TWI747778B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI747778B
TWI747778B TW110112469A TW110112469A TWI747778B TW I747778 B TWI747778 B TW I747778B TW 110112469 A TW110112469 A TW 110112469A TW 110112469 A TW110112469 A TW 110112469A TW I747778 B TWI747778 B TW I747778B
Authority
TW
Taiwan
Prior art keywords
well region
semiconductor device
doped regions
region
doped
Prior art date
Application number
TW110112469A
Other languages
Chinese (zh)
Other versions
TW202240836A (en
Inventor
卡魯納 尼迪
林志軒
李建興
邱華琦
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW110112469A priority Critical patent/TWI747778B/en
Application granted granted Critical
Publication of TWI747778B publication Critical patent/TWI747778B/en
Publication of TW202240836A publication Critical patent/TW202240836A/en

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor device includes at least one transistor, a shallow well region, a guard ring, and a plurality of first and second doped regions. The transistor is on a substrate and includes a source structure, a gate structure, and a drain structure. The shallow well region surrounds the transistor. The shallow well region has a first conductivity type. The guard ring surrounds the shallow well region. The guard ring has the first conductivity type. The first and second doped regions are disposed within the guard ring and surround the well region. The first doped regions and the second doped regions are alternately arranged in a shape of a loop. Each of the first doped regions and each of the second doped regions have opposite conductivity types.

Description

半導體裝置Semiconductor device

本發明實施例是關於半導體裝置,特別是關於具有用於靜電放電系統的保護環之積體電路。The embodiment of the present invention relates to a semiconductor device, and particularly relates to an integrated circuit having a guard ring for an electrostatic discharge system.

半導體裝置可以應用於各種領域,例如:顯示驅動器IC、電源管理IC(或高功率電源管理IC)、分離式電源裝置(discrete power device)、感測裝置、指紋感測器IC、記憶體等等。半導體裝置通常以以下方式製造:在半導體基板上依序沉積絕緣或介電層、導電層、及半導體材料層,並使用微影技術將各種材料層圖案化,以在半導體基板上形成電路組件及元件。Semiconductor devices can be used in various fields, such as display driver ICs, power management ICs (or high-power power management ICs), discrete power devices, sensing devices, fingerprint sensor ICs, memory, etc. . Semiconductor devices are usually manufactured in the following manner: an insulating or dielectric layer, a conductive layer, and a semiconductor material layer are sequentially deposited on a semiconductor substrate, and various material layers are patterned using lithography technology to form circuit components and element.

在持續微縮半導體裝置的過程中產生了許多挑戰。舉例而言,在製程、製造、組裝、運送、封裝、測試、或操作期間,半導體裝置可能遭受靜電放電(ESD)損壞。因此,半導體裝置需要靜電放電保護以防止可能的靜電放電損壞並且改善裝置可靠度。雖然現有的半導體裝置的靜電放電保護已大致上合乎需求,但並非在各方面都完全令人滿意。Many challenges have arisen in the process of continuing to shrink semiconductor devices. For example, during the manufacturing process, manufacturing, assembly, shipping, packaging, testing, or operation, the semiconductor device may be damaged by electrostatic discharge (ESD). Therefore, semiconductor devices require electrostatic discharge protection to prevent possible electrostatic discharge damage and improve device reliability. Although the ESD protection of existing semiconductor devices has generally met the requirements, it is not completely satisfactory in all aspects.

本發明實施例提供一種半導體裝置,包括:至少一電晶體,於基板上,所述至少一電晶體包括源極結構、閘極結構、及汲極結構;淺井區,圍繞所述至少一電晶體,其中淺井區具有第一導電類型;保護環,圍繞淺井區,其中保護環具有第一導電類型;以及複數個第一摻雜區及複數個第二摻雜區,設置在保護環內並圍繞淺井區,其中所述第一摻雜區及所述第二摻雜區交替設置,以形成環形,且所述第一摻雜區中的每一個及所述第二摻雜區中的每一個具有相反的導電類型。An embodiment of the present invention provides a semiconductor device, including: at least one transistor on a substrate, the at least one transistor including a source structure, a gate structure, and a drain structure; a shallow well region surrounding the at least one transistor , Wherein the shallow well region has the first conductivity type; the guard ring surrounds the shallow well region, wherein the guard ring has the first conductivity type; and a plurality of first doped regions and a plurality of second doped regions are arranged in the guard ring and surround A shallow well region, wherein the first doped regions and the second doped regions are alternately arranged to form a ring shape, and each of the first doped regions and each of the second doped regions Has the opposite conductivity type.

以下揭露提供了許多的實施例或範例,用於實施本發明實施例之不同元件。各元件及其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一及第二元件直接接觸的實施例,也可能包含額外的元件形成在第一及第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在各種範例中重複參考數值以及/或字母。如此重複是為了簡明及清楚之目的,而非用以表示所討論的不同實施例及/或配置之間的關係。The following disclosure provides many embodiments or examples for implementing different elements of the embodiments of the present invention. Specific examples of the components and their configurations are described below to simplify the description of the embodiments of the present invention. Of course, these are only examples and are not intended to limit the embodiments of the present invention. For example, if the description mentions that the first element is formed on the second element, it may include an embodiment in which the first and second elements are in direct contact, or may include additional elements formed between the first and second elements. , So that they do not directly touch the embodiment. In addition, the embodiment of the present invention may repeat reference numerals and/or letters in various examples. Such repetition is for the purpose of conciseness and clarity, and is not used to indicate the relationship between the different embodiments and/or configurations discussed.

此外,在本發明的一些實施例中,關於接合、連接之用語,例如「連接」、「互連」等等,除非特別定義,否則可指兩個結構係直接接觸,或者亦可指兩個結構並非直接接觸,其中有其他結構設於此兩個結構之間。且此關於接合、連接之用語亦可包括兩個結構都可移動,或者兩個結構都固定之情況。再者,用語「耦合」包括以任何方法的直接或非直接的電性連接 。In addition, in some embodiments of the present invention, terms related to joining and connecting, such as "connected", "interconnected", etc., unless specifically defined, can mean that two structures are in direct contact, or can also refer to two The structures are not in direct contact, and there are other structures located between the two structures. Moreover, the terms of joining and connecting can also include the case where both structures are movable or both structures are fixed. Furthermore, the term "coupled" includes direct or indirect electrical connection by any method.

再者,其中可能用到空間相對用詞,例如「在……之下」、「下方」、「較低的」、「上方」、「較高的」等類似用詞,是為了便於描述圖式中一個(些)部件或特徵與另一個(些)部件或特徵之間的關係。空間相對用詞用以包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),其中所使用的空間相對形容詞也將依轉向後的方位來解釋。Furthermore, spatially relative terms may be used, such as "below", "below", "lower", "above", "higher" and other similar terms to facilitate the description of the picture The relationship between one part(s) or feature(s) and another part(s) or feature(s) in the formula. Spatial relative terms are used to include the different orientations of the device in use or operation, as well as the orientation described in the diagram. When the device is turned in different directions (rotated by 90 degrees or other directions), the spatially relative adjectives used in it will also be interpreted according to the turned position.

