TWI747224B - Tunable light projector - Google Patents

Tunable light projector Download PDF

Info

Publication number
TWI747224B
TWI747224B TW109111125A TW109111125A TWI747224B TW I747224 B TWI747224 B TW I747224B TW 109111125 A TW109111125 A TW 109111125A TW 109111125 A TW109111125 A TW 109111125A TW I747224 B TWI747224 B TW I747224B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
adjustable
light
crystal panel
layer
Prior art date
Application number
TW109111125A
Other languages
Chinese (zh)
Other versions
TW202037976A (en
Inventor
陳燕晟
陳宏山
Original Assignee
源奇科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/371,127 external-priority patent/US11126060B2/en
Application filed by 源奇科技股份有限公司 filed Critical 源奇科技股份有限公司
Publication of TW202037976A publication Critical patent/TW202037976A/en
Application granted granted Critical
Publication of TWI747224B publication Critical patent/TWI747224B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

A tunable light projector including a light source, a fixed optical phase modulator, and a tunable liquid crystal panel is provided. The light source is configured to emit a light beam, and the fixed optical phase modulator is disposed on a path of the light beam and configured to modulate phases of the light beam. The tunable liquid crystal panel is disposed on the path of the light beam and configured to be switched between a plurality of states, wherein the plurality of states include a lens array state in which the tunable liquid crystal panel comprises a lens array.

Description

可調式光投射器Adjustable light projector

本發明是有關於一種感測裝置及光投射器,且特別是有關於一種光學感測裝置、結構光投射器及可調式光投射器。The invention relates to a sensing device and a light projector, and more particularly to an optical sensing device, a structured light projector and an adjustable light projector.

目前三維感測(3D sensing)的主流技術分為飛行時間法(time of flight;TOF)以及結構光技術(structured illumination)。TOF技術是利用脈衝雷射(pulsed laser)以及互補式金屬氧化物半導體(CMOS)感測器來測量光反射時間換算成距離。因成本以及構造,一般較適合長距離的物體解析。在結構光技術,利用紅外光源(IR source)投影到繞射元件(diffractive optical element;DOE)以產生二維的繞射圖案,再利用感測器來收集反射光。物體的三維距離可利用三角法來換算出來。結構光技術受限於具有固定焦距的投影鏡頭,因此繞射圖型清楚成像的距離也是有限制的,最終導致可被解析物體的距離侷限於一小範圍內。At present, the mainstream technologies of 3D sensing are divided into time of flight (TOF) and structured illumination. TOF technology uses pulsed laser and complementary metal oxide semiconductor (CMOS) sensors to measure light reflection time and convert it into distance. Due to cost and structure, it is generally more suitable for long-distance object analysis. In structured light technology, an infrared light source (IR source) is projected onto a diffractive optical element (DOE) to generate a two-dimensional diffraction pattern, and then a sensor is used to collect the reflected light. The three-dimensional distance of an object can be calculated using trigonometry. Structured light technology is limited to a projection lens with a fixed focal length, so the distance at which the diffraction pattern can be clearly imaged is also limited, and ultimately the distance of the object that can be resolved is limited to a small range.

為解決上述結構光技術的問題,有人提出在鏡組中加入變跡透鏡(apodized lens)以產生多個焦距的系統。然而,此做法會犧牲掉光效率以及二維繞射圖案的點數以及解析度。In order to solve the above-mentioned structured light technology problems, some people have proposed a system in which an apodized lens is added to the lens group to generate multiple focal lengths. However, this approach sacrifices light efficiency and the number of points and resolution of the two-dimensional diffraction pattern.

此外,在行動裝置的三維臉部辨識中,泛光系統與結構光系統皆被採用以達到三維臉部辨識。泛光系統先被用來判斷接近的物體是否為人臉,如果接近的物體是人臉,結構光系統便隨後被啟動且用以判斷所偵測到的人臉是否為此行動裝置的使用者的臉。然而,在一個行動裝置中同時採用兩個系統(即泛光系統與結構光系統)會佔用許多空間,且較為昂貴。In addition, in the three-dimensional face recognition of mobile devices, both the floodlight system and the structured light system are used to achieve the three-dimensional face recognition. The floodlight system is first used to determine whether the approaching object is a human face. If the approaching object is a human face, the structured light system is then activated and used to determine whether the detected human face is the user of the mobile device s face. However, the simultaneous use of two systems (ie flood light system and structured light system) in a mobile device will take up a lot of space and is more expensive.

本發明提供一種利用液晶來控制結構光的對焦的光學感測裝置。The invention provides an optical sensing device that uses liquid crystal to control the focusing of structured light.

本發明提供一種利用液晶來控制結構光的對焦的結構光投射器。The invention provides a structured light projector that uses liquid crystal to control the focusing of the structured light.

本發明提供一種可調式光投射器,其利用可調式液晶面板來使光束在結構光與泛光之間切換。The invention provides an adjustable light projector, which utilizes an adjustable liquid crystal panel to switch the light beam between structured light and flood light.

