TWI747653B - Judgment method for accessing items and smart refrigerator - Google Patents
Judgment method for accessing items and smart refrigerator Download PDFInfo
- Publication number
- TWI747653B TWI747653B TW109143269A TW109143269A TWI747653B TW I747653 B TWI747653 B TW I747653B TW 109143269 A TW109143269 A TW 109143269A TW 109143269 A TW109143269 A TW 109143269A TW I747653 B TWI747653 B TW I747653B
- Authority
- TW
- Taiwan
- Prior art keywords
- item
- area
- refrigerator body
- processing unit
- average value
- Prior art date
Links
Images
Landscapes
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Image Analysis (AREA)
Abstract
一種存取物品的判斷方法適用於一智慧冰箱的一冰箱本體、一影像擷取單元、及一處理單元,並包含:當一使用者手持一物品放入該冰箱本體中或由該冰箱本體中取出時,該影像擷取單元對該冰箱本體的開口連續拍攝以產生多個輸入影像;該處理單元對每一該輸入影像計算對應的一膚色面積及一物品面積,再據以計算一面積比例,該膚色面積對應該使用者的手,該物品面積對應該物品;該處理單元根據每一該輸入影像的該面積比例的變化情形,判斷該物品是被存入該冰箱本體中或是由該冰箱本體中被取出。A method for determining access to items is suitable for a refrigerator body, an image capturing unit, and a processing unit of a smart refrigerator, and includes: when a user holds an item into or from the refrigerator body When taken out, the image capturing unit continuously photographs the opening of the refrigerator body to generate a plurality of input images; the processing unit calculates a skin color area and an item area corresponding to each input image, and then calculates an area ratio accordingly , The skin color area corresponds to the user’s hand, and the item area corresponds to the item; the processing unit determines whether the item is stored in the refrigerator body or is It is taken out of the refrigerator body.
Description
本發明是有關於一種判斷方法及一種冰箱,特別是指一種用於冰箱之物品是被存入或取出的判斷方法,及實施該判斷方法的智慧冰箱。 The present invention relates to a judging method and a refrigerator, in particular to a judging method for storing or taking out items used in the refrigerator, and a smart refrigerator for implementing the judging method.
隨著科技的進步,各種智慧家電的功能也隨著不斷地被發展與應用。其中,冰箱更是每戶家庭所必需要使用的一種家電設備。對於存放在冰箱的物品所採用的管理與判斷方法中,例如已有使用人工智慧的機器學習模型,以事先準備的大量物品的照片資料作訓練,進而判斷冰箱的物品是否有被存入或取出。然而,是否具備其他不需要龐大的圖像資料量即能作有效判斷的方法或系統,便成為一個有待改善的問題。 With the advancement of technology, the functions of various smart home appliances are constantly being developed and applied. Among them, the refrigerator is a household appliance that every household must use. For the management and judgment methods used for items stored in the refrigerator, for example, there are already machine learning models using artificial intelligence, which are trained with a large number of photos of items prepared in advance to determine whether the items in the refrigerator have been stored or taken out . However, whether there are other methods or systems that can make effective judgments without requiring a huge amount of image data has become a problem to be improved.
因此,本發明的目的,即在提供一種不需要龐大的圖像資料量即能有效運作的存取物品的判斷方法及對應的智慧冰箱。 Therefore, the purpose of the present invention is to provide a method for judging access items and a corresponding smart refrigerator that can operate effectively without requiring a huge amount of image data.
於是,本發明之一觀點,提供一種存取物品的判斷方法, 適用於一冰箱本體、一影像擷取單元、及一處理單元,並包含步驟(A)~(C)。 Therefore, one aspect of the present invention provides a method for judging access to items, It is suitable for a refrigerator body, an image capture unit, and a processing unit, and includes steps (A) to (C).
於步驟(A),當一使用者手持一物品放入該冰箱本體中或由該冰箱本體中取出時,該影像擷取單元對該冰箱本體的開口連續拍攝以產生多個輸入影像。 In step (A), when a user holds an object into the refrigerator body or takes it out of the refrigerator body, the image capturing unit continuously photographs the opening of the refrigerator body to generate a plurality of input images.