文中所使用的「約」、「大約」、「大抵」之用語通常表示在一給定值的±20%之內,較佳是±10%之內,且更佳是±5%之內,或±3%之內,或±2%之內,或±1%之內,或±0.5%之內。文中給定的數值為大約的數值。在沒有特定說明的情況下,給定的數值仍可隱含「約」、「大約」、「大抵」之含義。The terms "about", "approximately" and "approximately" used in the text usually mean within ±20% of a given value, preferably within ±10%, and more preferably within ±5%, Or within ±3%, or within ±2%, or within ±1%, or within ±0.5%. The values given in the text are approximate values. In the absence of specific instructions, the given value can still imply the meaning of "approximately", "approximately", and "approximately".

以下敘述本發明的一些實施例。在這些實施例中所述的階段之前、期間及/或之後,可提供額外的步驟。所述的一些階段在不同實施例中可被替換或刪去。可增加額外部件至本發明實施例的半導體裝置。以下所述的一些部件在不同實施例中可被替換或刪去。雖然所討論的一些實施例以特定順序的操作執行,但這些操作仍可以另一合乎邏輯的順序執行。Some embodiments of the present invention are described below. Before, during, and/or after the stages described in these embodiments, additional steps may be provided. Some of the stages described can be replaced or omitted in different embodiments. Additional components can be added to the semiconductor device of the embodiment of the present invention. Some components described below can be replaced or deleted in different embodiments. Although some of the discussed embodiments are performed in a specific order of operations, these operations can still be performed in another logical order.

本發明實施例中提供一種半導體裝置。交替配置設置於半導體裝置的保護環上的具有相反導電類型的複數個摻雜區。此配置可以改善靜電放電保護及半導體裝置的可靠度,並減少保護環所佔的面積。An embodiment of the present invention provides a semiconductor device. A plurality of doped regions with opposite conductivity types arranged on the guard ring of the semiconductor device are alternately arranged. This configuration can improve the reliability of electrostatic discharge protection and semiconductor devices, and reduce the area occupied by the guard ring.

為方便說明,以金屬氧化物半導體(Metal Oxide Semiconductor, MOS)裝置描述本發明的一些實施例。但本揭露不限於此。本發明實施例也可應用於各種半導體裝置,例如:橫向擴散金屬氧化物半導體(laterally diffused metal oxide semiconductor (LDMOS))裝置、橫向絕緣閘極雙極性電晶體(Lateral Insulated Gate Bipolar Transistor,LIGBT)、垂直擴散金屬氧化物半導體(Vertically Diffused Metal Oxide Semiconductor,VDMOS)裝置、延伸汲極金屬氧化物半導體(Extended-Drain Metal Oxide Semiconductor,EDMOS)裝置或其他半導體裝置。此外,本發明實施例也可應用於其他類型的半導體裝置,例如二極體(diode)、絕緣閘極雙極性電晶體(IGBT)、雙極性接面型電晶體(Bipolar Junction Transistor,BJT)、或其他半導體裝置。For the convenience of description, some embodiments of the present invention are described in terms of Metal Oxide Semiconductor (MOS) devices. But this disclosure is not limited to this. The embodiments of the present invention can also be applied to various semiconductor devices, such as laterally diffused metal oxide semiconductor (LDMOS) devices, Lateral Insulated Gate Bipolar Transistor (LIGBT), Vertically Diffused Metal Oxide Semiconductor (VDMOS) devices, Extended-Drain Metal Oxide Semiconductor (EDMOS) devices, or other semiconductor devices. In addition, the embodiments of the present invention can also be applied to other types of semiconductor devices, such as diodes, insulated gate bipolar transistors (IGBT), bipolar junction transistors (BJT), Or other semiconductor devices.

參照第1圖,根據本發明的一些實施例,繪示出半導體裝置10的佈局的示意性上視圖。應注意的是,圖中的三個點表示可以根據所欲裝置的設計或需求重複以下描述的部件。半導體裝置10包括:基板100上的至少一電晶體119、淺井區102、保護環104、以及複數個第一摻雜區111和複數個第二摻雜區112。為清楚起見,基板100未在第1圖的上視圖中繪示,將在以下所述的剖面圖中繪示出。基板100可為摻雜的(例如以p型或n型摻質摻雜)或未摻雜的半導體基板。舉例而言,基板100可包括:元素半導體,包括矽或鍺;化合物半導體,包括砷化鎵(GaAs)、磷化鎵(GaP)、磷化銦(InP)、砷化銦(InAs)及/或銻化銦(InSb);合金半導體,包括矽鍺(SiGe)合金、磷砷鎵(GaAsP)合金、砷鋁銦(AlInAs)合金、砷鋁鎵(AlGaAs)合金、砷銦鎵(GaInAs)合金、磷銦鎵(GaInP)合金及/或磷砷銦鎵(GalnAsP)合金、或前述材料之組合。Referring to FIG. 1, according to some embodiments of the present invention, a schematic top view of the layout of the semiconductor device 10 is drawn. It should be noted that the three dots in the figure indicate that the components described below can be repeated according to the design or requirements of the desired device. The semiconductor device 10 includes: at least one transistor 119 on a substrate 100, a shallow well region 102, a guard ring 104, and a plurality of first doped regions 111 and a plurality of second doped regions 112. For the sake of clarity, the substrate 100 is not shown in the top view of FIG. 1, and will be shown in the cross-sectional view described below. The substrate 100 may be a doped (for example, doped with p-type or n-type dopants) or an undoped semiconductor substrate. For example, the substrate 100 may include: elemental semiconductors, including silicon or germanium; compound semiconductors, including gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs) and/ Or indium antimonide (InSb); alloy semiconductors, including silicon germanium (SiGe) alloy, gallium arsenide (GaAsP) alloy, aluminum indium arsenic (AlInAs) alloy, aluminum gallium arsenide (AlGaAs) alloy, and indium gallium arsenide (GaInAs) alloy , Gallium indium phosphate (GaInP) alloy and/or gallium indium arsenide (GalnAsP) alloy, or a combination of the foregoing materials.

一些實施例中,基板100也可以是絕緣體上覆半導體(semiconductor-on-insulator)基板,例如:絕緣體上覆矽基板或絕緣體上覆矽鍺(silicon germanium-on-insulator,SGOI)基板。其他實施例中,基板100可為陶瓷基板,例如氮化鋁(AlN)基板、碳化矽(SiC)基板、氧化鋁(Al 2O 3)基板 (或稱為藍寶石(sapphire)基板)、或其他基板。其他實施例中,基板100可包含陶瓷基材及分別設於陶瓷基材的上下表面的一對阻擋層。陶瓷基材可包含陶瓷材料,而陶瓷材料包括無機金屬材料。舉例而言,陶瓷基材可包括:碳化矽、氮化鋁、藍寶石基材、或其他適合的材料。前述藍寶石基材可以是氧化鋁。 In some embodiments, the substrate 100 may also be a semiconductor-on-insulator (semiconductor-on-insulator) substrate, such as a silicon-on-insulator substrate or a silicon germanium-on-insulator (SGOI) substrate. In other embodiments, the substrate 100 may be a ceramic substrate, such as an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, an aluminum oxide (Al 2 O 3 ) substrate (also called a sapphire substrate), or others Substrate. In other embodiments, the substrate 100 may include a ceramic substrate and a pair of barrier layers respectively provided on the upper and lower surfaces of the ceramic substrate. The ceramic substrate may include a ceramic material, and the ceramic material includes an inorganic metal material. For example, the ceramic substrate may include: silicon carbide, aluminum nitride, sapphire substrate, or other suitable materials. The aforementioned sapphire substrate may be alumina.

