TWI747798B - Semiconductor device, imaging device, and electronic device - Google Patents

Semiconductor device, imaging device, and electronic device Download PDF

Info

Publication number
TWI747798B
TWI747798B TW110124854A TW110124854A TWI747798B TW I747798 B TWI747798 B TW I747798B TW 110124854 A TW110124854 A TW 110124854A TW 110124854 A TW110124854 A TW 110124854A TW I747798 B TWI747798 B TW I747798B
Authority
TW
Taiwan
Prior art keywords
transistor
wiring
electrode
layer
oxide
Prior art date
Application number
TW110124854A
Other languages
Chinese (zh)
Other versions
TW202141966A (en
Inventor
王丸拓郎
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202141966A publication Critical patent/TW202141966A/en
Application granted granted Critical
Publication of TWI747798B publication Critical patent/TWI747798B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)

Abstract

Provided is a novel semiconductor device, a semiconductor device with reduced area, or a versatile semiconductor device. The semiconductor device includes a pixel portion including a first pixel, a second pixel, a third pixel, and a fourth pixel; a first switch and a second switch located outside the first to fourth pixels; a first wiring located outside the first to fourth pixels; a second wiring electrically connected to the first and second pixels; and a third wiring electrically connected to the third and fourth pixels. A first terminal of the first switch is electrically connected to the first wiring. A second terminal of the first switch is electrically connected to the second wiring. A first terminal of the second switch is electrically connected to the first wiring. A second terminal of the second switch is electrically connected to the third wiring.

Description

半導體裝置、成像裝置及電子裝置Semiconductor device, imaging device and electronic device

本發明的一個實施方式係關於一種半導體裝置、成像裝置及電子裝置。One embodiment of the present invention relates to a semiconductor device, an imaging device, and an electronic device.

注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。此外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。另外,本發明的一個實施方式係關於一種半導體裝置、顯示裝置、發光裝置、蓄電裝置、記憶體裝置、其驅動方法或其製造方法。Note that one embodiment of the present invention is not limited to the above-mentioned technical field. The technical field of an embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method. In addition, an embodiment of the present invention relates to a process, machine, product, or composition of matter. In addition, one embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a memory device, a driving method thereof, or a manufacturing method thereof.

對利用能夠生成對應於入射光的照度的資料的光檢測電路(也稱為光感測器)的光檢測裝置進行了技術開發。Technical development has been carried out on a light detection device using a light detection circuit (also called a light sensor) capable of generating data corresponding to the illuminance of incident light.

作為光檢測裝置,例如可以舉出影像感測器。作為影像感測器,有CCD(Charge Coupled Device:電荷耦合器)影像感測器、CMOS(Complementary Metal Oxide Semiconductor:互補型金屬氧化物半導體)影像感測器等。作為成像元件CMOS影像感測器被設置在如數位相機或手機等眾多可攜式設備中。近年來,成像的清晰度增加、可攜式設備被小型化、且功耗被減少,因此CMOS影像感測器中的像素被製造得更小。As the light detection device, for example, an image sensor can be cited. As the image sensor, there are CCD (Charge Coupled Device) image sensor, CMOS (Complementary Metal Oxide Semiconductor: Complementary Metal Oxide Semiconductor) image sensor, etc. As an imaging element, CMOS image sensors are installed in many portable devices such as digital cameras or mobile phones. In recent years, the sharpness of imaging has increased, portable devices have been miniaturized, and power consumption has been reduced, so the pixels in CMOS image sensors have been made smaller.

專利文獻1公開了一種在相鄰的像素之間共同使用電晶體以縮小像素的面積的成像元件。Patent Document 1 discloses an imaging element in which a transistor is commonly used between adjacent pixels to reduce the area of the pixel.

[專利文獻1] 日本專利申請公開平11-126895號公報[Patent Document 1] Japanese Patent Application Publication No. 11-126895

因為在影像感測器中被共同使用的元件設置在像素區域內,所以即使在多個像素中共同使用電晶體等元件的情況下,被共同使用的元件也佔有像素區域中的固定面積。因此,即使在像素區域內多個像素共同使用元件,也對像素區域的面積的縮小有限制。Because the commonly used elements in the image sensor are provided in the pixel area, even when a transistor or the like is commonly used in a plurality of pixels, the commonly used element occupies a fixed area in the pixel area. Therefore, even if a plurality of pixels in the pixel area use elements in common, there is a limit to the reduction in the area of the pixel area.

此外,在專利文獻1中,放大器和重設電晶體連接於相同的電源線。由此,不能夠分別設定放大用電源的電壓和重設用電源的電壓,導致像素的設計彈性的下降。另一方面,當使放大用電源線與重設用電源線不同時,需要確保空間以在像素內設置兩個電源線,導致像素的面積的增大及開口率的下降。In addition, in Patent Document 1, the amplifier and the reset transistor are connected to the same power supply line. As a result, it is impossible to set the voltage of the power supply for amplification and the voltage of the power supply for resetting separately, resulting in a decrease in design flexibility of the pixel. On the other hand, when the power supply line for amplification is different from the power supply line for resetting, it is necessary to secure a space to provide two power supply lines in the pixel, which leads to an increase in the area of the pixel and a decrease in the aperture ratio.

本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置。本發明的一個實施方式的目的之一是提供一種能夠縮小面積的半導體裝置。本發明的一個實施方式的目的之一是提供一種通用性高的半導體裝置。本發明的一個實施方式的目的之一是提供一種能夠進行高精度的成像的半導體裝置。本發明的一個實施方式的目的之一是提供一種能夠降低功耗的半導體裝置。本發明的一個實施方式的目的之一是提供一種能夠進行高速的成像的半導體裝置。One of the objects of an embodiment of the present invention is to provide a novel semiconductor device. One of the objects of one embodiment of the present invention is to provide a semiconductor device capable of reducing the area. One of the objects of one embodiment of the present invention is to provide a semiconductor device with high versatility. One of the objects of one embodiment of the present invention is to provide a semiconductor device capable of high-precision imaging. One of the objects of one embodiment of the present invention is to provide a semiconductor device capable of reducing power consumption. One of the objects of one embodiment of the present invention is to provide a semiconductor device capable of high-speed imaging.

注意,本發明的一個實施方式並不需要實現所有上述目的,只要可以實現至少一個目的即可。另外,上述目的的記載不妨礙其他目的的存在。說明書、圖式以及申請專利範圍等的記載中顯然存在上述目的以外的目的,可以從說明書、圖式以及申請專利範圍等的記載中衍生上述目的以外的目的。Note that an embodiment of the present invention does not need to achieve all the above-mentioned objects, as long as it can achieve at least one object. In addition, the description of the above purpose does not prevent the existence of other purposes. It is obvious that there are purposes other than the above-mentioned purposes in the descriptions of the specification, drawings, and the scope of patent application, and purposes other than the above-mentioned purposes can be derived from the descriptions of the specification, drawings, and the scope of patent application.

本發明的一個實施方式是一種半導體裝置,包括:包括第一像素、第二像素、第三像素及第四像素的像素部;位於第一像素、第二像素、第三像素及第四像素的外部的第一開關及第二開關;位於第一像素、第二像素、第三像素及第四像素的外部的第一佈線;與第一像素及第二像素電連接的第二佈線;以及與第三像素及第四像素電連接的第三佈線,其中,第一開關的第一端子與第一佈線電連接,第一開關的第二端子與第二佈線電連接,第二開關的第一端子與第一佈線電連接,並且,第二開關的第二端子與第三佈線電連接。One embodiment of the present invention is a semiconductor device including: a pixel portion including a first pixel, a second pixel, a third pixel, and a fourth pixel; External first switch and second switch; first wiring located outside the first pixel, second pixel, third pixel, and fourth pixel; second wiring electrically connected to the first pixel and second pixel; and A third wiring electrically connected to the third pixel and the fourth pixel, wherein the first terminal of the first switch is electrically connected to the first wiring, the second terminal of the first switch is electrically connected to the second wiring, and the first terminal of the second switch is electrically connected to the second wiring. The terminal is electrically connected to the first wiring, and the second terminal of the second switch is electrically connected to the third wiring.

本發明的一個實施方式是一種半導體裝置,包括:包括第一像素、第二像素、第三像素及第四像素的像素部;位於第一像素、第二像素、第三像素及第四像素的外部的第一開關及第二開關;位於第一像素、第二像素、第三像素及第四像素的外部的第一佈線;與第一像素及第二像素電連接的第二佈線;以及與第三像素及第四像素電連接的第三佈線,其中,第一開關的第一端子與第一佈線電連接,第一開關的第二端子與第二佈線電連接,第二開關的第一端子與第一佈線電連接,第二開關的第二端子與第三佈線電連接,本發明的一個實施方式的半導體裝置包括如下步驟:使第一像素、第二像素、第三像素及第四像素重設的第一步驟;在第一步驟之後,使第一開關成為導通狀態,將第一佈線的電位供應到第二佈線,從第一像素及第二像素讀出電信號的第二步驟;在第二步驟之後,使第一像素、第二像素、第三像素及第四像素重設的第三步驟;以及在第三步驟之後,使第二開關成為導通狀態,將第一佈線的電位供應到第三佈線,從第三像素及第四像素讀出電信號的第四步驟。One embodiment of the present invention is a semiconductor device including: a pixel portion including a first pixel, a second pixel, a third pixel, and a fourth pixel; External first switch and second switch; first wiring located outside the first pixel, second pixel, third pixel, and fourth pixel; second wiring electrically connected to the first pixel and second pixel; and A third wiring electrically connected to the third pixel and the fourth pixel, wherein the first terminal of the first switch is electrically connected to the first wiring, the second terminal of the first switch is electrically connected to the second wiring, and the first terminal of the second switch is electrically connected to the second wiring. The terminal is electrically connected to the first wiring, and the second terminal of the second switch is electrically connected to the third wiring. The semiconductor device of one embodiment of the present invention includes the following steps: The first step of pixel reset; after the first step, the first switch is turned on, the potential of the first wiring is supplied to the second wiring, and the second step of reading out electrical signals from the first pixel and the second pixel ; After the second step, the third step of resetting the first pixel, the second pixel, the third pixel, and the fourth pixel; and after the third step, the second switch is turned on, and the first wiring The potential is supplied to the third wiring, and the fourth step of reading out electrical signals from the third pixel and the fourth pixel.

本發明的一個實施方式的半導體裝置可以還包括能夠向第一像素、第二像素、第三像素及第四像素供應重設電位的第四佈線,其中可以向第一佈線供應高於第四佈線的電位。The semiconductor device of one embodiment of the present invention may further include a fourth wiring capable of supplying a reset potential to the first pixel, the second pixel, the third pixel, and the fourth pixel, wherein the first wiring may be supplied with a higher voltage than the fourth wiring. The potential.

在本發明的一個實施方式的半導體裝置中,第一像素、第二像素、第三像素及第四像素都可以包括光電轉換元件和電晶體,光電轉換元件與電晶體電連接,並且電晶體的通道形成區域可以包含氧化物半導體。In the semiconductor device of one embodiment of the present invention, the first pixel, the second pixel, the third pixel, and the fourth pixel may all include a photoelectric conversion element and a transistor. The photoelectric conversion element is electrically connected to the transistor, and the transistor is The channel formation region may include an oxide semiconductor.

在本發明的一個實施方式的半導體裝置中,第一開關可以包括第一電晶體,第二開關可以包括第二電晶體,第一像素、第二像素、第三像素及第四像素都可以包括光電轉換元件和第三電晶體,光電轉換元件可以與第三電晶體電連接,第一電晶體及第二電晶體的通道形成區域都可以包含單晶半導體,第三電晶體的通道形成區域可以包含氧化物半導體,並且第三電晶體可以層疊在第一電晶體及第二電晶體上。In the semiconductor device of an embodiment of the present invention, the first switch may include a first transistor, the second switch may include a second transistor, and the first pixel, the second pixel, the third pixel, and the fourth pixel may all include The photoelectric conversion element and the third transistor, the photoelectric conversion element can be electrically connected to the third transistor, the channel forming region of the first transistor and the second transistor can both include a single crystal semiconductor, and the channel forming region of the third transistor can be The oxide semiconductor is included, and the third transistor may be laminated on the first transistor and the second transistor.

在本發明的一個實施方式的半導體裝置中,光電轉換元件可以包括第一電極、第二電極以及第一電極與第二電極之間的光電轉換層,並且光電轉換層可以包含硒。In the semiconductor device of one embodiment of the present invention, the photoelectric conversion element may include a first electrode, a second electrode, and a photoelectric conversion layer between the first electrode and the second electrode, and the photoelectric conversion layer may contain selenium.

本發明的一個實施方式是一種成像裝置,包括:包括上述半導體裝置的光電檢測部;以及能夠根據來自光電檢測部的信號而生成影像資料的資料處理部。One embodiment of the present invention is an imaging device including: a photodetection section including the above-mentioned semiconductor device; and a data processing section capable of generating image data based on a signal from the photodetection section.

本發明的一個實施方式是一種電子裝置,包括:上述半導體裝置和上述成像裝置中的一個;以及透鏡、顯示部、操作鍵和快門按鈕中的至少一個。One embodiment of the present invention is an electronic device including: one of the aforementioned semiconductor device and the aforementioned imaging device; and at least one of a lens, a display portion, an operation key, and a shutter button.

根據本發明的一個實施方式,可以提供一種新穎的半導體裝置。根據本發明的一個實施方式,可以提供一種能夠縮小面積的半導體裝置。根據本發明的一個實施方式,可以提供一種通用性高的半導體裝置。根據本發明的一個實施方式,可以提供一種能夠進行高精度的成像的半導體裝置。根據本發明的一個實施方式,可以提供一種能夠降低功耗的半導體裝置。根據本發明的一個實施方式,可以提供一種能夠進行高速的成像的半導體裝置。According to an embodiment of the present invention, a novel semiconductor device can be provided. According to an embodiment of the present invention, it is possible to provide a semiconductor device capable of reducing the area. According to an embodiment of the present invention, a semiconductor device with high versatility can be provided. According to an embodiment of the present invention, it is possible to provide a semiconductor device capable of high-precision imaging. According to an embodiment of the present invention, a semiconductor device capable of reducing power consumption can be provided. According to an embodiment of the present invention, a semiconductor device capable of high-speed imaging can be provided.

注意,上述效果的記載並不妨礙其他效果的存在。本發明的一個實施方式並不需要具有所有上述效果。說明書、圖式以及申請專利範圍等的記載中顯然存在上述效果以外的效果,可以從說明書、圖式以及申請專利範圍等的記載中衍生上述效果以外的效果。Note that the description of the above effects does not prevent the existence of other effects. An embodiment of the present invention does not need to have all the above-mentioned effects. It is obvious that there are effects other than the above-mentioned effects in the descriptions of the specification, drawings, and the scope of patent application, and effects other than the above-mentioned effects can be derived from the descriptions of the specification, drawings, and the scope of patent application.

下面,參照圖式對本發明的實施方式進行詳細說明。注意,本發明不侷限於以下實施方式中的說明,而所屬技術領域的普通技術人員可以很容易地理解一個事實就是其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在下面所示的實施方式所記載的內容中。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the description in the following embodiments, and those of ordinary skill in the art can easily understand the fact that the method and details can be modified without departing from the spirit and scope of the present invention. Transform into various forms. Therefore, the present invention should not be interpreted as being limited to only the content described in the embodiments shown below.

另外,本發明的一個實施方式在其範疇內包括包含成像裝置、RF(Radio Frequency:射頻)標籤、顯示裝置及積體電路等裝置。此外,顯示裝置在其範疇內包括液晶顯示裝置、各像素包括以有機發光元件為代表的發光元件的發光裝置、電子紙、DMD(Digital Micromirror Device:數位微鏡裝置)、PDP(Plasma Display Panel:電漿顯示面板)、FED(Field Emission Display:場致發射顯示器)等具有積體電路的顯示裝置。In addition, an embodiment of the present invention includes devices including an imaging device, an RF (Radio Frequency) tag, a display device, and an integrated circuit in its category. In addition, display devices include liquid crystal display devices, light-emitting devices in which each pixel includes light-emitting elements represented by organic light-emitting elements, electronic paper, DMD (Digital Micromirror Device: Digital Micromirror Device), and PDP (Plasma Display Panel: Plasma display panels), FED (Field Emission Display: Field Emission Display) and other display devices with integrated circuits.

注意,當利用圖式說明發明結構時,表示相同物件的元件符號有時在不同的圖式中共同使用。Note that when the structure of the invention is described by the drawings, the component symbols representing the same object are sometimes used in common in different drawings.

另外,在本說明書等中,當明確地記載為“X與Y連接”時,在本說明書等中公開了如下情況:X與Y電連接的情況;X與Y在功能上連接的情況;以及X與Y直接連接的情況。因此,不侷限於圖式或文中所示的連接關係等規定的連接關係,圖式或文中所示的連接關係以外的連接關係也記載於圖式或文中。這裡,X和Y為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜和層等)。In addition, in this specification and the like, when it is clearly stated as "X and Y are connected", the following cases are disclosed in this specification and the like: the case where X and Y are electrically connected; the case where X and Y are functionally connected; and When X and Y are directly connected. Therefore, it is not limited to the prescribed connection relations such as the connection relations shown in the drawings or the text, and connection relations other than the connection relations shown in the drawings or the text are also described in the drawings or the text. Here, X and Y are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).

作為X與Y直接連接的情況的例子,可以舉出:能夠電連接X與Y的元件(例如,開關、電晶體、電容器、電感器、電阻元件、二極體、顯示元件、發光元件和負載等)不連接X與Y之間的情況;以及X與Y不藉由能夠電連接X與Y的元件連接的情況。As an example of the case where X and Y are directly connected, one can cite: elements that can electrically connect X and Y (for example, switches, transistors, capacitors, inductors, resistance elements, diodes, display elements, light-emitting elements, and loads). Etc.) The case where X and Y are not connected; and the case where X and Y are not connected by components that can electrically connect X and Y.

作為X與Y電連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻元件、二極體、顯示元件、發光元件和負載等)。開關具有控制開啟和關閉的功能。換言之,藉由使開關處於導通狀態(開啟狀態)或非導通狀態(關閉狀態)來控制是否使電流流過。或者,開關具有選擇並切換電流路徑的功能。另外,X與Y電連接的情況包括X與Y直接連接的情況。As an example of the case where X and Y are electrically connected, for example, one or more elements (such as switches, transistors, capacitors, inductors, resistance elements, diodes) that can electrically connect X and Y can be connected between X and Y. , Display components, light-emitting components and loads, etc.). The switch has the function of controlling opening and closing. In other words, by making the switch in a conducting state (open state) or non-conducting state (closed state) to control whether to allow current to flow. Alternatively, the switch has the function of selecting and switching the current path. In addition, the case where X and Y are electrically connected includes the case where X and Y are directly connected.

作為X與Y在功能上連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠在功能上連接X與Y的電路(例如,邏輯電路(反相器、NAND電路、NOR電路等)、信號轉換電路(DA轉換電路、AD轉換電路、伽瑪校正電路等)、電位位準轉換電路(電源電路(升壓電路、降壓電路等)、改變信號的電位位準的位準轉移電路等)、電壓源、電流源、切換電路、放大電路(能夠增大信號振幅或電流量等的電路、運算放大器、差動放大電路、源極隨耦電路、緩衝電路等)、信號產生電路、記憶體電路、控制電路等)。注意,例如,即使在X與Y之間夾有其他電路,當從X輸出的信號傳送到Y時,也可以說X與Y在功能上是連接著的。另外,X與Y在功能上連接的情況包括X與Y直接連接的情況及X與Y電連接的情況。As an example of a case where X and Y are functionally connected, for example, more than one circuit capable of functionally connecting X and Y (for example, logic circuit (inverter, NAND circuit, NOR circuit) can be connected between X and Y. Circuit, etc.), signal conversion circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), change the potential level of the signal Quasi-transfer circuits, etc.), voltage sources, current sources, switching circuits, amplifier circuits (circuits that can increase signal amplitude or current, operational amplifiers, differential amplifier circuits, source follower circuits, buffer circuits, etc.), signal Generation circuit, memory circuit, control circuit, etc.). Note that, for example, even if there are other circuits sandwiched between X and Y, when the signal output from X is transmitted to Y, it can be said that X and Y are functionally connected. In addition, the case where X and Y are functionally connected includes the case where X and Y are directly connected and the case where X and Y are electrically connected.

此外,當明確地記載為“X與Y電連接”時,在本說明書等中公開了如下情況:X與Y電連接的情況(換言之,以中間夾有其他元件或其他電路的方式連接X與Y的情況);X與Y在功能上連接的情況(換言之,以中間夾有其他電路的方式在功能上連接X與Y的情況);以及X與Y直接連接的情況(換言之,以中間不夾有其他元件或其他電路的方式連接X與Y的情況)。換言之,在本說明書等中,明確記載為“電連接”時與只明確記載為“連接”時的內容相同。In addition, when it is clearly stated that "X and Y are electrically connected", the following is disclosed in this specification and the like: the case where X is electrically connected to Y (in other words, X and Y are connected with other elements or other circuits interposed therebetween. The case of Y); the case where X and Y are functionally connected (in other words, the case where X and Y are functionally connected with other circuits in between); and the case where X and Y are directly connected (in other words, the case where there is no middle Connect X and Y with other components or other circuits). In other words, in this specification and the like, what is clearly stated as "electrically connected" is the same as what is clearly stated as only "connected".

另外,即使在圖式中獨立的構成要素相互電連接,也有一個構成要素兼有多個構成要素的功能的情況。例如,在佈線的一部分還被用作電極時,一個導電膜兼有佈線和電極的兩個構成要素的功能。因此,本說明書中的“電連接”的範疇內還包括這種一個導電膜兼有多個構成要素的功能的情況。In addition, even if independent constituent elements are electrically connected to each other in the drawings, there are cases where one constituent element has the functions of multiple constituent elements. For example, when a part of the wiring is also used as an electrode, one conductive film has the functions of two components of the wiring and the electrode. Therefore, the category of "electrical connection" in this specification also includes the case where such a single conductive film has the functions of a plurality of constituent elements.

實施方式1 在本實施方式中,說明根據本發明的一個實施方式的半導體裝置的結構例子。 Embodiment 1 In this embodiment mode, a configuration example of a semiconductor device according to an embodiment of the present invention will be described.

<半導體裝置10的結構例子> 圖1示出根據本發明的一個實施方式的半導體裝置10的結構例子。半導體裝置10包括像素部20、電路30及電路40。半導體裝置10在像素部20的外部包括佈線VIN及多個開關S。 <Structure example of semiconductor device 10> FIG. 1 shows a structural example of a semiconductor device 10 according to an embodiment of the present invention. The semiconductor device 10 includes a pixel unit 20, a circuit 30, and a circuit 40. The semiconductor device 10 includes a wiring VIN and a plurality of switches S outside the pixel portion 20.

像素部20包括多個像素21。在此,示出在像素部20中設置有n行m列(n、m為自然數)的像素21(像素21[1,1]至[n,m])的結構例子。像素21具有將被照射的光轉換為電信號(下面,也稱為光資料信號)的功能。因此,像素21被用作成像裝置中的光檢測電路。明確而言,照射到設置在像素21中的光電轉換元件的光被轉換為電信號。The pixel portion 20 includes a plurality of pixels 21. Here, a configuration example in which pixels 21 (pixels 21 [1, 1] to [n, m]) of n rows and m columns (n and m are natural numbers) are provided in the pixel portion 20 is shown. The pixel 21 has a function of converting the irradiated light into an electrical signal (hereinafter, also referred to as an optical data signal). Therefore, the pixel 21 is used as a light detection circuit in the imaging device. Specifically, the light irradiated to the photoelectric conversion element provided in the pixel 21 is converted into an electric signal.

像素21都與佈線SE及佈線OUT連接。明確而言,第i行(i為1以上且n以下的整數)的像素21(像素21[i,1])與佈線SE[i]連接,第j列(j為1以上且m以下的整數)的像素21(像素21[1,j]至[n,j])與佈線OUT[j]連接。生成在各像素21中的光資料信號藉由佈線OUT輸出到電路40。The pixels 21 are all connected to the wiring SE and the wiring OUT. Specifically, the pixel 21 (pixel 21[i,1]) in the i-th row (i is an integer greater than or equal to 1 and less than n) is connected to the wiring SE[i], and the j-th column (where j is 1 or greater and m or less Integer) pixels 21 (pixels 21 [1, j] to [n, j]) are connected to the wiring OUT[j]. The optical data signal generated in each pixel 21 is output to the circuit 40 through the wiring OUT.

在像素部20中,藉由設置接收呈紅色的光的像素21、接收呈綠色的光的像素21及接收呈藍色的光的像素21,也可以由各像素21生成光資料信號,並合成這些光資料信號,來生成全彩色的影像信號的資料信號。另外,代替這些像素21或者除了這些像素21,也可以設置接收呈青色(cyan)、洋紅色(magenta)、黃色(yellow)中的一個或多個顏色的光的像素21。藉由設置接收呈青色(cyan)、洋紅色(magenta)、黃色(yellow)中的一個或多個顏色的光的像素21,可以在基於生成的影像信號的影像中增加能夠再現的顏色的種類。例如,藉由在像素21中設置使呈特定顏色的光透過的彩色層,並使光透過該彩色層入射到像素21,可以生成基於呈特定顏色的光的量的光資料信號。另外,在像素21中檢測出的光既可以是可見光又可以是不可見光。In the pixel portion 20, by providing a pixel 21 that receives red light, a pixel 21 that receives green light, and a pixel 21 that receives blue light, it is also possible to generate optical data signals from each pixel 21 and combine them. These optical data signals are used to generate data signals of full-color image signals. In addition, instead of or in addition to these pixels 21, pixels 21 that receive light in one or more of cyan, magenta, and yellow may be provided. By installing pixels 21 that receive light in one or more of cyan, magenta, and yellow, it is possible to increase the types of colors that can be reproduced in the image based on the generated image signal . For example, by providing a color layer that transmits light of a specific color in the pixel 21, and allowing the light to pass through the color layer and enter the pixel 21, a light data signal based on the amount of light of the specific color can be generated. In addition, the light detected in the pixel 21 may be either visible light or invisible light.

另外,也可以對像素21設置冷卻單元。藉由設置冷卻單元,可以抑制因熱而產生的雜訊。In addition, a cooling unit may be provided for the pixel 21. By installing a cooling unit, noise caused by heat can be suppressed.

電路30是具有選擇n行的像素21中的特定行的像素21的功能的驅動電路。電路30選擇輸出光資料信號的特定行的像素21。明確而言,電路30藉由將控制信號輸出到多個開關S(開關S1至Sn)而控制多個開關S的導通狀態,選擇特定行的像素21。電路30可以由解碼器等構成。The circuit 30 is a driving circuit having a function of selecting the pixels 21 of a specific row among the pixels 21 of n rows. The circuit 30 selects the pixels 21 of a specific row that output the optical data signal. Specifically, the circuit 30 controls the conduction state of the plurality of switches S by outputting control signals to the plurality of switches S (switches S1 to Sn), and selects the pixels 21 in a specific row. The circuit 30 may be constituted by a decoder or the like.

此外,電路30也可以具有向像素21供應重設信號的功能。In addition, the circuit 30 may also have a function of supplying a reset signal to the pixel 21.

電路40是具有將在像素部中得到的光資料信號輸出到外部的功能的讀出電路。明確而言,電路40藉由佈線OUT連接於像素21,具有將從預定的像素21藉由佈線OUT輸入的光資料信號輸出到外部的功能。電路40可以由電流源和電晶體等構成。The circuit 40 is a readout circuit having a function of outputting the optical data signal obtained in the pixel portion to the outside. Specifically, the circuit 40 is connected to the pixel 21 through the wiring OUT, and has a function of outputting the optical data signal input from the predetermined pixel 21 through the wiring OUT to the outside. The circuit 40 may be composed of a current source, a transistor, and the like.

電路40具有向佈線OUT供應預定電位的功能。由此,當將在像素21中生成的信號輸出到外部時,可以對用來輸出的佈線OUT的電位進行重設。此外,電路40也可以被用作恆流源。因此,電路40可以根據從像素21輸入的信號而向佈線OUT供應預定電位。The circuit 40 has a function of supplying a predetermined potential to the wiring OUT. Thus, when the signal generated in the pixel 21 is output to the outside, the potential of the wiring OUT used for output can be reset. In addition, the circuit 40 can also be used as a constant current source. Therefore, the circuit 40 can supply a predetermined potential to the wiring OUT in accordance with the signal input from the pixel 21.

半導體裝置10在像素部20的外部包括多個開關S(開關S1至Sn)及佈線VIN。並且,開關Si的第一端子與佈線SE[i]連接,第二端子與佈線VIN連接。開關S具有根據從電路30輸入的控制信號而控制佈線SE與佈線VIN之間的導通狀態的功能。The semiconductor device 10 includes a plurality of switches S (switches S1 to Sn) and wiring VIN outside the pixel portion 20. In addition, the first terminal of the switch Si is connected to the wiring SE[i], and the second terminal is connected to the wiring VIN. The switch S has a function of controlling the conduction state between the wiring SE and the wiring VIN in accordance with a control signal input from the circuit 30.

佈線VIN是用來輸出光資料信號的電源線。當開關Si處於開啟狀態且佈線VIN與佈線SE[i]處於導通狀態時,光資料信號從與佈線SE[i]連接的像素21[i,1]至[i,m]輸出到電路40。The wiring VIN is a power line for outputting optical data signals. When the switch Si is in the on state and the wiring VIN and the wiring SE[i] are in the conductive state, the optical data signal is output to the circuit 40 from the pixels 21[i, 1] to [i, m] connected to the wiring SE[i].

例如,在從第一行的像素21[1,1]至[1,m]讀出光資料信號時,將預定的控制信號從電路40輸出到開關S1,而使開關S1處於開啟狀態。由此,佈線SE[1]與佈線VIN處於導通狀態,向像素21[1,1]至[1,m]供應佈線VIN的電位(電源電位),從而可以讀出光資料信號。For example, when reading out optical data signals from the pixels 21 [1, 1] to [1, m] in the first row, a predetermined control signal is output from the circuit 40 to the switch S1, and the switch S1 is turned on. Thus, the wiring SE[1] and the wiring VIN are in a conductive state, and the potential (power supply potential) of the wiring VIN is supplied to the pixels 21[1,1] to [1,m], so that the optical data signal can be read out.

如此,在本發明的一個實施方式中,在相同行的像素21中共同使用用來選擇像素21的開關S,並且開關S設置在像素部20的外部。因此,不需要在像素部20中設置用來選擇像素21的開關(電晶體等)以及與該開關連接的電源線,由此可以縮小像素部20的面積。As such, in one embodiment of the present invention, the switch S for selecting the pixel 21 is commonly used in the pixels 21 in the same row, and the switch S is provided outside the pixel portion 20. Therefore, it is not necessary to provide a switch (transistor or the like) for selecting the pixel 21 in the pixel portion 20 and a power supply line connected to the switch, and thus the area of the pixel portion 20 can be reduced.

在本發明的一個實施方式中,用作用來從像素21讀出光資料信號的電源線的佈線VIN還設置在像素部20的外部。因此,即使佈線VIN由與連接於像素21的其他電源線(重設電源線等)不同的佈線構成,也可以抑制像素部20的面積的增加。另外,可以向佈線VIN供應與連接於像素21的其他電源線不同的電位。因此,可以自由地設定用來讀出光資料信號的電源電位,並可以提高半導體裝置10的設計彈性及通用性。In one embodiment of the present invention, the wiring VIN used as a power supply line for reading out the optical data signal from the pixel 21 is also provided outside the pixel section 20. Therefore, even if the wiring VIN is configured by a wiring different from other power supply lines (reset power supply lines, etc.) connected to the pixels 21, it is possible to suppress an increase in the area of the pixel portion 20. In addition, the wiring VIN can be supplied with a different potential from other power supply lines connected to the pixels 21. Therefore, the power supply potential for reading out the optical data signal can be freely set, and the design flexibility and versatility of the semiconductor device 10 can be improved.

注意,當在特定行中讀出光資料信號時,較佳為在其他行中佈線SE與佈線OUT處於非導通狀態。因此,可以更正確地讀出光資料信號。Note that when the optical data signal is read out in a specific row, it is preferable that the wiring SE and the wiring OUT are in a non-conducting state in other rows. Therefore, the optical data signal can be read out more accurately.

<電路結構的例子> 接著,說明半導體裝置10的具體的電路結構。圖2示出包括像素21、電路41的半導體裝置10的電路結構的一個例子。注意,雖然在此示出電晶體都是n通道型電晶體的例子,但是下面說明的各電晶體可以是n通道型電晶體或p通道型電晶體。 <Example of circuit structure> Next, the specific circuit configuration of the semiconductor device 10 will be described. FIG. 2 shows an example of the circuit structure of the semiconductor device 10 including the pixel 21 and the circuit 41. Note that although the transistors are all examples of n-channel type transistors shown here, each of the transistors described below may be an n-channel type transistor or a p-channel type transistor.

首先,說明像素21的結構例子。First, an example of the structure of the pixel 21 will be described.

圖2所示的像素21包括光電轉換元件101、電晶體102、103、104、電容器105。光電轉換元件101的第一端子與電晶體102的源極和汲極中的一個連接,第二端子與佈線VPD連接。電晶體102的閘極與佈線TX連接,源極和汲極中的另一個與電晶體104的閘極連接。電晶體103的閘極與佈線PR連接,源極和汲極中的一個與電晶體104的閘極連接,源極和汲極中的另一個與佈線VPR連接。電晶體104的源極和汲極中的一個與佈線SE連接,源極和汲極中的另一個與佈線OUT連接。電容器105的一個電極與電晶體104的閘極連接,另一個電極與佈線VPD連接。在此,將與電晶體102的源極和汲極中的另一個、電晶體103的源極和汲極中的一個、電晶體104的閘極及電容器105的一個電極連接的節點記作節點FN。電容器105可以由電容元件或寄生電容構成。當電晶體104的閘極電容充分大時,可以省略電容器105及佈線VPD。The pixel 21 shown in FIG. 2 includes a photoelectric conversion element 101, transistors 102, 103, and 104, and a capacitor 105. The first terminal of the photoelectric conversion element 101 is connected to one of the source and drain of the transistor 102, and the second terminal is connected to the wiring VPD. The gate of the transistor 102 is connected to the wiring TX, and the other of the source and drain is connected to the gate of the transistor 104. The gate of the transistor 103 is connected to the wiring PR, one of the source and drain is connected to the gate of the transistor 104, and the other of the source and drain is connected to the wiring VPR. One of the source and drain of the transistor 104 is connected to the wiring SE, and the other of the source and drain is connected to the wiring OUT. One electrode of the capacitor 105 is connected to the gate of the transistor 104, and the other electrode is connected to the wiring VPD. Here, the node connected to the other of the source and drain of the transistor 102, one of the source and drain of the transistor 103, the gate of the transistor 104 and one electrode of the capacitor 105 is referred to as a node FN. The capacitor 105 may be composed of a capacitive element or parasitic capacitance. When the gate capacitance of the transistor 104 is sufficiently large, the capacitor 105 and the wiring VPD can be omitted.

注意,在本說明書等中,電晶體的源極是指用作活性層的半導體的一部分的源極區域或與上述半導體連接的源極電極。同樣地,電晶體的汲極是指上述半導體的一部分的汲極區域或與上述半導體連接的汲極電極。閘極是指閘極電極。Note that in this specification and the like, the source of the transistor refers to a source region of a part of a semiconductor used as an active layer or a source electrode connected to the above-mentioned semiconductor. Similarly, the drain of the transistor refers to a part of the drain region of the above-mentioned semiconductor or the drain electrode connected to the above-mentioned semiconductor. The gate refers to the gate electrode.

電晶體的源極和汲極的名稱根據電晶體的導電型及施加到各端子的電位的高低而相互調換。一般而言,在n通道型電晶體中,將被施加低電位的端子稱為源極,而將被施加高電位的端子稱為汲極。另一方面,在p通道型電晶體中,將被施加低電位的端子稱為汲極,將被施加高電位的端子稱為源極。在本說明書中,儘管為方便起見在一些情況下假設源極和汲極是固定的來描述電晶體的連接關係,但是實際上源極和汲極的名稱根據上述電位關係而互換。The names of the source and drain of the transistor are interchanged according to the conductivity type of the transistor and the level of the potential applied to each terminal. Generally speaking, in an n-channel transistor, a terminal to which a low potential is applied is called a source, and a terminal to which a high potential is applied is called a drain. On the other hand, in a p-channel transistor, the terminal to which a low potential is applied is called a drain, and the terminal to which a high potential is applied is called a source. In this specification, although in some cases it is assumed that the source and drain are fixed to describe the connection relationship of the transistors for convenience, the names of the source and the drain are actually interchanged according to the above-mentioned potential relationship.

佈線VPD、VPR是被供應預定電位的佈線,被用作電源線。被供應到佈線VPD、VPR的電位既可以是高電源電位又可以是低電源電位(接地電位等)。在此,作為一個例子,說明佈線VPD為高電位電源線且佈線VPR為低電位電源線的情況。也就是說,向佈線VPD供應高電源電位VDD,向佈線VPR供應低電源電位VSS。佈線VPD、VPR也可以在所有像素21中共同使用。The wirings VPD and VPR are wirings supplied with a predetermined potential, and are used as power supply lines. The potential supplied to the wirings VPD and VPR may be either a high power supply potential or a low power supply potential (ground potential, etc.). Here, as an example, a case where the wiring VPD is a high-potential power supply line and the wiring VPR is a low-potential power supply line will be described. That is, the high power supply potential VDD is supplied to the wiring VPD, and the low power supply potential VSS is supplied to the wiring VPR. The wirings VPD and VPR can also be used in common in all the pixels 21.