於步驟(B),藉由該處理單元對每一該輸入影像計算對應的一膚色面積及一物品面積,再根據該膚色面積及該物品面積計算對應的一面積比例,該膚色面積對應該使用者的手,該物品面積對應該物品。 In step (B), the processing unit calculates a skin color area and an item area corresponding to each input image, and then calculates a corresponding area ratio based on the skin color area and the item area. The skin color area should be used The area of the item corresponds to the person’s hand.
於步驟(C),藉由該處理單元根據每一該輸入影像的該面積比例的變化情形,判斷該物品是被存入該冰箱本體中或是由該冰箱本體中被取出。 In step (C), the processing unit determines whether the item is stored in the refrigerator body or taken out from the refrigerator body according to the change of the area ratio of each input image.
在一些實施態樣中,其中,在步驟(A)中,該等輸入影像包含對應該使用者的手由該冰箱本體外至該冰箱本體內再回到該冰箱本體外的時間長度。 In some embodiments, in step (A), the input images include the length of time corresponding to the user's hand moving from the outside of the refrigerator body to the inside of the refrigerator body and back to the outside of the refrigerator body.
在一些實施態樣中,其中,在步驟(B)中,每一該輸入影像的該面積比例=該物品面積/(該物品面積+該膚色面積)。 In some embodiments, in step (B), the area ratio of each input image=the area of the item/(area of the item+area of the skin color).
在一些實施態樣中,其中,在步驟(C)中,該處理單元依照時序變化判斷該等輸入影像的該等面積比例的一轉折點,再分別計算在該轉折點之前及之後的該等輸入影像的該等面積比例的一 第一平均值及一第二平均值,當該處理單元判斷該第一平均值小於該第二平均值時,判定該物品是由該冰箱本體中被取出,當該處理單元判斷該第一平均值大於該第二平均值時,判定該物品是被放入該冰箱本體中,該轉折點是相鄰兩個該輸入影像的兩個該面積比例的變化是相對其餘者最大時。 In some implementations, in step (C), the processing unit determines a turning point of the area ratios of the input images according to a time series change, and then respectively calculates the input images before and after the turning point One of the proportions of these areas A first average value and a second average value. When the processing unit determines that the first average value is less than the second average value, it is determined that the item is taken out of the refrigerator body. When the processing unit determines that the first average value is When the value is greater than the second average value, it is determined that the item is put into the refrigerator body, and the turning point is when the two adjacent input images have the largest changes in the area ratio relative to the others.
於是,本發明之另一觀點,提供一種智慧冰箱,包含一冰箱本體、一影像擷取單元、及一處理單元,該影像擷取單元電連接該處理單元,並朝該冰箱本體的開口拍攝影像。 Therefore, another aspect of the present invention provides a smart refrigerator including a refrigerator body, an image capturing unit, and a processing unit. The image capturing unit is electrically connected to the processing unit and shoots images toward the opening of the refrigerator body .
當一使用者手持一物品放入該冰箱本體中或由該冰箱本體中取出時,該影像擷取單元對該冰箱本體的開口連續拍攝以產生多個輸入影像。 When a user holds an object into the refrigerator body or takes it out of the refrigerator body, the image capturing unit continuously shoots the opening of the refrigerator body to generate a plurality of input images.
該處理單元對每一該輸入影像計算對應的一膚色面積及一物品面積,再根據該膚色面積及該物品面積計算對應的一面積比例,該膚色面積對應該使用者的手,該物品面積對應該物品。 The processing unit calculates a skin color area and an item area corresponding to each input image, and then calculates a corresponding area ratio according to the skin color area and the item area. The skin color area corresponds to the user's hand and the item area corresponds to It should be an item.
該處理單元根據每一該輸入影像的該面積比例的變化情形,判斷該物品是被存入該冰箱本體中或是由該冰箱本體中被取出。 The processing unit determines whether the article is stored in the refrigerator body or taken out from the refrigerator body according to the change of the area ratio of each input image.
在一些實施態樣中,其中,該等輸入影像包含對應該使用者的手由該冰箱本體外至該冰箱本體內再回到該冰箱本體外的時間長度。 In some embodiments, the input images include the length of time corresponding to the user's hand moving from the outside of the refrigerator body to the inside of the refrigerator body and back to the outside of the refrigerator body.
在一些實施態樣中,其中,每一該輸入影像的該面積比例=該物品面積/(該物品面積+該膚色面積)。 In some embodiments, the area ratio of each input image=the item area/(the item area+the skin color area).