本發明的一實施例提出一種光學感測裝置,適用於偵測物體或物體的特徵。光學感測裝置包括結構光投射器以及感測器。結構光投射器用以將一結構光投射至該物體。結構光投射器包括光源、繞射光學元件以及液晶透鏡模組。光源用以發出一光束。繞射光學元件配置於光束的路徑上,且用以產生繞射圖案以形成結構光。液晶透鏡模組配置於光束的路徑以及結構光的路徑的至少一者上,且能夠控制至少兩個對焦態之間的對焦。感測器與結構光投射器相鄰,用以感測一反射光。反射光為結構光自物體的反射。An embodiment of the present invention provides an optical sensing device suitable for detecting objects or features of objects. The optical sensing device includes a structured light projector and a sensor. The structured light projector is used to project a structured light to the object. The structured light projector includes a light source, a diffractive optical element and a liquid crystal lens module. The light source is used to emit a light beam. The diffractive optical element is arranged on the path of the light beam and used to generate a diffractive pattern to form structured light. The liquid crystal lens module is configured on at least one of the path of the light beam and the path of the structured light, and can control the focus between at least two focus states. The sensor is adjacent to the structured light projector for sensing a reflected light. Reflected light is the reflection of structured light from an object.

本發明的一實施例提出一種結構光投射器。結構光投射器包括光源、繞射光學元件以及液晶透鏡模組。光源用以發出一光束。繞射光學元件配置於光束的路徑上,且用以產生繞射圖案以形成結構光。液晶透鏡模組配置於光束的路徑以及結構光的路徑的至少一者上,且能夠控制至少兩個對焦態之間的對焦。An embodiment of the present invention provides a structured light projector. The structured light projector includes a light source, a diffractive optical element and a liquid crystal lens module. The light source is used to emit a light beam. The diffractive optical element is arranged on the path of the light beam and used to generate a diffractive pattern to form structured light. The liquid crystal lens module is configured on at least one of the path of the light beam and the path of the structured light, and can control the focus between at least two focus states.

本發明的一實施例提出一種可調式光投射器,其包括一光源、一固定式光學相位調制器、一可調式液晶面板及一驅動器。光源用以發出一光束。固定式光學相位調制器配置於光束的路徑上,且用以調制光束的相位。可調式液晶面板配置於光束的路徑上,且用以使光束在一結構光與一泛光之間切換。可調式液晶面板包括一第一基板、一第二基板、一液晶層、一第一電極層及一第二電極層。液晶層配置於第一基板與第二基板之間。第一電極層與第二電極層的至少其中之一為一圖案化層。第一電極層與第二電極層皆配置於第一基板與第二基板的其中之一上,或分別配置於第一基板與第二基板上。驅動器電性連接至第一電極層與第二電極層,且用以改變第一電極層與第二電極層之間的電壓差,進而使光束在結構光與泛光之間切換。An embodiment of the present invention provides an adjustable light projector, which includes a light source, a fixed optical phase modulator, an adjustable liquid crystal panel, and a driver. The light source is used to emit a light beam. The fixed optical phase modulator is arranged on the path of the light beam and used to modulate the phase of the light beam. The adjustable liquid crystal panel is arranged on the path of the light beam and used to switch the light beam between a structured light and a flood light. The adjustable liquid crystal panel includes a first substrate, a second substrate, a liquid crystal layer, a first electrode layer, and a second electrode layer. The liquid crystal layer is disposed between the first substrate and the second substrate. At least one of the first electrode layer and the second electrode layer is a patterned layer. The first electrode layer and the second electrode layer are both configured on one of the first substrate and the second substrate, or are respectively configured on the first substrate and the second substrate. The driver is electrically connected to the first electrode layer and the second electrode layer, and is used to change the voltage difference between the first electrode layer and the second electrode layer, so as to switch the light beam between structured light and flood light.

本發明的一實施例提出一種可調式光投射器,其包括一光源、一固定式光學相位調制器及一可調式液晶面板。光源用以發出一光束。固定式光學相位調制器配置於光束的路徑上,且用以調制光束的相位。可調式液晶面板配置於光束的路徑上,且用以在多個狀態之間切換,其中這些狀態包括一透鏡陣列狀態,且在透鏡陣列狀態下的可調式液晶面板包括一透鏡陣列。An embodiment of the present invention provides an adjustable light projector, which includes a light source, a fixed optical phase modulator, and an adjustable liquid crystal panel. The light source is used to emit a light beam. The fixed optical phase modulator is arranged on the path of the light beam and used to modulate the phase of the light beam. The adjustable liquid crystal panel is arranged on the path of the light beam and used to switch between a plurality of states, wherein these states include a lens array state, and the adjustable liquid crystal panel in the lens array state includes a lens array.

基於上述,本發明實施例的結構光投射器包括至少一具有可調變焦距的液晶透鏡模組。在結構光投射器內提供具有可調變焦距的液晶透鏡模組增加了結構光可聚焦的範圍。此外,可以獲得利用上述結構光投射器的小型光學感測器。在本發明的實施例的可調式光投射器中,利用可調式液晶面板來使光束在結構光與泛光之間切換,因此本發明的實施例將泛光系統與結構光系統整合成單一系統,其減少了具有結構光與泛光功能的電子裝置的成本與體積。Based on the above, the structured light projector of the embodiment of the present invention includes at least one liquid crystal lens module with adjustable zoom. Providing a liquid crystal lens module with adjustable zoom in the structured light projector increases the focusable range of the structured light. In addition, it is possible to obtain a small-sized optical sensor using the above-mentioned structured light projector. In the adjustable light projector of the embodiment of the present invention, the adjustable liquid crystal panel is used to switch the beam between structured light and floodlight. Therefore, the embodiment of the present invention integrates the floodlight system and the structured light system into a single system , Which reduces the cost and volume of electronic devices with structured light and floodlight functions.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

以下將配合圖式詳細說明例示性實施例,關連圖式中的相同元件或等同元件,則盡可能的援用相同的參考標號以及陳述。The exemplary embodiments will be described in detail below in conjunction with the drawings. For the same elements or equivalent elements in the drawings, the same reference numerals and statements are used as much as possible.