光電轉換元件101具有將照射的光轉換為電信號的功能。作為光電轉換元件101,可以使用能夠得到對應於被照射的光的光電流的元件。作為光電轉換元件101的具體例子,可以舉出PN型光電二極體、PIN型光電二極體、雪崩型二極體、NPN埋入型二極體、肖特基型二極體、光電電晶體、X射線光電導體及紅外線感測器等。另外,作為光電轉換元件101,也可以使用在光電轉換層中包含硒的元件。在此,作為光電轉換元件101使用光電二極體。光電二極體的陽極與電晶體102的源極和汲極中的一個連接,陰極與佈線VPD連接。在向佈線VPD供應低電源電位VSS並向佈線VPR供應高電源電位VDD的情況下,較佳為將光電二極體的陽極與陰極調換。The photoelectric conversion element 101 has a function of converting irradiated light into an electric signal. As the photoelectric conversion element 101, an element capable of obtaining a photocurrent corresponding to the irradiated light can be used. As specific examples of the photoelectric conversion element 101, PN type photodiode, PIN type photodiode, avalanche type diode, NPN embedded type diode, Schottky type diode, photoelectricity Crystals, X-ray photoconductors and infrared sensors, etc. In addition, as the photoelectric conversion element 101, an element containing selenium in the photoelectric conversion layer may also be used. Here, a photodiode is used as the photoelectric conversion element 101. The anode of the photodiode is connected to one of the source and drain of the transistor 102, and the cathode is connected to the wiring VPD. In the case where the low power supply potential VSS is supplied to the wiring VPD and the high power supply potential VDD is supplied to the wiring VPR, it is preferable to exchange the anode and the cathode of the photodiode.

根據佈線TX的電位控制電晶體102的導通狀態。當電晶體102處於導通狀態時,從光電轉換元件101輸出的電信號被供應到節點FN。因此,節點FN的電位取決於照射到光電轉換元件101的光的量。在電晶體102處於導通狀態且電晶體103處於關閉狀態期間中可以進行曝光。The conduction state of the transistor 102 is controlled according to the potential of the wiring TX. When the transistor 102 is in the conductive state, the electrical signal output from the photoelectric conversion element 101 is supplied to the node FN. Therefore, the potential of the node FN depends on the amount of light irradiated to the photoelectric conversion element 101. Exposure can be performed while the transistor 102 is in the on state and the transistor 103 is in the off state.

根據佈線PR的電位控制電晶體103的導通狀態。當電晶體103成為導通狀態時,佈線VPR的電位被供應到節點FN,而使節點FN的電位重設。使電晶體103成為導通狀態的佈線PR的電位對應於重設信號,向佈線PR供應重設信號期間對應於重設期間。佈線PR的電位既可以被電路30控制,又可以被其他驅動電路控制。The conduction state of the transistor 103 is controlled according to the potential of the wiring PR. When the transistor 103 is turned on, the potential of the wiring VPR is supplied to the node FN, and the potential of the node FN is reset. The potential of the wiring PR that turns the transistor 103 into the conductive state corresponds to the reset signal, and the period during which the reset signal is supplied to the wiring PR corresponds to the reset period. The potential of the wiring PR can be controlled by the circuit 30 and other drive circuits.

如此,藉由將佈線VPR的電位供應到節點FN,使像素21重設。將用來使像素21重設的佈線VPR的電位也稱為重設電位。In this way, by supplying the potential of the wiring VPR to the node FN, the pixel 21 is reset. The potential of the wiring VPR for resetting the pixel 21 is also referred to as a reset potential.

根據節點FN的電位控制電晶體104的導通狀態。明確而言,電晶體104的源極-汲極間的電阻值根據節點FN的電位變化。因此,由節點FN的電位決定藉由電晶體104從佈線SE供應到佈線OUT的電位。The conduction state of the transistor 104 is controlled according to the potential of the node FN. Specifically, the resistance value between the source and the drain of the transistor 104 changes according to the potential of the node FN. Therefore, the potential supplied from the wiring SE to the wiring OUT by the transistor 104 is determined by the potential of the node FN.

在本發明的一個實施方式中,佈線SE的電位根據電晶體110及佈線VIN控制。電晶體110的閘極與佈線CSE連接,源極和汲極中的一個與佈線SE連接,源極和汲極中的另一個與佈線VIN連接。注意,電晶體110相當於圖1中的開關S。當向佈線CSE供應使電晶體110成為導通狀態的電位(下面,也稱為選擇信號)時,佈線VIN與佈線SE成為導通狀態,佈線VIN的電位作為電源電位供應到像素21。由此,可以選擇進行光資料信號的讀出的像素21。In one embodiment of the present invention, the potential of the wiring SE is controlled based on the transistor 110 and the wiring VIN. The gate of the transistor 110 is connected to the wiring CSE, one of the source and drain is connected to the wiring SE, and the other of the source and drain is connected to the wiring VIN. Note that the transistor 110 is equivalent to the switch S in FIG. 1. When the wiring CSE is supplied with a potential (hereinafter, also referred to as a selection signal) that turns the transistor 110 into a conductive state, the wiring VIN and the wiring SE are in a conductive state, and the potential of the wiring VIN is supplied to the pixel 21 as a power supply potential. In this way, it is possible to select the pixel 21 from which the optical data signal is to be read out.

在此,用來選擇像素21的電晶體110在相同行的像素21中共同使用並設置在像素21的外部。因此,可以減少設置在像素21中的電晶體的數量,而可以縮小像素21的面積。Here, the transistor 110 used to select the pixel 21 is commonly used in the pixels 21 in the same row and is arranged outside the pixel 21. Therefore, the number of transistors provided in the pixel 21 can be reduced, and the area of the pixel 21 can be reduced.

接著,說明電路41的結構。Next, the structure of the circuit 41 will be described.

電路41是包括在圖1的電路40中的電路。在此,說明對像素21的每個列設置電路41的結構例子。The circuit 41 is a circuit included in the circuit 40 of FIG. 1. Here, a configuration example in which the circuit 41 is provided for each column of the pixel 21 will be described.

電路41包括電晶體120。電晶體120的閘極與佈線BR連接,源極和汲極中的一個與佈線VO連接,源極和汲極中的另一個與佈線OUT連接。The circuit 41 includes a transistor 120. The gate of the transistor 120 is connected to the wiring BR, one of the source and drain is connected to the wiring VO, and the other of the source and drain is connected to the wiring OUT.

根據佈線BR的電位控制電晶體120的導通狀態。當電晶體120成為導通狀態時,佈線VO的電位被供應到佈線OUT,而使佈線OUT的電位重設。然後,在從佈線VIN藉由電晶體110向佈線SE供應電源電位時,對應於節點FN的電位被輸出到佈線OUT。在此,在源極隨耦器中使用電晶體104,從節點FN的電位降低了對應於電晶體104的臨界值的電位被輸出到佈線OUT。The conduction state of the transistor 120 is controlled according to the potential of the wiring BR. When the transistor 120 is turned on, the potential of the wiring VO is supplied to the wiring OUT, and the potential of the wiring OUT is reset. Then, when the power supply potential is supplied from the wiring VIN to the wiring SE through the transistor 110, the potential corresponding to the node FN is output to the wiring OUT. Here, the transistor 104 is used in the source follower, and a potential corresponding to the critical value of the transistor 104 from the potential of the node FN lowered is output to the wiring OUT.

佈線VO是被供應預定電位的佈線,被用作電源線。被供應到佈線VO的電位既可以是高電源電位又可以是低電源電位(接地電位等)。在此,作為一個例子,說明佈線VO為低電位電源線的情況。也就是說,向佈線VO供應低電源電位VSS。The wiring VO is a wiring supplied with a predetermined potential, and is used as a power supply line. The potential supplied to the wiring VO may be either a high power supply potential or a low power supply potential (ground potential, etc.). Here, as an example, a case where the wiring VO is a low-potential power supply line will be described. That is, the low power supply potential VSS is supplied to the wiring VO.

在向佈線BR繼續供應使電晶體120處於導通狀態的預定電位的情況下,電晶體120被用作電流源。並且,對電晶體120的源極-汲極間的電阻和電晶體104的源極-汲極間的電阻的合成電阻進行電阻分割的電位被輸出到佈線OUT。In the case where the wiring BR continues to be supplied with a predetermined potential that causes the transistor 120 to be in a conductive state, the transistor 120 is used as a current source. In addition, a potential obtained by dividing the combined resistance of the resistance between the source and the drain of the transistor 120 and the resistance between the source and the drain of the transistor 104 into resistance division is output to the wiring OUT.

在本發明的一個實施方式中,佈線VIN與佈線VPR分離,可以向佈線VIN供應與佈線VPR不同的電位。例如,即使在向佈線VPR供應低電源電位VSS的情況下,也可以向佈線VIN供應高電源電位VDD。由此,可以由電晶體104和電晶體120構成源極隨耦器,從而可以高速地讀出光資料信號。此外,藉由調整供應到佈線VIN的高電源電位VDD,可以改變佈線OUT的輸出電位的動態範圍。In one embodiment of the present invention, the wiring VIN is separated from the wiring VPR, and the wiring VIN can be supplied with a different potential from the wiring VPR. For example, even when the low power supply potential VSS is supplied to the wiring VPR, the high power supply potential VDD can be supplied to the wiring VIN. Thus, the source follower can be formed by the transistor 104 and the transistor 120, so that the optical data signal can be read out at a high speed. In addition, by adjusting the high power supply potential VDD supplied to the wiring VIN, the dynamic range of the output potential of the wiring OUT can be changed.

<讀出工作的例子> 接著,說明從像素21讀出光資料信號時的工作。 <Example of reading job> Next, the operation when the optical data signal is read from the pixel 21 will be described.

在從圖2中的像素21讀出光資料信號時,將信號線CSE的電位設定為高位準,而使電晶體110處於導通狀態。因此,從佈線VIN向佈線SE供應高電源電位VDD。此時的電晶體104的源極-汲極間的電阻值為對應於節點FN的電位的值。由此,對應於節點FN的電位的電位從佈線SE藉由電晶體104輸出到佈線OUT。因此,可以從像素21讀出光資料信號。When the optical data signal is read from the pixel 21 in FIG. 2, the potential of the signal line CSE is set to a high level, and the transistor 110 is turned on. Therefore, the high power supply potential VDD is supplied from the wiring VIN to the wiring SE. The resistance value between the source and the drain of the transistor 104 at this time corresponds to the potential of the node FN. Thus, the potential corresponding to the potential of the node FN is output from the wiring SE to the wiring OUT through the transistor 104. Therefore, the optical data signal can be read out from the pixel 21.

另一方面,在不進行來自像素21的光資料信號的讀出的情況下,將信號線CSE的電位設定為低位準,電晶體110處於關閉狀態。此時,因為不向佈線SE從佈線VIN供應電源電位,所以不向佈線OUT輸出光資料信號。On the other hand, when the optical data signal from the pixel 21 is not read, the potential of the signal line CSE is set to a low level, and the transistor 110 is in the off state. At this time, since the power supply potential is not supplied from the wiring VIN to the wiring SE, the optical data signal is not output to the wiring OUT.

注意,在不進行光資料信號的讀出期間中,像素21較佳為處於重設狀態。明確而言,節點FN較佳為處於低位準,電晶體104較佳為處於關閉狀態。由此,可以使佈線SE與佈線OUT處於非導通狀態而可以防止向佈線OUT供應非意圖性的電位。為了使電晶體104處於關閉狀態,藉由使電晶體103處於導通狀態,將佈線VPR的低電源電位VSS供應到節點FN,即可。Note that in the period when the optical data signal is not read, the pixel 21 is preferably in a reset state. Specifically, the node FN is preferably at a low level, and the transistor 104 is preferably in an off state. As a result, the wiring SE and the wiring OUT can be in a non-conducting state, and the supply of an unintended potential to the wiring OUT can be prevented. In order to turn the transistor 104 into the off state, the transistor 103 may be turned on to supply the low power supply potential VSS of the wiring VPR to the node FN.

藉由上述工作,可以將光資料信號輸出到佈線OUT。並且,輸出到佈線OUT的光資料信號被輸入到電路40,並從電路40輸出到外部。Through the above work, the optical data signal can be output to the wiring OUT. In addition, the optical data signal output to the wiring OUT is input to the circuit 40 and output from the circuit 40 to the outside.

雖然對用於圖2所示的各電晶體的材料等沒有特別的限制,但是包括在像素21中的電晶體102、103、104尤其較佳為使用其通道形成區域包含氧化物半導體的電晶體(下面,也稱為OS電晶體)。與矽等其他半導體相比,氧化物半導體的能帶間隙寬且本質載子密度低,所以OS電晶體的關態電流(off-state current)極小。由此,藉由將OS電晶體用於像素21,能夠長期間保持預定電位。關於氧化物半導體及OS電晶體的詳細內容,在實施方式4、7中進行說明。Although there are no particular restrictions on the materials used for each transistor shown in FIG. 2, the transistors 102, 103, and 104 included in the pixel 21 are particularly preferably transistors whose channel formation regions include oxide semiconductors. (Hereinafter, also referred to as OS transistor). Compared with other semiconductors such as silicon, oxide semiconductors have a wide band gap and low intrinsic carrier density, so the off-state current of OS transistors is extremely small. Thus, by using an OS transistor for the pixel 21, it is possible to maintain a predetermined potential for a long period of time. The details of the oxide semiconductor and the OS transistor will be described in the fourth and seventh embodiments.

例如,在電晶體102為OS電晶體的情況下,可以在電晶體102處於關閉狀態期間中抑制節點FN與光電轉換元件101之間的電荷移動。因此,能夠極長期間保持積蓄於節點FN的電荷,從而可以防止節點FN的電位變動。For example, in the case where the transistor 102 is an OS transistor, the charge movement between the node FN and the photoelectric conversion element 101 can be suppressed while the transistor 102 is in the off state. Therefore, the electric charge accumulated in the node FN can be maintained for an extremely long period of time, and the potential variation of the node FN can be prevented.

另外,在電晶體103為OS電晶體的情況下,可以在電晶體103處於關閉狀態期間中抑制節點FN與佈線VPR之間的電荷移動。因此,能夠極長期間保持積蓄於節點FN的電荷,從而可以防止節點FN的電位變動。In addition, when the transistor 103 is an OS transistor, the charge movement between the node FN and the wiring VPR can be suppressed while the transistor 103 is in the off state. Therefore, the electric charge accumulated in the node FN can be maintained for an extremely long period of time, and the potential variation of the node FN can be prevented.

在電晶體104為OS電晶體的情況下,可以在電晶體104處於關閉狀態期間中抑制佈線SE與佈線OUT之間的電荷移動,從而可以抑制佈線OUT的非意圖性的電位變動。因此,當在某個像素21的電晶體104處於關閉狀態期間中對與相同的佈線OUT連接的其他像素21進行光資料信號的讀出時,可以進行更正確的讀出。When the transistor 104 is an OS transistor, the charge movement between the wiring SE and the wiring OUT can be suppressed while the transistor 104 is in the off state, so that unintended potential fluctuations of the wiring OUT can be suppressed. Therefore, when the optical data signal of another pixel 21 connected to the same wiring OUT is read during the period in which the transistor 104 of a certain pixel 21 is in the off state, more accurate readout can be performed.

在作為電晶體102及電晶體103使用OS電晶體的情況下,即使在節點FN的電位極小的情況下,也可以確實地保持節點FN的電位並正確地輸出光資料信號。因此,可以擴大能夠在像素21中檢測出的光的照度範圍,亦即動態範圍。When the OS transistor is used as the transistor 102 and the transistor 103, even when the potential of the node FN is extremely small, the potential of the node FN can be reliably maintained and the optical data signal can be output accurately. Therefore, the illuminance range of light that can be detected in the pixels 21, that is, the dynamic range can be expanded.

由於OS電晶體的電特性變動的溫度依賴性小於其通道形成區域包含矽的電晶體(下面,也稱為Si電晶體),所以可以在極廣的溫度範圍中使用OS電晶體。因此,藉由使用包括OS電晶體的半導體裝置,可以實現適合安裝於汽車、飛機、航天器等的成像裝置。Since the temperature dependence of the variation of the electrical characteristics of the OS transistor is smaller than that of a transistor whose channel formation region contains silicon (hereinafter, also referred to as a Si transistor), the OS transistor can be used in an extremely wide temperature range. Therefore, by using semiconductor devices including OS transistors, imaging devices suitable for installation in automobiles, airplanes, spacecraft, and the like can be realized.

在作為光電轉換元件101使用使用硒類材料作為光電轉換層的元件的情況下,較佳為施加較高的電壓(例如,10V以上)以容易發生雪崩現象。例如,較佳為將佈線VPD的電位設定為10V以上,將佈線VPR的電位設定為0V。在此,因為OS電晶體的汲極耐壓比Si電晶體高,所以電晶體102至104較佳為使用OS電晶體。如此,藉由組合OS電晶體與使用硒類材料的光電轉換元件,可以實現能夠進行高精度的拍攝且可靠性高的成像裝置。注意,關於作為光電轉換層使用硒類材料的光電轉換元件的詳細內容,在實施方式6中進行說明。When an element using a selenium-based material as a photoelectric conversion layer is used as the photoelectric conversion element 101, it is preferable to apply a relatively high voltage (for example, 10 V or more) so that the avalanche phenomenon is likely to occur. For example, it is preferable to set the potential of the wiring VPD to 10V or more, and to set the potential of the wiring VPR to 0V. Here, since the drain withstand voltage of the OS transistor is higher than that of the Si transistor, the OS transistors are preferably used for the transistors 102 to 104. In this way, by combining the OS transistor and the photoelectric conversion element using the selenium-based material, an imaging device capable of high-precision imaging and high reliability can be realized. Note that the details of the photoelectric conversion element using the selenium-based material as the photoelectric conversion layer will be described in Embodiment 6.

注意,電晶體102、103、104不侷限於OS電晶體。例如,可以使用其通道形成區域形成在包含單晶半導體的基板的一部分中而在通道形成區域中包含單晶半導體的電晶體(下面,也稱為單晶電晶體)。作為包括單晶半導體的基板,可以使用單晶矽基板或單晶鍺基板等。由於單晶電晶體的電流供應能力高,所以藉由使用上述電晶體構成像素21,可以提高像素21的工作速度。Note that the transistors 102, 103, and 104 are not limited to OS transistors. For example, a transistor whose channel formation region is formed in a part of a substrate containing a single crystal semiconductor and contains a single crystal semiconductor in the channel formation region (hereinafter, also referred to as a single crystal transistor) can be used. As a substrate including a single crystal semiconductor, a single crystal silicon substrate, a single crystal germanium substrate, or the like can be used. Due to the high current supply capability of the single crystal transistor, the working speed of the pixel 21 can be increased by using the above-mentioned transistor to form the pixel 21.

此外,作為電晶體102、103、104,也可以使用OS電晶體之外的其通道形成區域包含非單晶半導體的電晶體(下面,也稱為非單晶電晶體)。作為OS電晶體之外的非單晶半導體,可以舉出:非晶矽、微晶矽、多晶矽等非單晶矽;非晶鍺、微晶鍺、多晶鍺等非單晶鍺等。In addition, as the transistors 102, 103, and 104, a transistor whose channel formation region other than the OS transistor contains a non-single crystal semiconductor (hereinafter, also referred to as a non-single crystal transistor) may also be used. Examples of non-single crystal semiconductors other than OS transistors include non-single crystal silicon such as amorphous silicon, microcrystalline silicon, and polycrystalline silicon; non-single crystal germanium such as amorphous germanium, microcrystalline germanium, and polycrystalline germanium.

作為電晶體110、120可以適當地使用上述OS電晶體、單晶電晶體、非單晶電晶體等。As the transistors 110 and 120, the above-mentioned OS transistors, single crystal transistors, non-single crystal transistors, etc. can be suitably used.

在此,由於電晶體110與多個像素21(圖1中的m個像素21)連接,所以電晶體110被要求高的電流供應能力。由此,作為電晶體110較佳為使用電流供應能力高的單晶電晶體。因此,能夠容易從佈線VIN向多個像素21供應電源電位。此時,電晶體102至104較佳為層疊在電晶體110上。因此,可以抑制電晶體110的設置導致的面積的增加。關於層疊電晶體的結構的詳細內容,在實施方式4中進行說明。Here, since the transistor 110 is connected to a plurality of pixels 21 (m pixels 21 in FIG. 1 ), the transistor 110 is required to have a high current supply capability. Therefore, it is preferable to use a single crystal transistor with high current supply capability as the transistor 110. Therefore, the power supply potential can be easily supplied to the plurality of pixels 21 from the wiring VIN. At this time, the transistors 102 to 104 are preferably laminated on the transistor 110. Therefore, it is possible to suppress an increase in the area caused by the placement of the transistor 110. The details of the structure of the laminated transistor will be described in the fourth embodiment.

在作為電晶體110使用包含與電晶體102至104相同的半導體材料的電晶體(OS電晶體等)的情況下,電晶體110的通道寬度較佳大於電晶體102至104的通道寬度。由此,可以提高電晶體110的電流供應能力。In the case of using a transistor containing the same semiconductor material as the transistors 102 to 104 as the transistor 110 (OS transistor, etc.), the channel width of the transistor 110 is preferably larger than the channel width of the transistors 102 to 104. As a result, the current supply capability of the transistor 110 can be improved.

<半導體裝置10的工作實例> 接著,說明半導體裝置10的具體的工作實例。 <Working example of semiconductor device 10> Next, a specific operation example of the semiconductor device 10 will be described.

在此,說明圖3所示的作為第一行的像素的像素21[1,1]、[1,2]以及作為第二行的像素的像素21[2,1]、[2,2]的工作實例。在圖3中,將連接於像素21[1,1]、[1,2]、連接於像素21[2,1]、[2,2]的佈線TX分別稱為TX[1]、TX[2]。將連接於佈線SE[1]、佈線SE[2]的電晶體110分別稱為電晶體110[1]、電晶體110[2]。將連接於電晶體110[1]、電晶體110[2]的佈線CSE分別稱為佈線CSE[1]、佈線CSE[2]。將像素21[1,1]、[1,2]、[2,1]、[2,2]中的節點FN分別稱為節點FN[1,1]、節點FN[1,2]、節點FN[2,1]、節點FN[2,2]。將連接於佈線OUT[1]、佈線OUT[2]的電路41分別稱為電路41[1]、電路41[2]。Here, the pixels 21 [1, 1], [1, 2] as the pixels in the first row and the pixels 21 [2, 1], [2, 2] as the pixels in the second row shown in FIG. 3 will be explained. Working example. In FIG. 3, the wirings TX connected to the pixels 21 [1, 1], [1, 2], and connected to the pixels 21 [2, 1], [2, 2] are referred to as TX[1], TX[ 2]. The transistor 110 connected to the wiring SE[1] and the wiring SE[2] are referred to as a transistor 110[1] and a transistor 110[2], respectively. The wiring CSE connected to the transistor 110[1] and the transistor 110[2] are referred to as wiring CSE[1] and wiring CSE[2], respectively. The nodes FN in pixels 21 [1, 1], [1, 2], [2, 1], [2, 2] are called node FN[1, 1], node FN[1, 2], node FN[2,1], node FN[2,2]. The circuit 41 connected to the wiring OUT[1] and the wiring OUT[2] is referred to as a circuit 41[1] and a circuit 41[2], respectively.

圖4示出圖3所示的半導體裝置10的時序圖。注意,圖4中的期間Ta是在第一行的像素中進行重設、曝光及讀出的期間,期間Tb是在第二行的像素中進行重設、曝光及讀出的期間。FIG. 4 shows a timing chart of the semiconductor device 10 shown in FIG. 3. Note that the period Ta in FIG. 4 is a period during which reset, exposure, and readout are performed in the pixels in the first row, and the period Tb is a period during which reset, exposure, and readout are performed in pixels in the second row.

首先,在期間T1,佈線PR的電位成為高位準。由此,在所有像素21中電晶體103成為導通狀態,佈線VPR的電位(低位準)被供應到節點FN。因此,使節點FN[1,1]、[1,2]、[2,1]、[2,2]的電位重設到低位準。此外,在所有像素21中,電晶體104成為關閉狀態。藉由上述工作,使像素21[1,1]、[1,2]、[2,1]、[2,2]重設。First, in the period T1, the potential of the wiring PR becomes a high level. As a result, the transistor 103 is turned on in all the pixels 21, and the potential (low level) of the wiring VPR is supplied to the node FN. Therefore, the potentials of the nodes FN[1,1], [1,2], [2,1], and [2,2] are reset to a low level. In addition, in all the pixels 21, the transistor 104 is turned off. Through the above work, the pixels 21 [1, 1], [1, 2], [2, 1], [2, 2] are reset.

另外,在期間T1,佈線TX[1]的電位成為高位準,像素21[1,1]、[1,2]中的電晶體102成為導通狀態。因此,光電轉換元件101與節點FN處於導通狀態。In addition, in the period T1, the potential of the wiring TX[1] becomes a high level, and the transistors 102 in the pixels 21 [1, 1] and [1, 2] are turned on. Therefore, the photoelectric conversion element 101 and the node FN are in a conductive state.

接著,在期間T2,佈線PR的電位成為低位準,所有像素21中的電晶體103成為關閉狀態。由此,節點FN成為浮動狀態。並且,節點FN[1,1]和節點FN[1,2]的電位根據照射到光電轉換元件101的光的量而上升。在此,示出節點FN[1,1]的電位的上升大於節點FN[1,2]的情況。因此,照射到光電轉換元件101的光被轉換為電信號,而可以在像素21[1,1]、[1,2]中進行曝光。將期間T2也稱為像素21[1,1]、[1,2]的曝光期間。Next, in the period T2, the potential of the wiring PR becomes a low level, and the transistors 103 in all the pixels 21 are turned off. As a result, the node FN becomes a floating state. In addition, the potential of the node FN[1, 1] and the node FN[1, 2] rises in accordance with the amount of light irradiated to the photoelectric conversion element 101. Here, the case where the potential of the node FN[1, 1] rises larger than that of the node FN[1, 2] is shown. Therefore, the light irradiated to the photoelectric conversion element 101 is converted into an electrical signal, and exposure can be performed in the pixels 21 [1, 1], [1, 2]. The period T2 is also referred to as the exposure period of the pixels 21 [1, 1] and [1, 2].

接著,在期間T3,佈線TX[1]的電位成為低位準,像素21[1,1]、[1,2]中的電晶體102成為關閉狀態。由此,節點FN[1,1]及節點FN[2,2]的電位被保持,像素21[1,1]、[1,2]的曝光期間結束。Next, in the period T3, the potential of the wiring TX[1] becomes a low level, and the transistors 102 in the pixels 21 [1, 1] and [1, 2] are turned off. Thereby, the potentials of the nodes FN[1,1] and the nodes FN[2,2] are maintained, and the exposure period of the pixels 21[1,1] and [1,2] ends.

接著,在期間T4,在佈線BR的電位成為高位準時,電晶體120成為導通狀態,佈線VO的電位被供應到佈線OUT[1]及佈線OUT[2]。在此,由於佈線VO的電位為低位準,所以佈線OUT[1]及佈線OUT[2]的電位成為低位準。Next, in the period T4, when the potential of the wiring BR becomes a high level, the transistor 120 is turned on, and the potential of the wiring VO is supplied to the wiring OUT[1] and the wiring OUT[2]. Here, since the potential of the wiring VO is at a low level, the potentials of the wiring OUT[1] and the wiring OUT[2] are at a low level.

接著,在期間T5,佈線BR的電位成為低位準,電晶體120成為關閉狀態。此外,佈線CSE[1]的電位成為高位準,電晶體110[1]成為導通狀態。由此,佈線VIN的電位被供應到佈線SE[1],佈線SE[1]的電位成為高位準。Next, in the period T5, the potential of the wiring BR becomes a low level, and the transistor 120 is turned off. In addition, the potential of the wiring CSE[1] becomes a high level, and the transistor 110[1] becomes a conductive state. As a result, the potential of the wiring VIN is supplied to the wiring SE[1], and the potential of the wiring SE[1] becomes a high level.

注意,雖然在此使佈線BR的電位變化而控制佈線OUT的電位,但是也可以向佈線BR一直供應預定電位。在此情況下,電晶體120被用作電流源,根據佈線BR的電位而決定佈線OUT的電位。Note that although the potential of the wiring BR is changed to control the potential of the wiring OUT here, it is also possible to always supply a predetermined potential to the wiring BR. In this case, the transistor 120 is used as a current source, and the potential of the wiring OUT is determined according to the potential of the wiring BR.

在此,佈線SE[1]被用作像素21[1,1]、[1,2]的電源線。明確而言,佈線SE[1]的電位被供應到用作放大電晶體的電晶體104。由此,佈線OUT[1]、佈線OUT[2]的電位分別成為對應於節點FN[1,1]、節點FN[1,2]的電位的電位。此時,佈線OUT[1]、佈線OUT[2]的電位分別對應於像素21[1,1]、像素21[1,2]的光資料信號。如此,在期間T5,電晶體110[1]被用作選擇電晶體,具有用來選擇讀出光資料信號的像素21的功能。Here, the wiring SE[1] is used as a power supply line for the pixels 21 [1, 1], [1, 2]. Specifically, the potential of the wiring SE[1] is supplied to the transistor 104 serving as an amplifying transistor. Thereby, the potentials of the wiring OUT[1] and the wiring OUT[2] become potentials corresponding to the potentials of the node FN[1, 1] and the node FN[1, 2], respectively. At this time, the potentials of the wiring OUT[1] and the wiring OUT[2] correspond to the optical data signals of the pixel 21[1,1] and the pixel 21[1,2], respectively. In this way, in the period T5, the transistor 110 [1] is used as a selection transistor, and has the function of selecting the pixel 21 for reading the optical data signal.

另外,在期間T5,像素21[2,1]、[2,2]處於重設狀態。明確而言,節點FN[2,1]、[2,2]處於低位準,像素21[2,1]、像素21[2,2]的電晶體104處於關閉狀態。因此,佈線SE[2]與佈線OUT[1]、[2]處於非導通狀態。由此,可以防止在從像素21[1,1]、[1,2]讀出光資料信號時佈線OUT[1]、[2]的電位起因於佈線SE[2]的電位而變動。In addition, in the period T5, the pixels 21 [2, 1] and [2, 2] are in the reset state. Specifically, the nodes FN[2,1] and [2,2] are at a low level, and the transistors 104 of the pixel 21[2,1] and the pixel 21[2,2] are in the off state. Therefore, the wiring SE[2] and the wiring OUT[1], [2] are in a non-conducting state. As a result, it is possible to prevent the potential of the wiring OUT[1], [2] from fluctuating due to the potential of the wiring SE[2] when the optical data signal is read from the pixels 21 [1, 1], [1, 2].

接著,在期間T6,佈線CSE[1]的電位成為低位準,電晶體110[1]成為關閉狀態。由此,向佈線SE[1]的電源電位的供應停止,光資料信號的讀出結束。Next, in the period T6, the potential of the wiring CSE[1] becomes a low level, and the transistor 110[1] is turned off. As a result, the supply of the power supply potential to the wiring SE[1] is stopped, and the reading of the optical data signal ends.

藉由上述工作,在第一行的像素中進行重設、曝光及讀出。Through the above-mentioned work, reset, expose and read out the pixels in the first row.

接著,在期間T7,佈線PR的電位成為高位準。由此,在所有像素21中電晶體103成為導通狀態,佈線VPR的電位(低位準)被供應到節點FN。因此,使節點FN[1,1]、[1,2]、[2,1]、[2,2]的電位重設到低位準。此外,在所有像素21中,電晶體104成為關閉狀態。藉由上述工作,使像素21[1,1]、[1,2]、[2,1]、[2,2]重設。Next, in the period T7, the potential of the wiring PR becomes a high level. As a result, the transistor 103 is turned on in all the pixels 21, and the potential (low level) of the wiring VPR is supplied to the node FN. Therefore, the potentials of the nodes FN[1,1], [1,2], [2,1], and [2,2] are reset to a low level. In addition, in all the pixels 21, the transistor 104 is turned off. Through the above work, the pixels 21 [1, 1], [1, 2], [2, 1], [2, 2] are reset.

另外,在期間T7,佈線TX[2]的電位成為高位準,像素21[2,1]、[2,2]中的電晶體102成為導通狀態。因此,光電轉換元件101與節點FN成為導通狀態。In addition, in the period T7, the potential of the wiring TX[2] becomes a high level, and the transistors 102 in the pixels 21 [2, 1] and [2, 2] are turned on. Therefore, the photoelectric conversion element 101 and the node FN are in a conductive state.

接著,在期間T8,佈線PR的電位成為低位準,所有像素21中的電晶體103成為關閉狀態。由此,節點FN成為浮動狀態。並且,節點FN[2,1]和節點FN[2,2]的電位根據照射到光電轉換元件101的光的量而上升。在此,示出節點FN[2,1]的電位的上升小於節點FN[2,2]的情況。因此,照射到光電轉換元件101的光被轉換為電信號,而可以在像素21[2,1]、[2,2]中進行曝光。將期間T8也稱為像素21[2,1]、[2,2]的曝光期間。Next, in the period T8, the potential of the wiring PR becomes a low level, and the transistors 103 in all the pixels 21 are turned off. As a result, the node FN becomes a floating state. In addition, the potential of the node FN[2, 1] and the node FN[2, 2] rises in accordance with the amount of light irradiated to the photoelectric conversion element 101. Here, it is shown that the rise of the potential of the node FN[2,1] is smaller than that of the node FN[2,2]. Therefore, the light irradiated to the photoelectric conversion element 101 is converted into an electric signal, and exposure can be performed in the pixels 21 [2, 1], [2, 2]. The period T8 is also referred to as the exposure period of the pixels 21 [2, 1] and [2, 2].

接著,在期間T9,佈線TX[2]的電位成為低位準,像素21[2,1]、[2,2]中的電晶體102成為關閉狀態。由此,節點FN[2,1]及節點FN[2,2]的電位被保持,像素21[2,1]、[2,2]的曝光期間結束。Next, in the period T9, the potential of the wiring TX[2] becomes a low level, and the transistors 102 in the pixels 21 [2, 1] and [2, 2] are turned off. Thereby, the potentials of the nodes FN[2,1] and the nodes FN[2,2] are maintained, and the exposure period of the pixels 21[2,1] and [2,2] ends.

接著,在期間T10,在佈線BR的電位成為高位準時,電晶體120成為導通狀態,佈線VO的電位被供應到佈線OUT[1]及佈線OUT[2]。在此,由於佈線VO的電位為低位準,所以佈線OUT[1]及佈線OUT[2]的電位成為低位準。Next, in the period T10, when the potential of the wiring BR becomes a high level, the transistor 120 is turned on, and the potential of the wiring VO is supplied to the wiring OUT[1] and the wiring OUT[2]. Here, since the potential of the wiring VO is at a low level, the potentials of the wiring OUT[1] and the wiring OUT[2] are at a low level.

接著,在期間T11,佈線BR的電位成為低位準,電晶體120成為關閉狀態。此外,佈線CSE[2]的電位成為高位準,電晶體110[2]成為導通狀態。由此,佈線VIN的電位被供應到佈線SE[2],佈線SE[2]的電位成為高位準。Next, in the period T11, the potential of the wiring BR becomes a low level, and the transistor 120 is turned off. In addition, the potential of the wiring CSE[2] becomes a high level, and the transistor 110[2] becomes a conductive state. As a result, the potential of the wiring VIN is supplied to the wiring SE[2], and the potential of the wiring SE[2] becomes a high level.

注意,雖然在此使佈線BR的電位變化而控制佈線OUT的電位,但是也可以向佈線BR一直供應任意電位。在此情況下,電晶體120被用作電流源,根據佈線BR的電位而決定佈線OUT的電位。Note that although the potential of the wiring BR is changed to control the potential of the wiring OUT here, it is also possible to always supply an arbitrary potential to the wiring BR. In this case, the transistor 120 is used as a current source, and the potential of the wiring OUT is determined according to the potential of the wiring BR.

在此,佈線SE[2]被用作像素21[2,1]、[2,2]的電源線。明確而言,佈線SE[2]的電位被供應到用作放大電晶體的電晶體104。由此,佈線OUT[1]、佈線OUT[2]的電位分別成為對應於節點FN[2,1]、節點FN[2,2]的電位的電位。此時,佈線OUT[1]、佈線OUT[2]的電位分別對應於像素21[2,1]、像素21[2,2]的光資料信號。如此,在期間T11,電晶體110[2]被用作選擇電晶體,具有用來選擇讀出光資料信號的像素21的功能。Here, the wiring SE[2] is used as a power supply line for the pixels 21 [2, 1], [2, 2]. Specifically, the potential of the wiring SE[2] is supplied to the transistor 104 serving as an amplifying transistor. Thereby, the potentials of the wiring OUT[1] and the wiring OUT[2] become potentials corresponding to the potentials of the node FN[2,1] and the node FN[2,2], respectively. At this time, the potentials of the wiring OUT[1] and the wiring OUT[2] respectively correspond to the optical data signals of the pixel 21[2,1] and the pixel 21[2,2]. In this way, in the period T11, the transistor 110[2] is used as a selection transistor, and has the function of selecting the pixel 21 for reading the optical data signal.

另外,在期間T11,像素21[1,1]、[1,2]處於重設狀態。明確而言,節點FN[1,1]、[1,2]處於低位準,像素21[1,1]、像素21[1,2]的電晶體104處於關閉狀態。因此,佈線SE[1]與佈線OUT[1]、[2]處於非導通狀態。由此,可以防止在從像素21[2,1]、[2,2]讀出光資料信號時佈線OUT[1]、[2]的電位起因於佈線SE[1]的電位而變動。In addition, in the period T11, the pixels 21 [1, 1] and [1, 2] are in the reset state. Specifically, the nodes FN[1,1] and [1,2] are at a low level, and the transistor 104 of the pixel 21[1,1] and the pixel 21[1,2] are in the off state. Therefore, the wiring SE[1] and the wiring OUT[1], [2] are in a non-conducting state. As a result, it is possible to prevent the potential of the wiring OUT[1], [2] from fluctuating due to the potential of the wiring SE[1] when the optical data signal is read from the pixels 21 [2, 1], [2, 2].

接著,在期間T12,佈線CSE[2]的電位成為低位準,電晶體110[2]成為關閉狀態。由此,向佈線SE[2]的電源電位的供應停止,光資料信號的讀出結束。Next, in the period T12, the potential of the wiring CSE[2] becomes a low level, and the transistor 110[2] is turned off. As a result, the supply of the power supply potential to the wiring SE[2] is stopped, and the reading of the optical data signal ends.

藉由上述工作,在第二行的像素中進行重設、曝光及讀出。Through the above-mentioned work, reset, expose and read out the pixels in the second row.