在一些實施態樣中,其中,該處理單元依照時序變化判斷該等輸入影像的該等面積比例的一轉折點,再分別計算在該轉折點之前及之後的該等輸入影像的該等面積比例的一第一平均值及一第二平均值,當該處理單元判斷該第一平均值小於該第二平均值時,判定該物品是由該冰箱本體中被取出,當該處理單元判斷該第一平均值大於該第二平均值時,判定該物品是被放入該冰箱本體中,該轉折點是相鄰兩個該輸入影像的兩個該面積比例的變化是相對其餘者最大時。 In some implementations, the processing unit determines a turning point of the area ratios of the input images according to time series changes, and then respectively calculates a turning point of the area ratios of the input images before and after the turning point. A first average value and a second average value. When the processing unit determines that the first average value is less than the second average value, it is determined that the item is taken out of the refrigerator body. When the processing unit determines that the first average value is When the value is greater than the second average value, it is determined that the item is put into the refrigerator body, and the turning point is when the two adjacent input images have the largest changes in the area ratio relative to the others.
在另一些實施態樣中,其中,該影像擷取單元設置於該冰箱本體的一冷藏室的內側的一左壁面上或一右壁面上。 In other embodiments, the image capturing unit is disposed on a left wall surface or a right wall surface inside a refrigerating compartment of the refrigerator body.
本發明的功效在於:藉由每一該輸入影像的該面積比例的變化情形,判斷該物品是被存入該冰箱本體中或是由該冰箱本體中被取出,使得該判斷方法及該智慧冰箱相對於採用人工智慧演算法的習知技術,能夠僅根據數量不多的該等輸入影像就可以正確地作出判斷。 The effect of the present invention is to determine whether the item is stored in the refrigerator body or taken out from the refrigerator body by the change of the area ratio of each input image, so that the determining method and the smart refrigerator Compared with the conventional technology that uses artificial intelligence algorithms, it can make correct judgments based on only a small number of such input images.
100:智慧冰箱 100: Smart refrigerator
1:冰箱本體 1: Refrigerator body
11:冷藏室 11: Refrigerator
111:左壁面 111: left wall
112:右壁面 112: right wall
12:冷凍室 12: Freezer
2:處理單元 2: processing unit
3:影像擷取單元 3: Image capture unit
S1~S3:步驟 S1~S3: steps
A1、A3、A4、A6:輸入影像 A1, A3, A4, A6: input image
P1、P2:位置 P1, P2: position
本發明的其他的特徵及功效,將於參照圖式的實施方式 中清楚地呈現,其中:圖1是一方塊圖,說明本發明存取物品的判斷方法所適用的一智慧冰箱;圖2是一流程圖,說明本發明存取物品的判斷方法的一實施例;圖3是一立體圖,舉例說明該實施例的一影像擷取單元的位置;及圖4是一示意圖,舉例說明該實施例的四個輸入影像。 The other features and effects of the present invention will be described in the embodiment with reference to the drawings Figure 1 is a block diagram illustrating a smart refrigerator to which the method for determining access to items of the present invention is applicable; Fig. 2 is a flowchart illustrating an embodiment of the method for determining access to items of the present invention Figure 3 is a three-dimensional view illustrating the location of an image capturing unit of this embodiment; and Figure 4 is a schematic diagram illustrating four input images of this embodiment.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numbers.
參閱圖1與圖2,本發明存取物品的判斷方法適用於一智慧冰箱100,包含一冰箱本體1、一影像擷取單元3、及一處理單元2。該處理單元2例如是一中央處理器或其他運算晶片,並例如是設置在該冰箱本體1上。該影像擷取單元3例如是一照相模組,並電連接該處理單元2,且朝該冰箱本體1的開口拍攝影像。再參閱圖3,圖3是該冰箱本體的1一立體示意圖,該冰箱本體包括一冷藏室11及一冷凍室12,但不以此為限。在本實施例中,該影像擷取單元3是設置在該冰箱本體1的該冷藏室11的內側的一左壁面111上的一
位置P1,或一右壁面112上的另一位置P2。其中,兩個箭頭是代表該影像擷取單元分別設置在該位置P1、P2時的拍攝方向,但也不以此為限。
Referring to FIGS. 1 and 2, the method for determining access to items of the present invention is applicable to a
該存取物品的判斷方法包含步驟S1~S3。 The method for determining whether to deposit or withdraw items includes steps S1 to S3.