另外,為了易於描述,本文中可使用諸如「之下(underlying)」、「下方(below)」、「下(lower)」、「上覆(overlying)」、「上(upper)」、「頂(top)」、「底(bottom)」、「左(left)」、「右(right)」及類似者的空間相對術語,來描述如圖中所繪示的一個元件或特徵與另一元件或特徵的關係。除了諸圖中所描繪的定向以外,空間相對術語亦意欲涵蓋裝置在使用或操作中的不同定向。裝置可以其他方式定向(旋轉90度或處於其他定向),且本文中所使用的空間相對描述詞可同樣相應地進行解譯。In addition, for ease of description, examples such as "underlying", "below", "lower", "overlying", "upper", and "top" can be used in this article. (Top)”, “bottom”, “left”, “right” and similar spatially relative terms to describe one element or feature as shown in the figure and another element Or the relationship of characteristics. In addition to the orientations depicted in the figures, spatial relative terms are also intended to cover different orientations of the device in use or operation. The device can be oriented in other ways (rotated by 90 degrees or in other orientations), and the spatial relative descriptors used in this article can also be interpreted accordingly.

圖1是依照本發明一實施例的光學感測裝置10的示意圖。圖1中示出的光學感測裝置10是一種利用結構光來偵測物體的感測裝置。具體而言,光學感測裝置10包括結構光投射器100以及與結構光投射器100相鄰的感測器104。結構光投射器100是用以向物體12產生結構光SL,而感測器104是用以感測自物體12反射的結構光SL。結構光SL可包括但不限於將光圖案投影到物體12的多重光束,例如:一系列的線、圈、點或類似者。其中線、圈、點或類似者可有序排列或無序排列。物體12可為例如手掌、人臉或任何具有三維特徵的物體。當結構光SL投射到物體12時,結構光SL的光圖案會因物體12的凹凸表面而變形。該變形的結構光SL隨後自物體12反射,該反射的光穿過開口106到達感測器104。舉例而言,開口106可包括透鏡、孔、透明罩等。感測器104感測在物體12上的光圖案的變形以計算出物體12表面的深度,亦即,物體12表面上的點至感測器104之間的距離。感測器104可連接到用以計算物體12的三維特徵的處理器(圖中未示出)。FIG. 1 is a schematic diagram of an optical sensing device 10 according to an embodiment of the invention. The optical sensing device 10 shown in FIG. 1 is a sensing device that uses structured light to detect objects. Specifically, the optical sensing device 10 includes a structured light projector 100 and a sensor 104 adjacent to the structured light projector 100. The structured light projector 100 is used to generate structured light SL to the object 12, and the sensor 104 is used to sense the structured light SL reflected from the object 12. The structured light SL may include, but is not limited to, multiple light beams that project a light pattern onto the object 12, such as a series of lines, circles, dots, or the like. The lines, circles, dots or the like can be arranged in an orderly or disorderly arrangement. The object 12 may be, for example, a palm, a human face, or any object with three-dimensional features. When the structured light SL is projected to the object 12, the light pattern of the structured light SL will be deformed due to the uneven surface of the object 12. The deformed structured light SL is then reflected from the object 12, and the reflected light passes through the opening 106 to reach the sensor 104. For example, the opening 106 may include a lens, a hole, a transparent cover, and the like. The sensor 104 senses the deformation of the light pattern on the object 12 to calculate the depth of the surface of the object 12, that is, the distance between a point on the surface of the object 12 and the sensor 104. The sensor 104 may be connected to a processor (not shown in the figure) for calculating the three-dimensional feature of the object 12.

圖2是依照本發明實施例的結構光投射器100的剖面示意圖。結構光投射器100包括光源110、液晶透鏡模組120以及繞射光學元件(diffractive optical element, DOE)130。配置於結構光投射器100一端的光源110是用以發出光束LB。光源110可為發光二極體(LED)、雷射二極體、邊射型雷射(edge emitting laser)、垂直共振腔面射型雷射(vertical-cavity surface-emitting laser;VCSEL)或任何其他能發出可見或不可見(例如:紅外光(IR)或紫外光(UV))光束LB。在一些實施例,光源110可為單一IR雷射二極體,在其他一些實施例光源110可為IR雷射二極體陣列,形成光源110的光源的數量不限於此。FIG. 2 is a schematic cross-sectional view of a structured light projector 100 according to an embodiment of the present invention. The structured light projector 100 includes a light source 110, a liquid crystal lens module 120 and a diffractive optical element (DOE) 130. The light source 110 disposed at one end of the structured light projector 100 is used to emit a light beam LB. The light source 110 can be a light emitting diode (LED), a laser diode, an edge emitting laser, a vertical-cavity surface-emitting laser (VCSEL), or any Others can emit visible or invisible (for example: infrared light (IR) or ultraviolet light (UV)) light beam LB. In some embodiments, the light source 110 may be a single IR laser diode, and in other embodiments, the light source 110 may be an IR laser diode array, and the number of light sources forming the light source 110 is not limited thereto.

