time. By way of example, the metal halide chemistry can be introduced into the reaction chamber from the metal halide source for a period of time (e.g., a pulse of about 800 ms) during step 302. Then, during step 306, processing reactants such as hydrogen, activated hydrogen, one or more silanes, activated silanes, ethylene, and/or activated ethylene are introduced into the reaction chamber for a period of time. After or during step 306, a metal CVD reactant chemical is introduced into the reaction chamber (e.g., exposed for about 3.5 seconds) to form a doped metal film. The use of the pulse of processing reactant chemistry during step 306 before or during step 304 is believed to reduce multiple halide end-group species on the surface of the deposited material and thus reduce or eliminate residue formation.

儘管本文中闡述本發明的例示性具體實例,但應瞭解本發明不限於此。舉例而言,雖然結合各種特定化學物質描述系統及方法,但本發明未必限於此等化學物質。可在不脫離本發明之精神及範疇的情況下對本文中所闡述的系統及方法進行各種修改、變化及改進。 Although illustrative specific examples of the present invention are set forth herein, it should be understood that the present invention is not limited thereto. For example, although the system and method are described in conjunction with various specific chemical substances, the present invention is not necessarily limited to these chemical substances. Various modifications, changes and improvements can be made to the system and method described in this text without departing from the spirit and scope of the present invention.

100‧‧‧系統 100‧‧‧System

102‧‧‧反應器 102‧‧‧Reactor

104‧‧‧反應室 104‧‧‧Reaction Chamber

105‧‧‧反應空間 105‧‧‧Reaction Space

106‧‧‧基板固持器 106‧‧‧Substrate holder

108‧‧‧氣體分佈系統 108‧‧‧Gas Distribution System

110‧‧‧金屬鹵化物源 110‧‧‧Metal halide source

112‧‧‧金屬化學氣相沉積(CVD)源 112‧‧‧Metal Chemical Vapor Deposition (CVD) Source

114‧‧‧處理反應物源 114‧‧‧Handle reactant source

116‧‧‧線 Line 116‧‧‧

118‧‧‧線 Line 118‧‧‧

120‧‧‧線 120‧‧‧line

122‧‧‧閥門 122‧‧‧Valve

124‧‧‧閥門 124‧‧‧Valve

126‧‧‧閥門 126‧‧‧Valve

128‧‧‧真空泵 128‧‧‧Vacuum pump

130‧‧‧載氣及/或淨化氣體源 130‧‧‧Carrier gas and/or purification gas source

132‧‧‧線 Line 132‧‧‧

134‧‧‧閥門 134‧‧‧Valve

136‧‧‧基板或工件 136‧‧‧Substrate or workpiece

138‧‧‧控制器 138‧‧‧controller

140‧‧‧遠端電漿源 140‧‧‧Remote plasma source

142‧‧‧熱激發源 142‧‧‧Thermal excitation source

Claims (19)