電晶體119設置在基板100上且可以包括源極結構114、閘極結構115、和汲極結構118。在一些實施例中,源極結構114的每一個和汲極結構118的每一個包括摻雜區,且源極結構114的摻雜區與汲極結構118的摻雜區具有相同的導電類型。源極結構114的摻雜區和汲極結構118的摻雜區的摻雜濃度可以為約1E+19 cm -3至1E+21 cm -3。形成源極結構114的摻雜區的方法包括(但不限於):使用微影製程及蝕刻製程在基板100上形成圖案化的遮罩層(未示出),其中圖案化的遮罩層露出將要形成摻雜區的預定區域並覆蓋基板100的其餘區域;將摻質佈植到將要形成摻雜區的預定區域;以及移除圖案化的遮罩層。圖案化的遮罩層可以是硬遮罩或光阻。在將要形成n型摻雜區的實施例中,摻質可以是n型摻雜,如:磷、砷或銻。在將要形成p型摻雜區的實施例中,摻質可以是p型摻雜,如:硼、銦或BF 2。形成汲極結構118的摻雜區的方法區域類似形成源極結構114的摻雜區的方法。在一些實施例中,源極結構114的摻雜濃度可以與汲極結構118的摻雜濃度相同。在一實施例中,源極結構114和汲極結構118可以在同一製程步驟中形成。 The transistor 119 is disposed on the substrate 100 and may include a source structure 114, a gate structure 115, and a drain structure 118. In some embodiments, each of the source structure 114 and each of the drain structure 118 includes a doped region, and the doped region of the source structure 114 and the doped region of the drain structure 118 have the same conductivity type. The doping concentration of the doped region of the source structure 114 and the doped region of the drain structure 118 may be about 1E+19 cm -3 to 1E+21 cm -3 . The method of forming the doped region of the source structure 114 includes (but is not limited to): forming a patterned mask layer (not shown) on the substrate 100 using a lithography process and an etching process, wherein the patterned mask layer is exposed The predetermined area where the doped area is to be formed and covers the rest of the substrate 100; the dopant is implanted in the predetermined area where the doped area is to be formed; and the patterned mask layer is removed. The patterned mask layer can be a hard mask or a photoresist. In the embodiment where the n-type doped region is to be formed, the dopant may be an n-type dopant, such as phosphorous, arsenic, or antimony. In the embodiment where the p-type doped region is to be formed, the dopant may be p-type dopant, such as boron, indium, or BF 2 . The method of forming the doped region of the drain structure 118 is similar to the method of forming the doped region of the source structure 114. In some embodiments, the doping concentration of the source structure 114 may be the same as the doping concentration of the drain structure 118. In an embodiment, the source structure 114 and the drain structure 118 may be formed in the same process step.

閘極結構115可以包括閘極介電層及設置在閘極介電層上的閘極電極。在一些實施例中,形成閘極結構115的方法包括:依序沉積毯覆介電材料層(用於形成閘極介電層)及毯覆導電材料層(用於形成閘極電極)於所述介電材料層上,然後透過微影及刻蝕製程分別圖案化所述介電材料層及導電材料層,以形成閘極介電層及閘極電極。在一些實施例中,源極結構114和汲極結構118可以設置在閘極結構115的兩側。The gate structure 115 may include a gate dielectric layer and a gate electrode disposed on the gate dielectric layer. In some embodiments, the method of forming the gate structure 115 includes: sequentially depositing a blanket dielectric material layer (used to form a gate dielectric layer) and a blanket conductive material layer (used to form a gate electrode) on the On the dielectric material layer, the dielectric material layer and the conductive material layer are respectively patterned through a lithography and etching process to form a gate dielectric layer and a gate electrode. In some embodiments, the source structure 114 and the drain structure 118 may be disposed on both sides of the gate structure 115.

參照第1圖,淺井區102圍繞電晶體119。一些實施例中,淺井區102具有第一導電類型,與源極結構S的摻雜區114和汲極結構D的摻雜區118的導電類型相同。保護環104圍繞淺井區102。一些實施例中,保護環104具有第一導電類型。保護環104的摻雜濃度可以為約1 E+16 cm -3至1 E+17 cm -3。形成淺井區102的方法及形成保護環104的方法可類似形成源極結構114的方法。 Referring to FIG. 1, the shallow well region 102 surrounds the transistor 119. In some embodiments, the shallow well region 102 has the first conductivity type, which is the same as the conductivity type of the doped region 114 of the source structure S and the doped region 118 of the drain structure D. The protection ring 104 surrounds the shallow well area 102. In some embodiments, the guard ring 104 has the first conductivity type. The doping concentration of the guard ring 104 may be about 1 E+16 cm -3 to 1 E+17 cm -3 . The method of forming the shallow well region 102 and the method of forming the guard ring 104 can be similar to the method of forming the source structure 114.

複數個第一摻雜區111及複數個第二摻雜區112形成在保護環104內且圍繞淺井區102。在上視圖中,第一摻雜區111及第二摻雜區112以環形交替地配置。形成複數個第一摻雜區111的方法包括(但不限於):使用微影製程及蝕刻製程在保護環104上形成圖案化的遮罩層(未繪示),其中圖案化的遮罩層露出將要形成第一摻雜區111的預定區域並覆蓋其餘區域;將摻質佈植到將要形成第一摻雜區111的預定區域;以及移除圖案化的遮罩層。圖案化的遮罩層可以是硬遮罩或光阻。形成第二摻雜區112的方法類似形成第一摻雜區111的方法。根據本發明的一些實施例,第一摻雜區111中的每一個及第二摻雜區112中的每一個具有相反的導電類型。舉例而言,在第一摻雜區111是n型的實施例中,用於佈植第二摻雜區112的摻質是p型摻質(例如:硼、銦或BF2),以形成p型第二摻雜區112;在第一摻雜區111是p型的實施例中,用於佈植第二摻雜區112的摻質是n型摻質(例如:磷、砷或銻)。第一摻雜區111的摻雜濃度及第二摻雜區112的摻雜濃度可為約1E+19 cm -3至1E+21 cm -3。一些實施例中,第一摻雜區111及第二摻雜區112具有相同的摻雜濃度。在一些實施例中,第二摻雜區112的數量等於第一摻雜區111的數量。在替代的實施例中,第二摻雜區112的數量可不等於第一摻雜區111的數量。 A plurality of first doped regions 111 and a plurality of second doped regions 112 are formed in the guard ring 104 and surround the shallow well region 102. In the top view, the first doped regions 111 and the second doped regions 112 are alternately arranged in a ring shape. The method of forming a plurality of first doped regions 111 includes (but is not limited to): forming a patterned mask layer (not shown) on the guard ring 104 using a lithography process and an etching process, wherein the patterned mask layer Expose the predetermined area where the first doped region 111 will be formed and cover the remaining areas; implant dopants into the predetermined area where the first doped region 111 will be formed; and remove the patterned mask layer. The patterned mask layer can be a hard mask or a photoresist. The method of forming the second doped region 112 is similar to the method of forming the first doped region 111. According to some embodiments of the present invention, each of the first doped regions 111 and each of the second doped regions 112 have opposite conductivity types. For example, in an embodiment where the first doped region 111 is n-type, the dopant used to implant the second doped region 112 is a p-type dopant (for example: boron, indium or BF2) to form p Type second doped region 112; in the embodiment where the first doped region 111 is p-type, the dopant used to implant the second doped region 112 is n-type dopant (for example: phosphorus, arsenic or antimony) . The doping concentration of the first doping region 111 and the doping concentration of the second doping region 112 may be about 1E+19 cm -3 to 1E+21 cm -3 . In some embodiments, the first doped region 111 and the second doped region 112 have the same doping concentration. In some embodiments, the number of second doped regions 112 is equal to the number of first doped regions 111. In an alternative embodiment, the number of second doped regions 112 may not be equal to the number of first doped regions 111.