結構光投射器100更包括配置於光束LB路徑上的液晶透鏡模組120。液晶透鏡模組120能夠控制光束LB的對焦狀態以為結構光投射器100提供至少兩個對焦狀態。可選擇性的將偏振片(圖中未示出)放置在光束LB上液晶透鏡模組120前以為液晶透鏡模組120提供偏振光束LB。The structured light projector 100 further includes a liquid crystal lens module 120 disposed on the path of the light beam LB. The liquid crystal lens module 120 can control the focus state of the light beam LB to provide the structured light projector 100 with at least two focus states. A polarizer (not shown in the figure) can be selectively placed on the light beam LB in front of the liquid crystal lens module 120 to provide the liquid crystal lens module 120 with a polarized light beam LB.

如圖2所示,繞射光學元件130配置於光束LB的路徑上且在液晶透鏡模組120之後。然而,繞射光學元件130與液晶透鏡模組120的配置順序不限於此。在一些實施例中,繞射光學元件130可配置於光束LB的路徑上且在液晶透鏡模組120之前。在一些實施例,甚至可以置於光束LB的路徑上且於液晶透鏡模組120的多個元件之間。繞射光學元件130是一種用以產生繞射圖案的光學元件,用以產生如上述參考圖1所述的結構光SL。舉例而言,繞射光學元件130可包含將光束LB分光至多個點的圖案,或者是將光束LB塑造至網格線的圖案,但不限於此。為簡易起見,以下將通過繞射光學元件130的光束LB稱為結構光SL。此外,為了易於描述,提供互相垂直的x-方向以及z-方向。舉例而言,在本實施例中,將z-方向定為垂直於光源110發光的表面的方向。As shown in FIG. 2, the diffractive optical element 130 is disposed on the path of the light beam LB and behind the liquid crystal lens module 120. However, the arrangement sequence of the diffractive optical element 130 and the liquid crystal lens module 120 is not limited to this. In some embodiments, the diffractive optical element 130 may be arranged on the path of the light beam LB and before the liquid crystal lens module 120. In some embodiments, it can even be placed on the path of the light beam LB and between multiple elements of the liquid crystal lens module 120. The diffractive optical element 130 is an optical element used to generate a diffraction pattern and used to generate the structured light SL described above with reference to FIG. 1. For example, the diffractive optical element 130 may include a pattern that splits the light beam LB to multiple points, or a pattern that shapes the light beam LB into grid lines, but is not limited thereto. For simplicity, the light beam LB passing through the diffractive optical element 130 is referred to as structured light SL below. In addition, for ease of description, the x-direction and the z-direction perpendicular to each other are provided. For example, in this embodiment, the z-direction is defined as a direction perpendicular to the surface on which the light source 110 emits light.

圖3A至圖3C示出依照本發明一些實施例的各種不同的結構光投射器200a至200c的剖面示意圖。結構光投射器200a至200c與圖2示出的結構光投射器100類似。結構光投射器200a至200c與結構光投射器100之間的差別在於結構光投射器200a至200c包括液晶透鏡單元122以及固態透鏡124而不包括液晶透鏡模組120。在一些實施例中,液晶透鏡單元122與固態透鏡124的組合可做為圖2的液晶透鏡模組120。3A to 3C show schematic cross-sectional views of various structured light projectors 200a to 200c according to some embodiments of the present invention. The structured light projectors 200a to 200c are similar to the structured light projector 100 shown in FIG. 2. The difference between the structured light projector 200a to 200c and the structured light projector 100 is that the structured light projector 200a to 200c includes the liquid crystal lens unit 122 and the solid lens 124 but does not include the liquid crystal lens module 120. In some embodiments, the combination of the liquid crystal lens unit 122 and the solid lens 124 can be used as the liquid crystal lens module 120 of FIG. 2.

參考圖3A,固態透鏡124配置於光束LB的路徑上且位於繞射光學元件130以及光源110之間,而液晶透鏡單元122配置於光束LB的路徑上且位於固態透鏡124與繞射光學元件130之間。在圖3B中,固態透鏡124配置於光束LB的路徑上且位於繞射光學元件130以及光源110之間,而液晶透鏡單元122配置於繞射光學元件130上遠離光源110的一側。換句話說,液晶透鏡單元122配置於結構光SL的路徑上。在圖3C中,固態透鏡124配置於光束LB的路徑上且位於繞射光學元件130以及光源110之間,而液晶透鏡單元122配置於光束LB的路徑上且位於固態透鏡124與光源110之間。3A, the solid lens 124 is disposed on the path of the light beam LB and located between the diffractive optical element 130 and the light source 110, and the liquid crystal lens unit 122 is disposed on the path of the light beam LB and located on the solid lens 124 and the diffractive optical element 130 between. In FIG. 3B, the solid lens 124 is disposed on the path of the light beam LB and is located between the diffractive optical element 130 and the light source 110, and the liquid crystal lens unit 122 is disposed on the diffractive optical element 130 on the side away from the light source 110. In other words, the liquid crystal lens unit 122 is disposed on the path of the structured light SL. In FIG. 3C, the solid-state lens 124 is arranged on the path of the light beam LB and is located between the diffractive optical element 130 and the light source 110, and the liquid crystal lens unit 122 is arranged on the path of the light beam LB and is located between the solid-state lens 124 and the light source 110 .