於步驟S1,當一使用者手持一物品放入該冰箱本體1中或由該冰箱本體1中取出時,該影像擷取單元3對該冰箱本體1的開口連續拍攝以產生多個輸入影像。舉例來說,該智慧冰箱100還包含一動態感測器(如紅外線感測器),當該使用者將該冰箱本體1打開後,且其手部接近該冰箱本體1的開口時,該動態感測器偵測到該使用者的手部,以直接觸發或經由該處理單元2間接觸發該影像擷取單元3拍照。換句話說,該等輸入影像包含對應該使用者的手由該冰箱本體1外至該冰箱本體1內再回到該冰箱本體1外的時間長度。在本實施例中,該等輸入影像的數量是六個。
In step S1, when a user holds an object into the
再參閱圖4,圖4示例性地說明依照時間順序所拍攝的該六個輸入影像中的第一個該輸入影像A1、第三個該輸入影像A3、第四個該輸入影像A4、及第六個該輸入影像A6。 Referring again to FIG. 4, FIG. 4 exemplarily illustrates the first input image A1, the third input image A3, the fourth input image A4, and the fourth input image A1, the third input image A3, and the fourth input image A1 of the six input images shot in chronological order. Six of the input images A6.
於步驟S2,該處理單元2對每一該輸入影像計算對應的一膚色面積及一物品面積,該膚色面積對應該使用者的手,該物品面積對應該物品。該處理單元2再根據每一該輸入影像的該膚色面積及該物品面積,計算對應的一面積比例。更詳細地說,每一該輸
入影像的該面積比例=該物品面積/(該物品面積+該膚色面積)。
In step S2, the
再參閱圖4,舉例來說,第一個該輸入影像A1、第二個該輸入影像(圖未示)、第三個該輸入影像A3、第四個該輸入影像A4、第五個該輸入影像(圖未示)、及第六個該輸入影像A6的該面積比例分別是0、0.03、0.11、0.37、0.44、及0.45。 4 again, for example, the first input image A1, the second input image (not shown), the third input image A3, the fourth input image A4, the fifth input image The area ratios of the image (not shown) and the sixth input image A6 are 0, 0.03, 0.11, 0.37, 0.44, and 0.45, respectively.
於步驟S3,該處理單元2根據每一該輸入影像的該面積比例的變化情形,判斷該物品是被存入該冰箱本體1中或是由該冰箱本體1中被取出。更具體地說,該處理單元2依照時序變化判斷該等輸入影像的該等面積比例的一轉折點,該轉折點是相鄰兩個該輸入影像的兩個該面積比例的變化是相對其餘者最大時。承續前例,第三個該輸入影像A3及第四個該輸入影像A4所對應的兩個該面積比例(即0.11與0.37)的變化等於0.26(即0.37-0.11),也就是相對於其他任兩個相鄰的該輸入影像所對應的兩個該面積比例的變化還要更大。因此,該轉折點位在該第三個該輸入影像A3及第四個該輸入影像A4之間。
In step S3, the
該處理單元2再分別計算在該轉折點之前及之後的該等輸入影像的該等面積比例的一第一平均值及一第二平均值。當該處理單元2判斷該第一平均值小於該第二平均值時,判定該物品是由該冰箱本體1中被取出。而當該處理單元2判斷該第一平均值大於該第二平均值時,判定該物品是被放入該冰箱本體1中。
The
承續前例,該第一平均值及一第二平均值分別等於0.05及0.42,即0.05<0.42,因此,對應圖4的該等輸入影像會被判定為該物品是由該冰箱本體1中被取出。另外要特別補充說明的是:在其他的實施例中,該影像擷取單元3也可以設置在該冰箱本體1的其他位置,只要使得所拍攝到該等輸入影像能夠呈現出該轉折點的變化即可。
Continuing the previous example, the first average value and the second average value are respectively equal to 0.05 and 0.42, that is, 0.05<0.42. Therefore, the input images corresponding to FIG. 4 will be judged as the item being contained in the
綜上所述,藉由該處理單元2根據該影像擷取單元3所產生的每一該輸入影像的該面積比例的變化情形,判斷該物品是被存入該冰箱本體1中或是由該冰箱本體1中被取出,使得該判斷方法及該智慧冰箱100相對於採用人工智慧演算法的習知技術,能夠僅根據數量不多的該等輸入影像就可以正確地作出判斷,故確實能達成本發明的目的。
In summary, the
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the patent specification still belong to Within the scope covered by the patent of the present invention.