在一些實施例中,第一摻雜區111的長度小於第二摻雜區112的長度,如第1圖所示。在這樣的實施例中,若第一摻雜區111為n型且第二摻雜區112為p型,則第一摻雜區111及第二摻雜區112形成具有PNP路徑的矽控整流器(silicon controlled rectifier,SCR)結構,且第一摻雜區111是用於提供電位,所以不需要非常大的第一摻雜區111。在一些實施例中,第一摻雜區111與第二摻雜區的長度比約為1/10。然而,在其他實施例中,第一摻雜區111的長度可以大於或等於第二摻雜區112的長度。根據本發明的一些實施例中,第一摻雜區111及第二摻雜區112形成矩形形狀,如第1圖所示。此外,在所述矩形形狀的每一側具有至少一個第一摻雜區111及至少一個第二摻雜區112。然而,在其他實施例中,由第一摻雜區111及第二摻雜區112所形成的形狀不受限制。舉例而言,第一摻雜區111及第二摻雜區112可以形成橢圓形或體育場跑道的形狀。此形狀可以根據實際需要調整。第一摻雜區111及第二摻雜區112可以防止靜電放電損壞。在一些實施例中,第一摻雜區111中的每一個與第二摻雜區112中的每一個彼此間隔開且分隔。舉例而言,第一摻雜區111中的每一個與第二摻雜區112中的每一個可被保護環104分隔。可以根據實際需要調整第一摻雜區111與鄰近的第二摻雜區112之間的距離。在一些實施例中,第一摻雜區111的摻雜濃度等於第二摻雜區112的摻雜濃度。在一些實施例中,第一摻雜區111的摻雜濃度及第二摻雜區112的摻雜濃度大於保護環104的摻雜濃度。舉例而言,第一摻雜區111的摻雜濃度為約1E+19 cm -3至1E+21 cm -3,第二摻雜區112的摻雜濃度為約1E+19 cm -3至1E+21 cm -3,而保護環104的摻雜濃度為約1E+16 cm -3至1E+17 cm -3。根據本發明的一些實施例,第一摻雜區111、第二摻雜區112、及汲極結構118是電性連接的。 In some embodiments, the length of the first doped region 111 is smaller than the length of the second doped region 112, as shown in FIG. In such an embodiment, if the first doped region 111 is n-type and the second doped region 112 is p-type, the first doped region 111 and the second doped region 112 form a silicon controlled rectifier with a PNP path (Silicon controlled rectifier, SCR) structure, and the first doped region 111 is used to provide potential, so a very large first doped region 111 is not required. In some embodiments, the length ratio of the first doped region 111 to the second doped region is about 1/10. However, in other embodiments, the length of the first doped region 111 may be greater than or equal to the length of the second doped region 112. In some embodiments according to the present invention, the first doped region 111 and the second doped region 112 form a rectangular shape, as shown in FIG. 1. In addition, there is at least one first doped region 111 and at least one second doped region 112 on each side of the rectangular shape. However, in other embodiments, the shape formed by the first doped region 111 and the second doped region 112 is not limited. For example, the first doped region 111 and the second doped region 112 may form an oval shape or a stadium track shape. This shape can be adjusted according to actual needs. The first doped region 111 and the second doped region 112 can prevent electrostatic discharge damage. In some embodiments, each of the first doped regions 111 and each of the second doped regions 112 are spaced apart and separated from each other. For example, each of the first doped regions 111 and each of the second doped regions 112 may be separated by a guard ring 104. The distance between the first doped region 111 and the adjacent second doped region 112 can be adjusted according to actual needs. In some embodiments, the doping concentration of the first doping region 111 is equal to the doping concentration of the second doping region 112. In some embodiments, the doping concentration of the first doping region 111 and the doping concentration of the second doping region 112 are greater than the doping concentration of the guard ring 104. For example, the doping concentration of the first doped region 111 is about 1E+19 cm -3 to 1E+21 cm -3 , and the doping concentration of the second doped region 112 is about 1E+19 cm -3 to 1E +21 cm -3 , and the doping concentration of the guard ring 104 is about 1E+16 cm -3 to 1E+17 cm -3 . According to some embodiments of the present invention, the first doped region 111, the second doped region 112, and the drain structure 118 are electrically connected.

參照第1圖,在一些實施例中,半導體裝置10更包括至少兩個第三摻雜區113,分別設置在電晶體119的兩側,且至少兩個第三摻雜區113具有與第一導電類型相反的第二導電類型。第三摻雜區113的摻雜濃度為約1E+19 cm -3至1E+21 cm -3。在一些實施例中,第二摻雜區112及第三摻雜區113具有相同的摻雜濃度。一些實施例中,第三摻雜區113可用於在裝置中形成PNPN路徑。PNPN路徑的功能將在以下更詳細描述。一些實施例中,所述至少兩個第三摻雜區113、源極結構114、閘極結構115、及淺井區102是電性連接的。於其他實施例中,所述至少兩個第三摻雜區113、源極結構114、閘極結構115、及淺井區102電性連接至接地。在一些實施例中,至少一個第三摻雜區113與源極結構114相鄰。 Referring to FIG. 1, in some embodiments, the semiconductor device 10 further includes at least two third doped regions 113, which are respectively disposed on both sides of the transistor 119, and the at least two third doped regions 113 have the same value as the first The second conductivity type with the opposite conductivity type. The doping concentration of the third doping region 113 is about 1E+19 cm -3 to 1E+21 cm -3 . In some embodiments, the second doped region 112 and the third doped region 113 have the same doping concentration. In some embodiments, the third doped region 113 can be used to form a PNPN path in the device. The function of the PNPN path will be described in more detail below. In some embodiments, the at least two third doped regions 113, the source structure 114, the gate structure 115, and the shallow well region 102 are electrically connected. In other embodiments, the at least two third doped regions 113, the source structure 114, the gate structure 115, and the shallow well region 102 are electrically connected to the ground. In some embodiments, at least one third doped region 113 is adjacent to the source structure 114.