在一些實施例之中,固態透鏡124可為單一透鏡或一具有多透鏡的組合,其限定了結構光投射器200a的主要焦距。在一些實施例中,固態透鏡124在光束LB進入液晶透鏡單元122或繞射光學元件130前使光束準直。在一些實施例中,液晶透鏡單元122具有可調變焦距且包含至少一液晶包層(liquid crystal cell layer)。可藉由施加電壓來控制液晶透鏡單元122內的液晶分子(圖中未示出)的定向來控制液晶透鏡單元122的焦距。In some embodiments, the solid lens 124 may be a single lens or a combination with multiple lenses, which defines the main focal length of the structured light projector 200a. In some embodiments, the solid-state lens 124 collimates the light beam before the light beam LB enters the liquid crystal lens unit 122 or the diffractive optical element 130. In some embodiments, the liquid crystal lens unit 122 has an adjustable zoom and includes at least one liquid crystal cell layer. The focal length of the liquid crystal lens unit 122 can be controlled by controlling the orientation of liquid crystal molecules (not shown in the figure) in the liquid crystal lens unit 122 by applying a voltage.

圖4A至圖8揭露可作為圖2中液晶透鏡模組120的液晶透鏡模組的一些實施例。在一些實施例中,圖4A至圖8所揭露的液晶透鏡模組可作為圖3A至圖3C的液晶透鏡單元122,且本發明不限於此。4A to FIG. 8 disclose some embodiments of the liquid crystal lens module that can be used as the liquid crystal lens module 120 in FIG. 2. In some embodiments, the liquid crystal lens module disclosed in FIGS. 4A to 8 can be used as the liquid crystal lens unit 122 of FIGS. 3A to 3C, and the present invention is not limited thereto.

圖4A及圖4B是依照本發明的一實施例的液晶透鏡模組220的剖面示意圖。液晶透鏡模組220包括第一基板224a、第二基板224b以及液晶層222。液晶層222在垂直方向(z-方向)包夾於第一基板224a與第二基板224b之間。液晶層222每個部位的有效折射率與施加於第一電極230a以及第二電極230b的電壓有關,其中第一電極230a配置於第一基板224a之上介於液晶層222與第一基板224a之間,第二電極230b配置於第二基板224b之上介於液晶層222與第二基板224b之間,且電壓由電源228提供。液晶透鏡模組220進一步包括分別配置於第一電極230a以及第二電極230b上且與液晶層222相對兩側接觸的配向膜232。配向膜232a及配向膜232b具有表面紋理,用以藉由控制液晶分子226的預傾角以及極角來將液晶分子226提供初始定向。所述預傾角是指液晶分子226的長軸與垂直於z-方向的面之間的角度;所述極角是指液晶分子226的長軸在垂直於z-方向的面上與一固定軸(例如:沿x-方向)之間的角度。用於本實施例配向膜232的材料可為聚合物(例如:聚酰亞胺),但不限於此。4A and 4B are schematic cross-sectional views of a liquid crystal lens module 220 according to an embodiment of the invention. The liquid crystal lens module 220 includes a first substrate 224a, a second substrate 224b, and a liquid crystal layer 222. The liquid crystal layer 222 is sandwiched between the first substrate 224a and the second substrate 224b in the vertical direction (z-direction). The effective refractive index of each part of the liquid crystal layer 222 is related to the voltage applied to the first electrode 230a and the second electrode 230b. The first electrode 230a is disposed on the first substrate 224a between the liquid crystal layer 222 and the first substrate 224a. Meanwhile, the second electrode 230b is disposed on the second substrate 224b between the liquid crystal layer 222 and the second substrate 224b, and the voltage is provided by the power supply 228. The liquid crystal lens module 220 further includes an alignment film 232 respectively disposed on the first electrode 230 a and the second electrode 230 b and contacting opposite sides of the liquid crystal layer 222. The alignment film 232a and the alignment film 232b have surface textures for providing initial orientation of the liquid crystal molecules 226 by controlling the pretilt and polar angles of the liquid crystal molecules 226. The pretilt angle refers to the angle between the long axis of the liquid crystal molecules 226 and the plane perpendicular to the z-direction; the polar angle refers to the long axis of the liquid crystal molecules 226 on the plane perpendicular to the z-direction and a fixed axis (For example: along the x-direction) between the angles. The material used for the alignment film 232 in this embodiment may be a polymer (for example: polyimide), but is not limited thereto.

參考圖4A,液晶透鏡模組220的液晶層222具有非均勻厚度。如圖4A所示,液晶層222具有一曲面以及一平面,且在中間部位為最厚。液晶層222的曲面對應到第一基板224a的曲面、彎曲的第一電極230a以及彎曲的上方配向膜232a。此外,在本實施例,當電極230a及230b與電源228斷開時,液晶層222內所有的液晶分子226實質上以相同定向排列。也就是說,所有液晶分子226的長軸沿水平x-方向,其中x-方向與z-方向正交。當電極230a與230b與電源228導通時,如圖4B所示,液晶分子226的定向經旋轉以至長軸與z-方向排列。Referring to FIG. 4A, the liquid crystal layer 222 of the liquid crystal lens module 220 has a non-uniform thickness. As shown in FIG. 4A, the liquid crystal layer 222 has a curved surface and a flat surface, and is the thickest in the middle part. The curved surface of the liquid crystal layer 222 corresponds to the curved surface of the first substrate 224a, the curved first electrode 230a, and the curved upper alignment film 232a. In addition, in this embodiment, when the electrodes 230a and 230b are disconnected from the power supply 228, all the liquid crystal molecules 226 in the liquid crystal layer 222 are arranged in substantially the same orientation. That is, the long axes of all the liquid crystal molecules 226 are along the horizontal x-direction, where the x-direction is orthogonal to the z-direction. When the electrodes 230a and 230b are connected to the power supply 228, as shown in FIG. 4B, the orientation of the liquid crystal molecules 226 is rotated so that the long axis and the z-direction are aligned.