接著,在期間T13,佈線PR的電位成為高位準。由此,在所有像素21中電晶體103成為導通狀態,使節點FN的電位重設到低位準。之後,藉由與上述工作同樣的工作,進行第三行以後的像素21的曝光和讀出以及第四行以後的像素21的重設、曝光及讀出。Next, in the period T13, the potential of the wiring PR becomes a high level. As a result, the transistor 103 is turned on in all the pixels 21, and the potential of the node FN is reset to a low level. After that, by the same work as the above-mentioned work, the exposure and readout of the pixels 21 on the third row and later, and the reset, exposure, and readout of the pixels 21 on the fourth row and later are performed.

如此,在本發明的一個實施方式中,在相同行的像素21中共同使用用來選擇像素21的開關,並且開關設置在像素部20的外部。因此,不需要在像素部20中設置用來選擇像素21的開關以及與該開關連接的電源線,由此可以縮小像素部20的面積。In this way, in one embodiment of the present invention, a switch for selecting the pixel 21 is commonly used in the pixels 21 in the same row, and the switch is provided outside the pixel portion 20. Therefore, it is not necessary to provide a switch for selecting the pixel 21 and a power supply line connected to the switch in the pixel portion 20, and thus the area of the pixel portion 20 can be reduced.

在本發明的一個實施方式中,用作用來選擇像素21的電源線的佈線VIN設置在像素部20的外部。因此,即使佈線VIN由與連接於像素21的其他電源線(佈線VPR等)不同的佈線構成,也可以抑制像素部20的面積的增加。另外,可以向佈線VIN供應與連接於像素21的其他電源線不同的電位。因此,可以自由地設定用來讀出光資料信號的電源電位,並可以提高半導體裝置10的設計彈性及通用性。In one embodiment of the present invention, the wiring VIN used as a power supply line for selecting the pixel 21 is provided outside the pixel portion 20. Therefore, even if the wiring VIN is configured by a wiring different from other power supply lines (wiring VPR, etc.) connected to the pixel 21, it is possible to suppress an increase in the area of the pixel portion 20. In addition, the wiring VIN can be supplied with a different potential from other power supply lines connected to the pixels 21. Therefore, the power supply potential for reading out the optical data signal can be freely set, and the design flexibility and versatility of the semiconductor device 10 can be improved.

在本實施方式中,描述本發明的一個實施方式。但是,本發明的一個實施方式不侷限於此。也就是說,因為在本實施方式中記載有各種發明的方式,所以本發明的一個實施方式不侷限於特定的方式。例如,雖然作為本發明的一個實施方式,示出在相同行的像素中共同使用的開關設置在像素部的外部的半導體裝置的例子,但是本發明的一個實施方式不侷限於此。根據情況或狀況,本發明的一個實施方式既可以具有在相同行中不共同使用開關的結構,又可以具有開關設置在像素部的內部的結構。另外,雖然作為本發明的一個實施方式示出使用與連接於像素的電源線不同的佈線構成被共同使用的開關和與其連接的電源線的半導體裝置的例子,但是本發明的一個實施方式不侷限於此。在本發明的一個實施方式中,根據情況或狀況,這些電源線也可以為相同的佈線。In this embodiment mode, an embodiment of the present invention is described. However, one embodiment of the present invention is not limited to this. That is, since various aspects of the invention are described in this embodiment, one embodiment of the present invention is not limited to a specific aspect. For example, although an example of a semiconductor device in which switches commonly used in pixels in the same row are provided outside the pixel portion is shown as one embodiment of the present invention, one embodiment of the present invention is not limited to this. Depending on the situation or situation, one embodiment of the present invention may have a structure in which the switches are not used in common in the same row, or may have a structure in which the switches are provided inside the pixel portion. In addition, although an example of a semiconductor device that uses a wiring different from the power supply line connected to the pixel to form a commonly used switch and a power supply line connected thereto is shown as an embodiment of the present invention, one embodiment of the present invention is not limited Here. In an embodiment of the present invention, depending on the situation or situation, these power lines may also be the same wiring.

雖然在本實施方式中說明按每個行進行曝光的工作,但是也可以採用全域快門(Global shutter)方式:在多個行的像素21(最大的是所有像素21)中同時進行曝光,然後按每個行依次進行讀出。在此情況下,可以得到畸變少的影像。在此,在全域快門方式中,從曝光至讀出的期間(亦即,將電荷保持在節點FN的期間)根據像素21被設置的行而變化。因此,當利用全域快門方式時,隨時間的經過而產生的節點FN的電位的變動較佳小。在此,藉由在像素21中使用OS電晶體,可以極長期間保持積蓄於節點FN的電荷,所以即使利用全域快門方式也可以正確地讀出光資料信號。Although this embodiment describes the work of performing exposure for each row, a global shutter method can also be used: Exposure is performed in multiple rows of pixels 21 (the largest is all pixels 21) at the same time, and then press Each row is read out in turn. In this case, an image with less distortion can be obtained. Here, in the global shutter method, the period from exposure to readout (that is, the period during which the charge is held at the node FN) varies according to the row in which the pixels 21 are arranged. Therefore, when the global shutter method is used, the change in the potential of the node FN that occurs with the passage of time is preferably small. Here, by using the OS transistor in the pixel 21, the electric charge accumulated in the node FN can be maintained for an extremely long period of time, so even if the global shutter method is used, the optical data signal can be read out accurately.

本實施方式可以與其他實施方式的記載適當地組合。因此,在本實施方式中描述的內容(也可以是其一部分的內容)可以應用於、組合於或者替換成在該實施方式中描述的其他內容(也可以是其一部分的內容)和/或在一個或多個其他實施方式中描述的內容(也可以是其一部分的內容)。注意,在實施方式中描述的內容是指在各實施方式中利用各種圖式說明的內容或在說明書的文章中所記載的內容。另外,藉由使在一個實施方式中示出的圖式(也可以是其一部分)與該圖式的其他部分、在該實施方式中示出的其他圖式(也可以是其一部分)和/或在一個或多個其他實施方式中示出的圖式(也可以是其一部分)組合,可以構成更多圖式。以下的實施方式中也是同樣的。This embodiment mode can be combined with descriptions of other embodiments as appropriate. Therefore, the content described in this embodiment (or a part of it) can be applied to, combined with, or replaced with other content described in this embodiment (it can also be a part of the content) and/or in The content described in one or more other implementations (may also be part of the content). Note that the content described in the embodiments refers to the content described using various drawings in each embodiment or the content described in the article of the specification. In addition, by combining the drawing (may be a part of it) shown in one embodiment with other parts of the drawing, the other drawing (may be a part of it) shown in this embodiment, and/ Or a combination of the figures shown in one or more other embodiments (or a part of them) can form more figures. The same applies to the following embodiments.

實施方式2 在本實施方式中,說明本發明的一個實施方式的像素的結構例子。 Embodiment 2 In this embodiment, an example of the structure of a pixel according to an embodiment of the present invention will be described.

<像素的佈局的例子> 圖5示出在上述實施方式中可以使用的像素21的佈局的例子。注意,在圖5中,以相同的陰影線表示的佈線、導電層、半導體層可以藉由相同的製程並使用相同的材料形成。 <Example of pixel layout> FIG. 5 shows an example of the layout of the pixels 21 that can be used in the above-described embodiment. Note that in FIG. 5, the wiring, the conductive layer, and the semiconductor layer represented by the same hatching can be formed by the same process and using the same material.

圖5所示的像素21包括電晶體102、電晶體103、電晶體104及電容器105。關於各元件的連接關係,可以參照圖2的說明,由此省略詳細的說明。注意,雖然在圖5中未圖示光電轉換元件101,但是光電轉換元件101與導電層250連接。The pixel 21 shown in FIG. 5 includes a transistor 102, a transistor 103, a transistor 104, and a capacitor 105. Regarding the connection relationship of each element, reference can be made to the description of FIG. 2, and thus detailed description is omitted. Note that although the photoelectric conversion element 101 is not shown in FIG. 5, the photoelectric conversion element 101 is connected to the conductive layer 250.

半導體層221被用作電晶體102及電晶體103的活性層。也就是說,半導體層221在電晶體102及電晶體103中共同使用。此外,半導體層222被用作電晶體104的活性層。The semiconductor layer 221 is used as the active layer of the transistor 102 and the transistor 103. In other words, the semiconductor layer 221 is commonly used in the transistor 102 and the transistor 103. In addition, the semiconductor layer 222 is used as an active layer of the transistor 104.

半導體層221與導電層231、導電層232連接。導電層231藉由開口部251連接於導電層250。導電層232藉由開口部255連接於導電層212。此外,半導體層221藉由開口部255連接於導電層243。The semiconductor layer 221 is connected to the conductive layer 231 and the conductive layer 232. The conductive layer 231 is connected to the conductive layer 250 through the opening 251. The conductive layer 232 is connected to the conductive layer 212 through the opening 255. In addition, the semiconductor layer 221 is connected to the conductive layer 243 through the opening 255.

導電層231被用作電晶體102的源極和汲極中的一個。導電層232被用作電晶體103的源極和汲極中的一個。導電層243被用作電晶體102的源極和汲極中的另一個、電晶體103的源極和汲極中的另一個、電晶體104的閘極以及電容器105的一個電極。The conductive layer 231 is used as one of the source and drain of the transistor 102. The conductive layer 232 is used as one of the source and drain of the transistor 103. The conductive layer 243 is used as the other of the source and drain of the transistor 102, the other of the source and drain of the transistor 103, the gate of the transistor 104, and one electrode of the capacitor 105.

半導體層222與導電層233、導電層234連接。導電層233藉由開口部256連接於導電層202。導電層234藉由開口部257連接於導電層211。The semiconductor layer 222 is connected to the conductive layer 233 and the conductive layer 234. The conductive layer 233 is connected to the conductive layer 202 through the opening 256. The conductive layer 234 is connected to the conductive layer 211 through the opening 257.

導電層233被用作電晶體104的源極和汲極中的一個。導電層234被用作電晶體104的源極和汲極中的另一個。The conductive layer 233 is used as one of the source and drain of the transistor 104. The conductive layer 234 is used as the other of the source and drain of the transistor 104.

在此,導電層212對應於佈線VPR,導電層202對應於佈線SE,導電層211對應於佈線OUT。此外,連接有半導體層221與導電層243的節點對應於節點FN。Here, the conductive layer 212 corresponds to the wiring VPR, the conductive layer 202 corresponds to the wiring SE, and the conductive layer 211 corresponds to the wiring OUT. In addition, the node to which the semiconductor layer 221 and the conductive layer 243 are connected corresponds to the node FN.

作為半導體層221及半導體層222可以使用各種單晶半導體層及非單晶半導體層等,尤其較佳為使用氧化物半導體層。在此情況下,電晶體102至104是OS電晶體。As the semiconductor layer 221 and the semiconductor layer 222, various single crystal semiconductor layers, non-single crystal semiconductor layers, etc. can be used, and it is particularly preferable to use an oxide semiconductor layer. In this case, the transistors 102 to 104 are OS transistors.

導電層241藉由開口部252連接於導電層203。導電層241被用作電晶體102的閘極。另外,導電層241也可以由導電層203的一部分構成。在此,導電層203對應於佈線TX。The conductive layer 241 is connected to the conductive layer 203 through the opening 252. The conductive layer 241 is used as the gate electrode of the transistor 102. In addition, the conductive layer 241 may be formed of a part of the conductive layer 203. Here, the conductive layer 203 corresponds to the wiring TX.

導電層242藉由開口部254連接於導電層204。導電層242被用作電晶體103的閘極。另外,導電層242也可以由導電層204的一部分構成。在此,導電層204對應於佈線PR。The conductive layer 242 is connected to the conductive layer 204 through the opening 254. The conductive layer 242 is used as the gate electrode of the transistor 103. In addition, the conductive layer 242 may be formed of a part of the conductive layer 204. Here, the conductive layer 204 corresponds to the wiring PR.

導電層201包括隔著絕緣層(未圖示)重疊於導電層243的區域。導電層201被用作電容器105的另一個電極。在此,導電層201對應於佈線VPD。The conductive layer 201 includes a region overlapping the conductive layer 243 via an insulating layer (not shown). The conductive layer 201 is used as the other electrode of the capacitor 105. Here, the conductive layer 201 corresponds to the wiring VPD.

雖然在圖5中電晶體102、103、104為頂閘極型電晶體,但是電晶體102、103、104也可以頂閘極型電晶體或底閘極型電晶體。Although the transistors 102, 103, and 104 are top gate type transistors in FIG. 5, the transistors 102, 103, and 104 may also be top gate type transistors or bottom gate type transistors.

此外,雖然在圖5中示出依次層疊有半導體層221、222、導電層231至234、導電層241至243、導電層211、212、導電層201至204、導電層250的結構,但是各層的上下關係不侷限於此,而可以自由地設定。In addition, although FIG. 5 shows a structure in which semiconductor layers 221, 222, conductive layers 231 to 234, conductive layers 241 to 243, conductive layers 211, 212, conductive layers 201 to 204, and a conductive layer 250 are sequentially stacked, each layer The upper and lower relationship is not limited to this, but can be set freely.

<像素的變形例> 接著,在實施方式1中說明的像素21的變形例。 <Variation of pixel> Next, a modification example of the pixel 21 described in the first embodiment will be described.

像素21也可以具有圖6A所示的結構。圖6A所示的像素21與圖2不同之處是:圖6A所示的像素21與光電轉換元件101的陽極與佈線VPD連接,陰極與電晶體102的源極和汲極中的一個連接。在圖6A中,佈線VPD被用作低電位電源線,佈線VPR被用作高電位電源線。The pixel 21 may also have the structure shown in FIG. 6A. The pixel 21 shown in FIG. 6A is different from FIG. 2 in that the anode of the pixel 21 shown in FIG. 6A and the photoelectric conversion element 101 is connected to the wiring VPD, and the cathode is connected to one of the source and drain of the transistor 102. In FIG. 6A, the wiring VPD is used as a low-potential power supply line, and the wiring VPR is used as a high-potential power supply line.

在本發明的一個實施方式中,電晶體104較佳為在向節點FN供應作為重設電位的佈線VPR的電位時成為關閉狀態。因此,在圖6A中,電晶體104較佳為在電晶體104為p通道型電晶體且從佈線VPR向節點FN供應高位準電位時成為關閉狀態。In one embodiment of the present invention, the transistor 104 is preferably turned off when the potential of the wiring VPR, which is the reset potential, is supplied to the node FN. Therefore, in FIG. 6A, the transistor 104 is preferably turned off when the transistor 104 is a p-channel type transistor and a high-level potential is supplied from the wiring VPR to the node FN.

另外,像素21也可以具有圖6B所示的結構。圖6B所示的像素21與圖2不同之處是:圖6B所示的像素21包括多個光電轉換元件101及多個電晶體102。光電轉換元件101a的第一端子與電晶體102a的源極和汲極中的一個連接,第二端子與佈線VPD連接。光電轉換元件101b的第一端子與電晶體102b的源極和汲極中的一個連接,第二端子與佈線VPD連接。電晶體102a的閘極與佈線TXa連接,電晶體102b的閘極與佈線TXb連接。電晶體102a的源極和汲極中的另一個及電晶體102b的源極和汲極中的另一個與節點FN連接。In addition, the pixel 21 may have the structure shown in FIG. 6B. The pixel 21 shown in FIG. 6B is different from that in FIG. 2 in that the pixel 21 shown in FIG. 6B includes a plurality of photoelectric conversion elements 101 and a plurality of transistors 102. The first terminal of the photoelectric conversion element 101a is connected to one of the source and drain of the transistor 102a, and the second terminal is connected to the wiring VPD. The first terminal of the photoelectric conversion element 101b is connected to one of the source and drain of the transistor 102b, and the second terminal is connected to the wiring VPD. The gate of the transistor 102a is connected to the wiring TXa, and the gate of the transistor 102b is connected to the wiring TXb. The other of the source and drain of the transistor 102a and the other of the source and the drain of the transistor 102b are connected to the node FN.

電晶體102a的閘極及電晶體102b的閘極分別與不同的佈線連接,所以利用光電轉換元件101a的曝光及利用光電轉換元件101b的曝光分別獨立地受到控制。藉由採用這種結構,可以在一個像素中使用兩個光電轉換元件進行曝光。注意,對設置在像素21中的光電轉換元件的個數沒有特別的限制,也可以是三個以上。The gate of the transistor 102a and the gate of the transistor 102b are respectively connected to different wirings, so the exposure by the photoelectric conversion element 101a and the exposure by the photoelectric conversion element 101b are independently controlled. By adopting this structure, two photoelectric conversion elements can be used for exposure in one pixel. Note that the number of photoelectric conversion elements provided in the pixel 21 is not particularly limited, and it may be three or more.

另外,像素21也可以具有圖6C所示的結構。圖6C所示的電路具有省略圖2中的電晶體103的結構。光電轉換元件101的陽極與電晶體102的源極和汲極中的一個連接,陰極與佈線VPR連接。In addition, the pixel 21 may have the structure shown in FIG. 6C. The circuit shown in FIG. 6C has a structure in which the transistor 103 in FIG. 2 is omitted. The anode of the photoelectric conversion element 101 is connected to one of the source and drain of the transistor 102, and the cathode is connected to the wiring VPR.

當進行像素21的重設工作(例如,對應於圖4中的期間T1、T7的工作)時,將佈線VPR的電位設定為低位準,將佈線TX的電位設定為高位準。因此,光電轉換元件101被施加正向偏壓,而使節點FD的電位重設到低位準。在節點FD的重設之後將佈線VPR的電位設定為高位準即可。When resetting the pixel 21 (for example, the operations corresponding to the periods T1 and T7 in FIG. 4), the potential of the wiring VPR is set to a low level, and the potential of the wiring TX is set to a high level. Therefore, the photoelectric conversion element 101 is forward biased, and the potential of the node FD is reset to a low level. After resetting the node FD, the potential of the wiring VPR can be set to a high level.

另外,像素21也可以具有圖6D所示的結構。圖6D所示的像素21與圖6C所示的像素21不同之處是:圖6D所示的像素21與光電轉換元件101的陽極與佈線VPD連接,陰極與電晶體102的源極和汲極中的一個連接。In addition, the pixel 21 may also have the structure shown in FIG. 6D. The pixel 21 shown in FIG. 6D differs from the pixel 21 shown in FIG. 6C in that the pixel 21 shown in FIG. One of the connections.

當進行像素21的重設工作(例如,對應於圖4中的期間T1、T7的工作)時,將佈線VPR及佈線TX的電位設定為高位準。因此,光電轉換元件101被施加正向偏壓,而使節點FD的電位重設到高位準。在節點FD的重設之後將佈線VPR的電位設定為低位準即可。When the reset operation of the pixel 21 (for example, the operation corresponding to the periods T1 and T7 in FIG. 4) is performed, the potentials of the wiring VPR and the wiring TX are set to a high level. Therefore, the photoelectric conversion element 101 is forward biased, and the potential of the node FD is reset to a high level. After resetting the node FD, the potential of the wiring VPR may be set to a low level.

在本發明的一個實施方式中,電晶體104較佳為藉由向節點FN供應作為重設電位的佈線VPR的電位而成為關閉狀態。因此,在圖6D中,電晶體104較佳為在電晶體104為p通道型電晶體且使節點FN的電位重設到高位準時成為關閉狀態。In one embodiment of the present invention, the transistor 104 is preferably turned off by supplying the potential of the wiring VPR as the reset potential to the node FN. Therefore, in FIG. 6D, the transistor 104 is preferably turned off when the transistor 104 is a p-channel type transistor and the potential of the node FN is reset to a high level.

在圖2中,也可以省略電晶體102。圖7A示出在圖2中省略電晶體102的結構,圖7B示出在圖6A中省略電晶體102的結構。In FIG. 2, the transistor 102 may also be omitted. FIG. 7A shows a structure in which the transistor 102 is omitted in FIG. 2, and FIG. 7B shows a structure in which the transistor 102 is omitted in FIG. 6A.

在用於像素21的電晶體中,除了第一閘極電極(下面,也稱為前閘極)之外還可以設置有第二閘極電極(下面,也稱為背閘極)。圖8A至圖8D示出在電晶體102、103、104中設置有背閘極的結構。In the transistor used for the pixel 21, in addition to the first gate electrode (hereinafter, also referred to as a front gate), a second gate electrode (hereinafter, also referred to as a back gate) may also be provided. 8A to 8D show structures in which back gates are provided in the transistors 102, 103, and 104.

圖8A示出在圖2中的電晶體102、103、104中設置與前閘極連接的背閘極並向背閘極供應與前閘極相同的電位的結構。圖8B示出在圖6A中的電晶體102、103、104中設置與前閘極連接的背閘極並向背閘極供應與前閘極相同的電位的結構。藉由採用上述結構,可以增加電晶體102、103、104的通態電流(on-state current),從而可以實現高速的成像。FIG. 8A shows a structure in which a back gate connected to the front gate is provided in the transistors 102, 103, and 104 in FIG. 2 and the back gate is supplied with the same potential as the front gate. FIG. 8B shows a structure in which the back gate connected to the front gate is provided in the transistors 102, 103, and 104 in FIG. 6A, and the back gate is supplied with the same potential as the front gate. By adopting the above structure, the on-state currents of the transistors 102, 103, and 104 can be increased, so that high-speed imaging can be realized.

圖8C示出在圖2中的電晶體102、103、104中設置與佈線VPR連接的背閘極並向背閘極供應固定電位的結構。在此,向佈線VPR供應接地電位。圖8D示出在圖6A中的電晶體102、103、104中設置與佈線VPD連接的背閘極並向背閘極供應固定電位的結構。在此,向佈線VPD供應接地電位。因此,能夠控制電晶體102、103、104的臨界電壓,由此可以進行可靠性高的成像。FIG. 8C shows a structure in which a back gate connected to the wiring VPR is provided in the transistors 102, 103, and 104 in FIG. 2 and a fixed potential is supplied to the back gate. Here, the ground potential is supplied to the wiring VPR. FIG. 8D shows a structure in which a back gate connected to the wiring VPD is provided in the transistors 102, 103, and 104 in FIG. 6A, and a fixed potential is supplied to the back gate. Here, the ground potential is supplied to the wiring VPD. Therefore, it is possible to control the threshold voltages of the transistors 102, 103, and 104, thereby enabling highly reliable imaging.

注意,雖然圖8C示出電晶體102、103、104的背閘極與佈線VPR連接的結構,圖8D示出電晶體102、103、104的背閘極與佈線VPD連接的結構,但是背閘極也可以與供應有固定電位的其他佈線連接。此外,在圖6B至圖6D、圖7A和圖7B所示的像素21中也可以同樣地設置背閘極。Note that although FIG. 8C shows a structure in which the back gates of the transistors 102, 103, and 104 are connected to the wiring VPR, and FIG. 8D shows a structure in which the back gates of the transistors 102, 103, and 104 are connected to the wiring VPD, the back gate The pole can also be connected to other wiring supplied with a fixed potential. In addition, the pixel 21 shown in FIGS. 6B to 6D, 7A, and 7B can also be provided with a back gate in the same manner.

電晶體102、103、104都可以具有向背閘極供應與前閘極相同的電位的結構、向背閘極供應固定電位的結構和不設置背閘極的結構中的任何結構。也就是說,在一個像素21中也可以包括兩種以上的電晶體。The transistors 102, 103, and 104 may all have any structure in which the back gate is supplied with the same potential as the front gate, the back gate is supplied with a fixed potential, and the back gate is not provided. In other words, one pixel 21 may also include more than two types of transistors.

在圖2、圖6A至圖8D中,多個像素也可以共同使用包括在像素21中的元件。圖9示出四個像素21共同使用圖2中的電晶體103、電晶體104、電容器105的像素部20的結構。在圖9中,四個電晶體102與節點FN連接,節點FN與電晶體103、電晶體104、電容器105連接。藉由採用上述結構,可以減少像素部20的元件數量。In FIGS. 2 and 6A to 8D, a plurality of pixels may also use the elements included in the pixel 21 in common. FIG. 9 shows the structure of the pixel portion 20 in which four pixels 21 use the transistor 103, the transistor 104, and the capacitor 105 in FIG. 2 in common. In FIG. 9, four transistors 102 are connected to the node FN, and the node FN is connected to the transistor 103, the transistor 104, and the capacitor 105. By adopting the above structure, the number of elements in the pixel portion 20 can be reduced.

注意,雖然圖9示出不同行的像素21共同使用電晶體及電容器的結構,但是也可以具有不同列的像素21共同使用電晶體及/或電容器的結構。此外,雖然在此示出四個像素共同使用電晶體103、電晶體104、電容器105的結構,但是共同使用元件的像素的數量不侷限於此,而也可以為兩個像素、三個像素或五個以上的像素。此外,圖6A至圖8D所示的像素21也可以適用相同的結構。Note that although FIG. 9 shows a structure in which pixels 21 in different rows use transistors and capacitors in common, it is also possible to have a structure in which pixels 21 in different columns use transistors and/or capacitors in common. In addition, although the structure in which four pixels use the transistor 103, the transistor 104, and the capacitor 105 in common is shown here, the number of pixels that use the elements in common is not limited to this, and may also be two pixels, three pixels, or More than five pixels. In addition, the same structure can also be applied to the pixel 21 shown in FIGS. 6A to 8D.

圖2、圖6A至圖9所示的結構可以自由地組合。The structures shown in FIGS. 2 and 6A to 9 can be freely combined.

本實施方式可以與其他實施方式的記載適當地組合。This embodiment mode can be combined with descriptions of other embodiments as appropriate.

實施方式3 在本實施方式中,說明使用根據本發明的一個實施方式的半導體裝置的成像裝置。 Implementation Mode 3 In this embodiment mode, an imaging device using a semiconductor device according to an embodiment of the present invention will be described.

圖10示出成像裝置300的結構例子。成像裝置300包括光電檢測部310、資料處理部320。FIG. 10 shows an example of the structure of the imaging device 300. The imaging device 300 includes a photodetection unit 310 and a data processing unit 320.

光電檢測部310包括像素部20、電路30、電路40、電路50、電路60。作為像素部20、電路30、電路40,可以使用上述實施方式中說明的像素部及電路。The photodetection section 310 includes a pixel section 20, a circuit 30, a circuit 40, a circuit 50, and a circuit 60. As the pixel portion 20, the circuit 30, and the circuit 40, the pixel portion and the circuit described in the above-mentioned embodiment can be used.

電路50具有將從電路40輸入的類比信號轉換成數位信號的功能。電路50可以由A/D轉換器等構成。The circuit 50 has a function of converting an analog signal input from the circuit 40 into a digital signal. The circuit 50 may be constituted by an A/D converter or the like.

電路60是具有將從電路50輸入的數位信號讀出的功能的驅動電路。電路60可以使用選擇電路等構成。另外,選擇電路可以使用電晶體等構成。作為該電晶體可以使用OS電晶體等。The circuit 60 is a drive circuit having a function of reading out the digital signal input from the circuit 50. The circuit 60 can be configured using a selection circuit or the like. In addition, the selection circuit can be configured using a transistor or the like. As this transistor, an OS transistor or the like can be used.

資料處理部320包括電路321。電路321具有使用在光電檢測部310中生成的光資料信號進行影像資料的生成的功能。The data processing unit 320 includes a circuit 321. The circuit 321 has a function of generating image data using the optical data signal generated in the photodetection unit 310.

另外,也可以在像素部20中設置具有顯示影像的功能的電路。由此,也可以將成像裝置300用作觸控面板。In addition, a circuit having a function of displaying an image may be provided in the pixel unit 20. Thus, the imaging device 300 can also be used as a touch panel.

接著,說明圖10所示的成像裝置300的驅動方法的例子。Next, an example of a driving method of the imaging device 300 shown in FIG. 10 will be described.

首先,在像素21中藉由實施方式1所示的方法生成光資料信號。在像素21中生成的光資料信號被輸出到電路40。電路40將光資料信號轉換為類比信號而輸出到電路50。First, in the pixel 21, an optical data signal is generated by the method shown in Embodiment 1. The optical data signal generated in the pixel 21 is output to the circuit 40. The circuit 40 converts the optical data signal into an analog signal and outputs it to the circuit 50.

從電路40輸出的類比信號在電路50中被轉換成數位信號,並被輸出到電路60。並且,在電路60中,數位信號被讀出。在電路60中讀出的數位信號被用於電路321中的處理等。The analog signal output from the circuit 40 is converted into a digital signal in the circuit 50 and output to the circuit 60. And, in the circuit 60, the digital signal is read. The digital signal read in the circuit 60 is used for processing in the circuit 321 and the like.

本實施方式可以與其他實施方式的記載適當地組合。This embodiment mode can be combined with descriptions of other embodiments as appropriate.

實施方式4 在本實施方式中,說明可用於半導體裝置10的元件的結構例子。 Embodiment 4 In this embodiment mode, an example of the structure of an element that can be used in the semiconductor device 10 will be described.

圖11A至圖11C示出可用於半導體裝置10的電晶體及光電轉換元件的結構例子。注意,在本實施方式中,說明作為光電轉換元件使用光電二極體的例子。11A to 11C show structural examples of transistors and photoelectric conversion elements that can be used in the semiconductor device 10. Note that in this embodiment, an example in which a photodiode is used as a photoelectric conversion element is described.

<結構例子1> 圖11A示出電晶體801、電晶體802、光電二極體803的結構例子。電晶體801藉由佈線819及導電層823與電晶體802連接,電晶體802藉由導電層830與光電二極體803連接。 <Structure example 1> FIG. 11A shows an example of the structure of a transistor 801, a transistor 802, and a photodiode 803. The transistor 801 is connected to the transistor 802 through the wiring 819 and the conductive layer 823, and the transistor 802 is connected to the photodiode 803 through the conductive layer 830.

電晶體801及電晶體802可以自由地適用於圖2、圖3、圖6A至圖9所示的各電晶體或其它半導體裝置10所包括的電晶體。例如,可以將電晶體801用作圖2、圖3所示的電晶體110、120等,將電晶體802用作圖2、圖3、圖6A至圖9所示的電晶體102至電晶體104等。此外,可以將光電二極體803用作圖2、圖3、圖6A至圖9所示的光電轉換元件101。The transistor 801 and the transistor 802 can be freely applied to the transistors shown in FIGS. 2, 3, and 6A to 9 or other transistors included in the semiconductor device 10. For example, the transistor 801 can be used as the transistors 110 and 120 shown in FIGS. 2 and 3, and the transistor 802 can be used as the transistor 102 to the transistors shown in FIGS. 2, 3, and 6A to 9 104 and so on. In addition, the photodiode 803 can be used as the photoelectric conversion element 101 shown in FIGS. 2, 3, and 6A to 9.

[電晶體801] 首先,說明電晶體801。 [Transistor 801] First, the transistor 801 will be explained.

電晶體801使用半導體基板810形成,包括半導體基板810上的元件分離層811及形成在半導體基板810中的雜質區域812。雜質區域812具有電晶體801的源極區域或汲極區域的功能,在雜質區域812之間形成有通道區域。另外,電晶體801包括絕緣層813及導電層814。絕緣層813具有電晶體801的閘極絕緣層的功能,導電層814具有電晶體801的閘極電極的功能。注意,也可以在導電層814的側面形成有側壁815。再者,也可以在導電層814上形成具有保護層的功能的絕緣層816、具有平坦化膜的功能的絕緣層817。The transistor 801 is formed using a semiconductor substrate 810 and includes an element separation layer 811 on the semiconductor substrate 810 and an impurity region 812 formed in the semiconductor substrate 810. The impurity region 812 has the function of a source region or a drain region of the transistor 801, and a channel region is formed between the impurity regions 812. In addition, the transistor 801 includes an insulating layer 813 and a conductive layer 814. The insulating layer 813 has the function of the gate insulating layer of the transistor 801, and the conductive layer 814 has the function of the gate electrode of the transistor 801. Note that sidewalls 815 may also be formed on the sides of the conductive layer 814. Furthermore, an insulating layer 816 having a function of a protective layer and an insulating layer 817 having a function of a planarizing film may be formed on the conductive layer 814.

對半導體基板810使用矽基板。作為基板的材料,除了矽之外,也可以使用鍺、矽鍺、碳化矽、砷化鎵、砷化鋁鎵、磷化銦、氮化鎵、有機半導體。A silicon substrate is used for the semiconductor substrate 810. As the substrate material, in addition to silicon, germanium, silicon germanium, silicon carbide, gallium arsenide, aluminum gallium arsenide, indium phosphide, gallium nitride, and organic semiconductors can also be used.

元件分離層811可以利用LOCOS(Local Oxidation of Silicon:矽局部氧化)法或STI(Shallow Trench Isolation:淺溝槽隔離)法等形成。The element isolation layer 811 can be formed by a LOCOS (Local Oxidation of Silicon) method, an STI (Shallow Trench Isolation) method, or the like.

雜質區域812是包含對半導體基板810的材料賦予導電性的雜質元素的區域。當作為半導體基板810使用矽基板時,作為n型的導電性的雜質,例如,可以舉出磷或砷等,作為賦予p型的導電性的雜質,例如,可以舉出硼、鋁、鎵等。可以利用離子植入法、離子摻雜法等對半導體基板810的預定區域添加雜質元素。The impurity region 812 is a region containing an impurity element that imparts conductivity to the material of the semiconductor substrate 810. When a silicon substrate is used as the semiconductor substrate 810, the n-type conductivity impurities include, for example, phosphorus or arsenic, and the p-type conductivity impurities include, for example, boron, aluminum, and gallium. . An impurity element can be added to a predetermined region of the semiconductor substrate 810 using an ion implantation method, an ion doping method, or the like.

絕緣層813可以使用包含氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿及氧化鉭中的一種以上的絕緣層。另外,絕緣層813也可以使用包含上述材料中的一種以上的絕緣層的疊層構成。The insulating layer 813 can include aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon oxynitride, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and oxide One or more insulating layers in tantalum. In addition, the insulating layer 813 may also be constructed using a laminated layer including one or more insulating layers among the above-mentioned materials.

導電層814可以使用鋁、鈦、鉻、鈷、鎳、銅、釔、鋯、鉬、銀、錳、鉭及鎢等的導電膜。另外,也可以使用上述材料的合金或上述材料的導電氮化物。此外,也可以使用選自上述材料、上述材料的合金及上述材料的導電氮化物中的多種材料的疊層。As the conductive layer 814, a conductive film of aluminum, titanium, chromium, cobalt, nickel, copper, yttrium, zirconium, molybdenum, silver, manganese, tantalum, and tungsten can be used. In addition, alloys of the above-mentioned materials or conductive nitrides of the above-mentioned materials may also be used. In addition, a stack of multiple materials selected from the above-mentioned materials, alloys of the above-mentioned materials, and conductive nitrides of the above-mentioned materials may also be used.

絕緣層816可以使用包含氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿及氧化鉭中的一種以上的絕緣層。另外,絕緣層816也可以使用包含上述材料中的一種以上的絕緣層的疊層構成。The insulating layer 816 can be used including magnesium oxide, silicon oxide, silicon oxynitride, silicon oxynitride, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and tantalum oxide. More than one insulating layer. In addition, the insulating layer 816 may also be constructed using a laminated layer including one or more insulating layers among the above-mentioned materials.

絕緣層817可以使用包含丙烯酸樹脂、環氧樹脂、苯并環丁烯樹脂,聚醯亞胺、聚醯胺等有機材料的絕緣層。另外,絕緣層817也可以使用包含上述材料的絕緣層的疊層構成。此外,絕緣層817也可以使用與絕緣層816同樣的材料。As the insulating layer 817, an insulating layer containing organic materials such as acrylic resin, epoxy resin, benzocyclobutene resin, polyimide, and polyamide can be used. In addition, the insulating layer 817 may also be constructed using a laminate of insulating layers containing the above-mentioned materials. In addition, the insulating layer 817 can also use the same material as the insulating layer 816.

注意,雜質區域812可以採用藉由導電層818與佈線819連接的結構。Note that the impurity region 812 may adopt a structure in which the conductive layer 818 is connected to the wiring 819.

[電晶體802] 接著,說明電晶體802。電晶體802是OS電晶體。 [Transistor 802] Next, the transistor 802 will be described. Transistor 802 is an OS transistor.

電晶體802包括絕緣層822上的氧化物半導體層824、氧化物半導體層824上的導電層825、導電層825上的絕緣層826、絕緣層826上的導電層827。導電層825具有電晶體802的源極電極或汲極電極的功能。絕緣層826具有電晶體802的閘極絕緣層的功能。導電層827具有電晶體802的閘極電極的功能。再者,也可以在導電層827上形成具有保護層的功能的絕緣層828及具有平坦化膜的功能的絕緣層829。The transistor 802 includes an oxide semiconductor layer 824 on the insulating layer 822, a conductive layer 825 on the oxide semiconductor layer 824, an insulating layer 826 on the conductive layer 825, and a conductive layer 827 on the insulating layer 826. The conductive layer 825 has the function of the source electrode or the drain electrode of the transistor 802. The insulating layer 826 functions as a gate insulating layer of the transistor 802. The conductive layer 827 has the function of the gate electrode of the transistor 802. Furthermore, an insulating layer 828 having a function of a protective layer and an insulating layer 829 having a function of a planarizing film may be formed on the conductive layer 827.

另外,也可以在絕緣層822下形成導電層821。導電層821具有電晶體802的第二閘極電極(背閘極電極)的功能。在形成導電層821時,可以在佈線819上形成絕緣層820並在絕緣層820上形成導電層821。另外,也可以將佈線819的一部分用作電晶體802的背閘極電極。例如,可以將包括背閘極電極的OS電晶體用於圖8A至圖8D中的電晶體102至104等。In addition, a conductive layer 821 may be formed under the insulating layer 822. The conductive layer 821 has the function of the second gate electrode (back gate electrode) of the transistor 802. When forming the conductive layer 821, an insulating layer 820 may be formed on the wiring 819 and a conductive layer 821 may be formed on the insulating layer 820. In addition, a part of the wiring 819 may be used as the back gate electrode of the transistor 802. For example, an OS transistor including a back gate electrode can be used for the transistors 102 to 104 in FIGS. 8A to 8D and so on.

如電晶體802,當某電晶體T包括其間夾有半導體膜的一對閘極時,也可以對其中一個閘極供應信號A,並對另一個閘極供應固定電位Vb。For example, the transistor 802, when a certain transistor T includes a pair of gate electrodes with a semiconductor film therebetween, a signal A can be supplied to one of the gate electrodes, and a fixed potential Vb can be supplied to the other gate electrode.