根據本發明的一些實施例,半導體裝置10包括複數個電晶體119。如第1圖所示,電晶體119中的每一個包括源極結構114及閘極結構115。此外,一個汲極結構118設置在兩個鄰近的電晶體119之間,使得所述兩個鄰近的電晶體119中共用此汲極結構118。一些實施例中,汲極結構118、第一摻雜區111、以及第二摻雜區112是電性連接的。如第1圖所示,在一些實施例中,第三摻雜區113設置在複數個電晶體119的兩側以及複數個電晶體119中鄰近的源極結構114之間。一些實施例中,第三摻雜區113、複數個電晶體119中的源極結構114及閘極結構115、以及淺井區102是電性連接的。在其他實施例中,第三摻雜區113、複數個電晶體119中的源極結構114及閘極結構115、以及淺井區102電性連接至接地。According to some embodiments of the present invention, the semiconductor device 10 includes a plurality of transistors 119. As shown in FIG. 1, each of the transistors 119 includes a source structure 114 and a gate structure 115. In addition, a drain structure 118 is disposed between two adjacent transistors 119, so that the two adjacent transistors 119 share the drain structure 118. In some embodiments, the drain structure 118, the first doped region 111, and the second doped region 112 are electrically connected. As shown in FIG. 1, in some embodiments, the third doped region 113 is disposed on both sides of the plurality of transistors 119 and between adjacent source structures 114 of the plurality of transistors 119. In some embodiments, the third doped region 113, the source structure 114 and the gate structure 115 in the plurality of transistors 119, and the shallow well region 102 are electrically connected. In other embodiments, the third doped region 113, the source structure 114 and the gate structure 115 in the plurality of transistors 119, and the shallow well region 102 are electrically connected to the ground.

第2圖是根據本發明的一些實施例,繪示出半導體裝置10沿著第1圖中的A-A線的示意性剖面圖。應理解的是,為了清楚起見,第2圖中的一些部件未在第1圖中繪示。如第2圖所示,半導體裝置10包括設置在基板100上的埋置層101。一些實施例中,埋置層101具有第一導電類型。埋置層101的摻雜濃度可為約1E+16 cm -3至1E+17 cm -3FIG. 2 is a schematic cross-sectional view of the semiconductor device 10 along the line AA in FIG. 1 according to some embodiments of the present invention. It should be understood that, for the sake of clarity, some components in Figure 2 are not shown in Figure 1. As shown in FIG. 2, the semiconductor device 10 includes a buried layer 101 provided on a substrate 100. In some embodiments, the buried layer 101 has the first conductivity type. The doping concentration of the buried layer 101 may be about 1E+16 cm -3 to 1E+17 cm -3 .

參照第2圖,半導體裝置10包括井區105a、105b、105c、106a、106b、107a、107b、及107c。在一些實施例中,井區105a、105b、105c、107a、107b、及107c具有第二導電類型,且井區106a及106b具有第一導電類型。井區105a、105b、105c、106a及106b的摻雜濃度可以為約1E+17 cm -3至1E+19 cm -3。井區107a、107b及107c的摻雜濃度可為約1E+18 cm -3至1E+20 cm -3之間。形成這些井區的方法類似上述形成源極結構114的摻雜區的方法。井區105a、105b、105c、106a、及106b設置在埋置層101上。井區106a及106b中的每一個包括設置在其中的汲極結構118。井區107a、107b及107c分別設置在井區105a、105b及105c中。淺井區102設置在井區107a及107c中,且井區107a及107c中的每一個包括設置在其中的第三摻雜區113及源極結構114。井區107b中包括兩個源極結構114及設置在所述兩個源極結構114之間的第三摻雜區113。閘極結構115設置在井區106a及106b上以及鄰近的源極結構114及汲極結構118之間,以形成電晶體119。如上所述,兩個鄰近的電晶體119共用設置在兩者之間的一個汲極結構118。舉例而言,在井區107a中的源極結構114、井區106a中的汲極結構118、及此源極結構114與此汲極結構118之間的閘極結構115形成電晶體119。在井區107b中且鄰近井區106a中的汲極結構118的源極結構114、井區106a中的此汲極結構118、及此源極結構114與此汲極結構118之間的閘極結構115形成另一電晶體119。如此,所述兩個鄰近的電晶體119共用井區106a中的汲極結構118。一些實施例中,第一摻雜區111、第二摻雜區112、及汲極結構118電性連接至第一電壓,例如電源供應電壓VCC。一些實施例中,淺井區102、第三摻雜區113、源極結構114、及閘極結構115電性連接至第二電壓,例如電源VSS或接地GND。一些實施例中,第一電壓是電源供應電壓且第二電壓是接地的。在一些實施例中,第一電壓大於第二電壓。其他實施例中,第一電壓小於第二電壓。在一些實施例中,閘極結構115設置在井區105a及106a上,汲極結構118設置在井區106a中,且源極結構114、淺井區102及至少一個第三摻雜區113設置在井區105a中。在一些實施例中,保護環104、井區105a、105b、及105c直接連接至埋置層。在一些實施例中,井區105a(或105c)中的井區107a(或107c)圍繞相應的源極結構114、淺井區102及至少一個第三摻雜區113。在一些實施例中,半導體10還可以包括設置在閘極結構115上的場板117及設置在場板117與閘極結構115之間的介電層116,如2圖所示。 Referring to FIG. 2, the semiconductor device 10 includes well regions 105a, 105b, 105c, 106a, 106b, 107a, 107b, and 107c. In some embodiments, the well regions 105a, 105b, 105c, 107a, 107b, and 107c have the second conductivity type, and the well regions 106a and 106b have the first conductivity type. The doping concentration of the well regions 105a, 105b, 105c, 106a, and 106b may be about 1E+17 cm -3 to 1E+19 cm -3 . The doping concentration of the well regions 107a, 107b, and 107c may be about 1E+18 cm -3 to 1E+20 cm -3 . The method of forming these well regions is similar to the method of forming the doped regions of the source structure 114 described above. The well regions 105a, 105b, 105c, 106a, and 106b are provided on the buried layer 101. Each of the well regions 106a and 106b includes a drain structure 118 disposed therein. The well areas 107a, 107b, and 107c are provided in the well areas 105a, 105b, and 105c, respectively. The shallow well region 102 is disposed in the well regions 107a and 107c, and each of the well regions 107a and 107c includes a third doped region 113 and a source structure 114 disposed therein. The well region 107b includes two source structures 114 and a third doped region 113 disposed between the two source structures 114. The gate structure 115 is disposed on the well regions 106 a and 106 b and between the adjacent source structure 114 and the drain structure 118 to form a transistor 119. As described above, two adjacent transistors 119 share a drain structure 118 disposed between them. For example, the source structure 114 in the well region 107a, the drain structure 118 in the well region 106a, and the gate structure 115 between the source structure 114 and the drain structure 118 form a transistor 119. The source structure 114 in the well region 107b and adjacent to the drain structure 118 in the well region 106a, the drain structure 118 in the well region 106a, and the gate between the source structure 114 and the drain structure 118 The structure 115 forms another transistor 119. In this way, the two adjacent transistors 119 share the drain structure 118 in the well region 106a. In some embodiments, the first doped region 111, the second doped region 112, and the drain structure 118 are electrically connected to a first voltage, such as a power supply voltage VCC. In some embodiments, the shallow well region 102, the third doped region 113, the source structure 114, and the gate structure 115 are electrically connected to a second voltage, such as the power VSS or the ground GND. In some embodiments, the first voltage is the power supply voltage and the second voltage is grounded. In some embodiments, the first voltage is greater than the second voltage. In other embodiments, the first voltage is less than the second voltage. In some embodiments, the gate structure 115 is disposed on the well regions 105a and 106a, the drain structure 118 is disposed in the well region 106a, and the source structure 114, the shallow well region 102 and the at least one third doped region 113 are disposed on Well area 105a. In some embodiments, the guard ring 104, the well regions 105a, 105b, and 105c are directly connected to the buried layer. In some embodiments, the well region 107a (or 107c) in the well region 105a (or 105c) surrounds the corresponding source structure 114, the shallow well region 102, and at least one third doped region 113. In some embodiments, the semiconductor 10 may further include a field plate 117 disposed on the gate structure 115 and a dielectric layer 116 disposed between the field plate 117 and the gate structure 115, as shown in FIG. 2.