在本實施例,圖4A至4B的液晶透鏡模組220可做為折射透鏡(refractive lens)。具體而言,當液晶透鏡模組220未與電源228連接時,液晶層222具有第一有效折射率使得當與液晶透鏡模組220的凸型結合時,沿z-方向進入的光會聚焦到第一焦距F1。在圖4B中,當液晶透鏡模組220與電源228連接,液晶分子226沿z-軸的排列會將液晶層222的有效折射率改變為第二有效折射率,使得當與液晶層222的凸型結合時,沿z-方向進入的光會聚焦到第二焦距F2。因此,液晶透鏡模組220的焦距可藉由打開或關閉電源228來控制。In this embodiment, the liquid crystal lens module 220 of FIGS. 4A to 4B can be used as a refractive lens. Specifically, when the liquid crystal lens module 220 is not connected to the power supply 228, the liquid crystal layer 222 has a first effective refractive index so that when combined with the convex shape of the liquid crystal lens module 220, the light entering along the z-direction will be focused to The first focal length F1. In FIG. 4B, when the liquid crystal lens module 220 is connected to the power supply 228, the arrangement of the liquid crystal molecules 226 along the z-axis will change the effective refractive index of the liquid crystal layer 222 to the second effective refractive index, so that when the liquid crystal layer 222 is convex When the type is combined, the light entering along the z-direction will be focused to the second focal length F2. Therefore, the focal length of the liquid crystal lens module 220 can be controlled by turning the power supply 228 on or off.

圖5是依照本發明一實施例的液晶透鏡模組320的剖面示意圖。液晶透鏡模組320包括第一基板224a、第二基板224b、液晶層222、第一電極230a、第二電極230b以及配向膜232a及232b,其佈置類似於液晶透鏡模組220。參照圖5,液晶透鏡模組320與液晶透鏡模組220之間的差別在於第一基板224a、第一電極230a、第二電極230b以及第一配向膜232a的形狀。具體而言,在圖5中,第一基板224a是一在z-方向上具有均勻厚度的基板,第一電極230a以及第一配向膜232a是平的,且第二電極230b以及第二配向膜232b是階梯狀的。基於第二電極230b以及第二配向膜232b為階梯狀,液晶層222具有非均勻厚度的液晶層,具有繞射透鏡的光學特性。舉例而言,第二電極230b以及第二配向膜232b的階梯狀可經設計使得跟隨所述階梯狀的液晶層222可為一種菲涅耳透鏡(Fresnel lens),但本發明不限於此。類似於液晶透鏡模組220,可以通過在第一電極230a和第二電極230b之間施加電壓來控制液晶透鏡模組320的焦距。FIG. 5 is a schematic cross-sectional view of a liquid crystal lens module 320 according to an embodiment of the invention. The liquid crystal lens module 320 includes a first substrate 224a, a second substrate 224b, a liquid crystal layer 222, a first electrode 230a, a second electrode 230b, and alignment films 232a and 232b, and its arrangement is similar to the liquid crystal lens module 220. 5, the difference between the liquid crystal lens module 320 and the liquid crystal lens module 220 lies in the shapes of the first substrate 224a, the first electrode 230a, the second electrode 230b, and the first alignment film 232a. Specifically, in FIG. 5, the first substrate 224a is a substrate with a uniform thickness in the z-direction, the first electrode 230a and the first alignment film 232a are flat, and the second electrode 230b and the second alignment film 232b is stepped. Since the second electrode 230b and the second alignment film 232b are stepped, the liquid crystal layer 222 has a liquid crystal layer with a non-uniform thickness and has the optical characteristics of a diffractive lens. For example, the step shape of the second electrode 230b and the second alignment film 232b may be designed such that the liquid crystal layer 222 following the step shape may be a Fresnel lens, but the invention is not limited thereto. Similar to the liquid crystal lens module 220, the focal length of the liquid crystal lens module 320 can be controlled by applying a voltage between the first electrode 230a and the second electrode 230b.

圖6A是依照本發明一實施例的液晶透鏡模組420a的剖面示意圖。FIG. 6A is a schematic cross-sectional view of a liquid crystal lens module 420a according to an embodiment of the invention.

在圖6A中,液晶透鏡模組420a包括第一基板224a、第二基板224b、液晶層222、第二電極230b以及配向膜232a及232b,其佈置類似於液晶透鏡模組220。參照圖6A,液晶透鏡模組420a與液晶透鏡模組220之間的差別在於第一基板224a、第一電極230a以及第一配向膜232a。具體而言,在圖6A中,第一基板224a是在z-方向上具有均勻厚度的基板,第一電極230a是在其間具有間隙或開口的圖案化電極並且設置在第一基板224a的與液晶層222相對的一側上,且第一配向膜232a是平的。因此,本實施例的液晶層222具有均勻的厚度。在一些實施例中,第一電極230a也可以設置在第一基板224a和第一配向膜232a之間,但不限於此。In FIG. 6A, the liquid crystal lens module 420a includes a first substrate 224a, a second substrate 224b, a liquid crystal layer 222, a second electrode 230b, and alignment films 232a and 232b, and its arrangement is similar to the liquid crystal lens module 220. 6A, the difference between the liquid crystal lens module 420a and the liquid crystal lens module 220 is the first substrate 224a, the first electrode 230a, and the first alignment film 232a. Specifically, in FIG. 6A, the first substrate 224a is a substrate having a uniform thickness in the z-direction, and the first electrode 230a is a patterned electrode having a gap or an opening therebetween and is disposed on the first substrate 224a and the liquid crystal The layer 222 is on the opposite side, and the first alignment film 232a is flat. Therefore, the liquid crystal layer 222 of this embodiment has a uniform thickness. In some embodiments, the first electrode 230a may also be disposed between the first substrate 224a and the first alignment film 232a, but is not limited thereto.