信號A例如為用來控制導通狀態/非導通狀態的信號。信號A也可以為具有電位V1或者電位V2(V1>V2)的兩種電位的數位信號。例如,可以將電位V1設定為高電源電位且將電位V2設定為低電源電位。信號A也可以為類比信號。The signal A is, for example, a signal used to control the conduction state/non-conduction state. The signal A may also be a digital signal having two potentials, the potential V1 or the potential V2 (V1>V2). For example, the potential V1 may be set to a high power supply potential and the potential V2 may be set to a low power supply potential. Signal A can also be an analog signal.

固定電位Vb例如為用來控制電晶體T的臨界電壓VthA的電位。固定電位Vb可以為電位V1或者電位V2。此時,不需要另行設置用來生成固定電位Vb的電位產生電路,所以是較佳的。固定電位Vb也可以為與電位V1或者電位V2不同的電位。藉由降低固定電位Vb,有時可以提高臨界電壓VthA。其結果是,有時可以降低閘極與源極之間的電壓Vgs為0V時的汲極電流,而可以降低包括電晶體T的電路的洩漏電流。例如,可以使固定電位Vb低於低電源電位。藉由提高固定電位Vb,有時可以降低臨界電壓VthA。其結果是,有時可以提高閘極與源極之間的電壓Vgs為VDD時的汲極電流,而可以提高包括電晶體T的電路的工作速度。例如,可以使固定電位Vb高於低電源電位。The fixed potential Vb is, for example, a potential used to control the threshold voltage VthA of the transistor T. The fixed potential Vb may be the potential V1 or the potential V2. At this time, there is no need to separately provide a potential generating circuit for generating the fixed potential Vb, so it is preferable. The fixed potential Vb may be a potential different from the potential V1 or the potential V2. By lowering the fixed potential Vb, the threshold voltage VthA can sometimes be increased. As a result, the drain current when the voltage Vgs between the gate and the source is 0V can be reduced, and the leakage current of the circuit including the transistor T can be reduced. For example, the fixed potential Vb can be made lower than the low power supply potential. By increasing the fixed potential Vb, the threshold voltage VthA can sometimes be lowered. As a result, the drain current when the voltage Vgs between the gate and the source is VDD can sometimes be increased, and the operating speed of the circuit including the transistor T can be increased. For example, the fixed potential Vb can be made higher than the low power supply potential.

另外,也可以對電晶體T的一個閘極供應信號A,並對另一個閘極供應信號B。信號B例如為用來控制電晶體T的導通狀態/非導通狀態的信號。信號B也可以為具有電位V3或者電位V4(V3>V4)的兩種電位的數位信號。例如,可以將電位V3設定為高電源電位且將電位V4設定為低電源電位。信號B也可以為類比信號。In addition, the signal A may be supplied to one gate of the transistor T and the signal B may be supplied to the other gate. The signal B is, for example, a signal used to control the conduction state/non-conduction state of the transistor T. The signal B may also be a digital signal having two potentials: the potential V3 or the potential V4 (V3>V4). For example, the potential V3 can be set to a high power supply potential and the potential V4 can be set to a low power supply potential. Signal B can also be an analog signal.

在信號A與信號B都是數位信號的情況下,信號B也可以為與信號A具有相同數位值的信號。此時,有時可以增加電晶體T的通態電流,而可以提高包括電晶體T的電路的工作速度。此時,信號A的電位V1可以與信號B的電位V3不同。另外,信號A的電位V2可以與信號B的電位V4不同。例如,當對應於被輸入信號B的背閘極的閘極絕緣膜的厚度大於對應於被輸入信號A的閘極的閘極絕緣膜時,可以使信號B的電位振幅(V3-V4)大於信號A的電位振幅(V1-V2)。由此,有時可以使信號A及信號B對電晶體T的導通狀態或非導通狀態造成的影響大致相同。In the case where both the signal A and the signal B are digital signals, the signal B may also be a signal having the same digital value as the signal A. At this time, sometimes the on-state current of the transistor T can be increased, and the operating speed of the circuit including the transistor T can be increased. At this time, the potential V1 of the signal A may be different from the potential V3 of the signal B. In addition, the potential V2 of the signal A may be different from the potential V4 of the signal B. For example, when the thickness of the gate insulating film corresponding to the back gate of the input signal B is greater than the gate insulating film corresponding to the gate of the input signal A, the potential amplitude (V3-V4) of the signal B can be made larger than The potential amplitude of signal A (V1-V2). As a result, the effects of the signal A and the signal B on the conduction state or the non-conduction state of the transistor T can be made approximately the same in some cases.

在信號A與信號B都是數位信號的情況下,信號B也可以為與信號A具有不同數位值的信號。此時,有時可以分別利用信號A及信號B控制電晶體T,而可以實現更高的功能。例如,當電晶體T為n通道電晶體時,在僅在信號A為電位V1且信號B為電位V3時該電晶體處於導通狀態的情況下或者在僅在信號A為電位V2且信號B為電位V4時該電晶體處於非導通狀態的情況下,有時可以由一個電晶體實現NAND電路或NOR電路等的功能。另外,信號B也可以為用來控制臨界電壓VthA的信號。例如,信號B也可以在包括電晶體T的電路工作期間與在該電路不工作期間具有不同電位。信號B也可以根據電路的工作模式具有不同電位。此時,信號B有可能沒有信號A那麼頻繁地切換電位。In the case where both the signal A and the signal B are digital signals, the signal B may also be a signal having a different digital value from the signal A. At this time, sometimes signal A and signal B can be used to control transistor T, and higher functions can be achieved. For example, when the transistor T is an n-channel transistor, the transistor is in the conducting state only when the signal A is at the potential V1 and the signal B is at the potential V3, or only when the signal A is at the potential V2 and the signal B is at When the transistor is in a non-conducting state at the potential V4, sometimes a single transistor can realize the functions of a NAND circuit or a NOR circuit. In addition, the signal B may also be a signal used to control the threshold voltage VthA. For example, the signal B may also have a different potential during the operation of the circuit including the transistor T and during the non-operation of the circuit. The signal B can also have different potentials according to the working mode of the circuit. At this time, the signal B may not switch the potential as frequently as the signal A.

在信號A與信號B都是類比信號的情況下,信號B也可以為與信號A具有相同電位的類比信號、用常數乘以信號A的電位而得的類比信號、或者將常數加到信號A的電位或從信號A的電位減去常數而得的類比信號等。此時,有時可以藉由增加電晶體T的通態電流,而提高包括電晶體T的電路的工作速度。信號B也可以為與信號A不同的類比信號。此時,有時可以分別利用信號A及信號B控制電晶體T,而可以實現更高的功能。When both signal A and signal B are analog signals, signal B can also be an analog signal with the same potential as signal A, an analog signal obtained by multiplying the potential of signal A by a constant, or adding a constant to signal A The potential of the signal A or the analog signal obtained by subtracting a constant from the potential of the signal A. At this time, sometimes by increasing the on-state current of the transistor T, the operating speed of the circuit including the transistor T can be increased. Signal B can also be an analog signal different from signal A. At this time, sometimes signal A and signal B can be used to control transistor T, and higher functions can be achieved.

也可以使信號A為數位信號且使信號B為類比信號。也可以使信號A為類比信號且使信號B為數位信號。It is also possible to make signal A a digital signal and make signal B an analog signal. It is also possible to make signal A an analog signal and make signal B a digital signal.

此外,也可以對電晶體T的一個閘極供應固定電位Va,並對另一個閘極供應固定電位Vb。當對電晶體T的兩個閘極供應固定電位時,有時可以將電晶體T用作與電阻元件同等的元件。例如,當電晶體T為n通道電晶體時,藉由提高(降低)固定電位Va或固定電位Vb,有時可以降低(提高)電晶體T的實效電阻。藉由提高(降低)固定電位Va及固定電位Vb的兩者,有時可以獲得比只具有一個閘極的電晶體低(高)的實效電阻。In addition, it is also possible to supply a fixed potential Va to one gate of the transistor T and a fixed potential Vb to the other gate. When a fixed potential is supplied to the two gates of the transistor T, the transistor T can sometimes be used as an element equivalent to the resistance element. For example, when the transistor T is an n-channel transistor, by increasing (decreasing) the fixed potential Va or the fixed potential Vb, the effective resistance of the transistor T can sometimes be reduced (increased). By increasing (decreasing) both the fixed potential Va and the fixed potential Vb, it is sometimes possible to obtain a lower (higher) effective resistance than a transistor with only one gate.

絕緣層822可以使用包含氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿及氧化鉭中的一種以上的絕緣層。另外,絕緣層822也可以使用包含上述材料中的一種以上的絕緣層的疊層構成。注意,絕緣層822較佳為具有能夠對氧化物半導體層824供應氧的功能。這是因為,即使氧化物半導體層824中包括氧缺陷,也藉由從絕緣層供應的氧來填補氧缺陷。作為用來供應氧的處理,例如有熱處理等。The insulating layer 822 can be used including magnesium oxide, silicon oxide, silicon oxynitride, silicon oxynitride, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and tantalum oxide. More than one insulating layer. In addition, the insulating layer 822 may also be constructed using a laminated layer including one or more insulating layers among the above-mentioned materials. Note that the insulating layer 822 preferably has a function of being able to supply oxygen to the oxide semiconductor layer 824. This is because even if oxygen vacancies are included in the oxide semiconductor layer 824, the oxygen vacancies are filled by oxygen supplied from the insulating layer. As the treatment for supplying oxygen, for example, there is heat treatment and the like.

氧化物半導體層824可以使用氧化物半導體層。作為氧化物半導體,可以使用氧化銦、氧化錫、氧化鎵、氧化鋅、In-Zn氧化物、Sn-Zn氧化物、Al-Zn氧化物、Zn-Mg氧化物、Sn-Mg氧化物、In-Mg氧化物、In-Ga氧化物、In-Ga-Zn氧化物、In-Al-Zn氧化物、In-Sn-Zn氧化物、Sn-Ga-Zn氧化物、Al-Ga-Zn氧化物、Sn-Al-Zn氧化物、In-Hf-Zn氧化物、In-La-Zn氧化物、In-Ce-Zn氧化物、In-Pr-Zn氧化物、In-Nd-Zn氧化物、In-Sm-Zn氧化物、In-Eu-Zn氧化物、In-Gd-Zn氧化物、In-Tb-Zn氧化物、In-Dy-Zn氧化物、In-Ho-Zn氧化物、In-Er-Zn氧化物、In-Tm-Zn氧化物、In-Yb-Zn氧化物、In-Lu-Zn氧化物、In-Sn-Ga-Zn氧化物、In-Hf-Ga-Zn氧化物、In-Al-Ga-Zn氧化物、In-Sn-Al-Zn氧化物、In-Sn-Hf-Zn氧化物、In-Hf-Al-Zn氧化物。尤其較佳In-Ga-Zn氧化物。As the oxide semiconductor layer 824, an oxide semiconductor layer can be used. As the oxide semiconductor, indium oxide, tin oxide, gallium oxide, zinc oxide, In-Zn oxide, Sn-Zn oxide, Al-Zn oxide, Zn-Mg oxide, Sn-Mg oxide, In -Mg oxide, In-Ga oxide, In-Ga-Zn oxide, In-Al-Zn oxide, In-Sn-Zn oxide, Sn-Ga-Zn oxide, Al-Ga-Zn oxide , Sn-Al-Zn oxide, In-Hf-Zn oxide, In-La-Zn oxide, In-Ce-Zn oxide, In-Pr-Zn oxide, In-Nd-Zn oxide, In -Sm-Zn oxide, In-Eu-Zn oxide, In-Gd-Zn oxide, In-Tb-Zn oxide, In-Dy-Zn oxide, In-Ho-Zn oxide, In-Er -Zn oxide, In-Tm-Zn oxide, In-Yb-Zn oxide, In-Lu-Zn oxide, In-Sn-Ga-Zn oxide, In-Hf-Ga-Zn oxide, In -Al-Ga-Zn oxide, In-Sn-Al-Zn oxide, In-Sn-Hf-Zn oxide, In-Hf-Al-Zn oxide. In-Ga-Zn oxide is particularly preferred.

在此,In-Ga-Zn氧化物是指作為主要成分包含In、Ga和Zn的氧化物。注意,In、Ga及Zn以外的金屬元素有時作為雜質被包含。將由In-Ga-Zn氧化物構成的膜也稱為IGZO膜。Here, In-Ga-Zn oxide refers to an oxide containing In, Ga, and Zn as main components. Note that metal elements other than In, Ga, and Zn are sometimes included as impurities. The film composed of In-Ga-Zn oxide is also referred to as an IGZO film.

導電層825可以使用鋁、鈦、鉻、鈷、鎳、銅、釔、鋯、鉬、銀、錳、鉭及鎢等的導電膜。另外,也可以使用上述材料的合金或上述材料的導電氮化物。此外,也可以使用選自上述材料、上述材料的合金及上述材料的導電氮化物中的多種材料的疊層。典型的是,尤其較佳為使用容易與氧鍵合的鈦或具有高熔點而允許後面的製程的溫度較高的鎢。此外,也可以使用低電阻的銅或銅-錳等合金與上述材料的疊層。導電層825使用容易與氧鍵合的材料,在導電層825與氧化物半導體層824接觸時,氧化物半導體層824中形成包括氧缺陷的區域。包含於膜中的微量的氫擴散到該氧缺陷中而使該區域明顯地n型化。該n型化的該區域可以被用作電晶體的源極區域或汲極區域。As the conductive layer 825, a conductive film of aluminum, titanium, chromium, cobalt, nickel, copper, yttrium, zirconium, molybdenum, silver, manganese, tantalum, and tungsten can be used. In addition, alloys of the above-mentioned materials or conductive nitrides of the above-mentioned materials may also be used. In addition, a stack of multiple materials selected from the above-mentioned materials, alloys of the above-mentioned materials, and conductive nitrides of the above-mentioned materials may also be used. Typically, it is particularly preferable to use titanium which is easily bonded to oxygen or tungsten which has a high melting point and allows a higher temperature in the subsequent process. In addition, a laminate of low-resistance copper or copper-manganese alloys and the above-mentioned materials can also be used. The conductive layer 825 uses a material that easily bonds with oxygen. When the conductive layer 825 and the oxide semiconductor layer 824 are in contact, a region including oxygen vacancies is formed in the oxide semiconductor layer 824. A small amount of hydrogen contained in the film diffuses into the oxygen defect, and the region becomes significantly n-type. The n-typed region can be used as a source region or a drain region of the transistor.

絕緣層826可以使用包含氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿及氧化鉭中的一種以上的絕緣層。另外,絕緣層826也可以使用包含上述材料中的一種以上的絕緣層的疊層構成。The insulating layer 826 may include aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon oxynitride, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and oxide One or more insulating layers in tantalum. In addition, the insulating layer 826 may also be constructed using a laminated layer including one or more insulating layers among the above-mentioned materials.

導電層827可以使用鋁、鈦、鉻、鈷、鎳、銅、釔、鋯、鉬、銀、錳、鉭及鎢等的導電膜。另外,也可以使用上述材料的合金或上述材料的導電氮化物。此外,也可以使用選自上述材料、上述材料的合金及上述材料的導電氮化物中的多種材料的疊層。As the conductive layer 827, a conductive film of aluminum, titanium, chromium, cobalt, nickel, copper, yttrium, zirconium, molybdenum, silver, manganese, tantalum, and tungsten can be used. In addition, alloys of the above-mentioned materials or conductive nitrides of the above-mentioned materials may also be used. In addition, a stack of multiple materials selected from the above-mentioned materials, alloys of the above-mentioned materials, and conductive nitrides of the above-mentioned materials may also be used.

絕緣層828可以使用包含氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿及氧化鉭中的一種以上的絕緣膜。另外,絕緣層828也可以使用包含上述材料中的一種以上的絕緣層的疊層構成。The insulating layer 828 can be used including magnesium oxide, silicon oxide, silicon oxynitride, silicon oxynitride, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and tantalum oxide. More than one type of insulating film. In addition, the insulating layer 828 may also be constructed using a laminated layer including one or more insulating layers among the above-mentioned materials.

絕緣層829可以使用包含丙烯酸樹脂、環氧樹脂、苯并環丁烯樹脂,聚醯亞胺、聚醯胺等有機材料。另外,絕緣層817也可以使用包含上述材料的絕緣層的疊層構成。此外,絕緣層829也可以使用與絕緣層828同樣的材料。The insulating layer 829 may use organic materials including acrylic resin, epoxy resin, benzocyclobutene resin, polyimide, and polyamide. In addition, the insulating layer 817 may also be constructed using a laminate of insulating layers containing the above-mentioned materials. In addition, the insulating layer 829 can also use the same material as the insulating layer 828.

[光電二極體803] 接著,說明光電二極體803。 [Photodiode 803] Next, the photodiode 803 will be described.

光電二極體803以依次層疊有n型半導體層832、i型半導體層833及p型半導體層834的方式形成。i型半導體層833較佳為使用非晶矽。另外,n型半導體層832及p型半導體層834可以使用包含賦予導電性的雜質的非晶矽或微晶矽。因為使用非晶矽的光電二極體的可見光的波長範圍的感度高,所以是較佳的。當p型半導體層834為受光面時,可以提高光電二極體的輸出電流。The photodiode 803 is formed in such a manner that an n-type semiconductor layer 832, an i-type semiconductor layer 833, and a p-type semiconductor layer 834 are sequentially stacked. The i-type semiconductor layer 833 preferably uses amorphous silicon. In addition, the n-type semiconductor layer 832 and the p-type semiconductor layer 834 can use amorphous silicon or microcrystalline silicon containing conductivity-imparting impurities. Since the photodiode using amorphous silicon has a high sensitivity in the wavelength range of visible light, it is preferable. When the p-type semiconductor layer 834 is the light-receiving surface, the output current of the photodiode can be increased.

具有陰極的功能的n型半導體層832藉由導電層830與電晶體802的導電層825連接。另外,具有陽極的功能的p型半導體層834與佈線837連接。另外,光電二極體803也可以採用藉由佈線831或導電層836與其他佈線連接的結構。再者,還可以形成具有保護膜的功能的絕緣層835。The n-type semiconductor layer 832 that functions as a cathode is connected to the conductive layer 825 of the transistor 802 through the conductive layer 830. In addition, the p-type semiconductor layer 834 that functions as an anode is connected to the wiring 837. In addition, the photodiode 803 may also adopt a structure in which the photodiode 803 is connected to other wiring via the wiring 831 or the conductive layer 836. Furthermore, an insulating layer 835 having the function of a protective film can also be formed.

如圖11A所示,藉由將電晶體802層疊在電晶體801上,並將光電二極體803層疊在電晶體802上,可以縮小半導體裝置的面積。另外,藉由採用電晶體801、電晶體802及光電二極體803彼此重疊的結構,可以進一步縮小半導體裝置的面積。As shown in FIG. 11A, by laminating the transistor 802 on the transistor 801, and laminating the photodiode 803 on the transistor 802, the area of the semiconductor device can be reduced. In addition, by adopting a structure in which the transistor 801, the transistor 802, and the photodiode 803 overlap each other, the area of the semiconductor device can be further reduced.

注意,雖然在圖11A中示出了雜質區域812與導電層825連接的結構,亦即,電晶體801的源極和汲極中的一個與電晶體802的源極和汲極中的一個連接的結構,但是電晶體801與電晶體802的連接關係不侷限於此。例如,如圖11B所示,也可以採用導電層814與導電層825連接的結構,亦即,電晶體801的閘極與電晶體802的源極和汲極中的一個連接的結構。Note that although the structure in which the impurity region 812 is connected to the conductive layer 825 is shown in FIG. 11A, that is, one of the source and drain of the transistor 801 is connected to one of the source and drain of the transistor 802 However, the connection relationship between the transistor 801 and the transistor 802 is not limited to this. For example, as shown in FIG. 11B, a structure in which the conductive layer 814 is connected to the conductive layer 825 may also be adopted, that is, a structure in which the gate of the transistor 801 is connected to one of the source and drain of the transistor 802.

另外,雖然在此未圖示,但是也可以採用電晶體801的閘極與電晶體802的閘極連接的結構或電晶體801的源極和汲極中的一個與電晶體802的閘極連接的結構。In addition, although not shown here, a structure in which the gate of the transistor 801 is connected to the gate of the transistor 802 or one of the source and drain of the transistor 801 is connected to the gate of the transistor 802 may also be adopted. Structure.

另外,如圖11C所示,也可以採用省略OS電晶體而光電二極體803與電晶體801連接的結構。例如,在作為圖2中的所有電晶體使用單晶電晶體的情況等下,可以採用圖11C所示的結構。如此,藉由省略OS電晶體,可以削減半導體裝置的製程。In addition, as shown in FIG. 11C, a structure in which the OS transistor is omitted and the photodiode 803 and the transistor 801 are connected can also be adopted. For example, in the case of using single crystal transistors as all the transistors in FIG. 2, the structure shown in FIG. 11C can be adopted. In this way, by omitting the OS transistor, the manufacturing process of the semiconductor device can be reduced.

<結構例子2> 雖然在圖11A至圖11C中示出了光電二極體803層疊在電晶體802上的結構,但是光電二極體803的位置並不侷限於此。例如,如圖12A所示,也可以將光電二極體803設置在電晶體801與電晶體802之間。 <Structure example 2> Although the structure in which the photodiode 803 is laminated on the transistor 802 is shown in FIGS. 11A to 11C, the position of the photodiode 803 is not limited to this. For example, as shown in FIG. 12A, the photodiode 803 may also be disposed between the transistor 801 and the transistor 802.

另外,如圖12B所示,也可以將光電二極體803設置在與電晶體802同一層中。在該情況下,可以將導電層825用作電晶體802的源極電極或汲極電極及光電二極體803的電極。In addition, as shown in FIG. 12B, the photodiode 803 can also be arranged in the same layer as the transistor 802. In this case, the conductive layer 825 can be used as the source electrode or the drain electrode of the transistor 802 and the electrode of the photodiode 803.

另外,如圖12C所示,也可以將光電二極體803設置在與電晶體801同一層中。在該情況下,可以使用同一材料同時形成具有電晶體801的閘極電極的功能的導電層814及具有光電二極體803的電極的功能的佈線831。In addition, as shown in FIG. 12C, the photodiode 803 can also be provided in the same layer as the transistor 801. In this case, the conductive layer 814 having the function of the gate electrode of the transistor 801 and the wiring 831 having the function of the electrode of the photodiode 803 can be formed at the same time using the same material.

<結構例子3> 也可以使用半導體基板810形成多個電晶體。圖13A示出使用半導體基板810形成電晶體804及電晶體805的例子。 <Structure example 3> The semiconductor substrate 810 may also be used to form a plurality of transistors. FIG. 13A shows an example in which a semiconductor substrate 810 is used to form a transistor 804 and a transistor 805.

電晶體804包括雜質區域842、具有閘極絕緣膜的功能的絕緣層843、具有閘極電極的功能的導電層844。電晶體805包括雜質區域852、具有閘極絕緣膜的功能的絕緣層853、具有閘極電極的功能的導電層854。因為電晶體804及電晶體805的結構及材料與電晶體801相同,所以省略詳細的說明。The transistor 804 includes an impurity region 842, an insulating layer 843 having a function of a gate insulating film, and a conductive layer 844 having a function of a gate electrode. The transistor 805 includes an impurity region 852, an insulating layer 853 having a function of a gate insulating film, and a conductive layer 854 having a function of a gate electrode. Since the structures and materials of the transistor 804 and the transistor 805 are the same as those of the transistor 801, detailed descriptions are omitted.

在此,雜質區域842包含賦予與雜質區域852的導電型相反的導電型的雜質元素。也就是說,電晶體804具有與電晶體805相反的極性。另外,如圖13A所示,雜質區域842可以採用與雜質區域852連接的結構。由此,可以構成使用電晶體804及電晶體805的CMOS(Complementary Metal Oxide Semiconductor)反相器。Here, the impurity region 842 contains an impurity element imparting a conductivity type opposite to that of the impurity region 852. That is, the transistor 804 has a polarity opposite to that of the transistor 805. In addition, as shown in FIG. 13A, the impurity region 842 may adopt a structure connected to the impurity region 852. In this way, a CMOS (Complementary Metal Oxide Semiconductor) inverter using the transistor 804 and the transistor 805 can be constructed.

藉由使用圖13A的結構,可以由使用半導體基板810的電晶體形成圖1、圖10中的電路30、電路40、電路50、電路60及資料處理部320,並可以在這些電路上層疊由OS電晶體形成的像素部20。由此,可以實現半導體裝置的面積的縮小。By using the structure of FIG. 13A, the circuit 30, the circuit 40, the circuit 50, the circuit 60, and the data processing unit 320 in FIGS. 1 and 10 can be formed from a transistor using a semiconductor substrate 810, and these circuits can be laminated The pixel portion 20 formed by the OS transistor. As a result, the area of the semiconductor device can be reduced.

另外,如圖13B所示,在將作為OS電晶體的電晶體807層疊在使用半導體基板810形成的電晶體806上的結構中,可以採用雜質區域861與導電層862連接的結構,亦即,電晶體806的源極和汲極中的一個與電晶體807的源極和汲極中的一個連接的結構。由此,可以構成包括使用半導體基板810形成的電晶體及OS電晶體的CMOS反相器。In addition, as shown in FIG. 13B, in a structure in which a transistor 807 as an OS transistor is laminated on a transistor 806 formed using a semiconductor substrate 810, a structure in which the impurity region 861 is connected to the conductive layer 862 can be adopted, that is, A structure in which one of the source and drain of the transistor 806 is connected to one of the source and the drain of the transistor 807. In this way, a CMOS inverter including a transistor formed using the semiconductor substrate 810 and an OS transistor can be constructed.

使用半導體基板810形成的電晶體806與OS電晶體相比容易製造p通道型電晶體。因此,較佳的是,電晶體806為p通道型電晶體且電晶體807為n通道型電晶體。由此,可以以不在半導體基板810上形成極性不同的兩種電晶體的方式形成CMOS反相器,而可以削減半導體裝置的製程。The transistor 806 formed using the semiconductor substrate 810 is easier to manufacture a p-channel type transistor than an OS transistor. Therefore, preferably, the transistor 806 is a p-channel type transistor and the transistor 807 is an n-channel type transistor. Thus, the CMOS inverter can be formed without forming two types of transistors with different polarities on the semiconductor substrate 810, and the manufacturing process of the semiconductor device can be reduced.

本實施方式可以與其他實施方式的記載適當地組合。This embodiment mode can be combined with descriptions of other embodiments as appropriate.

實施方式5 在本實施方式中,說明附加有濾色片等的成像裝置的結構例子。 Embodiment 5 In this embodiment, a configuration example of an imaging device to which a color filter or the like is added will be described.

圖14A是對圖11A至13B等所示的結構附加濾色片等的方式的一個例子的剖面圖,示出對應於3個像素的電路(像素21a、像素21b、像素21c)所占的區域。在形成於層1100中的光電二極體803上形成有絕緣層1500。絕緣層1500可以使用對可見光的透光性高的氧化矽膜等。此外,也可以作為鈍化膜採用層疊氮化矽膜的結構。另外,也可以作為抗反射膜採用層疊氧化鉿等的介電膜的結構。14A is a cross-sectional view of an example of a method of adding color filters and the like to the structure shown in FIGS. 11A to 13B, etc., showing the area occupied by circuits corresponding to three pixels (pixel 21a, pixel 21b, pixel 21c) . An insulating layer 1500 is formed on the photodiode 803 formed in the layer 1100. As the insulating layer 1500, a silicon oxide film with high transparency to visible light or the like can be used. In addition, a structure in which silicon nitride films are laminated may also be adopted as the passivation film. In addition, a structure in which a dielectric film such as hafnium oxide is laminated may be adopted as the anti-reflection film.

在絕緣層1500上形成有遮光層1510。遮光層1510具有防止透過濾色片的光混色的功能。作為遮光層1510,可以採用鋁及鎢等的金屬層、或層疊該金屬層與被用作抗反射膜的介電膜的結構。A light shielding layer 1510 is formed on the insulating layer 1500. The light shielding layer 1510 has a function of preventing color mixing of light passing through the color filter. As the light shielding layer 1510, a metal layer such as aluminum and tungsten, or a structure in which this metal layer and a dielectric film used as an anti-reflection film are laminated can be used.

在絕緣層1500及遮光層1510上形成有用作平坦化膜的有機樹脂層1520,以分別與像素21a、像素21b及像素21c配成對的方式在像素21a、像素21b及像素21c上形成有濾色片1530a、1530b及1530c。藉由對濾色片1530a、濾色片1530b及濾色片1530c分別分配R(紅色)、G(綠色)及B(藍色)等,可以獲得彩色影像。An organic resin layer 1520 used as a planarizing film is formed on the insulating layer 1500 and the light-shielding layer 1510, and filters are formed on the pixels 21a, 21b, and 21c in pairs with the pixels 21a, 21b, and 21c, respectively. Color chips 1530a, 1530b and 1530c. By assigning R (red), G (green), and B (blue) to the color filter 1530a, the color filter 1530b, and the color filter 1530c, respectively, a color image can be obtained.

在濾色片1530a、1530b及1530c上設置有微透鏡陣列1540,穿過一個透鏡的光經過位於該透鏡下的濾色片照射到光電二極體。The color filters 1530a, 1530b, and 1530c are provided with a microlens array 1540, and the light passing through a lens is irradiated to the photodiode through the color filter located under the lens.

另外,以與層1400接觸的方式設置有支撐基板1600。支撐基板1600可以使用矽基板等半導體基板、玻璃基板、金屬基板、陶瓷基板等硬質基板。此外,也可以在層1400與支撐基板1600之間形成有用作黏合層的無機絕緣層或有機樹脂層。In addition, a supporting substrate 1600 is provided in contact with the layer 1400. As the supporting substrate 1600, a semiconductor substrate such as a silicon substrate, a glass substrate, a metal substrate, and a rigid substrate such as a ceramic substrate can be used. In addition, an inorganic insulating layer or an organic resin layer serving as an adhesive layer may be formed between the layer 1400 and the supporting substrate 1600.

在上述成像裝置的結構中,也可以使用光學轉換層1550代替濾色片1530a、濾色片1530b及濾色片1530c(參照圖14B)。藉由使用光學轉換層1550,可以實現能夠得到各種波長範圍的影像的成像裝置。In the structure of the imaging device described above, the optical conversion layer 1550 may be used instead of the color filter 1530a, the color filter 1530b, and the color filter 1530c (see FIG. 14B). By using the optical conversion layer 1550, an imaging device that can obtain images in various wavelength ranges can be realized.

例如,藉由將阻擋可見光線的波長以下的光的濾光片用作光學轉換層1550,可以形成紅外線成像裝置。另外,藉由將阻擋紅外線的波長以下的光的濾光片用作光學轉換層1550,可以形成遠紅外線成像裝置。另外,藉由將阻擋可見光線的波長以上的光的濾光片用作光學轉換層1550,可以形成紫外線成像裝置。For example, by using a filter that blocks light below the wavelength of visible light as the optical conversion layer 1550, an infrared imaging device can be formed. In addition, by using a filter that blocks light below the wavelength of infrared rays as the optical conversion layer 1550, a far-infrared imaging device can be formed. In addition, an ultraviolet imaging device can be formed by using a filter that blocks light above the wavelength of visible light as the optical conversion layer 1550.

若將閃爍體用於光學轉換層1550,則可以實現獲得將輻射的強弱視覺化的影像的成像裝置,諸如醫療用X射線成像裝置等。當透過拍攝物件的X射線等輻射入射到閃爍體時,由於被稱為光致發光的現象而該輻射被轉換成可見光線或紫外光線等的光(螢光)。藉由由光電二極體803檢測該光來獲得影像資料。If a scintillator is used for the optical conversion layer 1550, an imaging device that obtains an image that visualizes the intensity of radiation, such as an X-ray imaging device for medical use, can be realized. When radiation such as X-rays passing through a photographed object is incident on the scintillator, the radiation is converted into light (fluorescence) such as visible light or ultraviolet light due to a phenomenon called photoluminescence. The image data is obtained by detecting the light by the photodiode 803.

閃爍體由如下物質或材料構成:當被X射線或伽瑪射線等輻射照射時,吸收其能量而發出可見光或紫外光的物質或包含該物質的材料,已知例如有Gd 2O 2S:Tb、Gd 2O 2S:Pr、Gd 2O 2S:Eu、BaFCl:Eu、NaI、CsI、CaF 2、BaF 2、CeF 3、LiF、LiI、ZnO等材料和將上述材料分散在樹脂或陶瓷中的材料。 The scintillator is composed of the following substances or materials: when it is irradiated by X-rays or gamma rays, a substance that absorbs its energy and emits visible light or ultraviolet light or a material containing the substance, such as Gd 2 O 2 S: Tb, Gd 2 O 2 S: Pr, Gd 2 O 2 S: Eu, BaFCl: Eu, NaI, CsI, CaF 2 , BaF 2 , CeF 3 , LiF, LiI, ZnO and other materials and disperse the above materials in resin or Materials in ceramics.

本實施方式可以與其他實施方式的記載適當地組合。This embodiment mode can be combined with descriptions of other embodiments as appropriate.

實施方式6 在本實施方式中,說明半導體裝置10的其他結構例子。 Embodiment 6 In this embodiment, another configuration example of the semiconductor device 10 will be described.

圖15A示出像素21的結構例子。在圖15A中的像素21中,作為圖2等所示的像素21中的光電轉換元件101使用包括硒類半導體的元件900。FIG. 15A shows an example of the structure of the pixel 21. In the pixel 21 in FIG. 15A, an element 900 including a selenium-based semiconductor is used as the photoelectric conversion element 101 in the pixel 21 shown in FIG. 2 and the like.

包括硒類半導體的元件是能夠利用藉由施加電壓而可以從一個被照射的光子取出多個電子的雪崩倍增效應進行光電轉換的元件。因此,在包括硒類半導體的像素21中,能夠將相對於入射的光量的電子的增幅,而可以獲得靈敏度高的感測器。在作為光電轉換層使用硒類材料的光電轉換元件中,較佳為施加相對來說較高的電壓(例如,10V以上)以使突崩潰現象容易產生。此時,作為電晶體102至104,較佳為使用汲極耐壓高的OS電晶體。An element including a selenium-based semiconductor is an element capable of photoelectric conversion using the avalanche multiplication effect in which a plurality of electrons can be extracted from one irradiated photon by applying a voltage. Therefore, in the pixel 21 including the selenium-based semiconductor, electrons relative to the amount of incident light can be amplified, and a sensor with high sensitivity can be obtained. In a photoelectric conversion element using a selenium-based material as a photoelectric conversion layer, it is preferable to apply a relatively high voltage (for example, 10 V or more) so that the sudden collapse phenomenon is likely to occur. At this time, as the transistors 102 to 104, it is preferable to use an OS transistor with a high drain withstand voltage.

作為硒類半導體,可以使用非晶結構的硒類半導體或結晶結構的硒類半導體。可以藉由在形成非晶結構的硒類半導體之後進行熱處理來獲得結晶結構的硒類半導體。藉由使結晶結構的硒類半導體的晶粒的粒徑小於像素間距,可以降低各像素的特性的偏差,而使所獲得的影像品質均勻,所以是較佳的。As the selenium-based semiconductor, a selenium-based semiconductor with an amorphous structure or a selenium-based semiconductor with a crystalline structure can be used. A selenium-based semiconductor with a crystalline structure can be obtained by performing a heat treatment after forming a selenium-based semiconductor with an amorphous structure. By making the grain size of the crystal structure of the selenium-based semiconductor smaller than the pixel pitch, the deviation of the characteristics of each pixel can be reduced, and the obtained image quality can be uniform, which is preferable.

硒類半導體,尤其是結晶結構的硒類半導體具有如下特性:在較寬的波長範圍中具有光吸収係數。因此,可以將結晶結構的硒類半導體用作可見光、紫外光、X射線、伽瑪射線等較寬的波長範圍的成像元件,並可以將結晶結構的硒類半導體用作所謂的直接轉換型元件,該直接轉換型元件可以將射X射線及伽瑪射線等短波長範圍的光直接轉換成電荷。Selenium-based semiconductors, especially selenium-based semiconductors with a crystalline structure, have the following characteristics: they have a light absorption coefficient in a wide wavelength range. Therefore, the selenium-based semiconductor with a crystal structure can be used as an imaging element in a wide wavelength range such as visible light, ultraviolet light, X-ray, and gamma rays, and the selenium-based semiconductor with a crystal structure can be used as a so-called direct conversion element. , The direct conversion element can directly convert light in the short wavelength range such as X-rays and gamma rays into electric charges.

圖15B示出元件900的結構例子。元件900包括基板901、電極902、光電轉換層903、電極904。電極904與電晶體102的源極和汲極中的一個連接。注意,雖然在此示出元件900包括多個光電轉換層903及多個電極904且多個電極904的每一個與電晶體102連接的例子,但是對光電轉換層903及電極904的個數沒有特別的限制,可以是單個或多個。FIG. 15B shows an example of the structure of the element 900. As shown in FIG. The element 900 includes a substrate 901, an electrode 902, a photoelectric conversion layer 903, and an electrode 904. The electrode 904 is connected to one of the source and drain of the transistor 102. Note that although an example in which the element 900 includes a plurality of photoelectric conversion layers 903 and a plurality of electrodes 904 and each of the plurality of electrodes 904 is connected to the transistor 102 is shown here, the number of photoelectric conversion layers 903 and electrodes 904 is not Special restrictions can be single or multiple.

光經由基板901及電極902向光電轉換層903入射。因此,基板901及電極902較佳為具有透光性。作為基板901,可以使用玻璃基板。另外,作為電極902,可以使用銦錫氧化物(ITO:Indium Tin Oxide)。Light enters the photoelectric conversion layer 903 through the substrate 901 and the electrode 902. Therefore, the substrate 901 and the electrode 902 are preferably transparent. As the substrate 901, a glass substrate can be used. In addition, as the electrode 902, indium tin oxide (ITO: Indium Tin Oxide) can be used.

光電轉換層903包含硒。作為光電轉換層903,可以使用各種硒類半導體。The photoelectric conversion layer 903 contains selenium. As the photoelectric conversion layer 903, various selenium-based semiconductors can be used.