S1~S3:步驟 S1~S3: steps
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109143269A TWI747653B (en) | 2020-12-08 | 2020-12-08 | Judgment method for accessing items and smart refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109143269A TWI747653B (en) | 2020-12-08 | 2020-12-08 | Judgment method for accessing items and smart refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI747653B true TWI747653B (en) | 2021-11-21 |
TW202223312A TW202223312A (en) | 2022-06-16 |
Family
ID=79907750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109143269A TWI747653B (en) | 2020-12-08 | 2020-12-08 | Judgment method for accessing items and smart refrigerator |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI747653B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI265263B (en) * | 2004-11-19 | 2006-11-01 | Chuen-Liang Shiu | Intelligent refrigerator and the recognition and monitoring method thereof |
CN104482715A (en) * | 2014-12-31 | 2015-04-01 | 合肥华凌股份有限公司 | Method for managing food in refrigerator and refrigerator |
CN107665336A (en) * | 2017-09-20 | 2018-02-06 | 厦门理工学院 | Multi-target detection method based on Faster RCNN in intelligent refrigerator |
CN109869966A (en) * | 2017-12-04 | 2019-06-11 | 东芝生活电器株式会社 | Refrigerator |
-
2020
- 2020-12-08 TW TW109143269A patent/TWI747653B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI265263B (en) * | 2004-11-19 | 2006-11-01 | Chuen-Liang Shiu | Intelligent refrigerator and the recognition and monitoring method thereof |
CN104482715A (en) * | 2014-12-31 | 2015-04-01 | 合肥华凌股份有限公司 | Method for managing food in refrigerator and refrigerator |
CN107665336A (en) * | 2017-09-20 | 2018-02-06 | 厦门理工学院 | Multi-target detection method based on Faster RCNN in intelligent refrigerator |
CN109869966A (en) * | 2017-12-04 | 2019-06-11 | 东芝生活电器株式会社 | Refrigerator |
Also Published As
Publication number | Publication date |
---|---|
TW202223312A (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104967803B (en) | A kind of video recording method and device | |
US10636198B2 (en) | System and method for monocular simultaneous localization and mapping | |
CN107396080B (en) | Method and system for generating depth information | |
Čech et al. | Scene flow estimation by growing correspondence seeds | |
CN110276780A (en) | A kind of multi-object tracking method, device, electronic equipment and storage medium | |
CN108881711A (en) | Realize that the power in multisensor camera device reduces by on-demand sensor activation | |
WO2022032996A1 (en) | Asynchronous video-based motion capture method | |
CN108961385B (en) | SLAM composition method and device | |
CN107094231A (en) | Intelligent image pickup method and device | |
CN105791674A (en) | Electronic device and focusing method | |
TWI747653B (en) | Judgment method for accessing items and smart refrigerator | |
CN114882349B (en) | Method for judging object identity of articles in refrigerator, refrigerator and computer storage medium | |
CN115482523A (en) | Small object target detection method and system of lightweight multi-scale attention mechanism | |
TWI748788B (en) | Judgment method for accessing items and smart refrigerator | |
CN107479715A (en) | The method and apparatus that virtual reality interaction is realized using gesture control | |
Wu et al. | Real-time human posture reconstruction in wireless smart camera networks | |
CN111193918A (en) | Image processing system and image processing method | |
WO2018219304A1 (en) | Picture processing method and apparatus, computer readable storage medium, and electronic device | |
CN110223219B (en) | 3D image generation method and device | |
Chelani et al. | Privacy-preserving representations are not enough: Recovering scene content from camera poses | |
CN102346605B (en) | Photographing type touch control method and system | |
TW201120410A (en) | Depth detection method and system using thereof | |
WO2021012523A1 (en) | Three-dimensional image search method and system, computer device, and storage medium | |
Bo et al. | PhD forum: Illumination-robust foreground detection for multi-camera occupancy mapping | |
US9361538B2 (en) | Real time photometric edge description |