一些實施例中,其中井區105a、105c、107a、107c及第二摻雜區112具有第二導電類型,且淺井區102及保護環104具有第一導電類型,可以從第二摻雜區112至淺井區102或從淺井區102至第二摻雜區112形成PNPN路徑。舉例而言,若第一導電類型是n型且第二導電型是p型,第二摻雜區112(p型)、保護環104(n型)、井區105a及107a(p型)、及淺井區102(n型)形成PNPN路徑。類似地,第二摻雜區112(p型)、保護環104(n型)、井區105c及107c(p型)、及淺井區102(n型)形成PNPN路徑。相反地,若第一導電型是p型且第二導電型是n型,淺井區102(p型)、井區105a及107a(n型)、保護環104(p型)、及第二摻雜區112(n型)形成PNPN路徑。所述的半導體裝置中的PNPN路徑可以防止靜電放電損壞。以上敘述僅是本發明的目的之一,而非用以限制本發明的範圍。In some embodiments, the well regions 105a, 105c, 107a, 107c and the second doped region 112 have the second conductivity type, and the shallow well region 102 and the guard ring 104 have the first conductivity type, which can be removed from the second doped region 112 A PNPN path is formed to the shallow well region 102 or from the shallow well region 102 to the second doped region 112. For example, if the first conductivity type is n-type and the second conductivity type is p-type, the second doped region 112 (p-type), guard ring 104 (n-type), well regions 105a and 107a (p-type), And the shallow well area 102 (n-type) form a PNPN path. Similarly, the second doped region 112 (p-type), guard ring 104 (n-type), well regions 105c and 107c (p-type), and shallow well region 102 (n-type) form a PNPN path. Conversely, if the first conductivity type is p-type and the second conductivity type is n-type, shallow well region 102 (p-type), well regions 105a and 107a (n-type), guard ring 104 (p-type), and second doped The miscellaneous region 112 (n-type) forms a PNPN path. The PNPN path in the semiconductor device can prevent electrostatic discharge damage. The above description is only one of the objectives of the present invention, and is not intended to limit the scope of the present invention.

一些實施例中,半導體裝置10包括隔離區(未在第1圖中示出),例如隔離區120、122、124。隔離區120設置在淺井區102及保護環104之間。隔離區122設置在淺井區102與井區107a及107c中的第三摻雜區113之間,且隔離區124設置在井區107b中的第三摻雜區113與源極結構114之間。在一些實施例中,隔離區122設置在相應的淺井區102與鄰近此淺井區102的第三摻雜區113的其中之一之間。隔離區可以包括淺溝槽隔離(STI)、矽局部氧化(LOCOS)或前述之組合。在一些實施例中,形成淺溝槽隔離的製程包括:在對應的井區上形成遮罩層(未示出)並圖案化此遮罩層、使用圖案化的遮罩層作為蝕刻遮罩,在基板中蝕刻出溝槽(或多個溝槽)、執行沉積製程以將隔離材料填入所述溝槽(或多個溝槽)中、以及執行平坦化製程,例如化學機械研磨(CMP)製程或機械研磨(mechanical grinding)製程,以移除隔離材料的多餘部分。隔離材料可以包括氧化物、氮化物或氮氧化物,例如:氧化矽(SiO2)、碳摻雜的氧化矽(SiO xC)、氮氧化矽(SiON)、氧碳氮化矽(silicon-oxy-carbon nitride,SiOCN)、碳化矽(SiC)、氮化碳矽(silicon carbon nitride ,SiCN)、氮化矽(Si xN y或SiN)、碳氧化矽(SiCO)、任何其他合適的材料、或前述的任意組合。在一些實施例中,形成隔離區的矽局部氧化製程可以包括:在對應的井區上沉積遮罩層(例如,氮化矽層)、使用微影製程及蝕刻製程將遮罩層圖案化以露出對應的井區的一部分、熱氧化所述對應的井區的露出部分以形成氧化矽層、以及移除圖案化的遮罩層。所述的這些隔離區可以在相同的製程中形成,或是可以在不同的製程中形成。 In some embodiments, the semiconductor device 10 includes isolation regions (not shown in FIG. 1), such as isolation regions 120, 122, 124. The isolation area 120 is arranged between the shallow well area 102 and the protection ring 104. The isolation region 122 is disposed between the shallow well region 102 and the third doping region 113 in the well regions 107a and 107c, and the isolation region 124 is disposed between the third doping region 113 and the source structure 114 in the well region 107b. In some embodiments, the isolation region 122 is disposed between the corresponding shallow well region 102 and one of the third doped regions 113 adjacent to the shallow well region 102. The isolation region may include shallow trench isolation (STI), local oxidation of silicon (LOCOS), or a combination of the foregoing. In some embodiments, the process of forming shallow trench isolation includes: forming a mask layer (not shown) on the corresponding well region and patterning the mask layer, using the patterned mask layer as an etching mask, Etch trenches (or trenches) in the substrate, perform a deposition process to fill the trenches (or trenches) with isolation material, and perform a planarization process, such as chemical mechanical polishing (CMP) Process or mechanical grinding (mechanical grinding) process to remove the excess part of the isolation material. The isolation material can include oxides, nitrides or oxynitrides, such as silicon oxide (SiO2), carbon-doped silicon oxide (SiO x C), silicon oxynitride (SiON), silicon oxycarbonitride (silicon-oxy -carbon nitride, SiOCN), silicon carbide (SiC), silicon carbon nitride (SiCN), silicon nitride (Si x N y or SiN), silicon oxycarbide (SiCO), any other suitable materials, Or any combination of the foregoing. In some embodiments, the silicon partial oxidation process for forming the isolation region may include: depositing a mask layer (for example, a silicon nitride layer) on the corresponding well region, and patterning the mask layer by using a photolithography process and an etching process Exposing a portion of the corresponding well region, thermally oxidizing the exposed portion of the corresponding well region to form a silicon oxide layer, and removing the patterned mask layer. The isolation regions described can be formed in the same manufacturing process, or can be formed in different manufacturing processes.