一種用於處理反應室的系統,該系統包含:包含反應室的反應器;流體地耦接至該反應器的金屬鹵化物源;選自由有機金屬化合物及鋁CVD化合物中之一或多者組成之群的金屬CVD源,其流體地耦接至該反應器;耦接至該反應器的處理反應物源;耦接至該反應器的真空泵;及控制器,其經組態以在將該金屬CVD前驅體引入至該反應室之前或此期間使用來自該處理反應物源的處理反應物執行反應室處理,其中該處理反應物源包含與該金屬CVD源之分解產物具有相同化學式的材料。 A system for processing a reaction chamber, the system comprising: a reactor containing the reaction chamber; a metal halide source fluidly coupled to the reactor; selected from one or more of organometallic compounds and aluminum CVD compounds A group of metal CVD sources, which are fluidly coupled to the reactor; a source of processing reactants coupled to the reactor; a vacuum pump coupled to the reactor; and a controller, which is configured to Before or during the introduction of the metal CVD precursor into the reaction chamber, the processing reactant from the processing reactant source is used to perform the reaction chamber processing, wherein the processing reactant source includes a material having the same chemical formula as the decomposition product of the metal CVD source. 如申請專利範圍第1項之系統,其進一步包含電漿源,其中將來自該處理反應物源的處理反應物曝露於該電漿源以形成一或多個激發處理反應物物質。 For example, the system of claim 1, further comprising a plasma source, wherein the treatment reactant from the treatment reactant source is exposed to the plasma source to form one or more activation treatment reactant substances. 如申請專利範圍第1項之系統,其進一步包含熱激發源,其中將來自該處理反應物源的處理反應物曝露於該熱激發源以形成一或多個激發處理反應物物質。 For example, the system of item 1 of the scope of the patent application further includes a thermal excitation source, wherein the processing reactant from the processing reactant source is exposed to the thermal excitation source to form one or more excitation processing reactant substances. 如申請專利範圍第1項至第3項中任一項之系統,其中該處理反應物源包含選自由包含一或多個氫原子的化合物及包含鹵素的化合物組成之群的一或多種化合物。 Such as the system of any one of items 1 to 3 in the scope of the patent application, wherein the processing reactant source comprises one or more compounds selected from the group consisting of compounds containing one or more hydrogen atoms and compounds containing halogen. 如申請專利範圍第1項至第3項中任一項之系統,其中該處理反應物 源包含氨、氫、一或多種矽烷、甲烷、矽氫化物、硼氫化物、鹵代矽烷、鹵代硼烷、烯烴、炔烴及肼及其衍生物中之一或多者。 For example, the system of any one of items 1 to 3 in the scope of patent application, wherein the processing reactant The source includes one or more of ammonia, hydrogen, one or more of silanes, methane, silane hydrides, borohydrides, halogenated silanes, halogenated boranes, alkenes, alkynes, and hydrazine and derivatives thereof. 如申請專利範圍第1項之系統,其中該材料包含與該金屬CVD源之β氫化物消除產物具有相同化學式的材料。 Such as the system of the first item in the scope of patent application, wherein the material comprises a material having the same chemical formula as the β-hydride elimination product of the metal CVD source. 如申請專利範圍第1項至第3項中任一項之系統,其進一步包含遠端電漿源。 For example, the system of any one of items 1 to 3 in the scope of the patent application further includes a remote plasma source. 如申請專利範圍第1項至第3項中任一項之系統,其進一步包含遠端熱激發源。 For example, the system of any one of items 1 to 3 of the scope of patent application further includes a remote thermal excitation source. 如申請專利範圍第1項至第3項中任一項之系統,其中該控制器進一步經組態以進行以下操作:將該金屬鹵化物化學物質提供至該反應室一段時間;在將該金屬鹵化物化學物質提供至反應室一段時間的該步驟之後,將該處理反應物化學物質提供至該反應室一段時間;及在將該處理反應物化學物質提供至該反應室一段時間期間或在此之後,將該金屬CVD前驅體化學物質提供至該反應室。 For example, the system of any one of items 1 to 3 in the scope of patent application, wherein the controller is further configured to perform the following operations: provide the metal halide chemical substance to the reaction chamber for a period of time; After the step of providing the halide chemical substance to the reaction chamber for a period of time, the processing reactant chemical substance is provided to the reaction chamber for a period of time; and during or during the period of providing the processing reactant chemical substance to the reaction chamber for a period of time After that, the metal CVD precursor chemical substance is provided to the reaction chamber. 一種用於處理反應室的系統,該系統包含:包含具有反應空間之反應室的反應器;流體地耦接至該反應器的金屬鹵化物源;選自由有機金屬化合物及鋁CVD化合物中之一或多者組成之群的金屬CVD源,其流體地耦接至該反應器;耦接至該反應器的處理反應物源,其中該處理反應物源包含與該金屬CVD源之分解產物具有相同化學式的材料; 耦接至該反應器的真空泵;及控制器,其經組態以進行以下操作:將金屬鹵化物化學物質自該金屬鹵化物源提供至該反應空間;將選自由有機金屬化合物化學物質及鋁CVD化合物化學物質組成之群的金屬CVD前驅體自該金屬CVD源提供至該反應空間;形成包含上覆於基板之B、C、Si、N中之一或多者的經沉積的經摻雜金屬膜;在將該金屬CVD前驅體引入至該反應室之前或此期間,將處理反應物化學物質自該處理反應物源提供至該反應空間;將該反應空間曝露於該處理反應物化學物質以減輕包含該金屬CVD前驅體之分解產物的顆粒的形成;及淨化該反應室。 