基於第一電極230a的圖案,液晶層222中的電壓不均勻分佈,導致當第一電極230a連接到電源時,液晶分子226具有不一樣的定向。在一些實施例中,第一電極230a的圖案可以是圖6A中所示的圖案以外的任何其他圖案。液晶取向的不均勻分佈產生分佈式折射率。取決於折射率的分佈,液晶透鏡模組420a可以是折射透鏡或繞射透鏡。Based on the pattern of the first electrode 230a, the voltage in the liquid crystal layer 222 is unevenly distributed, which causes the liquid crystal molecules 226 to have different orientations when the first electrode 230a is connected to a power source. In some embodiments, the pattern of the first electrode 230a may be any pattern other than the pattern shown in FIG. 6A. The uneven distribution of the liquid crystal orientation produces a distributed refractive index. Depending on the distribution of refractive index, the liquid crystal lens module 420a may be a refractive lens or a diffractive lens.

圖6B是依照本發明一實施例的液晶透鏡模組420b的剖面示意圖。液晶透鏡模組420b類似於液晶透鏡模組420a,不同之處在於液晶透鏡模組420b進一步包括第三電極230c。第三電極230c與第一電極230a相鄰且遠離液晶層222。在本實施例中,第一電極230a和第二電極230b可以連接到第一電源428a以提供電壓V1,而第三電極230c和第二電極230b可以連接第二電源428b以提供電壓V2。第三電極230c的附加使得可進一步控制液晶層222中的電壓分佈,以提供光學性質的進一步微調。取決於折射率的分佈,液晶透鏡模組420b可以是折射透鏡或繞射透鏡。6B is a schematic cross-sectional view of a liquid crystal lens module 420b according to an embodiment of the invention. The liquid crystal lens module 420b is similar to the liquid crystal lens module 420a, except that the liquid crystal lens module 420b further includes a third electrode 230c. The third electrode 230c is adjacent to the first electrode 230a and far away from the liquid crystal layer 222. In this embodiment, the first electrode 230a and the second electrode 230b may be connected to the first power source 428a to provide the voltage V1, and the third electrode 230c and the second electrode 230b may be connected to the second power source 428b to provide the voltage V2. The addition of the third electrode 230c makes it possible to further control the voltage distribution in the liquid crystal layer 222 to provide further fine-tuning of the optical properties. Depending on the distribution of refractive index, the liquid crystal lens module 420b may be a refractive lens or a diffractive lens.

圖7是依照本發明一實施例的液晶透鏡模組520的剖面示意圖。液晶透鏡模組520是具有均勻厚度的液晶層222的液晶透鏡模組。具體而言,液晶透鏡模組520包括第一基板224a和第二基板224b、液晶層222、第二電極230b以及配向膜232a和232b,其佈置類似於液晶透鏡模組420a。液晶透鏡模組520和液晶透鏡模組420a之間的差異在於第一電極230a的位置和第二電極230b的結構。具體而言,在圖7中,第一電極230a設置在第一基板224a和第一配向膜232a之間,且第二電極230b是像素化電極。第二電極230b包括連接到電源228的至少一個電極530a和與電極530a相鄰設置的至少一個浮動電極530b,以形成像素化結構。浮動電極530b藉由配置於其之間的絕緣體來分開,例如由第一配向膜232b的一部分來分開,如圖7所示。在一些實施例中,浮動電極530b也可以設置在第一基板224a,第二基板224b或第一基板224a和第二基板224b兩者上。第二電極230b的浮動電極530b上的電壓與相鄰電極530a相關。浮動電極530b提供更多的電壓變化間距,以更好地控制液晶層222中的液晶分子的定向。或者,浮動電極530b中的一些或全部也可以單獨連接到其他電源,以進一步控制液晶分子。取決於折射率的分佈,液晶透鏡模組520可以是折射透鏡或繞射透鏡。FIG. 7 is a schematic cross-sectional view of a liquid crystal lens module 520 according to an embodiment of the invention. The liquid crystal lens module 520 is a liquid crystal lens module having a liquid crystal layer 222 of uniform thickness. Specifically, the liquid crystal lens module 520 includes a first substrate 224a and a second substrate 224b, a liquid crystal layer 222, a second electrode 230b, and alignment films 232a and 232b, and its arrangement is similar to the liquid crystal lens module 420a. The difference between the liquid crystal lens module 520 and the liquid crystal lens module 420a lies in the position of the first electrode 230a and the structure of the second electrode 230b. Specifically, in FIG. 7, the first electrode 230a is disposed between the first substrate 224a and the first alignment film 232a, and the second electrode 230b is a pixelated electrode. The second electrode 230b includes at least one electrode 530a connected to the power source 228 and at least one floating electrode 530b disposed adjacent to the electrode 530a to form a pixelated structure. The floating electrode 530b is separated by an insulator disposed therebetween, for example, separated by a part of the first alignment film 232b, as shown in FIG. 7. In some embodiments, the floating electrode 530b may also be disposed on the first substrate 224a, the second substrate 224b, or both the first substrate 224a and the second substrate 224b. The voltage on the floating electrode 530b of the second electrode 230b is related to the adjacent electrode 530a. The floating electrode 530b provides more voltage variation intervals to better control the orientation of the liquid crystal molecules in the liquid crystal layer 222. Alternatively, some or all of the floating electrodes 530b can also be separately connected to other power sources to further control the liquid crystal molecules. Depending on the distribution of refractive index, the liquid crystal lens module 520 may be a refractive lens or a diffractive lens.