本發明的一或多個實施例提供半導體裝置許多優點。舉例而言,相較於第3圖所示的比較例中的摻雜區121及123是設置為平行且圍繞半導體裝置20的淺井區102。本發明實施例透過在圍繞半導體10的淺井區102的保護環104中交替配置摻雜區111及112,提供較為節省空間的佈局。由本發明實施例所得的裝置在人體模型(Human-Body Model,HBM)測試中通過8 kV,而比較例在超過1 kV的人體模型測試中即無法通過。此外,參照第4A及4B圖,其中分別顯示比較例與本發明的一示例的傳輸線脈衝(transmission line pulse,TLP)測試結果。底部的水平軸表示傳輸線脈衝電壓,頂部的水平軸以對數尺度表示漏電流,而垂直軸表示傳輸線脈衝電流。相較於比較例,在實質上相同的傳輸線脈衝電流範圍中,本發明的示例具有相對穩定的漏電流並提供穩定的結果。本發明實施例提供半導體裝置具有顯著較佳的人體模型測試結果(通過8kV)及穩定的漏電流,以改善靜電放電保護及裝置可靠度。由於較佳的矽控整流器的開啟效率(turn-on efficiency),因此本揭露對於靜電放電自我保護是更可靠的。以上描述的優點是本發明的目的之示例,而非用以限制本發明的範圍。One or more embodiments of the present invention provide many advantages for semiconductor devices. For example, compared to the comparative example shown in FIG. 3, the doped regions 121 and 123 are arranged in parallel and surround the shallow well region 102 of the semiconductor device 20. The embodiment of the present invention provides a more space-saving layout by alternately arranging doped regions 111 and 112 in the guard ring 104 surrounding the shallow well region 102 of the semiconductor 10. The device obtained by the embodiment of the present invention passed 8 kV in the Human-Body Model (HBM) test, while the comparative example failed in the human-Body Model (HBM) test over 1 kV. In addition, referring to FIGS. 4A and 4B, the transmission line pulse (TLP) test results of the comparative example and an example of the present invention are respectively shown. The bottom horizontal axis represents the transmission line pulse voltage, the top horizontal axis represents the leakage current on a logarithmic scale, and the vertical axis represents the transmission line pulse current. Compared with the comparative example, in the substantially same transmission line pulse current range, the example of the present invention has a relatively stable leakage current and provides a stable result. The embodiments of the present invention provide semiconductor devices with significantly better human body model test results (passing 8kV) and stable leakage current, so as to improve electrostatic discharge protection and device reliability. Due to the better turn-on efficiency of the silicon controlled rectifier, the present disclosure is more reliable for self-protection against electrostatic discharge. The advantages described above are examples of the purpose of the present invention, and are not intended to limit the scope of the present invention.

以上概述數個實施例之部件,以便在本發明所屬技術領域中具有通常知識者可更易理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應理解,他們能以本發明實施例為基礎,設計或修改其他製程及結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解到,此類等效的製程及結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神及範圍之下,做各式各樣的改變、取代及替換。The components of several embodiments are summarized above, so that those with ordinary knowledge in the technical field of the present invention can more easily understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field of the present invention should understand that they can design or modify other manufacturing processes and structures based on the embodiments of the present invention to achieve the same purposes and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field of the present invention should also understand that such equivalent manufacturing processes and structures do not depart from the spirit and scope of the present invention, and they can do so without departing from the spirit and scope of the present invention. Make all kinds of changes, substitutions and replacements.

10:半導體裝置 100:基板 101:埋置層 102:淺井區 104:保護環 105a,105b,105c,106a,106b,107a,107b,107c:井區 111:第一摻雜區 112:第二摻雜區 113:第三摻雜區 114:源極結構 115:閘極結構 118:汲極結構 119:電晶體 120,122,124:隔離區 121,123:摻雜區 20:半導體裝置10: Semiconductor device 100: substrate 101: Buried layer 102: Asai District 104: Protective ring 105a, 105b, 105c, 106a, 106b, 107a, 107b, 107c: well area 111: first doped region 112: second doped region 113: third doped region 114: source structure 115: gate structure 118: Drain structure 119: Transistor 120, 122, 124: Quarantine area 121, 123: doped area 20: Semiconductor device

由以下的詳細敘述配合所附圖式,可最好地理解本發明實施例。依據在業界的標準做法,各種特徵並未按照比例繪製。事實上,可任意地放大或縮小各種元件的尺寸,以清楚地表現出本發明實施例之特徵。 第1圖是根據本發明的一些實施例,繪示出半導體裝置的佈局的示意性上視圖。 第2圖是根據本發明的一些實施例,繪示出半導體裝置的示意性剖面圖。 第3圖繪示出比較例的佈局的示意性上視圖。 第4A及4B圖繪示比較例及本揭露的示例的傳輸線脈衝測試及漏電測試的圖表。 The embodiments of the present invention can be best understood from the following detailed description in conjunction with the accompanying drawings. According to standard practices in the industry, various features are not drawn to scale. In fact, the size of various components can be arbitrarily enlarged or reduced to clearly show the characteristics of the embodiments of the present invention. FIG. 1 is a schematic top view showing the layout of a semiconductor device according to some embodiments of the present invention. FIG. 2 is a schematic cross-sectional view of a semiconductor device according to some embodiments of the present invention. Figure 3 depicts a schematic top view of the layout of the comparative example. 4A and 4B show diagrams of the transmission line pulse test and the leakage test of the comparative example and the example of the present disclosure.

10:半導體裝置 10: Semiconductor device

102:淺井區 102: Asai District

104:保護環 104: Protective ring

111:第一摻雜區 111: first doped region

112:第二摻雜區 112: second doped region

113:第三摻雜區 113: third doped region

114:源極結構 114: source structure

115:閘極結構 115: gate structure

118:汲極結構 118: Drain structure

119:電晶體 119: Transistor

Claims (20)