光電轉換層903及層疊在光電轉換層903上的電極902可以以不對各像素21的形狀進行加工的方式使用。因此,可以削減用來對形狀進行加工的製程,而可以實現製造成本的降低及製造良率的提高。The photoelectric conversion layer 903 and the electrode 902 laminated on the photoelectric conversion layer 903 can be used without processing the shape of each pixel 21. Therefore, the manufacturing process for processing the shape can be reduced, and the manufacturing cost can be reduced and the manufacturing yield can be improved.

作為硒類半導體的例子,可以舉出黃銅礦類半導體。明確而言,可以使用CuIn 1-xGa xSe 2(x為0以上且1以下)(簡稱為CIGS)。CIGS可以利用蒸鍍法、濺射法等形成。 As an example of selenium-based semiconductors, chalcopyrite-based semiconductors can be cited. Specifically, CuIn 1-x Ga x Se 2 (x is 0 or more and 1 or less) (referred to as CIGS for short) can be used. CIGS can be formed by vapor deposition, sputtering, or the like.

當作為硒類半導體使用黃銅礦類半導體時,藉由施加幾V以上(5V至20V左右)的電壓,可使雪崩倍增發生。因此,藉由對光電轉換層903施加電壓,可以提高因光的照射而產生的信號電荷的移動的線性。藉由使光電轉換層903的膜厚為1µm以下,可以減小施加的電壓。此外,藉由將OS電晶體用於電晶體102至104,即使在上述電壓被施加的情況下也可以使像素21正常工作。When chalcopyrite-based semiconductors are used as selenium-based semiconductors, avalanche multiplication can occur by applying a voltage of several volts or more (about 5V to 20V). Therefore, by applying a voltage to the photoelectric conversion layer 903, it is possible to improve the linearity of the movement of signal charges due to light irradiation. By making the film thickness of the photoelectric conversion layer 903 1 µm or less, the applied voltage can be reduced. In addition, by using OS transistors for the transistors 102 to 104, the pixel 21 can be operated normally even when the above-mentioned voltage is applied.

注意,當光電轉換層903的膜厚較薄時,在施加電壓時會有暗電流流過,但是藉由在作為上述黃銅礦類半導體的CIGS中設置防止暗電流流過的層(電洞注入能障層),可以抑制暗電流流過。圖15C示出在圖15B中設置有電洞注入能障層905的結構。Note that when the film thickness of the photoelectric conversion layer 903 is thin, dark current will flow when a voltage is applied. However, by providing the above-mentioned chalcopyrite-based semiconductor CIGS with a layer (hole Injecting into the barrier layer) can suppress the flow of dark current. FIG. 15C shows a structure in which the hole injection energy barrier layer 905 is provided in FIG. 15B.

作為電洞注入能障層,使用氧化物半導體即可,例如可以使用氧化鎵。電洞注入能障層的膜厚較佳小於光電轉換層903的膜厚。As the hole injection barrier layer, an oxide semiconductor may be used. For example, gallium oxide may be used. The film thickness of the hole injection barrier layer is preferably smaller than the film thickness of the photoelectric conversion layer 903.

如上所述,藉由使用硒類半導體形成感測器,可以實現靈敏度高的感測器。因此,藉由與本發明的一個實施方式組合,可以獲得精度更高的成像資料。As described above, by forming the sensor using selenium-based semiconductors, a sensor with high sensitivity can be realized. Therefore, by combining with an embodiment of the present invention, imaging data with higher accuracy can be obtained.

本實施方式可以與其他實施方式的記載適當地組合。This embodiment mode can be combined with descriptions of other embodiments as appropriate.

實施方式7 在本實施方式中,說明在上述實施方式中可以使用的電晶體的結構。 Embodiment 7 In this embodiment mode, the structure of a transistor that can be used in the above embodiment mode is described.

<電晶體的結構例子1> 圖16A示出在上述實施方式中可以使用的電晶體400的結構。在絕緣層401上隔著絕緣層402和絕緣層403形成有電晶體400。注意,雖然在此例示出電晶體400是頂閘極結構的電晶體的情況,但是電晶體400也可以是底閘極結構的電晶體。 <Structure example of transistor 1> FIG. 16A shows the structure of a transistor 400 that can be used in the above-described embodiment. A transistor 400 is formed on the insulating layer 401 with the insulating layer 402 and the insulating layer 403 interposed therebetween. Note that although the case where the transistor 400 is a transistor with a top gate structure is shown in this example, the transistor 400 may also be a transistor with a bottom gate structure.

另外,作為電晶體400,也可以使用反交錯型電晶體或正交錯型電晶體。此外,也可以使用由兩個閘極電極夾住形成有通道的半導體層的結構的雙閘極(dual gate)型電晶體。另外,不侷限於單閘極結構的電晶體,還可以使用具有多個通道形成區域的多閘極型電晶體,例如雙閘極(double gate)型電晶體。In addition, as the transistor 400, a reverse staggered transistor or a forward staggered transistor may also be used. In addition, a dual gate type transistor having a structure in which a semiconductor layer in which a channel is formed is sandwiched by two gate electrodes may also be used. In addition, it is not limited to a transistor with a single gate structure, and a multi-gate transistor with multiple channel formation regions, such as a double gate transistor, can also be used.

另外,作為電晶體400,也可以使用平面型、FIN(鰭)型、TRI-GATE(三閘極)型等結構的電晶體。In addition, as the transistor 400, a planar type, a FIN (fin) type, a TRI-GATE (tri-gate) type, or other structure transistors may also be used.

電晶體400包括:能夠用作閘極電極的電極443;能夠用作源極電極和汲極電極中的一個的電極444;能夠用作源極電極和汲極電極中的另一個的電極445;能夠用作閘極絕緣層的絕緣層411;以及半導體層421。The transistor 400 includes: an electrode 443 that can be used as a gate electrode; an electrode 444 that can be used as one of a source electrode and a drain electrode; an electrode 445 that can be used as the other of a source electrode and a drain electrode; An insulating layer 411 that can be used as a gate insulating layer; and a semiconductor layer 421.

絕緣層402較佳為使用具有防止氧、氫、水、鹼金屬、鹼土金屬等雜質的擴散的功能的絕緣膜形成。作為該絕緣膜,有氧化矽、氧氮化矽、氮化矽、氮氧化矽、氧化鎵、氧化鉿、氧化釔、氧化鋁、氧氮化鋁等。另外,藉由作為該絕緣膜使用氮化矽、氧化鎵、氧化鉿、氧化釔、氧化鋁等,可以抑制從絕緣層401一側擴散的雜質混入到半導體層421。此外,絕緣層402可以藉由濺射法、CVD法、蒸鍍法、熱氧化法等形成。絕緣層402可以使用上述材料的單層或疊層形成。The insulating layer 402 is preferably formed using an insulating film having a function of preventing the diffusion of impurities such as oxygen, hydrogen, water, alkali metals, and alkaline earth metals. As the insulating film, there are silicon oxide, silicon oxynitride, silicon nitride, silicon oxynitride, gallium oxide, hafnium oxide, yttrium oxide, aluminum oxide, aluminum oxynitride, and the like. In addition, by using silicon nitride, gallium oxide, hafnium oxide, yttrium oxide, aluminum oxide, or the like as the insulating film, mixing of impurities diffused from the insulating layer 401 side into the semiconductor layer 421 can be suppressed. In addition, the insulating layer 402 can be formed by a sputtering method, a CVD method, an evaporation method, a thermal oxidation method, or the like. The insulating layer 402 can be formed using a single layer or a stacked layer of the above-mentioned materials.

絕緣層403可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿和氧化鉭等氧化物材料、或者氮化矽、氮氧化矽、氮化鋁、氮氧化鋁等氮化物材料等的單層或多層形成。絕緣層403可以藉由濺射法、CVD法、熱氧化法、塗佈法、印刷法等形成。The insulating layer 403 can use oxide materials such as aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and tantalum oxide, or nitride Single layer or multilayer formation of nitride materials such as silicon, silicon oxynitride, aluminum nitride, and aluminum oxynitride. The insulating layer 403 can be formed by a sputtering method, a CVD method, a thermal oxidation method, a coating method, a printing method, or the like.

在作為半導體層421使用氧化物半導體的情況下,絕緣層402較佳為使用其氧含量超過化學計量組成的絕緣層形成。其氧含量超過化學計量組成的絕緣層由於被加熱而其一部分的氧脫離。其氧含量超過化學計量組成的絕緣層在進行TDS分析時換算為氧原子的氧的脫離量為1.0×10 18atoms/cm 3以上,較佳為3.0×10 20atoms/cm 3以上。注意,上述TDS分析時的層的表面溫度較佳為100℃以上且700℃以下或100℃以上且500℃以下。 When an oxide semiconductor is used as the semiconductor layer 421, the insulating layer 402 is preferably formed using an insulating layer whose oxygen content exceeds the stoichiometric composition. The insulating layer whose oxygen content exceeds the stoichiometric composition is heated and part of the oxygen is detached. An insulating layer whose oxygen content exceeds the stoichiometric composition has an amount of oxygen desorption converted into oxygen atoms during TDS analysis of 1.0×10 18 atoms/cm 3 or more, preferably 3.0×10 20 atoms/cm 3 or more. Note that the surface temperature of the layer in the above-mentioned TDS analysis is preferably 100°C or higher and 700°C or lower, or 100°C or higher and 500°C or lower.

另外,其氧含量超過化學計量組成的絕緣層也可以藉由進行對絕緣層添加氧的處理來形成。添加氧的處理可以利用氧氛圍下的熱處理、離子植入裝置、離子摻雜裝置或電漿處理裝置進行。作為用來添加氧的氣體,可以使用 16O 218O 2等氧氣體、一氧化二氮氣體或臭氧氣體等。注意,在本說明書中,有時將添加氧的處理稱為“氧摻雜處理”。 In addition, an insulating layer whose oxygen content exceeds the stoichiometric composition can also be formed by adding oxygen to the insulating layer. The oxygen addition treatment can be performed by heat treatment in an oxygen atmosphere, an ion implantation device, an ion doping device, or a plasma treatment device. As the gas for adding oxygen, oxygen gas such as 16 O 2 or 18 O 2 , nitrous oxide gas, ozone gas, or the like can be used. Note that in this specification, the treatment of adding oxygen is sometimes referred to as "oxygen doping treatment".

半導體層421可以使用單晶半導體、多晶半導體、微晶半導體、奈米晶半導體、半非晶半導體(Semi Amorphous Semiconductor)、非晶半導體等形成。例如,可以使用非晶矽或微晶鍺等。此外,也可以使用碳化矽、鎵砷、氧化物半導體、氮化物半導體等化合物半導體、有機半導體等。The semiconductor layer 421 may be formed using a single crystal semiconductor, a polycrystalline semiconductor, a microcrystalline semiconductor, a nanocrystalline semiconductor, a semi-amorphous semiconductor (Semi Amorphous Semiconductor), an amorphous semiconductor, or the like. For example, amorphous silicon or microcrystalline germanium can be used. In addition, compound semiconductors such as silicon carbide, gallium arsenic, oxide semiconductors, and nitride semiconductors, organic semiconductors, and the like can also be used.

在本實施方式中,對作為半導體層421使用氧化物半導體的例子進行說明。另外,在本實施方式中,對作為半導體層421採用半導體層421a、半導體層421b及半導體層421c的疊層的情況進行說明。In this embodiment mode, an example in which an oxide semiconductor is used as the semiconductor layer 421 will be described. In addition, in this embodiment mode, a case where a stack of the semiconductor layer 421a, the semiconductor layer 421b, and the semiconductor layer 421c is used as the semiconductor layer 421 will be described.

半導體層421a、半導體層421b及半導體層421c可以使用包含In和Ga中的一個或者兩個的材料形成。典型地,有In-Ga氧化物(包含In和Ga的氧化物)、In-Zn氧化物(包含In和Zn的氧化物)、In-M-Zn氧化物(包含In、元素M和Zn的氧化物。元素M是選自Al、Ti、Ga、Y、Zr、La、Ce、Nd或Hf中的一種以上的元素,並且是與氧的鍵合力比In與氧的鍵合力強的金屬元素)。The semiconductor layer 421a, the semiconductor layer 421b, and the semiconductor layer 421c may be formed using a material containing one or both of In and Ga. Typically, there are In-Ga oxide (containing In and Ga oxide), In-Zn oxide (containing In and Zn oxide), In-M-Zn oxide (containing In, element M and Zn) Oxide. Element M is one or more elements selected from Al, Ti, Ga, Y, Zr, La, Ce, Nd, or Hf, and is a metal element that has a stronger bonding force with oxygen than that between In and oxygen ).

半導體層421a及半導體層421c較佳為使用包含構成半導體層421b的金屬元素中的一種以上的相同的金屬元素的材料形成。藉由使用這種材料,可以使半導體層421a與半導體層421b的介面以及半導體層421c與半導體層421b的介面不容易產生介面能階。由此,不容易發生介面中的載子的散射及俘獲,而可以提高電晶體的場效移動率。另外,還可以減少電晶體的臨界電壓的不均勻。因此,可以實現具有良好的電特性的半導體裝置。The semiconductor layer 421a and the semiconductor layer 421c are preferably formed using a material containing one or more of the same metal elements among the metal elements constituting the semiconductor layer 421b. By using this material, the interface between the semiconductor layer 421a and the semiconductor layer 421b and the interface between the semiconductor layer 421c and the semiconductor layer 421b can not easily generate an interface energy level. As a result, scattering and trapping of carriers in the interface are not prone to occur, and the field effect mobility of the transistor can be improved. In addition, the non-uniformity of the threshold voltage of the transistor can also be reduced. Therefore, a semiconductor device with good electrical characteristics can be realized.

半導體層421a及半導體層421c的厚度為3nm以上且100nm以下,較佳為3nm以上且50nm以下。另外,半導體層421b的厚度為3nm以上且200nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且50nm以下。The thickness of the semiconductor layer 421a and the semiconductor layer 421c is 3 nm or more and 100 nm or less, preferably 3 nm or more and 50 nm or less. In addition, the thickness of the semiconductor layer 421b is 3 nm or more and 200 nm or less, preferably 3 nm or more and 100 nm or less, and more preferably 3 nm or more and 50 nm or less.

另外,在半導體層421b是In-M-Zn氧化物,並且半導體層421a及半導體層421c也是In-M-Zn氧化物的情況下,當將半導體層421a及半導體層421c設定為In:M:Zn=x 1:y 1:z 1[原子數比],並且將半導體層421b設定為In:M:Zn=x 2:y 2:z 2[原子數比]時,以y 1/x 1大於y 2/x 2的方式選擇半導體層421a、半導體層421c及半導體層421b。較佳的是,以y 1/x 1為y 2/x 2的1.5倍以上的方式選擇半導體層421a、半導體層421c及半導體層421b。更佳的是,以y 1/x 1為y 2/x 2的2倍以上的方式選擇半導體層421a、半導體層421c及半導體層421b。進一步較佳的是,以y 1/x 1為y 2/x 2的3倍以上的方式選擇半導體層421a、半導體層421c及半導體層421b。此時,在半導體層421b中,如果y 1為x 1以上就可以使電晶體具有穩定的電特性,所以是較佳的。但是,當y 1為x 1的3倍以上時,電晶體的場效移動率下降,因此y 1較佳小於x 1的3倍。藉由作為半導體層421a及半導體層421c採用上述結構,可以使半導體層421a及半導體層421c成為與半導體層421b相比不容易產生氧缺陷的層。 In addition, when the semiconductor layer 421b is In-M-Zn oxide, and the semiconductor layer 421a and the semiconductor layer 421c are also In-M-Zn oxide, when the semiconductor layer 421a and the semiconductor layer 421c are set to In:M: Zn=x 1 :y 1 :z 1 [atomic ratio], and the semiconductor layer 421b is set to In:M:Zn=x 2 :y 2 :z 2 [atomic ratio], y 1 /x 1 greater than y 2 / x 2 selection mode semiconductor layers 421a, 421c of the semiconductor layer and the semiconductor layer 421b. Preferably, the semiconductor layer 421a, the semiconductor layer 421c, and the semiconductor layer 421b are selected such that y 1 /x 1 is 1.5 times or more of y 2 /x 2. More preferably, the semiconductor layer 421a, the semiconductor layer 421c, and the semiconductor layer 421b are selected such that y 1 /x 1 is more than twice y 2 /x 2. More preferably, the semiconductor layer 421a, the semiconductor layer 421c, and the semiconductor layer 421b are selected in such a way that y 1 /x 1 is three times or more of y 2 /x 2. At this time, in the semiconductor layer 421b, if y 1 is x 1 or more, the transistor can have stable electrical characteristics, which is preferable. However, when y 1 is more than 3 times x 1 , the field-effect mobility of the transistor decreases, so y 1 is preferably less than 3 times x 1. By adopting the above-mentioned structure as the semiconductor layer 421a and the semiconductor layer 421c, the semiconductor layer 421a and the semiconductor layer 421c can be made into layers that are less prone to oxygen defects than the semiconductor layer 421b.

另外,當半導體層421a及半導體層421c是In-M-Zn氧化物時,除了Zn及O之外的In和元素M的含有率較佳為:In低於50atomic%,元素M為50atomic%以上,更佳為:In低於25atomic%,元素M為75atomic%以上。此外,當半導體層421b是In-M-Zn氧化物時,除了Zn及O之外的In和元素M的含有率較佳為:In為25atomic%以上,元素M低於75atomic%,更佳為:In為34atomic%以上,元素M低於66atomic%。In addition, when the semiconductor layer 421a and the semiconductor layer 421c are In-M-Zn oxide, the content of In and the element M other than Zn and O are preferably: In is less than 50 atomic%, and the element M is 50 atomic% or more. , More preferably: In is less than 25atomic%, and element M is more than 75atomic%. In addition, when the semiconductor layer 421b is an In-M-Zn oxide, the content of In and element M other than Zn and O is preferably: In is 25 atomic% or more, and element M is less than 75 atomic%, more preferably : In is 34atomic% or more, and element M is less than 66atomic%.

例如,作為包含In或Ga的半導體層421a及包含In或Ga的半導體層421c,可以採用使用其原子數比為In:Ga:Zn=1:3:2、1:3:4、1:3:6、1:6:4或1:9:6等的靶材形成的In-Ga-Zn氧化物、使用其原子數比為In:Ga=1:9等的靶材形成的In-Ga氧化物、氧化鎵等。另外,作為半導體層421b,可以採用使用其原子數比為In:Ga:Zn=3:1:2、1:1:1、5:5:6或4:2:4.1等的靶材形成的In-Ga-Zn氧化物。此外,半導體層421a及半導體層421b的原子數比都包括上述原子數比的±20%的變動的誤差。For example, as the semiconductor layer 421a containing In or Ga and the semiconductor layer 421c containing In or Ga, the atomic ratios of In:Ga:Zn=1:3:2, 1:3:4, 1:3 can be used. : In-Ga-Zn oxide formed from targets such as 6, 1:6:4 or 1:9:6, and In-Ga formed using targets with an atomic ratio of In:Ga=1:9, etc. Oxide, gallium oxide, etc. In addition, as the semiconductor layer 421b, a target material having an atomic ratio of In:Ga:Zn=3:1:2, 1:1:1, 5:5:6, 4:2:4.1, etc. can be used. In-Ga-Zn oxide. In addition, the atomic number ratios of the semiconductor layer 421a and the semiconductor layer 421b both include an error of ±20% of the above-mentioned atomic number ratio.

為了對使用半導體層421b的電晶體賦予穩定的電特性,較佳為降低半導體層421b中的雜質及氧缺陷而實現高純度本質化,將半導體層421b作為本質或實質上本質的氧化物半導體層。另外,較佳為至少將半導體層421b中的通道形成區域作為本質或實質上本質的半導體層。In order to impart stable electrical characteristics to the transistor using the semiconductor layer 421b, it is preferable to reduce impurities and oxygen defects in the semiconductor layer 421b to achieve high-purity essence, and to use the semiconductor layer 421b as an essential or substantially essential oxide semiconductor layer . In addition, it is preferable to use at least the channel formation region in the semiconductor layer 421b as an essential or substantially essential semiconductor layer.

注意,實質上本質的氧化物半導體層是指氧化物半導體層中的載子密度低於1×10 17/cm 3,低於1×10 15/cm 3或低於1×10 13/cm 3的氧化物半導體層。 Note that the substantially essential oxide semiconductor layer means that the carrier density in the oxide semiconductor layer is lower than 1×10 17 /cm 3 , lower than 1×10 15 /cm 3 or lower than 1×10 13 /cm 3的oxide semiconductor layer.

在此,參照圖16B所示的能帶結構圖對由半導體層421a、半導體層421b及半導體層421c的疊層構成的半導體層421的功能及其效果進行說明。圖16B是圖16A中的A1-A2的點劃線所示的部分的能帶結構圖。圖16B示出電晶體400的通道形成區域的能帶結構。Here, the function and effect of the semiconductor layer 421 composed of a stack of the semiconductor layer 421a, the semiconductor layer 421b, and the semiconductor layer 421c will be described with reference to the energy band structure diagram shown in FIG. 16B. Fig. 16B is an energy band structure diagram of the part indicated by the chain line A1-A2 in Fig. 16A. FIG. 16B shows the energy band structure of the channel formation region of the transistor 400.

在圖16B中,Ec403、Ec421a、Ec421b、Ec421c、Ec411分別示出絕緣層403、半導體層421a、半導體層421b、半導體層421c、絕緣層411的導帶底端的能量。In FIG. 16B, Ec403, Ec421a, Ec421b, Ec421c, and Ec411 show the energy at the bottom end of the conduction band of the insulating layer 403, the semiconductor layer 421a, the semiconductor layer 421b, the semiconductor layer 421c, and the insulating layer 411, respectively.

這裡,真空能階與導帶底的能量之間的能量差(也稱為“電子親和力”)是真空能階與價電子帶上端之間的能量差(也稱為游離電位)減去能隙的值。另外,可以利用光譜橢圓偏光計(HORIBA JOBIN YVON公司製造的UT-300)測量能隙。此外,真空能階與價帶頂端之間的能量差可以利用紫外線光電子能譜(UPS:Ultraviolet Photoelectron Spectroscopy)裝置(PHI公司製造的VersaProbe)來測量。Here, the energy difference between the vacuum level and the energy at the bottom of the conduction band (also called "electron affinity") is the energy difference between the vacuum level and the upper end of the valence band (also called the free potential) minus the energy gap Value. In addition, the energy gap can be measured with a spectral ellipsometer (UT-300 manufactured by HORIBA JOBIN YVON). In addition, the energy difference between the vacuum level and the top of the valence band can be measured using an Ultraviolet Photoelectron Spectroscopy (UPS: Ultraviolet Photoelectron Spectroscopy) device (VersaProbe manufactured by PHI).

使用其原子數比為In:Ga:Zn=1:3:2的靶材形成的In-Ga-Zn氧化物的能隙大約為3.5eV,電子親和力大約為4.5eV。使用其原子數比為In:Ga:Zn=1:3:4的靶材形成的In-Ga-Zn氧化物的能隙大約為3.4eV,電子親和力大約為4.5eV。使用其原子數比為In:Ga:Zn=1:3:6的靶材形成的In-Ga-Zn氧化物的能隙大約為3.3eV,電子親和力大約為4.5eV。使用其原子數比為In:Ga:Zn=1:6:2的靶材形成的In-Ga-Zn氧化物的能隙大約為3.9eV,電子親和力大約為4.3eV。使用其原子數比為In:Ga:Zn=1:6:8的靶材形成的In-Ga-Zn氧化物的能隙大約為3.5eV,電子親和力大約為4.4eV。使用其原子數比為In:Ga:Zn=1:6:10的靶材形成的In-Ga-Zn氧化物的能隙大約為3.5eV,電子親和力大約為4.5eV。使用其原子數比為In:Ga:Zn=1:1:1的靶材形成的In-Ga-Zn氧化物的能隙大約為3.2eV,電子親和力大約為4.7eV。使用其原子數比為In:Ga:Zn=3:1:2的靶材形成的In-Ga-Zn氧化物的能隙大約為2.8eV,電子親和力大約為5.0eV。The energy gap of the In-Ga-Zn oxide formed using the target material whose atomic ratio is In:Ga:Zn=1:3:2 is about 3.5 eV, and the electron affinity is about 4.5 eV. The energy gap of the In-Ga-Zn oxide formed using the target material whose atomic ratio is In:Ga:Zn=1:3:4 is about 3.4 eV, and the electron affinity is about 4.5 eV. The energy gap of the In-Ga-Zn oxide formed using the target material whose atomic ratio is In:Ga:Zn=1:3:6 is about 3.3 eV, and the electron affinity is about 4.5 eV. The energy gap of the In-Ga-Zn oxide formed using the target material whose atomic ratio is In:Ga:Zn=1:6:2 is about 3.9eV, and the electron affinity is about 4.3eV. The energy gap of the In-Ga-Zn oxide formed using the target material whose atomic ratio is In:Ga:Zn=1:6:8 is about 3.5 eV, and the electron affinity is about 4.4 eV. The energy gap of the In-Ga-Zn oxide formed using the target material whose atomic ratio is In:Ga:Zn=1:6:10 is about 3.5 eV, and the electron affinity is about 4.5 eV. The energy gap of the In-Ga-Zn oxide formed using the target material whose atomic ratio is In:Ga:Zn=1:1:1 is about 3.2eV, and the electron affinity is about 4.7eV. The energy gap of the In-Ga-Zn oxide formed using the target material whose atomic ratio is In:Ga:Zn=3:1:2 is about 2.8eV, and the electron affinity is about 5.0eV.

因為絕緣層403和絕緣層411是絕緣物,所以Ec403和Ec411比Ec421a、Ec421b及Ec421c更接近於真空能階(電子親和力小)。Since the insulating layer 403 and the insulating layer 411 are insulators, Ec403 and Ec411 are closer to the vacuum level (smaller electron affinity) than Ec421a, Ec421b, and Ec421c.

另外,Ec421a比Ec421b更接近於真空能階。明確而言,Ec421a較佳比Ec421b更接近於真空能階0.05eV以上、0.07eV以上、0.1eV以上或0.15eV以上且2eV以下、1eV以下、0.5eV以下或0.4eV以下。In addition, Ec421a is closer to the vacuum level than Ec421b. Specifically, Ec421a is preferably closer to the vacuum energy level of 0.05 eV or more, 0.07 eV or more, 0.1 eV or more, or 0.15 eV or more and 2 eV or less, 1 eV or less, 0.5 eV or less, or 0.4 eV or less than Ec421b.

此外,Ec421c比Ec421b更接近於真空能階。明確而言,Ec421c較佳比Ec421b更接近於真空能階0.05eV以上、0.07eV以上、0.1eV以上或0.15eV以上且2eV以下、1eV以下、0.5eV以下或0.4eV以下。In addition, Ec421c is closer to the vacuum level than Ec421b. Specifically, Ec421c is preferably closer to the vacuum energy level of 0.05 eV or more, 0.07 eV or more, 0.1 eV or more, or 0.15 eV or more and 2 eV or less, 1 eV or less, 0.5 eV or less, or 0.4 eV or less than Ec421b.

另外,因為在半導體層421a與半導體層421b的介面附近以及半導體層421b與半導體層421c的介面附近形成混合區域,所以導帶底端的能量連續地變化。就是說,在這些介面不存在能階或者幾乎不存在能階。In addition, since a mixed region is formed near the interface between the semiconductor layer 421a and the semiconductor layer 421b and near the interface between the semiconductor layer 421b and the semiconductor layer 421c, the energy at the bottom of the conduction band continuously changes. In other words, there are no energy levels or almost no energy levels in these interfaces.

因此,在具有該能帶結構的疊層結構中,電子主要在半導體層421b中移動。由此,即使在半導體層421a與絕緣層401的介面或者半導體層421c與絕緣層411的介面存在有能階,該能階也幾乎不會影響到電子的移動。另外,因為在半導體層421a與半導體層421b的介面以及半導體層421c與半導體層421b的介面不存在能階或者幾乎不存在能階,所以在該區域中不會阻礙電子的移動。因此,具有上述氧化物半導體的疊層結構的電晶體400可以實現高場效移動率。Therefore, in the laminated structure having this energy band structure, electrons mainly move in the semiconductor layer 421b. Thus, even if there is an energy level at the interface between the semiconductor layer 421a and the insulating layer 401 or the interface between the semiconductor layer 421c and the insulating layer 411, the energy level hardly affects the movement of electrons. In addition, because there is no energy level or almost no energy level at the interface between the semiconductor layer 421a and the semiconductor layer 421b and the interface between the semiconductor layer 421c and the semiconductor layer 421b, the movement of electrons is not hindered in this region. Therefore, the transistor 400 having the above-described stacked structure of the oxide semiconductor can realize a high field-efficiency mobility.

此外,如圖16B所示,雖然在半導體層421a與絕緣層403的介面以及半導體層421c與絕緣層411的介面附近有可能形成起因於雜質或缺陷的陷阱能階490,但是由於半導體層421a及半導體層421c的存在,可以使半導體層421b遠離該陷阱能階。In addition, as shown in FIG. 16B, although trap levels 490 due to impurities or defects may be formed near the interface between the semiconductor layer 421a and the insulating layer 403 and the interface between the semiconductor layer 421c and the insulating layer 411, due to the semiconductor layer 421a and The existence of the semiconductor layer 421c can keep the semiconductor layer 421b away from the trap energy level.

尤其是,在本實施方式所例示的電晶體400中,半導體層421b的頂面和側面接觸於半導體層421c,半導體層421b的底面接觸於半導體層421a。如此,藉由採用半導體層421a和半導體層421c覆蓋半導體層421b的結構,可以進一步減少上述陷阱能階的影響。In particular, in the transistor 400 exemplified in this embodiment, the top and side surfaces of the semiconductor layer 421b are in contact with the semiconductor layer 421c, and the bottom surface of the semiconductor layer 421b is in contact with the semiconductor layer 421a. In this way, by adopting a structure in which the semiconductor layer 421a and the semiconductor layer 421c cover the semiconductor layer 421b, the influence of the trap energy level can be further reduced.

注意,當Ec421a或Ec421c與Ec421b的能量差小時,有時半導體層421b的電子越過該能量差到達陷阱能階。在電子被陷阱能階俘獲時,在絕緣層的介面產生固定負電荷,導致電晶體的臨界電壓漂移到正方向。Note that when the energy difference between Ec421a or Ec421c and Ec421b is small, electrons in the semiconductor layer 421b sometimes exceed the energy difference to reach the trap level. When electrons are trapped by the trap energy level, a fixed negative charge is generated at the interface of the insulating layer, which causes the threshold voltage of the transistor to shift to the positive direction.

因此,藉由將Ec421a與Ec421b的能量差以及Ec421c與Ec421b的能量差都設定為0.1eV以上,較佳為0.15eV以上,電晶體的臨界電壓的變動得到抑制,從而可以使電晶體的電特性良好,所以是較佳的。Therefore, by setting the energy difference between Ec421a and Ec421b and the energy difference between Ec421c and Ec421b to be 0.1 eV or more, preferably 0.15 eV or more, the variation of the threshold voltage of the transistor is suppressed, and the electrical characteristics of the transistor can be improved. Good, so it is better.

另外,半導體層421a及半導體層421c的能帶間隙較佳寬於半導體層421b的能帶間隙。In addition, the energy band gap of the semiconductor layer 421a and the semiconductor layer 421c is preferably wider than the energy band gap of the semiconductor layer 421b.

根據本發明的一個實施方式,可以實現電特性的不均勻少的電晶體。因此,可以實現電特性的不均勻少的半導體裝置。根據本發明的一個實施方式,可以提供一種可靠性良好的電晶體。因此,可以實現可靠性良好的半導體裝置。According to an embodiment of the present invention, a transistor with less unevenness in electrical characteristics can be realized. Therefore, a semiconductor device with less unevenness in electrical characteristics can be realized. According to an embodiment of the present invention, a reliable transistor can be provided. Therefore, a reliable semiconductor device can be realized.

另外,因為氧化物半導體的能帶間隙為2eV以上,所以可以使將氧化物半導體用於形成通道的半導體層的電晶體的關態電流變得極小。明確而言,可以將室溫下的每通道寬度為1µm的關態電流設定為低於1×10 -20A,較佳為低於1×10 -22A,更佳為低於1×10 -24A。就是說,可以將導通截止比設定為20位數以上且150位數以下。 In addition, since the band gap of the oxide semiconductor is 2 eV or more, the off-state current of the transistor using the oxide semiconductor for the semiconductor layer forming the channel can be extremely small. Specifically, the off-state current with a width of 1 µm per channel at room temperature can be set to less than 1×10 -20 A, preferably less than 1×10 -22 A, and more preferably less than 1×10 -24 A. In other words, the on-off ratio can be set to 20 digits or more and 150 digits or less.

根據本發明的一個實施方式,可以實現耗電量少的電晶體。因此,可以實現耗電量少的成像裝置和半導體裝置。根據本發明的一個實施方式,可以實現受光靈敏度高的成像裝置和半導體裝置。根據本發明的一個實施方式,可以實現動態範圍大的成像裝置和半導體裝置。According to an embodiment of the present invention, a transistor with low power consumption can be realized. Therefore, an imaging device and a semiconductor device with low power consumption can be realized. According to an embodiment of the present invention, an imaging device and a semiconductor device with high light-receiving sensitivity can be realized. According to an embodiment of the present invention, an imaging device and a semiconductor device with a large dynamic range can be realized.

另外,因為氧化物半導體具有寬的能帶間隙,所以可以使用包含氧化物半導體的半導體裝置的環境的溫度範圍大。根據本發明的一個實施方式,可以實現工作溫度範圍大的成像裝置和半導體裝置。In addition, since the oxide semiconductor has a wide energy band gap, the temperature range of the environment in which the semiconductor device including the oxide semiconductor can be used is wide. According to an embodiment of the present invention, an imaging device and a semiconductor device with a wide operating temperature range can be realized.

另外,上述三層結構是一個例子。例如,也可以採用不形成半導體層421a和半導體層421c中的一個的兩層結構。In addition, the above-mentioned three-layer structure is an example. For example, a two-layer structure in which one of the semiconductor layer 421a and the semiconductor layer 421c is not formed may also be adopted.

作為能夠應用於半導體層421a、半導體層421b及半導體層421c的氧化物半導體的一個例子,可以舉出包含銦的氧化物。氧化物例如在包含銦的情況下具有高載子移動率(電子移動率)。另外,氧化物半導體較佳為包含元素M。元素M較佳為鋁、鎵、釔或錫等。作為可以應用於元素M的其他元素,有硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢等。注意,作為元素M有時也可以組合多個上述元素。例如,元素M與氧之間的鍵能高。元素M例如增大氧化物的能隙。此外,氧化物半導體較佳為包含鋅。氧化物在包含鋅時例如容易被晶化。As an example of an oxide semiconductor applicable to the semiconductor layer 421a, the semiconductor layer 421b, and the semiconductor layer 421c, an oxide containing indium can be cited. The oxide has a high carrier mobility (electron mobility) when it contains indium, for example. In addition, the oxide semiconductor preferably contains the element M. The element M is preferably aluminum, gallium, yttrium, tin, or the like. As other elements that can be applied to the element M, there are boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and the like. Note that as the element M, a plurality of the above-mentioned elements may be combined in some cases. For example, the bond energy between element M and oxygen is high. The element M increases the energy gap of the oxide, for example. In addition, the oxide semiconductor preferably contains zinc. When the oxide contains zinc, for example, it is easy to be crystallized.

注意,氧化物半導體不侷限於包含銦的氧化物。氧化物半導體例如也可以為鋅錫氧化物、鎵錫氧化物、鎵氧化物。Note that the oxide semiconductor is not limited to oxides containing indium. The oxide semiconductor may be, for example, zinc tin oxide, gallium tin oxide, or gallium oxide.

氧化物半導體使用能隙寬的氧化物。氧化物半導體的能隙例如為2.5eV以上且4.2eV以下,較佳為2.8eV以上且3.8eV以下,更佳為3eV以上且3.5eV以下。The oxide semiconductor uses an oxide with a wide energy gap. The energy gap of the oxide semiconductor is, for example, 2.5 eV or more and 4.2 eV or less, preferably 2.8 eV or more and 3.8 eV or less, and more preferably 3 eV or more and 3.5 eV or less.

說明氧化物半導體中的雜質的影響。為了使電晶體的電特性穩定,降低氧化物半導體中的雜質濃度而實現低載子密度化及高度純化是有效的。氧化物半導體的載子密度小於1×10 17個/cm 3、小於1×10 15個/cm 3或小於1×10 13個/cm 3。較佳的是,氧化物半導體的載子密度小於8×10 11/cm 3、小於1×10 11/cm 3或小於1×10 10/cm 3,且1×10 - 9/cm 3以上。為了降低氧化物半導體中的雜質濃度,較佳為還降低附近的膜中的雜質濃度。 The influence of impurities in the oxide semiconductor is explained. In order to stabilize the electrical characteristics of the transistor, it is effective to reduce the impurity concentration in the oxide semiconductor to achieve low carrier density and high purification. The carrier density of the oxide semiconductor is less than 1×10 17 cells/cm 3 , less than 1×10 15 cells/cm 3 or less than 1×10 13 cells/cm 3 . Preferably, the carrier density of an oxide semiconductor is less than 8 × 10 11 / cm 3, less than 1 × 10 11 / cm 3 or less than 1 × 10 10 / cm 3, and 1 × 10 - 9 / cm 3 or more. In order to reduce the impurity concentration in the oxide semiconductor, it is preferable to also reduce the impurity concentration in the nearby film.

例如,氧化物半導體中的矽有時成為載子陷阱或載子發生源。因此,將氧化物半導體中的利用二次離子質譜(SIMS:Secondary Ion Mass Spectrometry)分析測定出的矽濃度設定為小於1×10 19atoms/cm 3、較佳小於5×10 18atoms/cm 3、更佳小於2×10 18atoms/cm 3For example, silicon in an oxide semiconductor sometimes becomes a carrier trap or a source of carrier generation. Therefore, the silicon concentration measured by secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectrometry) analysis in an oxide semiconductor is set to be less than 1×10 19 atoms/cm 3 , preferably less than 5×10 18 atoms/cm 3 , And more preferably less than 2×10 18 atoms/cm 3 .