A system for processing a reaction chamber, the system comprising: a reactor including a reaction chamber with a reaction space; a metal halide source fluidly coupled to the reactor; selected from one of organometallic compounds and aluminum CVD compounds Or a group consisting of a metal CVD source, which is fluidly coupled to the reactor; a processing reactant source coupled to the reactor, wherein the processing reactant source contains the same decomposition product as the metal CVD source Chemical formula material; A vacuum pump coupled to the reactor; and a controller configured to perform the following operations: provide metal halide chemicals from the metal halide source to the reaction space; select from the group consisting of organometallic chemicals and aluminum The metal CVD precursor of the group consisting of CVD compound chemical substances is provided from the metal CVD source to the reaction space; forming a deposited doped compound containing one or more of B, C, Si, and N overlying the substrate Metal film; before or during the introduction of the metal CVD precursor into the reaction chamber, processing reactant chemicals are provided to the reaction space from the processing reactant source; exposing the reaction space to the processing reactant chemicals To reduce the formation of particles containing the decomposition products of the metal CVD precursor; and to purify the reaction chamber. 如申請專利範圍第10項之系統,其進一步包含電漿源,其中該處理反應物化學物質曝露於該電漿源。 For example, the system of claim 10, which further includes a plasma source, wherein the processing reactant chemical substance is exposed to the plasma source. 如申請專利範圍第10項之系統,其進一步包含熱激發源,其中該處理反應物化學物質曝露於該熱激發源。 For example, the system of claim 10, which further includes a thermal excitation source, wherein the processing reactant chemical substance is exposed to the thermal excitation source. 如申請專利範圍第10項至第12項中任一項之系統,其中該處理反應物源包含選自包含一或多個氫原子的化合物及包含鹵素的化合物組成之群的一或多種化合物。 Such as the system of any one of items 10 to 12 in the scope of the patent application, wherein the processing reactant source comprises one or more compounds selected from the group consisting of a compound containing one or more hydrogen atoms and a compound containing halogen. 如申請專利範圍第10項至第12項中任一項之系統,其中該處理反應物源包含氨、氫、一或多種矽烷、甲烷、矽氫化物、硼氫化物、鹵代矽烷、鹵代硼烷、烯烴、炔烴及肼及其衍生物中之一或多者。 For example, the system of any one of items 10 to 12 in the scope of the patent application, wherein the source of the processing reactant comprises ammonia, hydrogen, one or more silanes, methane, silane hydrides, borohydrides, halogenated silanes, halogenated One or more of borane, alkenes, alkynes, hydrazine and their derivatives. 如申請專利範圍第10項至第12項中任一項之系統,其中該處理反應物源在該將該金屬CVD前驅體引入之前提供。 For example, the system according to any one of items 10 to 12 in the scope of patent application, wherein the processing reactant source is provided before the introduction of the metal CVD precursor. 如申請專利範圍第10項至第12項中任一項之系統,其中該材料包含與該金屬CVD源之β氫化物消除產物具有相同化學式的材料。 Such as the system of any one of items 10 to 12 in the scope of the patent application, wherein the material comprises a material having the same chemical formula as the β-hydride elimination product of the metal CVD source. 如申請專利範圍第10項至第12項中任一項之系統,其進一步包含遠端電漿源。 For example, the system of any one of items 10 to 12 in the scope of the patent application further includes a remote plasma source. 如申請專利範圍第10項至第12項中任一項之系統,其進一步包含遠端熱激發源。 For example, the system of any one of items 10 to 12 in the scope of the patent application further includes a remote thermal excitation source. 一種用於處理反應室的系統,該系統包含:包含反應室的反應器;流體地耦接至該反應器的金屬鹵化物源;選自由有機金屬化合物及鋁CVD化合物中之一或多者組成之群的金屬CVD源,其流體地耦接至該反應器;耦接至該反應器的處理反應物源,該處理反應物源包含處理氣體,該處理氣體經組態以執行減輕該反應室內之殘餘物的形成及轉化形成於該反應室內的殘餘物中之一或多者,使得該殘餘物在該反應室內加工的基板上形成較少顆粒,其中該處理反應物源包含與該金屬CVD源之分解產物具有相同化學式的材料;及耦接至該反應器的真空泵,其中該系統經組態以在將該金屬CVD前驅體引入至該反應室之前或此期間使用該處理氣體執行反應室處理。 A system for processing a reaction chamber, the system comprising: a reactor containing the reaction chamber; a metal halide source fluidly coupled to the reactor; selected from one or more of organometallic compounds and aluminum CVD compounds The metal CVD source of the group, which is fluidly coupled to the reactor; is coupled to a processing reactant source of the reactor, the processing reactant source includes a processing gas, and the processing gas is configured to perform lightening in the reaction chamber The formation and conversion of the residues formed in the reaction chamber is one or more of the residues, so that the residues will form fewer particles on the substrate processed in the reaction chamber, wherein the processing reactant source includes the metal CVD The decomposition product of the source has a material of the same chemical formula; and a vacuum pump coupled to the reactor, wherein the system is configured to use the processing gas to perform the reaction chamber before or during the introduction of the metal CVD precursor into the reaction chamber deal with.
TW106129971A 2016-09-12 2017-09-01 System for treatment of deposition reactor TWI747943B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/262,990 2016-09-12
US15/262,990 US20160376700A1 (en) 2013-02-01 2016-09-12 System for treatment of deposition reactor