一種半導體裝置,包括: 至少一電晶體,於一基板上,至少一電晶體包括一源極結構、一閘極結構、及一汲極結構; 一淺井區,圍繞所述至少一電晶體,其中該淺井區具有一第一導電類型; 一保護環,圍繞該淺井區,其中該保護環具有該第一導電類型;以及 複數個第一摻雜區及複數個第二摻雜區,設置在該保護環內並圍繞該淺井區,其中該些第一摻雜區及該些第二摻雜區交替設置,以形成一環形,且各該第一摻雜區及各該第二摻雜區具有相反的導電類型。 A semiconductor device including: At least one transistor, on a substrate, at least one transistor including a source structure, a gate structure, and a drain structure; A shallow well region surrounding the at least one transistor, wherein the shallow well region has a first conductivity type; A protection ring surrounding the shallow well area, wherein the protection ring has the first conductivity type; and A plurality of first doped regions and a plurality of second doped regions are arranged in the guard ring and surround the shallow well region, wherein the first doped regions and the second doped regions are alternately arranged to form a ring Shape, and each of the first doped regions and each of the second doped regions has opposite conductivity types. 如請求項1之半導體裝置,其中該些第一摻雜區的長度小於或等於該些第二摻雜區的長度。The semiconductor device of claim 1, wherein the length of the first doped regions is less than or equal to the length of the second doped regions. 如請求項1之半導體裝置,更包括鄰近該源極結構設置的至少一第三摻雜區。Such as the semiconductor device of claim 1, further comprising at least one third doped region disposed adjacent to the source structure. 如請求項3之半導體裝置,其中該些第二摻雜區與所述至少一第三摻雜區具有相同的摻雜濃度。The semiconductor device of claim 3, wherein the second doping regions and the at least one third doping region have the same doping concentration. 如請求項1之半導體裝置,更包括一埋置層,設置於該基板上,其中該埋置層具有該第一導電類型。For example, the semiconductor device of claim 1, further comprising a buried layer disposed on the substrate, wherein the buried layer has the first conductivity type. 如請求項5之半導體裝置,更包括具有該第一導電類型的一第一井區及具有與該第一導電類型相反的一第二導電類型的一第二井區,其中該閘極結構設置於該第一井區及該第二井區上、該汲極結構設置於該第一井區中、且該源極結構、該淺井區及所述至少一第三摻雜區設置在該第二井區中。For example, the semiconductor device of claim 5, further comprising a first well region having the first conductivity type and a second well region having a second conductivity type opposite to the first conductivity type, wherein the gate structure is provided On the first well region and the second well region, the drain structure is disposed in the first well region, and the source structure, the shallow well region, and the at least one third doped region are disposed on the first well region. In the Erjing District. 如請求項6之半導體裝置,其中該保護環及該第二井區直接連接該埋置層。The semiconductor device of claim 6, wherein the guard ring and the second well region are directly connected to the buried layer. 如請求項6之半導體裝置,更包括一第三井區,設置於該第二井區中且圍繞該源極結構、該淺井區及所述至少一第三摻雜區。According to claim 6, the semiconductor device further includes a third well region disposed in the second well region and surrounding the source structure, the shallow well region and the at least one third doped region. 如請求項8之半導體裝置,其中該些第二摻雜區、該保護環、該第二井區及該第三井區、以及該淺井區形成一PNPN結構。The semiconductor device of claim 8, wherein the second doped regions, the guard ring, the second well region and the third well region, and the shallow well region form a PNPN structure. 如請求項1之半導體裝置,其中該些第一摻雜區中的每一個與該些第二摻雜區中的每一個是分隔的。The semiconductor device of claim 1, wherein each of the first doped regions and each of the second doped regions are separated. 如請求項1之半導體裝置,其中該些第一摻雜區的摻雜濃度及該些第二摻雜區的摻雜濃度大於該保護環的摻雜濃度。The semiconductor device of claim 1, wherein the doping concentration of the first doping regions and the doping concentration of the second doping regions are greater than the doping concentration of the guard ring. 如請求項1之半導體裝置,其中該汲極結構、該些第一摻雜區、及該些第二摻雜區是電性連接的。The semiconductor device of claim 1, wherein the drain structure, the first doped regions, and the second doped regions are electrically connected. 如請求項1之半導體裝置,其中所述至少一電晶體為複數個電晶體,該些電晶體中的每一個包括該源極結構及該閘極結構,其中鄰近的兩個電晶體共用設置在兩者之間的該汲極結構。The semiconductor device of claim 1, wherein the at least one transistor is a plurality of transistors, each of the transistors includes the source structure and the gate structure, wherein two adjacent transistors are shared in The drain structure between the two. 如請求項13之半導體裝置,更包括至少兩個第三摻雜區,分別設置於該些電晶體的兩側,其中所述至少兩個第三摻雜區具有與該第一導電類型相反的一第二導電類型。For example, the semiconductor device of claim 13, further comprising at least two third doped regions, which are respectively arranged on both sides of the transistors, wherein the at least two third doped regions have a conductivity type opposite to that of the first conductivity type. A second conductivity type. 如請求項14之半導體裝置,更包括一隔離區,設置於該淺井區與鄰近該淺井區的該些第三摻雜區的其中之一之間。For example, the semiconductor device of claim 14 further includes an isolation region disposed between the shallow well region and one of the third doped regions adjacent to the shallow well region. 如請求項14之半導體裝置,其中該汲極結構、該些第一摻雜區、及該些第二摻雜區電性連接至一第一電壓。The semiconductor device of claim 14, wherein the drain structure, the first doped regions, and the second doped regions are electrically connected to a first voltage. 如請求項16之半導體裝置,其中所述至少兩個第三摻雜區、該源極結構、該閘極結構、及該淺井區電性連接至一第二電壓。The semiconductor device of claim 16, wherein the at least two third doped regions, the source structure, the gate structure, and the shallow well region are electrically connected to a second voltage. 如請求項17之半導體裝置,其中該第一電壓大於該第二電壓。The semiconductor device of claim 17, wherein the first voltage is greater than the second voltage. 如請求項1之半導體裝置,更包括一隔離區,設置於該淺井區與該些第一摻雜區及該些第二摻雜區之間。For example, the semiconductor device of claim 1, further comprising an isolation region disposed between the shallow well region and the first doped regions and the second doped regions. 如請求項1之半導體裝置,更包括:一場板,設置於該閘極結構上、以及一介電層,設置於該場板與該閘極結構之間。For example, the semiconductor device of claim 1, further comprising: a field plate disposed on the gate structure, and a dielectric layer disposed between the field plate and the gate structure.
TW110112469A 2021-04-07 2021-04-07 Semiconductor device TWI747778B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110112469A TWI747778B (en) 2021-04-07 2021-04-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110112469A TWI747778B (en) 2021-04-07 2021-04-07 Semiconductor device

Publications (2)

Publication Number Publication Date
TWI747778B true TWI747778B (en) 2021-11-21
TW202240836A TW202240836A (en) 2022-10-16

Family

ID=79907823

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110112469A TWI747778B (en) 2021-04-07 2021-04-07 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI747778B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200401332A (en) * 2002-04-01 2004-01-16 Matsushita Electric Ind Co Ltd Method for fabricating semiconductor device
US20190097075A1 (en) * 2017-09-22 2019-03-28 Stmicroelectronics (Research & Development) Limited Deep trench isolation (dti) bounded single photon avalanche diode (spad) on a silicon on insulator (soi) substrate
US20200203230A1 (en) * 2018-12-21 2020-06-25 Texas Instruments Incorporated Dynamic biasing to mitigate electrical stress in integrated resistors
US20210050439A1 (en) * 2019-08-13 2021-02-18 Infineon Technologies Austria Ag Enhancement Mode Group III Nitride-Based Transistor Device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200401332A (en) * 2002-04-01 2004-01-16 Matsushita Electric Ind Co Ltd Method for fabricating semiconductor device
US20190097075A1 (en) * 2017-09-22 2019-03-28 Stmicroelectronics (Research & Development) Limited Deep trench isolation (dti) bounded single photon avalanche diode (spad) on a silicon on insulator (soi) substrate
US20200203230A1 (en) * 2018-12-21 2020-06-25 Texas Instruments Incorporated Dynamic biasing to mitigate electrical stress in integrated resistors
US20210050439A1 (en) * 2019-08-13 2021-02-18 Infineon Technologies Austria Ag Enhancement Mode Group III Nitride-Based Transistor Device

Also Published As

Publication number Publication date
TW202240836A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
US11527607B2 (en) Integrated circuits using guard rings for ESD systems
US20120049187A1 (en) Semiconductor device
TWI409946B (en) Semiconductor device and method for forming the same
US12002890B2 (en) Semiconductor protection device
JP4961686B2 (en) Semiconductor device
KR101634498B1 (en) Diode structure compatible with finfet process
TW201911576A (en) Semiconductor device
US8169028B2 (en) Semiconductor device
KR101051684B1 (en) Electrostatic discharge protection device and manufacturing method
US10978870B2 (en) Electrostatic discharge protection device
US10332806B2 (en) Semiconductor device
TWI536562B (en) High Voltage Semiconductor Device And Method For Manufacturing The Same
CN109698231A (en) Semiconductor devices and manufacturing method
TWI747778B (en) Semiconductor device
US11862735B2 (en) Bi-directional bi-polar device for ESD protection
US11011510B2 (en) Breakdown uniformity for ESD protection device
US9453977B2 (en) Assembly of integrated circuit chips having an overvoltage protection component
US11302687B2 (en) Semiconductor device and method of forming the same
US20210104514A1 (en) Esd protection device with breakdown voltage stabilization
US11417649B2 (en) Semiconductor device
CN115224022A (en) Semiconductor device with a plurality of semiconductor chips
US20140339676A1 (en) Semiconductor device and method of forming the same
KR20210071134A (en) Semiconductor device
US11837600B2 (en) Electrostatic discharge protection apparatus and its operating method
TWI559502B (en) Semiconductor device