另外,當氧化物半導體含有氫時,載子密度有可能增大。將利用SIMS測定出的氧化物半導體中的氫濃度設定為2×10 20atoms/cm 3以下,較佳為5×10 19atoms/cm 3以下,更佳為1×10 19atoms/cm 3以下,進一步較佳為5×10 18atoms/cm 3以下。另外,當氧化物半導體中含有氮時,載子密度有可能增大。將利用SIMS測定出的氧化物半導體中的氮濃度設定為小於5×10 19atoms/cm 3,較佳為5×10 18atoms/cm 3以下,更佳為1×10 18atoms/cm 3以下,進一步較佳為5×10 17atoms/cm 3以下。 In addition, when the oxide semiconductor contains hydrogen, the carrier density may increase. The hydrogen concentration in the oxide semiconductor measured by SIMS is set to 2×10 20 atoms/cm 3 or less, preferably 5×10 19 atoms/cm 3 or less, more preferably 1×10 19 atoms/cm 3 or less , More preferably 5×10 18 atoms/cm 3 or less. In addition, when nitrogen is contained in the oxide semiconductor, the carrier density may increase. The nitrogen concentration in the oxide semiconductor measured by SIMS is set to be less than 5×10 19 atoms/cm 3 , preferably 5×10 18 atoms/cm 3 or less, more preferably 1×10 18 atoms/cm 3 or less , More preferably 5×10 17 atoms/cm 3 or less.

另外,為了降低氧化物半導體中的氫濃度,較佳為降低與半導體層421接觸的絕緣層403及絕緣層411中的氫濃度。將利用SIMS測定出的絕緣層403及絕緣層411中的氫濃度設定為2×10 20atoms/cm 3以下,較佳為5×10 19atoms/cm 3以下,更佳為1×10 19atoms/cm 3以下,進一步較佳為5×10 18atoms/cm 3以下。另外,為了降低氧化物半導體中的氮濃度,較佳為降低絕緣層403及絕緣層411中的氮濃度。將利用SIMS測定出的絕緣層403及絕緣層411中的氮濃度設定為小於5×10 19atoms/cm 3,較佳為5×10 18atoms/cm 3以下,更佳為1×10 18atoms/cm 3以下,進一步較佳為5×10 17atoms/cm 3以下。 In addition, in order to reduce the hydrogen concentration in the oxide semiconductor, it is preferable to reduce the hydrogen concentration in the insulating layer 403 and the insulating layer 411 that are in contact with the semiconductor layer 421. The hydrogen concentration in the insulating layer 403 and the insulating layer 411 measured by SIMS is set to 2×10 20 atoms/cm 3 or less, preferably 5×10 19 atoms/cm 3 or less, more preferably 1×10 19 atoms /cm 3 or less, more preferably 5×10 18 atoms/cm 3 or less. In addition, in order to reduce the nitrogen concentration in the oxide semiconductor, it is preferable to reduce the nitrogen concentration in the insulating layer 403 and the insulating layer 411. The nitrogen concentration in the insulating layer 403 and the insulating layer 411 measured by SIMS is set to be less than 5×10 19 atoms/cm 3 , preferably 5×10 18 atoms/cm 3 or less, more preferably 1×10 18 atoms /cm 3 or less, more preferably 5×10 17 atoms/cm 3 or less.

在本實施方式中,首先,在絕緣層403上形成半導體層421a,在半導體層421a上形成半導體層421b。In this embodiment, first, the semiconductor layer 421a is formed on the insulating layer 403, and the semiconductor layer 421b is formed on the semiconductor layer 421a.

另外,當形成氧化物半導體層時,較佳為利用濺射法。作為濺射法,可以利用RF濺射法、DC濺射法、AC濺射法等。藉由利用DC濺射法或AC濺射法,可以形成比RF濺射法均勻性良好的膜。In addition, when forming the oxide semiconductor layer, it is preferable to use a sputtering method. As the sputtering method, an RF sputtering method, a DC sputtering method, an AC sputtering method, etc. can be used. By using the DC sputtering method or the AC sputtering method, a film with better uniformity than the RF sputtering method can be formed.

在本實施方式中,作為半導體層421a,藉由濺射法且使用In-Ga-Zn氧化物靶材(In:Ga:Zn=1:3:2)形成厚度為20nm的In-Ga-Zn氧化物。另外,能夠應用於半導體層421a的構成元素及組成不侷限於此。In the present embodiment, as the semiconductor layer 421a, an In-Ga-Zn oxide target (In:Ga:Zn=1:3:2) having a thickness of 20 nm is formed by a sputtering method. Oxide. In addition, the constituent elements and compositions that can be applied to the semiconductor layer 421a are not limited to these.

此外,也可以在形成半導體層421a之後進行氧摻雜處理。In addition, oxygen doping treatment may be performed after the semiconductor layer 421a is formed.

接著,在半導體層421a上形成半導體層421b。在本實施方式中,作為半導體層421b,藉由濺射法且使用In-Ga-Zn氧化物靶材(In:Ga:Zn=1:1:1)形成厚度為30nm的In-Ga-Zn氧化物。另外,能夠應用於半導體層421b的構成元素及組成不侷限於此。Next, a semiconductor layer 421b is formed on the semiconductor layer 421a. In this embodiment, as the semiconductor layer 421b, an In-Ga-Zn oxide target (In:Ga:Zn=1:1:1) is used to form a thickness of 30nm by a sputtering method. Oxide. In addition, the constituent elements and compositions that can be applied to the semiconductor layer 421b are not limited to these.

此外,也可以在形成半導體層421b之後進行氧摻雜處理。In addition, oxygen doping treatment may be performed after the semiconductor layer 421b is formed.

接著,為了進一步減少半導體層421a及半導體層421b所包含的水分或氫等雜質以使半導體層421a及半導體層421b高度純化,也可以進行加熱處理。Next, in order to further reduce impurities such as moisture or hydrogen contained in the semiconductor layer 421a and the semiconductor layer 421b so as to highly purify the semiconductor layer 421a and the semiconductor layer 421b, heat treatment may be performed.

例如,在減壓氛圍、氮或稀有氣體等惰性氣體氛圍、氧化性氛圍或超乾燥空氣(使用CRDS(cavity ring-down laser spectroscopy:雷射腔內共振衰減法)方式的露點計進行測量時的水分量是20ppm(露點換算為-55℃)以下,較佳的是1ppm以下,更佳的是10ppb以下的空氣)氛圍下對半導體層421a及半導體層421b進行加熱處理。另外,氧化性氛圍是指包含10ppm以上的氧化氣體諸如氧、臭氧或氮化氧等的氛圍。此外,惰性氛圍是指上述氧化氣體小於10ppm,還填充有氮或稀有氣體的氛圍。For example, when measuring in a reduced pressure atmosphere, inert gas atmosphere such as nitrogen or rare gas, oxidizing atmosphere, or ultra-dry air (using CRDS (cavity ring-down laser spectroscopy: laser cavity resonance attenuation method) method) The semiconductor layer 421a and the semiconductor layer 421b are heated in an atmosphere with a moisture content of 20 ppm (dew point conversion to -55°C) or less, preferably 1 ppm or less, and more preferably 10 ppb or less air. In addition, the oxidizing atmosphere refers to an atmosphere containing 10 ppm or more of oxidizing gas such as oxygen, ozone, or oxygen nitride. In addition, the inert atmosphere refers to an atmosphere in which the above-mentioned oxidizing gas is less than 10 ppm and is also filled with nitrogen or rare gas.

另外,藉由進行加熱處理,在釋放雜質的同時使絕緣層403所包含的氧擴散到半導體層421a及半導體層421b,由此可以減少半導體層421a及半導體層421b中的氧缺陷。此外,也可以在惰性氣體氛圍下進行加熱處理之後,在包含10ppm以上、1%以上或10%以上的氧化氣體氛圍下進行加熱處理。此外,只要在形成半導體層421b之後,就在任何時候都可以進行加熱處理。例如,也可以在選擇性地蝕刻半導體層421b之後進行加熱處理。In addition, by performing heat treatment, oxygen contained in the insulating layer 403 is diffused into the semiconductor layer 421a and the semiconductor layer 421b while releasing impurities, thereby reducing oxygen defects in the semiconductor layer 421a and the semiconductor layer 421b. In addition, after the heat treatment is performed under an inert gas atmosphere, the heat treatment may be performed under an oxidizing gas atmosphere containing 10 ppm or more, 1% or more, or 10% or more. In addition, as long as the semiconductor layer 421b is formed, the heat treatment can be performed at any time. For example, the heat treatment may be performed after the semiconductor layer 421b is selectively etched.

加熱處理以250℃以上且650℃以下的溫度,較佳為以300℃以上且500℃以下的溫度進行即可。處理時間為24小時以內。The heat treatment may be performed at a temperature of 250°C or higher and 650°C or lower, preferably at a temperature of 300°C or higher and 500°C or lower. The processing time is within 24 hours.

加熱處理可以使用電爐、RTA裝置等。藉由使用RTA裝置,可只在短時間內在基板的應變點以上的溫度下進行加熱處理。由此,可以縮短加熱處理時間。An electric furnace, RTA device, etc. can be used for the heat treatment. By using the RTA device, heat treatment can be performed only at a temperature above the strain point of the substrate in a short time. As a result, the heat treatment time can be shortened.

接著,在半導體層421b上形成光阻遮罩,使用該光阻遮罩對半導體層421a及半導體層421b的一部分選擇性地進行蝕刻。此時,有時絕緣層403的一部分被蝕刻而在絕緣層403中形成凸部。Next, a photoresist mask is formed on the semiconductor layer 421b, and the semiconductor layer 421a and a part of the semiconductor layer 421b are selectively etched using the photoresist mask. At this time, a part of the insulating layer 403 may be etched to form protrusions in the insulating layer 403.

作為半導體層421a及半導體層421b的蝕刻,可以使用乾蝕刻法和濕蝕刻法中的一者或兩者。在蝕刻結束之後,去除光阻遮罩。As the etching of the semiconductor layer 421a and the semiconductor layer 421b, one or both of a dry etching method and a wet etching method can be used. After the etching is completed, the photoresist mask is removed.

另外,電晶體400在半導體層421b上以接觸於半導體層421b的一部分的方式包括電極444及電極445。電極444及電極445可以使用鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、錳、銀、鉭或鎢等金屬或者以這些元素為主要成分的合金的單層結構或疊層結構。例如,可以舉出包含錳的銅膜的單層結構、在鈦膜上層疊鋁膜的兩層結構、在鎢膜上層疊鋁膜的兩層結構、在銅-鎂-鋁合金膜上層疊銅膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、在鎢膜上層疊銅膜的兩層結構、依次層疊鈦膜或氮化鈦膜、鋁膜或銅膜以及鈦膜或氮化鈦膜的三層結構、依次層疊鉬膜或氮化鉬膜、鋁膜或銅膜以及鉬膜或氮化鉬膜的三層結構、以及依次層疊鎢膜、銅膜以及鎢膜的三層結構等。另外,也可以使用組合鋁與選自鈦、鉭、鎢、鉬、鉻、釹、鈧的一種或多種元素的合金膜或氮化膜。In addition, the transistor 400 includes an electrode 444 and an electrode 445 on the semiconductor layer 421b so as to be in contact with a part of the semiconductor layer 421b. The electrode 444 and the electrode 445 may use metals such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, manganese, silver, tantalum, or tungsten, or a single-layer structure or a laminated structure of an alloy containing these elements as main components. Examples include a single-layer structure of a copper film containing manganese, a two-layer structure in which an aluminum film is laminated on a titanium film, a two-layer structure in which an aluminum film is laminated on a tungsten film, and a copper-magnesium-aluminum alloy film is laminated on copper. The two-layer structure of the film, the two-layer structure in which a copper film is laminated on a titanium film, a two-layer structure in which a copper film is laminated on a tungsten film, a titanium film or a titanium nitride film, an aluminum film or a copper film, and a titanium film or nitrogen film are sequentially laminated A three-layer structure of a titanium oxide film, a three-layer structure of sequentially stacking a molybdenum film or a molybdenum nitride film, an aluminum film or a copper film, and a molybdenum film or a molybdenum nitride film, and a three-layer structure of sequentially stacking a tungsten film, a copper film, and a tungsten film Structure etc. In addition, an alloy film or a nitride film combining aluminum and one or more elements selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium may also be used.

另外,電晶體400在半導體層421b、電極444及電極445上包括半導體層421c。半導體層421c接觸於半導體層421b、電極444及電極445的每一個的一部分。In addition, the transistor 400 includes a semiconductor layer 421c on the semiconductor layer 421b, the electrode 444, and the electrode 445. The semiconductor layer 421c is in contact with a part of each of the semiconductor layer 421b, the electrode 444, and the electrode 445.

在本實施方式中,藉由利用使用In-Ga-Zn氧化物靶材(In:Ga:Zn=1:3:2)的濺射法形成半導體層421c。另外,能夠應用於半導體層421c的構成元素及組成不侷限於此。例如,作為半導體層421c也可以使用氧化鎵。此外,也可以對半導體層421c進行氧摻雜處理。In this embodiment, the semiconductor layer 421c is formed by a sputtering method using an In-Ga-Zn oxide target (In:Ga:Zn=1:3:2). In addition, the constituent elements and compositions that can be applied to the semiconductor layer 421c are not limited to these. For example, gallium oxide may be used as the semiconductor layer 421c. In addition, oxygen doping treatment may be performed on the semiconductor layer 421c.

另外,電晶體400在半導體層421c上包括絕緣層411。絕緣層411可以用作閘極絕緣層。絕緣層411可以利用與絕緣層403同樣的材料及方法形成。此外,也可以對絕緣層411進行氧摻雜處理。In addition, the transistor 400 includes an insulating layer 411 on the semiconductor layer 421c. The insulating layer 411 may be used as a gate insulating layer. The insulating layer 411 can be formed using the same material and method as the insulating layer 403. In addition, the insulating layer 411 may also be subjected to oxygen doping treatment.

在形成半導體層421c及絕緣層411之後,在絕緣層411上形成遮罩,對半導體層421c及絕緣層411的一部分選擇性地進行蝕刻,由此可以形成島狀半導體層421c及島狀絕緣層411。After the semiconductor layer 421c and the insulating layer 411 are formed, a mask is formed on the insulating layer 411, and a part of the semiconductor layer 421c and the insulating layer 411 is selectively etched, thereby forming an island-shaped semiconductor layer 421c and an island-shaped insulating layer 411.

另外,電晶體400在絕緣層411上包括電極443。電極443(包括使用與此相同的層形成的其他電極或佈線)可以利用與電極444、電極445同樣的材料及方法形成。In addition, the transistor 400 includes an electrode 443 on the insulating layer 411. The electrode 443 (including other electrodes or wiring formed using the same layer as this) can be formed using the same material and method as the electrode 444 and the electrode 445.

在本實施方式中,示出電極443具有包括電極443a和電極443b的疊層結構的例子。例如,使用氮化鉭形成電極443a,使用銅形成電極443b。電極443a用作阻擋層,可以防止銅元素的擴散。因此,可以實現可靠性高的半導體裝置。In this embodiment mode, an example is shown in which the electrode 443 has a stacked structure including an electrode 443a and an electrode 443b. For example, tantalum nitride is used to form the electrode 443a, and copper is used to form the electrode 443b. The electrode 443a serves as a barrier layer to prevent the diffusion of copper. Therefore, a highly reliable semiconductor device can be realized.

另外,電晶體400包括覆蓋電極443的絕緣層412。絕緣層412可以利用與絕緣層403同樣的材料及方法形成。此外,也可以對絕緣層412進行氧摻雜處理。另外,也可以對絕緣層412的表面進行CMP處理。In addition, the transistor 400 includes an insulating layer 412 covering the electrode 443. The insulating layer 412 can be formed using the same material and method as the insulating layer 403. In addition, the insulating layer 412 may also be subjected to oxygen doping treatment. In addition, the surface of the insulating layer 412 may also be subjected to CMP treatment.

此外,絕緣層413形成在絕緣層412上。絕緣層413可以利用與絕緣層403同樣的材料及方法形成。另外,也可以對絕緣層413的表面進行CMP處理。藉由進行CMP處理,可以減少樣本表面的凹凸,由此可以提高後面形成的絕緣層和導電層的覆蓋性。In addition, the insulating layer 413 is formed on the insulating layer 412. The insulating layer 413 can be formed using the same material and method as the insulating layer 403. In addition, the surface of the insulating layer 413 may also be subjected to CMP treatment. The CMP treatment can reduce the unevenness of the sample surface, thereby improving the coverage of the insulating layer and the conductive layer to be formed later.

<電晶體的結構例子2> 接著,參照圖17A1至圖21C說明可以代替上述電晶體400而使用的電晶體的結構例子。 <Structural example of transistor 2> Next, a structure example of a transistor that can be used instead of the above-mentioned transistor 400 will be described with reference to FIGS. 17A1 to 21C.

[底閘極型電晶體] 圖17A1所例示的電晶體510是作為底閘極型電晶體之一的通道保護型電晶體。電晶體510在絕緣層403上包括能夠用作閘極電極的電極446。另外,在電極446上隔著絕緣層411包括半導體層421。電極446可以使用與電極444、電極445同樣的材料及方法形成。 [Bottom gate type transistor] The transistor 510 illustrated in FIG. 17A1 is a channel protection type transistor which is one of the bottom gate type transistors. The transistor 510 includes an electrode 446 capable of serving as a gate electrode on the insulating layer 403. In addition, the electrode 446 includes a semiconductor layer 421 with an insulating layer 411 interposed therebetween. The electrode 446 can be formed using the same material and method as the electrode 444 and the electrode 445.

此外,電晶體510在半導體層421的通道形成區域上具有能夠用作通道保護層的絕緣層450。絕緣層450可以使用與絕緣層411同樣的材料及方法來形成。電極444的一部分及電極445的一部分形成在絕緣層450上。In addition, the transistor 510 has an insulating layer 450 that can be used as a channel protection layer on the channel formation region of the semiconductor layer 421. The insulating layer 450 can be formed using the same materials and methods as the insulating layer 411. A part of the electrode 444 and a part of the electrode 445 are formed on the insulating layer 450.

藉由在通道形成區域上設置絕緣層450,可以防止在形成電極444及電極445時產生的半導體層421的露出。因此,在形成電極444及電極445時可以防止半導體層421的薄膜化。根據本發明的一個實施方式,可以提供電特性良好的電晶體。By providing the insulating layer 450 on the channel formation region, it is possible to prevent the semiconductor layer 421 from being exposed when the electrode 444 and the electrode 445 are formed. Therefore, when the electrode 444 and the electrode 445 are formed, thinning of the semiconductor layer 421 can be prevented. According to an embodiment of the present invention, a transistor with good electrical characteristics can be provided.

圖17A2所示的電晶體511與電晶體510之間的不同之處在於:電晶體511在絕緣層412上具有可以用作背閘極電極的電極451。電極451可以藉由與電極444及電極445同樣的材料及方法來形成。The difference between the transistor 511 and the transistor 510 shown in FIG. 17A2 is that the transistor 511 has an electrode 451 on the insulating layer 412 that can be used as a back gate electrode. The electrode 451 can be formed by the same material and method as the electrode 444 and the electrode 445.

一般而言,背閘極電極使用導電層來形成,並以半導體層的通道形成區域被閘極電極與背閘極電極夾住的方式設置。因此,背閘極電極可以具有與閘極電極同樣的功能。背閘極電極的電位可以與閘極電極相等,也可以為GND電位或任意電位。另外,藉由不跟閘極電極的電位聯動而獨立地改變背閘極電極的電位,可以改變電晶體的臨界電壓。Generally speaking, the back gate electrode is formed using a conductive layer, and is arranged in such a way that the channel formation area of the semiconductor layer is sandwiched by the gate electrode and the back gate electrode. Therefore, the back gate electrode can have the same function as the gate electrode. The potential of the back gate electrode can be equal to the gate electrode, GND potential or any potential. In addition, by independently changing the potential of the back gate electrode without interlocking with the potential of the gate electrode, the threshold voltage of the transistor can be changed.

電極446及電極451都可以用作閘極電極。因此,絕緣層411、絕緣層450、絕緣層412可以用作閘極絕緣層。Both the electrode 446 and the electrode 451 can be used as gate electrodes. Therefore, the insulating layer 411, the insulating layer 450, and the insulating layer 412 can be used as gate insulating layers.

注意,有時將電極446或電極451中的一個稱為“閘極電極”,將另一個稱為“背閘極電極”。例如,在電晶體511中,有時將電極451稱為“閘極電極”,將電極446稱為“背閘極電極”。另外,當將電極451用作“閘極電極”時,可以將電晶體511認為頂閘極型電晶體的一種。此外,有時將電極446和電極451中的某一個稱為“第一閘極電極”,將另一個稱為“第二閘極電極”。Note that one of the electrode 446 or the electrode 451 is sometimes referred to as a "gate electrode", and the other is referred to as a "back gate electrode". For example, in the transistor 511, the electrode 451 is sometimes referred to as a "gate electrode" and the electrode 446 is referred to as a "back gate electrode". In addition, when the electrode 451 is used as a "gate electrode", the transistor 511 can be regarded as a kind of top gate type transistor. In addition, one of the electrode 446 and the electrode 451 may be referred to as a “first gate electrode”, and the other may be referred to as a “second gate electrode”.

藉由隔著半導體層421設置電極446以及電極451並將電極446及電極451的電位設定為相等,半導體層421中的載子流過的區域在膜厚度方向上更加擴大,所以載子的移動量增加。其結果,電晶體511的通態電流增大,並且場效移動率也增高。By arranging the electrode 446 and the electrode 451 via the semiconductor layer 421 and setting the potentials of the electrode 446 and the electrode 451 to be equal, the region through which the carriers in the semiconductor layer 421 flows is further expanded in the film thickness direction, so the movement of the carriers The amount increases. As a result, the on-state current of the transistor 511 increases, and the field effect mobility also increases.

因此,電晶體511是相對於佔有面積而具有較大的通態電流的電晶體。亦即,可以相對於所要求的通態電流而縮小電晶體511的佔有面積。根據本發明的一個實施方式,可以縮小電晶體的佔有面積。因此,根據本發明的一個實施方式,可以實現集成度高的半導體裝置。Therefore, the transistor 511 is a transistor having a large on-state current relative to the occupied area. That is, the area occupied by the transistor 511 can be reduced relative to the required on-state current. According to an embodiment of the present invention, the area occupied by the transistor can be reduced. Therefore, according to an embodiment of the present invention, a highly integrated semiconductor device can be realized.

另外,由於閘極電極及背閘極電極使用導電層來形成,因此具有防止在電晶體的外部產生的電場影響到形成有通道的半導體層的功能(尤其是針對靜電等的電場遮蔽功能)。藉由以大於半導體層的方式形成背閘極電極並由背閘極電極覆蓋半導體層,可以提高電場遮蔽功能。In addition, since the gate electrode and the back gate electrode are formed using a conductive layer, they have a function of preventing an electric field generated outside the transistor from affecting the semiconductor layer in which the channel is formed (especially an electric field shielding function against static electricity). By forming the back gate electrode larger than the semiconductor layer and covering the semiconductor layer with the back gate electrode, the electric field shielding function can be improved.

另外,因為電極446及電極451分別具有屏蔽來自外部的電場的功能,所以產生在絕緣層403一側或電極451上方的帶電粒子等電荷不影響到半導體層421的通道形成區域。其結果是,可以抑制應力測試(例如,對閘極施加負的電荷的-GBT(Gate Bias-Temperature:閘極偏壓-溫度)應力測試)所導致的劣化以及汲極電壓不同時的通態電流的上升電壓的變動。注意,在電極446及電極451具有相同的電位時或不同的電位時得到這效果。In addition, since the electrode 446 and the electrode 451 each have a function of shielding an electric field from the outside, the electric charge such as charged particles generated on the side of the insulating layer 403 or above the electrode 451 does not affect the channel formation region of the semiconductor layer 421. As a result, it is possible to suppress degradation caused by stress test (for example, -GBT (Gate Bias-Temperature) stress test in which negative charge is applied to the gate) and the on-state when the drain voltage is different The rise of current and the change in voltage. Note that this effect is obtained when the electrode 446 and the electrode 451 have the same potential or different potentials.

注意,BT應力測試是一種加速試驗,它可以在短時間內評估由於使用很長時間而產生的電晶體的特性變化(亦即,隨時間變化)。尤其是,BT應力測試前後的電晶體的臨界電壓的變動量是用於檢查可靠性的重要指標。可以說,在BT應力測試前後,臨界電壓的變動量越少,則電晶體的可靠性越高。Note that the BT stress test is an accelerated test that can evaluate the characteristic change (that is, change over time) of the transistor due to a long time of use in a short period of time. In particular, the amount of change in the critical voltage of the transistor before and after the BT stress test is an important index for checking reliability. It can be said that before and after the BT stress test, the less the variation of the threshold voltage, the higher the reliability of the transistor.

另外,藉由具有電極446及電極451且將電極446及電極451設定為相同電位,臨界電壓的變動量得到降低。因此,多個電晶體中的電特性的不均勻也同時被降低。In addition, by having the electrode 446 and the electrode 451 and setting the electrode 446 and the electrode 451 to the same potential, the amount of variation in the threshold voltage can be reduced. Therefore, the unevenness in the electrical characteristics of the plurality of transistors is also reduced at the same time.

另外,具有背閘極電極的電晶體的對閘極施加正電荷的+GBT應力測試前後的臨界電壓的變動也比不具有背閘極電極的電晶體小。In addition, the variation of the threshold voltage before and after the +GBT stress test in which a positive charge is applied to the gate of the transistor with the back gate electrode is smaller than that of the transistor without the back gate electrode.

另外,在光從背閘極電極一側入射時,藉由作為背閘極電極使用具有遮光性的導電膜形成,能夠防止光從背閘極電極一側入射到半導體層。由此,能夠防止半導體層的光劣化,並防止電晶體的臨界電壓偏移等電特性劣化。In addition, when light enters from the back gate electrode side, by forming the back gate electrode using a light-shielding conductive film, it is possible to prevent light from entering the semiconductor layer from the back gate electrode side. As a result, it is possible to prevent the light deterioration of the semiconductor layer and prevent the deterioration of electrical characteristics such as the threshold voltage shift of the transistor.

根據本發明的一個實施方式,可以實現可靠性良好的電晶體。另外,可以實現可靠性良好的半導體裝置。According to an embodiment of the present invention, a reliable transistor can be realized. In addition, a reliable semiconductor device can be realized.

圖17B1所例示的電晶體520是作為底閘極型的電晶體之一的通道保護型電晶體。雖然電晶體520具有與電晶體510大致同樣的結構,但是不同的之處在於:在電晶體520中,絕緣層450覆蓋半導體層421。另外,在選擇性地去除重疊於半導體層421的絕緣層450的一部分而形成的開口部中,半導體層421與電極444電連接。此外,在選擇性地去除重疊於半導體層421的絕緣層450的一部分而形成的開口部中,半導體層421與電極445電連接。絕緣層450的與通道形成區域重疊的區域可以用作通道保護層。The transistor 520 illustrated in FIG. 17B1 is a channel protection type transistor which is one of bottom gate type transistors. Although the transistor 520 has approximately the same structure as the transistor 510, the difference is that in the transistor 520, the insulating layer 450 covers the semiconductor layer 421. In addition, in the opening formed by selectively removing a part of the insulating layer 450 overlapping the semiconductor layer 421, the semiconductor layer 421 and the electrode 444 are electrically connected. In addition, in the opening formed by selectively removing a part of the insulating layer 450 overlapping the semiconductor layer 421, the semiconductor layer 421 and the electrode 445 are electrically connected. The region of the insulating layer 450 overlapping the channel formation region may be used as a channel protection layer.

圖17B2所示的電晶體521與電晶體520之間的不同之處在於:電晶體521在絕緣層412上具有能夠用作背閘極電極的電極451。電極446及電極451都可以被用作閘極電極。因此,絕緣層411、絕緣層450及絕緣層412可以被用作閘極絕緣層。The difference between the transistor 521 and the transistor 520 shown in FIG. 17B2 is that the transistor 521 has an electrode 451 on the insulating layer 412 that can be used as a back gate electrode. Both the electrode 446 and the electrode 451 can be used as gate electrodes. Therefore, the insulating layer 411, the insulating layer 450, and the insulating layer 412 can be used as gate insulating layers.

另外,與電晶體510及電晶體511相比,電晶體520及電晶體521的電極444與電極446之間的距離及電極445與電極446之間的距離變長。因此,可以減少產生在電極444與電極446之間的寄生電容。此外,可以減少產生在電極445與電極446之間的寄生電容。根據本發明的一個實施方式,可以提供電特性良好的電晶體。In addition, compared with the transistor 510 and the transistor 511, the distance between the electrode 444 and the electrode 446 of the transistor 520 and the transistor 521 and the distance between the electrode 445 and the electrode 446 are longer. Therefore, the parasitic capacitance generated between the electrode 444 and the electrode 446 can be reduced. In addition, the parasitic capacitance generated between the electrode 445 and the electrode 446 can be reduced. According to an embodiment of the present invention, a transistor with good electrical characteristics can be provided.

[頂閘極型電晶體] 圖18A1所例示的電晶體530是頂閘極型電晶體之一。電晶體530在絕緣層403上具有半導體層421,在半導體層421及絕緣層403上具有與半導體層421的一部分相接的電極444以及與半導體層421的一部分相接的電極445,在半導體層421、電極444及電極445上具有絕緣層411,在絕緣層411上具有電極446。 [Top Gate Transistor] The transistor 530 illustrated in FIG. 18A1 is one of the top gate type transistors. The transistor 530 has a semiconductor layer 421 on the insulating layer 403, an electrode 444 connected to a part of the semiconductor layer 421, and an electrode 445 connected to a part of the semiconductor layer 421 on the semiconductor layer 421 and the insulating layer 403. 421, the electrode 444, and the electrode 445 have an insulating layer 411 on the insulating layer 411, and an electrode 446 on the insulating layer 411.

因為在電晶體530中,電極446和電極444以及電極446和電極445不重疊,所以可以減少產生在電極446與電極444之間的寄生電容以及產生在電極446與電極445之間的寄生電容。另外,在形成電極446之後,將電極446用作遮罩將雜質元素455引入到半導體層421,由此可以在半導體層421中以自對準(Self-alignment)的方式形成雜質區域(參照圖18A3)。根據本發明的一個實施方式,可以實現電特性良好的電晶體。Since the electrode 446 and the electrode 444 and the electrode 446 and the electrode 445 do not overlap in the transistor 530, the parasitic capacitance generated between the electrode 446 and the electrode 444 and the parasitic capacitance generated between the electrode 446 and the electrode 445 can be reduced. In addition, after the electrode 446 is formed, the impurity element 455 is introduced into the semiconductor layer 421 by using the electrode 446 as a mask, thereby forming an impurity region in the semiconductor layer 421 in a self-alignment manner (refer to FIG. 18A3). According to an embodiment of the present invention, a transistor with good electrical characteristics can be realized.

另外,可以使用離子植入裝置、離子摻雜裝置或電漿處理裝置進行雜質元素455的引入。另外,作為離子摻雜裝置,也可以利用具有質量分離功能的離子摻雜裝置。In addition, an ion implantation device, an ion doping device, or a plasma processing device may be used to introduce the impurity element 455. In addition, as the ion doping device, an ion doping device having a mass separation function can also be used.

作為雜質元素455,例如可以使用第13族元素和第15族元素中的至少一種元素。另外,在作為半導體層421使用氧化物半導體的情況下,作為雜質元素455,也可以使用稀有氣體、氫和氮中的至少一種元素。As the impurity element 455, for example, at least one element of a group 13 element and a group 15 element can be used. In addition, when an oxide semiconductor is used as the semiconductor layer 421, as the impurity element 455, at least one element of a rare gas, hydrogen, and nitrogen may also be used.

圖18A2所示的電晶體531與電晶體530之間的不同之處在於:電晶體531具有電極451及絕緣層417。電晶體531具有形成在絕緣層403上的電極451、形成在電極451上的絕緣層417。如上所述,電極451可以用作背閘極電極。因此,絕緣層417可以用作閘極絕緣層。絕緣層417可以藉由與絕緣層411同樣的材料及方法來形成。The difference between the transistor 531 and the transistor 530 shown in FIG. 18A2 is that the transistor 531 has an electrode 451 and an insulating layer 417. The transistor 531 has an electrode 451 formed on the insulating layer 403 and an insulating layer 417 formed on the electrode 451. As described above, the electrode 451 can be used as a back gate electrode. Therefore, the insulating layer 417 can be used as a gate insulating layer. The insulating layer 417 can be formed by the same material and method as the insulating layer 411.

與電晶體511同樣,電晶體531是相對於佔有面積而具有較大的通態電流的電晶體。亦即,可以相對於所要求的通態電流而縮小電晶體531的佔有面積。根據本發明的一個實施方式,可以縮小電晶體的佔有面積。因此,根據本發明的一個實施方式,可以實現集成度高的半導體裝置。Like the transistor 511, the transistor 531 is a transistor having a large on-state current relative to the occupied area. That is, the area occupied by the transistor 531 can be reduced relative to the required on-state current. According to an embodiment of the present invention, the area occupied by the transistor can be reduced. Therefore, according to an embodiment of the present invention, a highly integrated semiconductor device can be realized.

圖18B1所例示的電晶體540是頂閘極型電晶體之一。電晶體540與電晶體530之間的不同之處在於:在電晶體540中,在形成電極444及電極445之後形成半導體層421。另外,圖18B2所例示的電晶體541與電晶體540之間的不同之處在於:電晶體541具有電極451及絕緣層417。在電晶體540及電晶體541中,半導體層421的一部分形成在電極444上,半導體層421的其他一部分形成在電極445上。The transistor 540 illustrated in FIG. 18B1 is one of the top gate type transistors. The difference between the transistor 540 and the transistor 530 is that in the transistor 540, the semiconductor layer 421 is formed after the electrode 444 and the electrode 445 are formed. In addition, the difference between the transistor 541 and the transistor 540 illustrated in FIG. 18B2 is that the transistor 541 has an electrode 451 and an insulating layer 417. In the transistor 540 and the transistor 541, a part of the semiconductor layer 421 is formed on the electrode 444, and the other part of the semiconductor layer 421 is formed on the electrode 445.

與電晶體511同樣,電晶體541是相對於佔有面積具有較大的通態電流的電晶體。就是說,可以相對於所需要的通態電流縮小電晶體541的佔有面積。根據本發明的一個實施方式,可以縮小電晶體的佔有面積。因此,根據本發明的一個實施方式,可以實現集成度高的半導體裝置。Like the transistor 511, the transistor 541 is a transistor having a large on-state current relative to the occupied area. In other words, the area occupied by the transistor 541 can be reduced relative to the required on-state current. According to an embodiment of the present invention, the area occupied by the transistor can be reduced. Therefore, according to an embodiment of the present invention, a highly integrated semiconductor device can be realized.

在電晶體540及電晶體541中,也在形成電極446之後將電極446用作遮罩將雜質元素455引入到半導體層421,由此可以在半導體層421中以自對準的方式形成雜質區。根據本發明的一個實施方式,可以實現電特性良好的電晶體。另外,根據本發明的一個實施方式,可以實現集成度高的半導體裝置。In the transistor 540 and the transistor 541, the electrode 446 is also used as a mask after the electrode 446 is formed to introduce the impurity element 455 into the semiconductor layer 421, thereby forming an impurity region in the semiconductor layer 421 in a self-aligned manner. . According to an embodiment of the present invention, a transistor with good electrical characteristics can be realized. In addition, according to an embodiment of the present invention, a highly integrated semiconductor device can be realized.

[s-channel型電晶體] 圖19A至圖19C所例示的電晶體550具有半導體層421b的頂面及側面被半導體層421a覆蓋的結構。圖19A是電晶體550的俯視圖。圖19B是圖19A中的X1-X2的點劃線所示的部分的剖面圖(通道長度方向的剖面圖)。圖19C是圖19A中的Y1-Y2的點劃線所示的部分的剖面圖(通道寬度方向的剖面圖)。 [s-channel type transistor] The transistor 550 illustrated in FIGS. 19A to 19C has a structure in which the top and side surfaces of the semiconductor layer 421b are covered by the semiconductor layer 421a. FIG. 19A is a top view of transistor 550. FIG. FIG. 19B is a cross-sectional view of the part indicated by the chain line X1-X2 in FIG. 19A (a cross-sectional view in the channel length direction). FIG. 19C is a cross-sectional view of the part indicated by the chain line Y1-Y2 in FIG. 19A (a cross-sectional view in the channel width direction).

藉由在形成於絕緣層403的凸部上設置半導體層421,半導體層421b的側面也可以被電極443覆蓋。就是說,電晶體550具有由電極443的電場能夠電圍繞半導體層421b的結構。如此,將由導電膜的電場電圍繞半導體的電晶體結構稱為surrounded channel(s-channel)結構。另外,將具有s-channel結構的電晶體也稱為“s-channel型電晶體”或“s-channel電晶體”。By providing the semiconductor layer 421 on the convex portion formed on the insulating layer 403, the side surface of the semiconductor layer 421b can also be covered by the electrode 443. That is, the transistor 550 has a structure in which the semiconductor layer 421b can be electrically surrounded by the electric field of the electrode 443. In this way, the transistor structure in which the semiconductor is electrically surrounded by the electric field of the conductive film is called the surrounded channel (s-channel) structure. In addition, a transistor with an s-channel structure is also referred to as an "s-channel type transistor" or an "s-channel transistor".

在s-channel結構中,有時在半導體層421b的整體(塊體)形成通道。在s-channel結構中可以使電晶體的汲極電流增大,來可以得到更高的通態電流。此外,也可以由電極443的電場使形成在半導體層421b中的通道形成區域的整個區域空乏化。因此,s-channel結構可以進一步降低電晶體的關態電流。In the s-channel structure, a channel may be formed in the entire semiconductor layer 421b (bulk). In the s-channel structure, the drain current of the transistor can be increased to obtain a higher on-state current. In addition, the entire area of the channel formation area formed in the semiconductor layer 421b may be depleted by the electric field of the electrode 443. Therefore, the s-channel structure can further reduce the off-state current of the transistor.