Publications (2)

Publication Number Publication Date
TW201812859A TW201812859A (en) 2018-04-01
TWI747943B true TWI747943B (en) 2021-12-01

Family

ID=61900741

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106129971A TWI747943B (en) 2016-09-12 2017-09-01 System for treatment of deposition reactor
TW110140762A TWI826858B (en) 2016-09-12 2017-09-01 System for treatment of deposition reactor

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110140762A TWI826858B (en) 2016-09-12 2017-09-01 System for treatment of deposition reactor

Country Status (2)

Country Link
KR (1) KR20180029921A (en)
TW (2) TWI747943B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140220247A1 (en) * 2013-02-01 2014-08-07 Asm Ip Holding B.V. Method and system for treatment of deposition reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534133B1 (en) * 1996-06-14 2003-03-18 Research Foundation Of State University Of New York Methodology for in-situ doping of aluminum coatings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140220247A1 (en) * 2013-02-01 2014-08-07 Asm Ip Holding B.V. Method and system for treatment of deposition reactor
TW201439364A (en) * 2013-02-01 2014-10-16 Asm Ip Holding Bv Method and system for treatment of deposition reactor

Also Published As

Publication number Publication date
TWI826858B (en) 2023-12-21
TW201812859A (en) 2018-04-01
KR20180029921A (en) 2018-03-21
TW202208668A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US11967488B2 (en) Method for treatment of deposition reactor
KR20230119083A (en) Method and system for treatment of deposition reactor
KR102694640B1 (en) Chamber undercoat preparation method for low temperature ald films
TWI519667B (en) Deposition of metal films using alane-based precursors
JP5965955B2 (en) Atomic layer deposition equipment
JP2022510428A (en) Void-free low stress filling
US6305314B1 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US7666474B2 (en) Plasma-enhanced pulsed deposition of metal carbide films
KR20080015129A (en) Method for forming tungsten film, film-forming apparatus, storage medium and semiconductor device
KR20080050510A (en) Treatment processes for a batch ald reactor
US20050250325A1 (en) Methods of forming metal-containing structures
TWI747943B (en) System for treatment of deposition reactor
JP2022049682A (en) Silicon oxide deposition method
KR20230024367A (en) Methods for Nucleation of Conductive Nitride Films
US20110206862A1 (en) Titanium Nitride Film Deposition by Vapor Deposition Using Cyclopentadienyl Alkylamino Titanium Precursors
KR100617883B1 (en) Method for depositing thin film on wafer using ECTDMAT
US20210319983A1 (en) Apparatuses and methods of protecting nickel and nickel containing components with thin films
CN117721436A (en) Method and assembly for selectively depositing transition metals
KR20030094725A (en) Method for depositing thin film on wafer using aluminum compound