另外,藉由增大絕緣層403的凸部的高度且縮短通道寬度,可以進一步提高採用s-channel結構時的增大通態電流且降低關態電流的效果等。此外,當形成半導體層421b時,也可以去除露出的半導體層421a。此時,半導體層421a的側面與半導體層421b的側面有時一致。In addition, by increasing the height of the convex portion of the insulating layer 403 and shortening the channel width, the effect of increasing the on-state current and reducing the off-state current when the s-channel structure is adopted can be further improved. In addition, when the semiconductor layer 421b is formed, the exposed semiconductor layer 421a may also be removed. At this time, the side surface of the semiconductor layer 421a and the side surface of the semiconductor layer 421b may coincide.

另外,如圖20A至圖20C所示的電晶體551,也可以在半導體層421的下方隔著絕緣層403設置電極451。圖20A是電晶體551的俯視圖。圖20B是圖20A中的X1-X2的點劃線所示的部分的剖面圖。圖20C是圖20A中的Y1-Y2的點劃線所示的部分的剖面圖。In addition, in the transistor 551 shown in FIGS. 20A to 20C, an electrode 451 may be provided under the semiconductor layer 421 with an insulating layer 403 interposed therebetween. FIG. 20A is a top view of transistor 551. FIG. Fig. 20B is a cross-sectional view of the part indicated by the chain line X1-X2 in Fig. 20A. Fig. 20C is a cross-sectional view of the part indicated by the chain line Y1-Y2 in Fig. 20A.

另外,如圖21A至圖21C所示的電晶體452,也可以在電極443的上方設置層414。圖21A是電晶體452的俯視圖。圖21B是圖21A中的X1-X2的點劃線所示的部分的剖面圖。圖21C是圖21A中的Y1-Y2的點劃線所示的部分的剖面圖。In addition, the transistor 452 shown in FIGS. 21A to 21C may also be provided with a layer 414 above the electrode 443. FIG. 21A is a top view of transistor 452. FIG. Fig. 21B is a cross-sectional view of a part indicated by a chain line X1-X2 in Fig. 21A. Fig. 21C is a cross-sectional view of the part indicated by the chain line Y1-Y2 in Fig. 21A.

雖然在圖21A至圖21C中將層414設置在絕緣層413上,但是也可以設置在絕緣層412上。藉由使用具有遮光性的材料形成層414,可以防止起因於光照射的電晶體的特性變動或可靠性的下降等。另外,藉由以至少大於半導體層421b的方式形成層414並使用層414覆蓋半導體層421b,可以提高上述效果。層414可以使用有機物材料、無機物材料或金屬材料形成。此外,在使用導電材料形成層414的情況下,既可以向層414供應電壓,又可以處於電浮動(floating)狀態。Although the layer 414 is provided on the insulating layer 413 in FIGS. 21A to 21C, it may also be provided on the insulating layer 412. By forming the layer 414 with a material having light-shielding properties, it is possible to prevent the characteristics of the transistor from being irradiated with light, the decrease in reliability, and the like. In addition, by forming the layer 414 at least larger than the semiconductor layer 421b and covering the semiconductor layer 421b with the layer 414, the above effect can be improved. The layer 414 may be formed using an organic material, an inorganic material, or a metal material. In addition, in the case of using a conductive material to form the layer 414, either a voltage can be supplied to the layer 414, or it can be in an electrically floating state.

<氧化物半導體的結構> 接著,說明氧化物半導體的結構。 <Structure of oxide semiconductor> Next, the structure of the oxide semiconductor will be described.

在本說明書中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此也包括該角度為-5°以上且5°以下的狀態。另外,“大致平行”是指兩條直線形成的角度為-30°以上且30°以下的狀態。另外,“垂直”是指兩條直線的角度為80°以上且100°以下的狀態。因此也包括該角度為85°以上且95°以下的狀態。另外,“大致垂直”是指兩條直線形成的角度為60°以上且120°以下的狀態。在本說明書中,六方晶系包括三方晶系和菱方晶系。In this specification, "parallel" refers to a state where the angle formed by two straight lines is -10° or more and 10° or less. Therefore, the state where the angle is -5° or more and 5° or less is also included. In addition, "substantially parallel" refers to a state where the angle formed by two straight lines is -30° or more and 30° or less. In addition, "perpendicular" refers to a state where the angle of two straight lines is 80° or more and 100° or less. Therefore, the state where the angle is 85° or more and 95° or less is also included. In addition, "substantially perpendicular" refers to a state where the angle formed by two straight lines is 60° or more and 120° or less. In this specification, the hexagonal crystal system includes the trigonal crystal system and the rhombohedral crystal system.

氧化物半導體膜可以分為非單晶氧化物半導體膜和單晶氧化物半導體膜。或者,氧化物半導體例如可以分為結晶氧化物半導體和非晶氧化物半導體。The oxide semiconductor film can be classified into a non-single crystal oxide semiconductor film and a single crystal oxide semiconductor film. Alternatively, oxide semiconductors can be classified into crystalline oxide semiconductors and amorphous oxide semiconductors, for example.

作為非單晶氧化物半導體可以舉出CAAC-OS、多晶氧化物半導體、微晶氧化物半導體和非晶氧化物半導體等。另外,作為結晶氧化物半導體可以舉出單晶氧化物半導體、CAAC-OS、多晶氧化物半導體和微晶氧化物半導體等。Examples of non-single crystal oxide semiconductors include CAAC-OS, polycrystalline oxide semiconductors, microcrystalline oxide semiconductors, and amorphous oxide semiconductors. In addition, examples of crystalline oxide semiconductors include single crystal oxide semiconductors, CAAC-OS, polycrystalline oxide semiconductors, and microcrystalline oxide semiconductors.

[CAAC-OS] CAAC-OS膜是包含呈c軸配向的多個結晶部的氧化物半導體膜之一。 [CAAC-OS] The CAAC-OS film is one of oxide semiconductor films including a plurality of crystal parts in a c-axis alignment.

根據利用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)觀察CAAC-OS膜的明視野影像及繞射圖案的複合分析影像(也稱為高解析度TEM影像),可以觀察到多個結晶部。但是,在高解析度TEM影像中觀察不到結晶部與結晶部之間的明確的邊界,亦即晶界(grain boundary)。因此,在CAAC-OS膜中,不容易發生起因於晶界的電子移動率的降低。According to the composite analysis image (also called high-resolution TEM image) of the bright-field image and diffraction pattern of the CAAC-OS film observed with a transmission electron microscope (TEM: Transmission Electron Microscope), multiple crystal parts can be observed. However, in the high-resolution TEM image, no clear boundary between the crystal part and the crystal part, that is, the grain boundary, is not observed. Therefore, in the CAAC-OS film, a decrease in the electron mobility due to grain boundaries does not easily occur.

根據從大致平行於樣本面的方向觀察的CAAC-OS膜的高解析度剖面TEM影像可知在結晶部中金屬原子排列為層狀。各金屬原子層具有反映了被形成CAAC-OS膜的面(也稱為被形成面)或CAAC-OS膜的頂面的凸凹的形狀並以平行於CAAC-OS膜的被形成面或CAAC-OS膜的頂面的方式排列。According to the high-resolution cross-sectional TEM image of the CAAC-OS film observed from a direction substantially parallel to the sample surface, it can be seen that the metal atoms are arranged in layers in the crystal part. Each metal atomic layer has a shape that reflects the surface on which the CAAC-OS film is formed (also referred to as the surface to be formed) or the convex and concave shapes of the top surface of the CAAC-OS film, and is parallel to the formed surface of the CAAC-OS film or CAAC- The OS film is arranged in a way on the top surface.

另一方面,根據從大致垂直於樣本面的方向觀察的CAAC-OS膜的高解析度平面TEM影像可知在結晶部中金屬原子排列為三角形狀或六角形狀。但是,在不同的結晶部之間金屬原子的排列沒有規律性。On the other hand, from a high-resolution planar TEM image of the CAAC-OS film viewed from a direction substantially perpendicular to the sample surface, it can be seen that the metal atoms are arranged in a triangular shape or a hexagonal shape in the crystal portion. However, there is no regularity in the arrangement of metal atoms between different crystal parts.

使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS膜進行結構分析。例如,當利用out-of-plane法分析包括InGaZnO 4結晶的CAAC-OS膜時,在繞射角(2θ)為31°附近時會出現峰值。由於該峰值來源於InGaZnO 4結晶的(009)面,由此可知CAAC-OS膜中的結晶具有c軸配向性,並且c軸朝向大致垂直於CAAC-OS膜的被形成面或頂面的方向。 Use X-ray diffraction (XRD: X-Ray Diffraction) device to analyze the structure of CAAC-OS film. For example, when using the out-of-plane method to analyze a CAAC-OS film including InGaZnO 4 crystals, a peak appears when the diffraction angle (2θ) is around 31°. Since this peak is derived from the (009) plane of the InGaZnO 4 crystal, it can be seen that the crystals in the CAAC-OS film have c-axis orientation, and the c-axis is oriented substantially perpendicular to the formed surface or top surface of the CAAC-OS film .

注意,當利用out-of-plane法分析包括InGaZnO 4結晶的CAAC-OS膜時,除了在2θ為31°附近的峰值之外,有時還在2θ為36°附近觀察到峰值。2θ為36°附近的峰值意味著CAAC-OS膜的一部分中含有不呈c軸配向的結晶。較佳的是,在CAAC-OS膜中在2θ為31°附近時出現峰值而在2θ為36°附近時不出現峰值。 Note that when the CAAC-OS film including InGaZnO 4 crystals is analyzed by the out-of-plane method, in addition to the peak around 31° 2θ, a peak around 36° 2θ is sometimes observed. The peak of 2θ near 36° means that a part of the CAAC-OS film contains crystals that are not aligned in the c-axis. Preferably, in the CAAC-OS film, a peak appears when 2θ is around 31° and does not appear when 2θ is around 36°.

CAAC-OS膜是雜質濃度低的氧化物半導體膜。雜質是指氫、碳、矽、過渡金屬元素等氧化物半導體膜的主要成分以外的元素。尤其是,矽等元素因為其與氧的鍵合力比構成氧化物半導體膜的金屬元素與氧的鍵合力更強,該元素會奪取氧化物半導體膜中的氧,從而打亂氧化物半導體膜的原子排列,導致結晶性下降。此外,由於鐵或鎳等的重金屬、氬、二氧化碳等的原子半徑(或分子半徑)大,所以當包含在氧化物半導體膜內時會打亂氧化物半導體膜的原子排列,導致結晶性下降。注意,包含在氧化物半導體膜中的雜質有時成為載子陷阱或載子發生源。The CAAC-OS film is an oxide semiconductor film with a low impurity concentration. Impurities refer to elements other than the main components of the oxide semiconductor film, such as hydrogen, carbon, silicon, and transition metal elements. In particular, silicon and other elements have stronger bonding force with oxygen than the metal elements constituting the oxide semiconductor film and oxygen. This element will deprive the oxide semiconductor film of oxygen, thereby disrupting the oxide semiconductor film. The arrangement of atoms leads to a decrease in crystallinity. In addition, since heavy metals such as iron or nickel, argon, carbon dioxide, and the like have a large atomic radius (or molecular radius), when contained in the oxide semiconductor film, the atomic arrangement of the oxide semiconductor film is disturbed, resulting in a decrease in crystallinity. Note that impurities contained in the oxide semiconductor film sometimes become carrier traps or carrier generation sources.

此外,CAAC-OS膜是缺陷態密度低的氧化物半導體膜。例如,氧化物半導體膜中的氧缺陷有時成為載子陷阱或者藉由俘獲氫而成為載子發生源。In addition, the CAAC-OS film is an oxide semiconductor film with a low density of defect states. For example, oxygen vacancies in an oxide semiconductor film sometimes become carrier traps or become carrier generation sources by trapping hydrogen.

將雜質濃度低且缺陷態密度低(氧缺陷的個數少)的狀態稱為“高純度本質”或“實質上高純度本質”。高純度本質或實質上高純度本質的氧化物半導體膜具有較少的載子發生源,因此可以具有較低的載子密度。因此,使用該氧化物半導體膜的電晶體很少具有負臨界電壓的電特性(也稱為常導通特性)。此外,高純度本質或實質上高純度本質的氧化物半導體膜具有較少的載子陷阱。因此,使用該氧化物半導體膜的電晶體的電特性變動小,而成為高可靠性電晶體。此外,被氧化物半導體膜的載子陷阱俘獲的電荷到被釋放需要長時間,有時像固定電荷那樣動。因此,使用雜質濃度高且缺陷態密度高的氧化物半導體膜的電晶體的電特性有時不穩定。The state in which the impurity concentration is low and the defect state density is low (the number of oxygen vacancies is small) is called "high purity nature" or "substantially high purity nature". An oxide semiconductor film of high purity nature or substantially high purity nature has fewer sources of carrier generation, and therefore can have a lower carrier density. Therefore, transistors using this oxide semiconductor film rarely have electrical characteristics of negative threshold voltage (also referred to as normally-on characteristics). In addition, oxide semiconductor films of high purity nature or substantially high purity nature have fewer carrier traps. Therefore, a transistor using this oxide semiconductor film has little variation in electrical characteristics and becomes a highly reliable transistor. In addition, it takes a long time for the electric charge trapped by the carrier trap of the oxide semiconductor film to be discharged, and it sometimes moves like a fixed electric charge. Therefore, the electrical characteristics of a transistor using an oxide semiconductor film with a high impurity concentration and a high defect state density may be unstable.

此外,在使用CAAC-OS膜的電晶體中,起因於可見光或紫外光的照射的電特性的變動小。In addition, in the transistor using the CAAC-OS film, the change in electrical characteristics due to irradiation of visible light or ultraviolet light is small.

[微晶氧化物半導體膜] 在微晶氧化物半導體膜的高解析度TEM影像中有觀察到結晶部的區域及觀察不到明確的結晶部的區域。包含在微晶氧化物半導體膜中的結晶部的尺寸大多為1nm以上且100nm以下,或1nm以上且10nm以下。尤其是,將具有尺寸為1nm以上且10nm以下或1nm以上且3nm以下的微晶的奈米晶(nc:nanocrystal)的氧化物半導體膜稱為nc-OS(nanocrystalline Oxide Semiconductor:奈米晶氧化物半導體)膜。另外,例如在nc-OS膜的高解析度TEM影像中,有時觀察不到明確的晶界。 [Microcrystalline Oxide Semiconductor Film] In the high-resolution TEM image of the microcrystalline oxide semiconductor film, there are regions where crystal parts are observed and regions where no clear crystal parts are observed. The size of the crystal portion included in the microcrystalline oxide semiconductor film is often 1 nm or more and 100 nm or less, or 1 nm or more and 10 nm or less. In particular, an oxide semiconductor film of nanocrystals (nc: nanocrystal) having microcrystals with a size of 1 nm or more and 10 nm or less or 1 nm or more and 3 nm or less is called nc-OS (nanocrystalline Oxide Semiconductor: nanocrystalline oxide). Semiconductor) film. In addition, for example, in the high-resolution TEM image of the nc-OS film, clear grain boundaries may not be observed in some cases.

nc-OS膜在微小區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中其原子排列具有週期性。另外,nc-OS膜在不同的結晶部之間觀察不到晶體配向的規律性。因此,在膜整體上觀察不到配向性。所以,有時nc-OS膜在某些分析方法中與非晶氧化物半導體膜沒有差別。例如,在藉由利用使用其束徑比結晶部大的X射線的XRD裝置的out-of-plane法對nc-OS膜進行結構分析時,檢測不出表示結晶面的峰值。此外,在對nc-OS膜進行使用其束徑比結晶部大(例如,50nm以上)的電子射線的電子繞射(選區電子繞射)時,觀察到類似光暈圖案的繞射圖案。另一方面,在對nc-OS膜進行使用其束徑近於結晶部或者比結晶部小的電子射線的奈米束電子繞射時,觀察到斑點。另外,在nc-OS膜的奈米束電子繞射圖案中,有時觀察到如圓圈那樣的(環狀的)亮度高的區域。而且,在nc-OS膜的奈米束電子繞射圖案中,有時還觀察到環狀的區域內的多個斑點。The nc-OS film has periodic atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less). In addition, in the nc-OS film, the regularity of crystal alignment between different crystal parts is not observed. Therefore, no alignment was observed in the entire film. Therefore, sometimes the nc-OS film is not different from the amorphous oxide semiconductor film in some analysis methods. For example, when the structure of the nc-OS film is analyzed by an out-of-plane method using an XRD device that uses an X-ray whose beam diameter is larger than that of the crystal portion, the peak indicating the crystal plane cannot be detected. In addition, when the nc-OS film was subjected to electron diffraction (selected area electron diffraction) using electron beams whose beam diameter was larger than the crystal portion (for example, 50 nm or more), a diffraction pattern similar to a halo pattern was observed. On the other hand, when the nc-OS film was subjected to nano-beam electron diffraction using electron beams whose beam diameter was close to or smaller than the crystal portion, spots were observed. In addition, in the nano-beam electron diffraction pattern of the nc-OS film, a circle-like (annular) area with high brightness may be observed. In addition, in the nano-beam electron diffraction pattern of the nc-OS film, multiple spots in a ring-shaped area are sometimes observed.

nc-OS膜是其規律性比非晶氧化物半導體膜高的氧化物半導體膜。因此,nc-OS膜的缺陷態密度比非晶氧化物半導體膜低。但是,nc-OS膜在不同的結晶部之間觀察不到晶體配向的規律性。所以,nc-OS膜的缺陷態密度比CAAC-OS膜高。The nc-OS film is an oxide semiconductor film whose regularity is higher than that of an amorphous oxide semiconductor film. Therefore, the defect state density of the nc-OS film is lower than that of the amorphous oxide semiconductor film. However, in the nc-OS film, the regularity of crystal alignment between different crystal parts is not observed. Therefore, the defect state density of the nc-OS film is higher than that of the CAAC-OS film.

[非晶氧化物半導體膜] 非晶氧化物半導體膜是具有無序的原子排列並不具有結晶部的氧化物半導體膜。其一個例子為具有如石英那樣的無定形態的氧化物半導體膜。 [Amorphous Oxide Semiconductor Film] The amorphous oxide semiconductor film is an oxide semiconductor film that has a disordered atomic arrangement and does not have a crystal part. An example of this is an oxide semiconductor film having an amorphous form like quartz.

在非晶氧化物半導體膜的高解析度TEM影像中,觀察不到結晶部。In the high-resolution TEM image of the amorphous oxide semiconductor film, no crystallized part was observed.

使用XRD裝置對非晶氧化物半導體膜進行結構分析。當利用out-of-plane法分析時,檢測不到表示結晶面的峰值。另外,在非晶氧化物半導體膜的電子繞射圖案中,觀察到光暈圖案。另外,在非晶氧化物半導體膜的奈米束電子繞射圖案中,觀察不到斑點,而觀察到光暈圖案。The structure of the amorphous oxide semiconductor film was analyzed using an XRD device. When analyzed by the out-of-plane method, no peaks indicating crystal planes were detected. In addition, in the electron diffraction pattern of the amorphous oxide semiconductor film, a halo pattern was observed. In addition, in the nano-beam electron diffraction pattern of the amorphous oxide semiconductor film, no spots were observed, but a halo pattern was observed.

此外,氧化物半導體膜有時具有呈現nc-OS膜與非晶氧化物半導體膜之間的物性的結構。將具有這種結構的氧化物半導體膜特別稱為amorphous-like氧化物半導體(a-like OS:amorphous-like Oxide Semiconductor)膜。In addition, the oxide semiconductor film may have a structure exhibiting physical properties between the nc-OS film and the amorphous oxide semiconductor film. The oxide semiconductor film having such a structure is specifically called an amorphous-like oxide semiconductor (a-like OS: amorphous-like Oxide Semiconductor) film.

在a-like OS膜的高解析度TEM影像中,有時觀察到空洞(void)。此外,在a-like OS膜的高解析度TEM影像中,有能夠明確地觀察到結晶部的區域及不能觀察到結晶部的區域。a-like OS膜有時因TEM觀察時的微量的電子照射而產生晶化,由此觀察到結晶部的生長。另一方面,在優質的nc-OS膜中,幾乎觀察不到因TEM觀察時的微量的電子照射而產生晶化。In the high-resolution TEM image of a-like OS film, voids are sometimes observed. In addition, in the high-resolution TEM image of the a-like OS film, there are areas where crystal parts can be clearly observed and areas where crystal parts cannot be observed. The a-like OS film may be crystallized due to irradiation of a small amount of electrons during TEM observation, and thus the growth of crystal parts may be observed. On the other hand, in a high-quality nc-OS film, almost no crystallization due to a small amount of electron irradiation during TEM observation was observed.

此外,a-like OS膜及nc-OS膜的結晶部的尺寸的測量可以使用高解析度TEM影像進行。例如,InGaZnO 4結晶具有層狀結構,在In-O層之間具有兩個Ga-Zn-O層。InGaZnO 4結晶的單位晶格具有三個In-O層和六個Ga-Zn-O層的共九個層在c軸方向上重疊為層狀的結構。因此,這些彼此相鄰的層之間的間隔與(009)面的晶格表面間隔(也稱為d值)大致相等,從結晶結構分析求出其值,亦即0.29nm。因此,著眼於高解析度TEM影像的晶格條紋,在晶格條紋的間隔為0.28nm以上且0.30nm以下的區域中,各晶格條紋對應於InGaZnO 4結晶的a-b面。 In addition, the measurement of the size of the crystal parts of the a-like OS film and the nc-OS film can be performed using high-resolution TEM images. For example, the InGaZnO 4 crystal has a layered structure with two Ga-Zn-O layers between the In-O layers. The unit lattice of the InGaZnO 4 crystal has a layered structure in which a total of nine layers of three In-O layers and six Ga-Zn-O layers are overlapped in the c-axis direction. Therefore, the interval between these layers adjacent to each other is approximately equal to the lattice surface interval (also referred to as the d value) of the (009) plane, and the value obtained from the crystal structure analysis is 0.29 nm. Therefore, focusing on the lattice fringes of the high-resolution TEM image, in the region where the interval of the lattice fringes is 0.28 nm or more and 0.30 nm or less, each lattice fringe corresponds to the ab plane of the InGaZnO 4 crystal.

另外,氧化物半導體膜的密度有時根據結構而不同。例如,當已知某個氧化物半導體膜的組成時,藉由以與該組成相同的組成中的單晶氧化物半導體的密度與其進行比較,可以估計該氧化物半導體膜的結構。例如,相對於單晶氧化物半導體的密度,a-like OS膜的密度為78.6%以上且小於92.3%。例如,相對於單晶氧化物半導體的密度,nc-OS膜的密度和CAAC-OS膜的密度都為92.3%以上且小於100%。注意,難以形成其密度小於單晶氧化物半導體的密度的78%的氧化物半導體膜。In addition, the density of the oxide semiconductor film may vary depending on the structure. For example, when the composition of a certain oxide semiconductor film is known, the structure of the oxide semiconductor film can be estimated by comparing the density of a single crystal oxide semiconductor in the same composition as the composition. For example, with respect to the density of a single crystal oxide semiconductor, the density of the a-like OS film is 78.6% or more and less than 92.3%. For example, with respect to the density of a single crystal oxide semiconductor, the density of the nc-OS film and the density of the CAAC-OS film are both 92.3% or more and less than 100%. Note that it is difficult to form an oxide semiconductor film whose density is less than 78% of that of a single crystal oxide semiconductor.

使用具體例子對上述內容進行說明。例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體膜中,具有菱方晶系結構的單晶InGaZnO 4的密度為6.357g/cm 3。因此,例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體膜中,a-like OS膜的密度為5.0g/cm 3以上且小於5.9g/cm 3。另外,例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體膜中,nc-OS膜的密度和CAAC-OS膜的密度為5.9g/cm 3以上且小於6.3g/cm 3Use specific examples to explain the above content. For example, in an oxide semiconductor film having an atom number ratio that satisfies In:Ga:Zn=1:1:1, the density of single crystal InGaZnO 4 having a rhombohedral structure is 6.357 g/cm 3 . Therefore, for example, in an oxide semiconductor film whose atomic number ratio satisfies In:Ga:Zn=1:1:1, the density of the a-like OS film is 5.0 g/cm 3 or more and less than 5.9 g/cm 3 . In addition, for example, in an oxide semiconductor film whose atomic ratio satisfies In:Ga:Zn=1:1:1, the density of the nc-OS film and the density of the CAAC-OS film are 5.9 g/cm 3 or more and less than 6.3g/cm 3 .

注意,有時不存在相同組成的單晶。此時,藉由以任意比例組合組成不同的單晶,可以算出相當於所希望的組成的單晶的密度。根據組成不同的單晶的組合比例使用加權平均計算所希望的組成的單晶的密度即可。注意,較佳為儘可能減少所組合的單晶的種類來計算密度。Note that sometimes there is no single crystal of the same composition. At this time, by combining single crystals with different compositions in an arbitrary ratio, the density of the single crystals corresponding to the desired composition can be calculated. The density of the single crystals of the desired composition may be calculated by using the weighted average according to the combination ratio of the single crystals of different compositions. Note that it is preferable to calculate the density by reducing the types of single crystals to be combined as much as possible.

注意,氧化物半導體膜例如可以是包括非晶氧化物半導體膜、a-like OS膜、微晶氧化物半導體膜和CAAC-OS膜中的兩種以上的疊層膜。Note that the oxide semiconductor film may be, for example, a stacked film including two or more types of an amorphous oxide semiconductor film, an a-like OS film, a microcrystalline oxide semiconductor film, and a CAAC-OS film.

即使氧化物半導體膜是CAAC-OS膜,也有時部分地觀察到與nc-OS膜等同樣的繞射圖案。因此,有時可以以在一定的範圍中觀察到CAAC-OS膜的繞射圖案的區域的比例(也稱為CAAC化率)表示CAAC-OS膜的優劣。例如,優良的CAAC-OS膜的CAAC化率為50%以上,較佳為80%以上,更佳為90%以上,進一步較佳為95%以上。Even if the oxide semiconductor film is a CAAC-OS film, sometimes the same diffraction pattern as that of the nc-OS film or the like is partially observed. Therefore, the ratio of the area where the diffraction pattern of the CAAC-OS film is observed in a certain range (also referred to as the CAAC conversion rate) may sometimes be used to indicate the quality of the CAAC-OS film. For example, a good CAAC-OS film has a CAAC conversion rate of 50% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.

<關態電流> 在本說明書中,在沒有特別的說明的情況下,關態電流是指電晶體處於關閉狀態(也稱為非導通狀態、遮斷狀態)的汲極電流。在沒有特別的說明的情況下,在n通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs低於臨界電壓Vth的狀態,在p通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs高於臨界電壓Vth的狀態。例如,n通道電晶體的關態電流有時是指閘極與源極間的電壓Vgs低於臨界電壓Vth時的汲極電流。 <Off-state current> In this specification, unless otherwise specified, the off-state current refers to the drain current when the transistor is in the off state (also referred to as the non-conducting state or the blocking state). Unless otherwise specified, in n-channel transistors, the off state refers to the state where the voltage Vgs between the gate and the source is lower than the threshold voltage Vth, and in p-channel transistors, the off state refers to the gate A state where the voltage Vgs between the source and the source is higher than the threshold voltage Vth. For example, the off-state current of an n-channel transistor sometimes refers to the drain current when the voltage Vgs between the gate and the source is lower than the threshold voltage Vth.

電晶體的關態電流有時取決於Vgs。因此,當存在使電晶體的關態電流成為I以下的Vgs時,有時稱該電晶體的關態電流為I以下。電晶體的關態電流有時是指:當Vgs為預定的值時的關態電流;當Vgs為預定範圍內的值時的關態電流;或者當Vgs為能夠獲得充分低的關態電流的值時的關態電流。The off-state current of the transistor sometimes depends on Vgs. Therefore, when there is a Vgs that causes the off-state current of the transistor to be I or less, the off-state current of the transistor is sometimes referred to as I or less. The off-state current of a transistor sometimes refers to: the off-state current when Vgs is a predetermined value; the off-state current when Vgs is a value within a predetermined range; or when Vgs is a sufficiently low off-state current The off-state current at the value.

作為一個例子,設想一種n通道電晶體,該n通道電晶體的臨界電壓Vth為0.5V,Vgs為0.5V時的汲極電流為1×10 -9A,Vgs為0.1V時的汲極電流為1×10 -13A,Vgs為-0.5V時的汲極電流為1×10 -19A,Vgs為-0.8V時的汲極電流為1×10 -22A。在Vgs為-0.5V時或在Vgs為-0.5V至-0.8V的範圍內,該電晶體的汲極電流為1×10 -19A以下,所以有時稱該電晶體的關態電流為1×10 -19A以下。由於存在使該電晶體的汲極電流成為1×10 -22A以下的Vgs,因此有時稱該電晶體的關態電流為1×10 -22A以下。 As an example, imagine an n-channel transistor, the threshold voltage Vth of the n-channel transistor is 0.5V, the drain current when Vgs is 0.5V is 1×10 -9 A, and the drain current when Vgs is 0.1V of 1 × 10 -13 a, Vgs is the drain current at -0.5V was 1 × 10 -19 a, Vgs is the drain current at -0.8V is 1 × 10 -22 A. When Vgs is -0.5V or in the range of -0.5V to -0.8V, the drain current of the transistor is less than 1×10 -19 A, so the off-state current of the transistor is sometimes called 1×10 -19 A or less. Since there is a Vgs that makes the drain current of the transistor 1×10 -22 A or less, the off-state current of the transistor is sometimes referred to as 1×10 -22 A or less.

在本說明書中,有時以每通道寬度W的值表示具有通道寬度W的電晶體的關態電流。另外,有時以每預定的通道寬度(例如1µm)的電流值表示具有通道寬度W的電晶體的關態電流。在為後者時,關態電流的單位有時以電流/長度(例如,A/µm)表示。In this specification, sometimes the off-state current of a transistor having a channel width W is expressed by the value of each channel width W. In addition, sometimes the off-state current of a transistor having a channel width W is expressed as a current value per predetermined channel width (for example, 1 µm). In the latter case, the unit of off-state current is sometimes expressed as current/length (for example, A/µm).

電晶體的關態電流有時取決於溫度。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示在室溫、60℃、85℃、95℃或125℃下的關態電流。或者,有時表示在保證包括該電晶體的半導體裝置等的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃中的任一溫度)下的關態電流。在室溫、60℃、85℃、95℃、125℃、保證包括該電晶體的半導體裝置等的可靠性的溫度或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃中的任一溫度)下,當存在使電晶體的關態電流成為I以下的Vgs時,有時稱該電晶體的關態電流為I以下。The off-state current of a transistor sometimes depends on temperature. In this specification, unless otherwise specified, the off-state current sometimes means the off-state current at room temperature, 60°C, 85°C, 95°C, or 125°C. Or, sometimes it means at a temperature that guarantees the reliability of the semiconductor device or the like including the transistor or at a temperature at which the semiconductor device or the like including the transistor is used (for example, any temperature from 5°C to 35°C) The off-state current. At room temperature, 60°C, 85°C, 95°C, 125°C, at a temperature that guarantees the reliability of a semiconductor device including the transistor or the like, or at a temperature (for example, 5°C to 5°C to At any temperature of 35°C), when there is Vgs that makes the off-state current of the transistor less than I, the off-state current of the transistor is sometimes referred to as I or less.

電晶體的關態電流有時取決於汲極與源極間的電壓Vds。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示Vds的絕對值為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V或20V時的關態電流。或者,有時表示保證包括該電晶體的半導體裝置等的可靠性的Vds時或者包括該電晶體的半導體裝置等所使用的Vds時的關態電流。當在Vds為預定的值的情況下存在使電晶體的關態電流成為I以下的Vgs時,有時稱該電晶體的關態電流為I以下。在此,例如,預定的值是指:0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、20V、保證包括該電晶體的半導體裝置等的可靠性的Vds的值或包括該電晶體的半導體裝置等被使用的Vds的值。The off-state current of the transistor sometimes depends on the voltage Vds between the drain and the source. In this manual, unless otherwise specified, the off-state current sometimes indicates that the absolute value of Vds is 0.1V, 0.8V, 1V, 1.2V, 1.8V, 2.5V, 3V, 3.3V, 10V, 12V , 16V or 20V off-state current. Alternatively, it may indicate the off-state current at the time of Vds that guarantees the reliability of the semiconductor device including the transistor or the like or the Vds used in the semiconductor device including the transistor. When Vds is a predetermined value, when there is Vgs that causes the off-state current of the transistor to be I or less, the off-state current of the transistor is sometimes referred to as I or less. Here, for example, the predetermined value refers to: 0.1V, 0.8V, 1V, 1.2V, 1.8V, 2.5V, 3V, 3.3V, 10V, 12V, 16V, 20V, semiconductor devices guaranteed to include the transistor, etc. The value of the reliability of Vds or the value of Vds used in a semiconductor device including the transistor.

在上述關態電流的說明中,可以將汲極換稱為源極。也就是說,關態電流有時指電晶體處於關閉狀態時的流過源極的電流。In the above description of the off-state current, the drain can be referred to as the source. In other words, the off-state current sometimes refers to the current flowing through the source when the transistor is in the off state.

在本說明書中,有時將關態電流記作洩漏電流。In this specification, the off-state current is sometimes referred to as the leakage current.

在本說明書中,關態電流例如有時指當電晶體處於關閉狀態時流在源極與汲極間的電流。In this specification, the off-state current sometimes refers to, for example, the current flowing between the source and the drain when the transistor is in the off state.

<成膜方法> 雖然本說明書等所公開的金屬膜、半導體膜、無機絕緣膜等各種膜可以利用濺射法或電漿CVD法來形成,但是也可以利用熱CVD(Chemical Vapor Deposition:化學氣相沉積)法等其他方法形成。作為熱CVD法的例子,可以舉出MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法或ALD(Atomic Layer Deposition:原子層沉積)法。 <Film forming method> Although various films such as metal films, semiconductor films, and inorganic insulating films disclosed in this specification can be formed by sputtering or plasma CVD, thermal CVD (Chemical Vapor Deposition) can also be used. Other methods are formed. As an example of the thermal CVD method, a MOCVD (Metal Organic Chemical Vapor Deposition) method or an ALD (Atomic Layer Deposition) method can be cited.

由於熱CVD法是不使用電漿的成膜方法,因此具有不產生電漿損傷所引起的缺陷的優點。Since the thermal CVD method is a film formation method that does not use plasma, it has the advantage of not generating defects caused by plasma damage.

可以以如下方法進行利用熱CVD法的成膜:將源氣體及氧化劑同時供應到處理室內,將處理室內的壓力設定為大氣壓或減壓,使其在基板附近或在基板上起反應。The film formation by the thermal CVD method can be performed by supplying a source gas and an oxidizing agent into the processing chamber at the same time, and setting the pressure in the processing chamber to atmospheric pressure or reduced pressure to cause a reaction near or on the substrate.

另外,可以以如下方法進行利用ALD法的成膜:將處理室內的壓力設定為大氣壓或減壓,將用於反應的源氣體依次引入處理室,並且按該順序反復地引入氣體。例如,藉由切換各開關閥(也稱為高速閥)來將兩種以上的源氣體依次供應到處理室內。為了防止多種源氣體混合,例如,在引入第一源氣體的同時或之後引入惰性氣體(氬或氮等)等,然後引入第二源氣體。注意,當同時引入第一源氣體及惰性氣體時,惰性氣體用作載子氣體,另外,可以在引入第二源氣體的同時引入惰性氣體。另外,也可以利用真空抽氣將第一源氣體排出來代替引入惰性氣體,然後引入第二源氣體。第一源氣體附著到基板表面形成第一層,之後引入的第二源氣體與該第一層起反應,由此第二層層疊在第一層上而形成薄膜。藉由按該順序反復多次地引入氣體直到獲得所希望的厚度為止,可以形成步階覆蓋性良好的薄膜。由於薄膜的厚度可以根據按順序反復引入氣體的次數來進行調節,因此,ALD法可以準確地調節厚度而適用於形成微型FET(Field Effect Transistor:場效應電晶體)。In addition, the film formation by the ALD method may be performed in a method of setting the pressure in the processing chamber to atmospheric pressure or reduced pressure, introducing the source gas for the reaction into the processing chamber sequentially, and repeatedly introducing the gas in this order. For example, by switching each on-off valve (also called a high-speed valve), two or more source gases are sequentially supplied into the processing chamber. In order to prevent the mixing of multiple source gases, for example, an inert gas (argon or nitrogen, etc.) or the like is introduced simultaneously with or after the introduction of the first source gas, and then the second source gas is introduced. Note that when the first source gas and the inert gas are introduced at the same time, the inert gas is used as a carrier gas. In addition, the inert gas may be introduced at the same time as the second source gas. In addition, instead of introducing inert gas, the first source gas may be exhausted by vacuum pumping, and then the second source gas may be introduced. The first source gas is attached to the surface of the substrate to form a first layer, and then the introduced second source gas reacts with the first layer, whereby the second layer is laminated on the first layer to form a thin film. By repeatedly introducing gas in this order until the desired thickness is obtained, a thin film with good step coverage can be formed. Since the thickness of the film can be adjusted according to the number of times that the gas is repeatedly introduced in sequence, the ALD method can accurately adjust the thickness and is suitable for the formation of micro-FETs (Field Effect Transistor: Field Effect Transistor).

利用MOCVD法或ALD法等熱CVD法可以形成以上所示的實施方式所公開的金屬膜、半導體膜、無機絕緣膜等各種膜,例如,當形成In-Ga-Zn-O膜時,使用三甲基銦、三甲基鎵及二甲基鋅。三甲基銦的化學式為In(CH 33。三甲基鎵的化學式為Ga(CH 33。二甲基鋅的化學式為Zn(CH 32。但是,不侷限於上述組合,也可以使用三乙基鎵(化學式為Ga(C 2H 53)代替三甲基鎵,並使用二乙基鋅(化學式為Zn(C 2H 52)代替二甲基鋅。 Various films such as metal films, semiconductor films, and inorganic insulating films disclosed in the above embodiments can be formed by thermal CVD methods such as MOCVD or ALD. For example, when forming an In-Ga-Zn-O film, three Methyl indium, trimethyl gallium and dimethyl zinc. The chemical formula of trimethylindium is In(CH 3 ) 3 . The chemical formula of trimethylgallium is Ga(CH 3 ) 3 . The chemical formula of dimethyl zinc is Zn(CH 3 ) 2 . However, it is not limited to the above combination. Triethylgallium (chemical formula is Ga(C 2 H 5 ) 3 ) can also be used instead of trimethylgallium, and diethyl zinc (chemical formula is Zn(C 2 H 5 ) 2) ) Instead of dimethyl zinc.

例如,在使用利用ALD法的沉積装置形成氧化鉿膜時,使用如下兩種氣體:藉由使包含溶劑和鉿前體化合物的液體(鉿醇鹽或四二甲基醯胺鉿(TDMAH)等鉿醯胺)氣化而得到的源氣體;以及用作氧化劑的臭氧(O 3)。注意,四二甲基醯胺鉿的化學式為Hf[N(CH 32] 4。另外,作為其它材料液有四(乙基甲基醯胺)鉿等。 For example, when a hafnium oxide film is formed using a deposition device using the ALD method, the following two gases are used: by making a liquid containing a solvent and a hafnium precursor compound (hafnium alkoxide or tetradimethyl amide hafnium (TDMAH)), etc. Hafnium amine) source gas obtained by gasification; and ozone (O 3 ) used as an oxidant. Note that the chemical formula of Hafnium Tetradimethylamide is Hf[N(CH 3 ) 2 ] 4 . In addition, as other material liquids, there are tetrakis (ethyl methyl amide) hafnium and the like.

例如,在使用利用ALD法的沉積装置形成氧化鋁膜時,使用如下兩種氣體:藉由使包含溶劑和鋁前體化合物的液體(三甲基鋁(TMA)等)氣化而得到的源氣體;以及用作氧化劑的H 2O。注意,三甲基鋁的化學式為Al(CH 33。另外,作為其它材料液有三(二甲基醯胺)鋁、三異丁基鋁、鋁三(2,2,6,6-四甲基-3,5-庚二酮)等。 For example, when an aluminum oxide film is formed using a deposition apparatus using the ALD method, the following two gases are used: a source obtained by vaporizing a liquid containing a solvent and an aluminum precursor compound (trimethylaluminum (TMA), etc.) Gas; and H 2 O used as an oxidant. Note that the chemical formula of trimethylaluminum is Al(CH 3 ) 3 . In addition, as other material liquids, there are tris(dimethylamide) aluminum, triisobutyl aluminum, aluminum tris(2,2,6,6-tetramethyl-3,5-heptanedione), and the like.

例如,在使用利用ALD法的沉積装置形成氧化矽膜時,使六氯乙矽烷附著在被成膜面上,去除附著物所包含的氯,供應氧化性氣體(O 2、一氧化二氮)的自由基使其與附著物起反應。 For example, when a silicon oxide film is formed using a deposition device using the ALD method, hexachloroethane is attached to the film-forming surface to remove the chlorine contained in the attached matter and supply oxidizing gas (O 2 , nitrous oxide) The free radicals make it react with attachments.

例如,在使用利用ALD法的沉積装置形成鎢膜時,依次反復引入WF 6氣體和B 2H 6氣體形成初始鎢膜,然後使用WF 6氣體和H 2氣體形成鎢膜。注意,也可以使用SiH 4氣體代替B 2H 6氣體。 For example, when forming a tungsten film using a deposition apparatus using an ALD method, WF 6 gas and B 2 H 6 gas are sequentially and repeatedly introduced to form an initial tungsten film, and then WF 6 gas and H 2 gas are used to form a tungsten film. Note that SiH 4 gas can also be used instead of B 2 H 6 gas.

例如,在使用利用ALD法的沉積装置形成氧化物半導體膜如In-Ga-Zn-O膜時,依次反復引入In(CH 33氣體和O 3氣體形成In-O層,然後使用Ga(CH 33氣體和O 3氣體形成GaO層,之後使用Zn(CH 32氣體和O 3氣體形成ZnO層。注意,這些層的順序不侷限於上述例子。此外,也可以混合這些氣體來形成混合化合物層如In-Ga-O層、In-Zn-O層、Ga-Zn-O層等。注意,雖然也可以使用利用Ar等惰性氣體對水進行起泡而得到的H 2O氣體代替O 3氣體,但是較佳為使用不包含H的O 3氣體。另外,也可以使用In(C 2H 53氣體代替In(CH 33氣體。此外,也可以使用Ga(C 2H 53氣體代替Ga(CH 33氣體。另外,也可以使用Zn(CH 32氣體。 For example, when an oxide semiconductor film such as an In-Ga-Zn-O film is formed using a deposition apparatus using the ALD method, In(CH 3 ) 3 gas and O 3 gas are sequentially and repeatedly introduced to form an In-O layer, and then Ga( CH 3 ) 3 gas and O 3 gas are used to form a GaO layer, and then Zn(CH 3 ) 2 gas and O 3 gas are used to form a ZnO layer. Note that the order of these layers is not limited to the above example. In addition, these gases can also be mixed to form a mixed compound layer such as an In-Ga-O layer, an In-Zn-O layer, a Ga-Zn-O layer, and the like. Note that, although it may be used for H 2 O gas bubbling water using an inert gas such as Ar obtained instead of the O 3 gas, but preferably does not contain H O 3 gas. In addition, In(C 2 H 5 ) 3 gas may be used instead of In(CH 3 ) 3 gas. In addition, Ga(C 2 H 5 ) 3 gas may be used instead of Ga(CH 3 ) 3 gas. In addition, Zn(CH 3 ) 2 gas can also be used.

本實施方式可以與其他實施方式的記載適當地組合。This embodiment mode can be combined with descriptions of other embodiments as appropriate.

實施方式8 在本實施方式中,對使用根據本發明的一個實施方式的成像裝置的電子裝置的一個例子進行說明。 Embodiment 8 In this embodiment, an example of an electronic device using the imaging device according to an embodiment of the present invention will be described.

作為使用根據本發明的一個實施方式的成像裝置的電子裝置的具體例子,可以舉出電視機、顯示器等顯示裝置、照明設備、臺式或膝上型個人電腦、文字處理機、再現儲存在DVD(Digital Versatile Disc:數位影音光碟)等記錄介質中的靜態影像或動態影像的影像再現裝置、可攜式CD播放機、收音機、磁帶錄音機、頭戴式耳機音響、音響、導航系統、座鐘、掛鐘、無線電話子機、步話機、行動電話機、車載電話、可攜式遊戲機、平板終端、彈珠機等大型遊戲機、計算器、可攜式資訊終端、電子筆記本、電子書閱讀器終端、電子翻譯器、聲音輸入器、視頻攝影機、數位靜態照相機、電動剃鬚刀、微波爐等高頻加熱裝置、電鍋、洗衣機、吸塵器、熱水器、電扇、吹風機、空調設備諸如空調器、加濕器、除濕器等、洗碗機、烘碗機、乾衣機、烘被機、電冷藏箱、電冷凍箱、電冷藏冷凍箱、DNA保存用冰凍器、手電筒、鏈鋸等工具、煙探測器、透析裝置等醫療設備、傳真機、印表機、複合式印表機、自動取款機(ATM)、自動販賣機等。再者,還可以舉出工業設備諸如引導燈、信號機、傳送帶、電扶梯、電梯、工業機器人、蓄電系統、用於電力均勻化或智慧電網的蓄電裝置。另外,使用燃料的發動機、使用來自非水類二次電池的電力的電動機或藉由使用燃料的發動機推進的移動體等也包括在電子裝置的範疇內。作為上述移動體,例如可以舉出電動汽車(EV)、兼具內燃機和電動機的混合動力汽車(HEV)、插電式混合動力汽車(PHEV)、使用履帶代替這些的車輪的履帶式車輛、包括電動輔助自行車的電動自行車、摩托車、電動輪椅、高爾夫球車、小型或大型船舶、潛水艇、直升機、飛機、火箭、人造衛星、太空探測器、行星探測器、太空船等。As specific examples of electronic devices that use the imaging device according to an embodiment of the present invention, display devices such as televisions, monitors, lighting equipment, desktop or laptop personal computers, word processors, and reproductions stored on DVDs can be cited. (Digital Versatile Disc: digital audio-visual disc) and other recording media such as still images or moving images in image reproduction devices, portable CD players, radios, tape recorders, headset speakers, audio systems, navigation systems, desk clocks, wall clocks , Wireless phone handsets, walkie-talkies, mobile phones, car phones, portable game consoles, tablet terminals, pachinko machines and other large game consoles, calculators, portable information terminals, electronic notebooks, e-book reader terminals, Electronic translators, voice input devices, video cameras, digital still cameras, electric shavers, microwave ovens and other high-frequency heating devices, electric cookers, washing machines, vacuum cleaners, water heaters, electric fans, hair dryers, air-conditioning equipment such as air conditioners, humidifiers, Dehumidifiers, dishwashers, dish dryers, clothes dryers, quilt dryers, electric refrigerators, electric freezers, electric refrigerator-freezers, DNA storage freezers, flashlights, chainsaws and other tools, smoke detectors, Dialysis equipment and other medical equipment, fax machines, printers, compound printers, automatic teller machines (ATM), vending machines, etc. Furthermore, industrial equipment such as guide lights, semaphores, conveyor belts, escalators, elevators, industrial robots, power storage systems, and power storage devices for power homogenization or smart grids can also be cited. In addition, fuel-based engines, electric motors using electric power from non-aqueous secondary batteries, or mobile bodies propelled by fuel-based engines are also included in the category of electronic devices. Examples of the above-mentioned moving bodies include electric vehicles (EV), hybrid electric vehicles (HEV) with both an internal combustion engine and an electric motor, plug-in hybrid electric vehicles (PHEV), crawler-type vehicles that use crawlers instead of these wheels, including Electric bicycles such as electric bicycles, motorcycles, electric wheelchairs, golf carts, small or large ships, submarines, helicopters, airplanes, rockets, artificial satellites, space probes, planetary probes, space ships, etc.

圖22A是視頻攝影機,包括第一外殼1041、第二外殼1042、顯示部1043、操作鍵1044、透鏡1045、連接部1046等。操作鍵1044及透鏡1045設置在第一外殼1041中,而顯示部1043設置在第二外殼1042中。而且,第一外殼1041和第二外殼1042由連接部1046連接,可以由連接部1046改變第一外殼1041和第二外殼1042之間的角度。顯示部1043的影像也可以根據連接部1046處的第一外殼1041和第二外殼1042之間的角度切換。可以在透鏡1045的焦點的位置上具備本發明的一個實施方式的成像裝置。FIG. 22A is a video camera, which includes a first housing 1041, a second housing 1042, a display portion 1043, operation keys 1044, a lens 1045, a connecting portion 1046, and the like. The operation keys 1044 and the lens 1045 are provided in the first housing 1041, and the display portion 1043 is provided in the second housing 1042. Moreover, the first housing 1041 and the second housing 1042 are connected by a connecting portion 1046, and the angle between the first housing 1041 and the second housing 1042 can be changed by the connecting portion 1046. The image of the display portion 1043 can also be switched according to the angle between the first housing 1041 and the second housing 1042 at the connecting portion 1046. The imaging device according to one embodiment of the present invention may be provided at the position of the focal point of the lens 1045.

圖22B是行動電話,在外殼1051中設置有顯示部1052、麥克風1057、揚聲器1054、相機1059、輸入輸出端子1056以及操作用的按鈕1055等。可以將本發明的一個實施方式的成像裝置用於相機1059。FIG. 22B is a mobile phone, and a housing 1051 is provided with a display unit 1052, a microphone 1057, a speaker 1054, a camera 1059, an input/output terminal 1056, operation buttons 1055, and the like. The imaging device of one embodiment of the present invention can be used for the camera 1059.

圖22C是數位相機,該數位相機包括外殼1021、快門按鈕1022、麥克風1023、發光部1027以及透鏡1025等。可以在透鏡1025的焦點的位置上具備本發明的一個實施方式的成像裝置。FIG. 22C is a digital camera that includes a housing 1021, a shutter button 1022, a microphone 1023, a light-emitting part 1027, a lens 1025, and the like. The imaging device according to one embodiment of the present invention may be provided at the position of the focal point of the lens 1025.

圖22D是可攜式遊戲機,該可攜式遊戲機包括外殼1001、外殼1002、顯示部1003、顯示部1004、麥克風1005、揚聲器1006、操作鍵1007、觸控筆1008以及相機1009等。注意,雖然圖22D所示的可攜式遊戲機包括兩個顯示部1003和顯示部1004,但是可攜式遊戲機所包括的顯示部的個數不限於此。可以將本發明的一個實施方式的成像裝置用於相機1009。22D is a portable game machine. The portable game machine includes a housing 1001, a housing 1002, a display portion 1003, a display portion 1004, a microphone 1005, a speaker 1006, operation keys 1007, a stylus 1008, a camera 1009, and the like. Note that although the portable game machine shown in FIG. 22D includes two display parts 1003 and a display part 1004, the number of display parts included in the portable game machine is not limited to this. The imaging device of one embodiment of the present invention can be used for the camera 1009.

圖22E是手錶型資訊終端,該手錶型資訊終端包括外殼1031、顯示部1032、腕帶1033以及相機1039等。顯示部1032也可以是觸控面板。可以將本發明的一個實施方式的成像裝置用於相機1039。22E is a watch-type information terminal. The watch-type information terminal includes a housing 1031, a display portion 1032, a wristband 1033, a camera 1039, and the like. The display unit 1032 may be a touch panel. The imaging device of one embodiment of the present invention can be used for the camera 1039.

圖22F是可攜式資料終端,該可攜式資料終端包括第一外殼1011、顯示部1012、相機1019等。顯示部1012所具有的觸控面板功能可以實現資訊的輸入及輸出。可以將本發明的一個實施方式的成像裝置用於相機1019。FIG. 22F is a portable data terminal. The portable data terminal includes a first housing 1011, a display portion 1012, a camera 1019, and the like. The touch panel function of the display unit 1012 can realize the input and output of information. The imaging device of one embodiment of the present invention can be used for the camera 1019.

當然,只要具備本發明的一個實施方式的成像裝置,就不侷限於上述所示的電子裝置。Of course, as long as the imaging device of one embodiment of the present invention is provided, it is not limited to the electronic device shown above.

本實施方式可以與其他實施方式的記載適當地組合。This embodiment mode can be combined with descriptions of other embodiments as appropriate.

10  半導體裝置 20  像素部 21  像素 30  電路 40  電路 41  電路 50  電路 60  電路 101  光電轉換元件 102  電晶體 103  電晶體 104  電晶體 105  電容器 110  電晶體 120  電晶體 201  導電層 202  導電層 203  導電層 204  導電層 211  導電層 212  導電層 221  半導體層 222  半導體層 231  導電層 232  導電層 233  導電層 234  導電層 241  導電層 242  導電層 243  導電層 250  導電層 251  開口部 252  開口部 253  開口部 254  開口部 255  開口部 256  開口部 257  開口部 300  成像裝置 310  光電檢測部 320  資料處理部 321  電路 400  電晶體 401  絕緣層 402  絕緣層 403  絕緣層 411  絕緣層 412  絕緣層 413  絕緣層 414  層 417  絕緣層 421  半導體層 443  電極 444  電極 445  電極 446  電極 450  絕緣層 451  電極 452  電晶體 455  雜質元素 490  陷阱能階 510  電晶體 511  電晶體 520  電晶體 521  電晶體 530  電晶體 531  電晶體 540  電晶體 541  電晶體 550  電晶體 551  電晶體 801  電晶體 802  電晶體 803  光電二極體 804  電晶體 805  電晶體 806  電晶體 807  電晶體 810  半導體基板 811  元件分離層 812  雜質區域 813  絕緣層 814  導電層 815  側壁 816  絕緣層 817  絕緣層 818  導電層 819  佈線 820  絕緣層 821  導電層 822  絕緣層 823  導電層 824  氧化物半導體層 825  導電層 826  絕緣層 827  導電層 828  絕緣層 829  絕緣層 830  導電層 831  佈線 832  n型半導體層 833  i型半導體層 834  p型半導體層 835  絕緣層 836  導電層 837  佈線 842  雜質區域 843  絕緣層 844  導電層 852  雜質區域 853  絕緣層 854  導電層 861  雜質區域 862  導電層 900  元件 901  基板 902  電極 903  光電轉換層 904  電極 905  電洞注入能障層 1001  外殼 1002  外殼 1003  顯示部 1004  顯示部 1005  麥克風 1006  揚聲器 1007  操作鍵 1008  觸控筆 1009  相機 1011  外殼 1012  顯示部 1019  相機 1021  外殼 1022  快門按鈕 1023  麥克風 1025  透鏡 1027  發光部 1031  外殼 1032  顯示部 1033  腕帶 1039  相機 1041  外殼 1042  外殼 1043  顯示部 1044  操作鍵 1045  透鏡 1046  連接部 1051  外殼 1052  顯示部 1054  揚聲器 1055  按鈕 1056  輸入輸出端子 1057  麥克風 1059  相機 1100  層 1400  層 1500  絕緣層 1510  遮光層 1520  有機樹脂層 1530a  濾色片 1530b  濾色片 1530c  濾色片 1540  微透鏡陣列 1550  光學轉換層 1600  支撐基板 10 Semiconductor device 20 Pixel 21 pixels 30 Circuit 40 Circuit 41 Circuit 50 Circuit 60 Circuit 101 Photoelectric conversion element 102 Transistor 103 Transistor 104 Transistor 105 Capacitor 110 Transistor 120 Transistor 201 Conductive layer 202 Conductive layer 203 Conductive layer 204 Conductive layer 211 Conductive layer 212 Conductive layer 221 Semiconductor layer 222 Semiconductor layer 231 Conductive layer 232 Conductive layer 233 Conductive layer 234 Conductive layer 241 Conductive layer 242 Conductive layer 243 Conductive layer 250 conductive layer 251 Opening 252 Opening 253 Opening 254 Opening 255 Opening 256 Opening 257 Opening 300 imaging device 310 Photoelectric detection department 320 Data Processing Department 321 Circuit 400 Transistor 401 Insulation layer 402 Insulation layer 403 Insulation layer 411 Insulation layer 412 Insulation layer 413 Insulation layer 414 floors 417 Insulation layer 421 Semiconductor layer 443 Electrode 444 Electrode 445 Electrode 446 Electrode 450 insulation layer 451 Electrode 452 Transistor 455 Impurity Elements 490 Trap Energy Level 510 Transistor 511 Transistor 520 Transistor 521 Transistor 530 Transistor 531 Transistor 540 Transistor 541 Transistor 550 Transistor 551 Transistor 801 Transistor 802 Transistor 803 Photodiode 804 Transistor 805 Transistor 806 Transistor 807 Transistor 810 Semiconductor substrate 811 Component separation layer 812 Impurity area 813 Insulation layer 814 Conductive layer 815 Side Wall 816 Insulation layer 817 Insulation layer 818 Conductive layer 819 Wiring 820 Insulation layer 821 Conductive layer 822 Insulation layer 823 Conductive layer 824 Oxide semiconductor layer 825 Conductive layer 826 Insulation layer 827 Conductive layer 828 Insulation layer 829 Insulation layer 830 Conductive layer 831 Wiring 832 n-type semiconductor layer 833 i-type semiconductor layer 834 p-type semiconductor layer 835 Insulation layer 836 Conductive layer 837 Wiring 842 Impurity area 843 Insulation layer 844 Conductive layer 852 Impurity area 853 Insulation layer 854 Conductive layer 861 Impurity area 862 Conductive layer 900 components 901 Substrate 902 Electrode 903 Photoelectric conversion layer 904 Electrode 905 The hole is injected into the energy barrier layer 1001 Shell 1002 Shell 1003 Display 1004 Display 1005 Microphone 1006 Speaker 1007 Operation key 1008 stylus 1009 Camera 1011 Shell 1012 Display 1019 Camera 1021 Shell 1022 Shutter button 1023 Microphone 1025 Lens 1027 Light-emitting part 1031 Shell 1032 Display 1033 Wristband 1039 Camera 1041 Shell 1042 Shell 1043 Display 1044 Operation key 1045 Lens 1046 Connection part 1051 Shell 1052 Display 1054 Speaker 1055 button 1056 Input and output terminals 1057 Microphone 1059 Camera 1100 floors 1400 floors 1500 Insulation layer 1510 Shading layer 1520 Organic resin layer 1530a Color filter 1530b Color filter 1530c color filter 1540 Micro lens array 1550 Optical conversion layer 1600 Support substrate

在圖式中: 圖1是說明半導體裝置的結構的一個例子的圖; 圖2是說明半導體裝置的結構的一個例子的電路圖; 圖3是說明半導體裝置的結構的一個例子的電路圖; 圖4是時序圖; 圖5是說明像素的結構的一個例子的圖; 圖6A至圖6D是說明像素的結構的一個例子的電路圖; 圖7A和圖7B是說明像素的結構的一個例子的電路圖; 圖8A至圖8D是說明像素的結構的一個例子的電路圖; 圖9是說明像素部的結構的一個例子的電路圖; 圖10是說明成像裝置的結構的一個例子的圖; 圖11A至圖11C是說明半導體裝置的剖面結構的一個例子的圖; 圖12A至圖12C是說明半導體裝置的剖面結構的一個例子的圖; 圖13A和圖13B是說明半導體裝置的剖面結構的一個例子的圖; 圖14A和圖14B是說明成像裝置的結構的一個例子的圖; 圖15A至圖15C是說明像素的結構的一個例子的圖; 圖16A和圖16B是說明電晶體的結構的一個例子的圖; 圖17A1、圖17A2、圖17B1及圖17B2是說明電晶體的結構的一個例子的圖; 圖18A1、圖18A2、圖18A3、圖18B1及圖18B2是說明電晶體的結構的一個例子的圖; 圖19A至圖19C是說明電晶體的結構的一個例子的圖; 圖20A至圖20C是說明電晶體的結構的一個例子的圖; 圖21A至圖21C是說明電晶體的結構的一個例子的圖; 圖22A至圖22F是說明電子裝置的圖。 In the scheme: FIG. 1 is a diagram illustrating an example of the structure of a semiconductor device; FIG. 2 is a circuit diagram illustrating an example of the structure of a semiconductor device; FIG. 3 is a circuit diagram illustrating an example of the structure of a semiconductor device; Figure 4 is a timing diagram; FIG. 5 is a diagram illustrating an example of the structure of a pixel; 6A to 6D are circuit diagrams illustrating an example of the structure of a pixel; 7A and 7B are circuit diagrams illustrating an example of the structure of a pixel; 8A to 8D are circuit diagrams illustrating an example of the structure of a pixel; FIG. 9 is a circuit diagram illustrating an example of the structure of the pixel portion; FIG. 10 is a diagram illustrating an example of the structure of an imaging device; 11A to 11C are diagrams illustrating an example of a cross-sectional structure of a semiconductor device; 12A to 12C are diagrams illustrating an example of a cross-sectional structure of a semiconductor device; 13A and 13B are diagrams illustrating an example of a cross-sectional structure of a semiconductor device; 14A and 14B are diagrams illustrating an example of the structure of an imaging device; 15A to 15C are diagrams illustrating an example of the structure of a pixel; 16A and 16B are diagrams illustrating an example of the structure of a transistor; 17A1, FIG. 17A2, FIG. 17B1, and FIG. 17B2 are diagrams illustrating an example of the structure of a transistor; 18A1, 18A2, 18A3, 18B1, and 18B2 are diagrams illustrating an example of the structure of a transistor; 19A to 19C are diagrams illustrating an example of the structure of a transistor; 20A to 20C are diagrams illustrating an example of the structure of a transistor; 21A to 21C are diagrams illustrating an example of the structure of a transistor; 22A to 22F are diagrams illustrating an electronic device.

none

10  半導體裝置 20  像素部 21  像素 30  電路 40  電路 S1~Sn  開關 OUT[1]~OUT[m]  佈線 SE[1]~SE[n]  佈線 VIN  佈線 10 Semiconductor device 20 Pixel 21 pixels 30 Circuit 40 Circuit S1~Sn switch OUT[1]~OUT[m] Wiring SE[1]~SE[n] Wiring VIN wiring

Claims (4)

一種包括像素部的成像裝置,該像素部包括:光電二極體;位於該光電二極體上的氧化矽膜;位於該氧化矽膜上的包括鎢的遮光層;該遮光層上的濾色片;第一電晶體;第二電晶體;第三電晶體;以及電容器,其中,該第一電晶體的源極和汲極中的一個與該光電二極體的一個電極電連接,該第一電晶體的該源極和該汲極中的另一個與該第二電晶體的源極和汲極中的一個、該第三電晶體的閘極及該電容器的一個電極電連接,該光電二極體的另一個電極與該電容器的另一個電極電連接,並且,該第一電晶體的閘極線、該第二電晶體的閘極線、與該光電二極體的該另一個電極電連接的第一佈線及與該第三電晶體的源極和汲極中的一個電連接的第二佈線係形成在同一層上。 An imaging device including a pixel portion, the pixel portion including: a photodiode; a silicon oxide film on the photodiode; a light-shielding layer including tungsten on the silicon oxide film; and a color filter on the light-shielding layer A first transistor; a second transistor; a third transistor; and a capacitor, wherein one of the source and drain of the first transistor is electrically connected to an electrode of the photodiode, and the first transistor The other of the source and drain of a transistor is electrically connected to one of the source and drain of the second transistor, the gate of the third transistor, and an electrode of the capacitor, the photoelectric The other electrode of the diode is electrically connected to the other electrode of the capacitor, and the gate line of the first transistor, the gate line of the second transistor, and the other electrode of the photodiode The first wiring electrically connected and the second wiring electrically connected to one of the source and drain of the third transistor are formed on the same layer. 一種包括像素部的成像裝置,該像素部包括:光電二極體;位於該光電二極體上的氧化矽膜;位於該氧化矽膜上的包括鎢的遮光層; 該遮光層上的濾色片;第一電晶體;第二電晶體;第三電晶體;以及電容器,其中,該第一電晶體的源極和汲極中的一個與該光電二極體的一個電極電連接,該第一電晶體的該源極和該汲極中的另一個與該第二電晶體的源極和汲極中的一個、該第三電晶體的閘極及該電容器的一個電極電連接,該光電二極體的另一個電極與該電容器的另一個電極電連接,在平面圖中,該第一電晶體、該第二電晶體及該第三電晶體具有彼此不同形狀的閘極電極,並且,該第一電晶體的閘極線、該第二電晶體的閘極線、與該光電二極體的該另一個電極電連接的第一佈線及與該第三電晶體的源極和汲極中的一個電連接的第二佈線係形成在同一層上。 An imaging device including a pixel portion, the pixel portion including: a photodiode; a silicon oxide film on the photodiode; a light shielding layer including tungsten on the silicon oxide film; The color filter on the light-shielding layer; a first transistor; a second transistor; a third transistor; and a capacitor, wherein one of the source and drain of the first transistor is connected to the photodiode One electrode is electrically connected, the other of the source and drain of the first transistor and one of the source and drain of the second transistor, the gate of the third transistor, and the capacitor One electrode is electrically connected, and the other electrode of the photodiode is electrically connected to the other electrode of the capacitor. In a plan view, the first transistor, the second transistor, and the third transistor have different shapes from each other. Gate electrode, and the gate line of the first transistor, the gate line of the second transistor, the first wiring electrically connected to the other electrode of the photodiode, and the third transistor The second wiring electrically connected to one of the source and drain is formed on the same layer. 一種包括像素部的成像裝置,該像素部包括:光電二極體;位於該光電二極體上的氧化矽膜;位於該氧化矽膜上的包括鎢的遮光層;該遮光層上的濾色片;第一電晶體;第二電晶體; 第三電晶體;以及電容器,其中,該第一電晶體的源極和汲極中的一個與該光電二極體的一個電極電連接,該第一電晶體的該源極和該汲極中的另一個與該第二電晶體的源極和汲極中的一個、該第三電晶體的閘極及該電容器的一個電極電連接,該光電二極體的另一個電極與該電容器的另一個電極電連接,在平面圖中,該第一電晶體、該第二電晶體及該第三電晶體具有彼此不同形狀的導電膜,該些導電膜包括用作閘極電極的區域,在平面圖中,到達該第二電晶體的該閘極電極及該第三電晶體的該閘極電極的開口部自該些閘極電極的每一個中心偏移,並且,該第一電晶體的閘極線、該第二電晶體的閘極線、與該光電二極體的該另一個電極電連接的第一佈線及與該第三電晶體的源極和汲極中的一個電連接的第二佈線係形成在同一層上。 An imaging device including a pixel portion, the pixel portion including: a photodiode; a silicon oxide film on the photodiode; a light-shielding layer including tungsten on the silicon oxide film; and a color filter on the light-shielding layer Slice; first transistor; second transistor; A third transistor; and a capacitor, wherein one of the source and drain of the first transistor is electrically connected to an electrode of the photodiode, and the source and the drain of the first transistor are The other is electrically connected to one of the source and drain of the second transistor, the gate of the third transistor and one electrode of the capacitor, and the other electrode of the photodiode is electrically connected to the other electrode of the capacitor. One electrode is electrically connected. In a plan view, the first transistor, the second transistor, and the third transistor have conductive films of different shapes from each other. The conductive films include regions used as gate electrodes. , The openings reaching the gate electrode of the second transistor and the gate electrode of the third transistor are offset from the center of each of the gate electrodes, and the gate line of the first transistor , The gate line of the second transistor, the first wiring electrically connected to the other electrode of the photodiode, and the second wiring electrically connected to one of the source and drain of the third transistor The lines are formed on the same layer. 如請求項1至3中任一項之成像裝置,其中,該氧化矽膜與該光電二極體接觸;並且,包括鎢的該遮光層與該氧化矽膜接觸。 The imaging device according to any one of claims 1 to 3, wherein the silicon oxide film is in contact with the photodiode; and the light shielding layer including tungsten is in contact with the silicon oxide film.
TW110124854A 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device TWI747798B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014222882 2014-10-31
JP2014-222882 2014-10-31

Publications (2)

Publication Number Publication Date
TW202141966A TW202141966A (en) 2021-11-01
TWI747798B true TWI747798B (en) 2021-11-21

Family

ID=55853554

Family Applications (6)

Application Number Title Priority Date Filing Date
TW112133492A TW202402040A (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW110141700A TWI817242B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW104135838A TWI680572B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW110109846A TWI734663B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW108143783A TWI725641B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW110124854A TWI747798B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device

Family Applications Before (5)

Application Number Title Priority Date Filing Date
TW112133492A TW202402040A (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW110141700A TWI817242B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW104135838A TWI680572B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW110109846A TWI734663B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device
TW108143783A TWI725641B (en) 2014-10-31 2015-10-30 Semiconductor device, imaging device, and electronic device

Country Status (4)

Country Link
US (3) US20160126283A1 (en)
JP (5) JP6587497B2 (en)
KR (3) KR102472843B1 (en)
TW (6) TW202402040A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025499A1 (en) * 2013-08-19 2015-02-26 出光興産株式会社 Oxide semiconductor substrate and schottky barrier diode
JP6587497B2 (en) * 2014-10-31 2019-10-09 株式会社半導体エネルギー研究所 Semiconductor device
TWI738569B (en) 2015-07-07 2021-09-01 日商半導體能源研究所股份有限公司 Imaging device and operating method thereof
JP6176583B1 (en) * 2015-11-12 2017-08-09 パナソニックIpマネジメント株式会社 Photodetector
CN114664949A (en) 2016-06-03 2022-06-24 株式会社半导体能源研究所 Field effect transistor
KR102458660B1 (en) * 2016-08-03 2022-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR102636734B1 (en) * 2016-09-07 2024-02-14 삼성디스플레이 주식회사 Organic light emitting diode display
DE112017004584T5 (en) * 2016-09-12 2019-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP6892577B2 (en) * 2017-04-28 2021-06-23 天馬微電子有限公司 Image sensor and sensor device
JP2019145596A (en) * 2018-02-16 2019-08-29 シャープ株式会社 Active matrix substrate, X-ray imaging panel including the same, and manufacturing method
JP2019145594A (en) * 2018-02-16 2019-08-29 シャープ株式会社 Active matrix substrate, imaging panel including the same, and manufacturing method
CN109061713B (en) * 2018-08-08 2020-06-30 京东方科技集团股份有限公司 Pixel circuit, array substrate, and X-ray intensity detection device and method
CN109037389B (en) * 2018-08-22 2024-04-30 东莞理工学院 Oxide-based thin film transistor type ultraviolet detector and preparation method thereof
CN111898506A (en) * 2020-07-21 2020-11-06 武汉华星光电技术有限公司 Photosensitive sensor, array substrate, display panel and electronic equipment
TWI779943B (en) * 2021-12-01 2022-10-01 友達光電股份有限公司 Photosensitive device
US11978751B1 (en) 2023-01-10 2024-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Pixel sensors and methods of forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201143052A (en) * 2009-12-18 2011-12-01 Sony Corp Solid-state imaging device, method for producing the same, and imaging apparatus
US20130070133A1 (en) * 2011-05-25 2013-03-21 Olympus Corporation Solid-state imaging device, imaging device, and signal reading method
TW201432891A (en) * 2013-02-04 2014-08-16 Toshiba Kk Camera module, solid-state imaging device, and method of manufacturing the same

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107655A (en) 1997-08-15 2000-08-22 Eastman Kodak Company Active pixel image sensor with shared amplifier read-out
JP3759435B2 (en) * 2001-07-11 2006-03-22 ソニー株式会社 XY address type solid-state imaging device
US20060203114A1 (en) * 2005-03-08 2006-09-14 Eastman Kodak Company Three-transistor CMOS active pixel
KR100890152B1 (en) * 2006-12-22 2009-03-20 매그나칩 반도체 유한회사 Small Size, High Gain, and Low Noise Pixel for CMOS Image Sensors
JP5167677B2 (en) * 2007-04-12 2013-03-21 ソニー株式会社 Solid-state imaging device, driving method for solid-state imaging device, signal processing method for solid-state imaging device, and imaging device
JP4389959B2 (en) * 2007-04-23 2009-12-24 ソニー株式会社 Solid-state imaging device, signal processing method for solid-state imaging device, and imaging device
JP4425950B2 (en) * 2007-06-01 2010-03-03 シャープ株式会社 Solid-state imaging device and electronic information device
JP4486985B2 (en) * 2007-08-06 2010-06-23 シャープ株式会社 Solid-state imaging device and electronic information device
JP2009081705A (en) * 2007-09-26 2009-04-16 Panasonic Corp Solid-state imaging device, received light intensity measuring device and received light intensity measuring method
JP5130946B2 (en) * 2008-02-15 2013-01-30 ソニー株式会社 Solid-state imaging device, camera and electronic device
JP5029624B2 (en) * 2009-01-15 2012-09-19 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP2009296016A (en) * 2009-09-18 2009-12-17 Renesas Technology Corp Solid-state imaging device
WO2011074506A1 (en) * 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
EP3955303A3 (en) * 2009-12-26 2022-05-11 Canon Kabushiki Kaisha Solid-state image pickup apparatus and image pickup system
KR101832119B1 (en) * 2010-02-19 2018-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5810493B2 (en) * 2010-09-03 2015-11-11 ソニー株式会社 Semiconductor integrated circuit, electronic equipment, solid-state imaging device, imaging device
US9103724B2 (en) * 2010-11-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising photosensor comprising oxide semiconductor, method for driving the semiconductor device, method for driving the photosensor, and electronic device
US8963063B2 (en) * 2011-05-03 2015-02-24 The Charles Stark Draper Laboratory, Inc. Systems and methods for adding or subtracting pixels
US9257468B2 (en) * 2012-11-21 2016-02-09 Olympus Corporation Solid-state imaging device, imaging device, and signal reading medium that accumulates an amplified signal without digitization
JP6003291B2 (en) * 2011-08-22 2016-10-05 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP5814050B2 (en) * 2011-09-02 2015-11-17 ルネサスエレクトロニクス株式会社 Solid-state imaging device
WO2013084406A1 (en) * 2011-12-08 2013-06-13 パナソニック株式会社 Solid-state imaging device, and imaging device
JP6053505B2 (en) * 2012-01-18 2016-12-27 キヤノン株式会社 Solid-state imaging device
JP2014049727A (en) * 2012-09-04 2014-03-17 Canon Inc Solid-state image pickup device
JP6325229B2 (en) * 2012-10-17 2018-05-16 株式会社半導体エネルギー研究所 Manufacturing method of oxide film
JP5534081B2 (en) * 2013-05-20 2014-06-25 ソニー株式会社 Manufacturing method of solid-state imaging device
JP6260787B2 (en) * 2014-05-23 2018-01-17 パナソニックIpマネジメント株式会社 Imaging device
JP6587497B2 (en) * 2014-10-31 2019-10-09 株式会社半導体エネルギー研究所 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201143052A (en) * 2009-12-18 2011-12-01 Sony Corp Solid-state imaging device, method for producing the same, and imaging apparatus
US20130070133A1 (en) * 2011-05-25 2013-03-21 Olympus Corporation Solid-state imaging device, imaging device, and signal reading method
TW201432891A (en) * 2013-02-04 2014-08-16 Toshiba Kk Camera module, solid-state imaging device, and method of manufacturing the same

Also Published As

Publication number Publication date
TWI734663B (en) 2021-07-21
TWI680572B (en) 2019-12-21
JP2024069382A (en) 2024-05-21
TW202141966A (en) 2021-11-01
US20240015381A1 (en) 2024-01-11
JP2020079924A (en) 2020-05-28
JP7454636B2 (en) 2024-03-22
US20200304691A1 (en) 2020-09-24
JP6587497B2 (en) 2019-10-09
TW202127863A (en) 2021-07-16
JP7196255B2 (en) 2022-12-26
TW202402040A (en) 2024-01-01
KR20160052341A (en) 2016-05-12
TW201622122A (en) 2016-06-16
JP6945604B2 (en) 2021-10-06
JP2023026473A (en) 2023-02-24
JP2016092824A (en) 2016-05-23
KR102472843B1 (en) 2022-11-30
TW202207700A (en) 2022-02-16
TW202027489A (en) 2020-07-16
KR20240109972A (en) 2024-07-12
TWI725641B (en) 2021-04-21
KR20220164824A (en) 2022-12-13
KR102576928B1 (en) 2023-09-08
KR20230134105A (en) 2023-09-20
TWI817242B (en) 2023-10-01
JP2022002322A (en) 2022-01-06
KR102683744B1 (en) 2024-07-09
US20160126283A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
JP7454636B2 (en) semiconductor equipment
JP7466016B2 (en) Semiconductor Device
KR102572674B1 (en) Imaging device and electronic device
TWI661543B (en) Semiconductor device, method for driving semiconductor device, and method for driving electronic device
KR102723675B1 (en) Semiconductor device, imaging device, and electronic device