圖8是依照本發明一實施例的液晶透鏡模組620的剖面示意圖。液晶透鏡模組620類似於液晶透鏡模組520,差別在於液晶透鏡模組620具有像素化的第一電極230a,並且進一步包括設置在像素化的第一電極230a和第一配向膜232a之間的高阻抗材料層640。高阻抗材料層640在電極之間提供連續變化的電壓,因此改善了所形成圖像的質量。高阻抗材料層640的片電阻範圍介於109 至1014 歐姆每平方(Ω/ sq)。舉例而言,高阻抗材料層640由半導體材料(包括III-V族半導體化合物或II-VI半導體化合物的)或聚合物材料(包括聚二氧乙基噻吩(poly(3,4-ethylenedioxythiophene);PEDOT)))製成。當然,高阻抗材料層640可以在上述任何液晶透鏡模組中實現,並且可以具有任何其他圖案。本發明不限於此。FIG. 8 is a schematic cross-sectional view of a liquid crystal lens module 620 according to an embodiment of the invention. The liquid crystal lens module 620 is similar to the liquid crystal lens module 520, except that the liquid crystal lens module 620 has a pixelated first electrode 230a, and further includes a pixelated first electrode 230a and a first alignment film 232a. High-resistance material layer 640. The high-resistance material layer 640 provides a continuously varying voltage between the electrodes, thereby improving the quality of the formed image. The sheet resistance of the high-impedance material layer 640 ranges from 10 9 to 10 14 ohms per square (Ω/sq). For example, the high-resistance material layer 640 is made of semiconductor materials (including III-V semiconductor compounds or II-VI semiconductor compounds) or polymer materials (including poly(3,4-ethylenedioxythiophene); PEDOT))) made. Of course, the high-impedance material layer 640 can be implemented in any of the above-mentioned liquid crystal lens modules, and can have any other patterns. The present invention is not limited to this.

圖9是依照本發明一實施例的液晶層222的俯視(即,沿z-方向)示意圖。具體而言,圖9是液晶層222內的液晶分子因配向膜的控制的而在x-y平面上的示例性佈置圖案。圖9中提供的y-方向垂直於x和z方向。如圖9所示,液晶分子的極角由配向膜控制,以形成貝里相位(Pancharatnam-Berry phase)液晶透鏡。可以通過具有不同表面圖案的配向膜來形成其他液晶透鏡,本發明不限於此。FIG. 9 is a schematic top view (ie, along the z-direction) of the liquid crystal layer 222 according to an embodiment of the present invention. Specifically, FIG. 9 is an exemplary arrangement pattern of the liquid crystal molecules in the liquid crystal layer 222 on the x-y plane due to the control of the alignment film. The y-direction provided in Figure 9 is perpendicular to the x and z directions. As shown in Figure 9, the polar angle of the liquid crystal molecules is controlled by the alignment film to form a Pancharatnam-Berry phase liquid crystal lens. Other liquid crystal lenses can be formed by alignment films with different surface patterns, and the present invention is not limited thereto.

圖10A及圖10B是依照本發明一實施例的液晶透鏡模組720的剖面示意圖。在圖10A及圖10B中,液晶透鏡模組720包括液晶單元722和異向性透鏡(anisotropic lens)724,其中液晶單元722連接到電源228。在液晶透鏡模組720中,液晶單元722設置在沿垂直於x和z方向偏振的光的路徑上(如圖10A所示的偏振光LP)。液晶單元722被配置為控制入射光的偏振。10A and 10B are schematic cross-sectional views of a liquid crystal lens module 720 according to an embodiment of the invention. In FIGS. 10A and 10B, the liquid crystal lens module 720 includes a liquid crystal cell 722 and an anisotropic lens (anisotropic lens) 724, wherein the liquid crystal cell 722 is connected to a power source 228. In the liquid crystal lens module 720, the liquid crystal cell 722 is disposed on the path of light polarized perpendicular to the x and z directions (polarized light LP as shown in FIG. 10A). The liquid crystal cell 722 is configured to control the polarization of incident light.

參照圖10A和10B,當液晶單元722處於關閉狀態(未施加電壓)時,入射光的偏振不受影響,當液晶單元722處於導通狀態(施加電壓)時,入射光的偏振旋轉90度至x方向。換句話說,當液晶單元722打開時,液晶單元做為半波片以改變入射光的偏振。異向性透鏡724設置在穿過液晶單元722的光路上。異向性透鏡724的折射率(亦即焦距)取決於光的偏振,例如當光在異向性透鏡的光軸A1方向上偏振時,折射率最大,當光的偏振方向與光軸A1正交時,折射率最小。因為液晶單元722的打開和關閉會改變光的偏振,所以異向性透鏡的焦距也改變。液晶透鏡模組720也被稱為被動式液晶透鏡,因為液晶單元不主動聚焦或發散光。10A and 10B, when the liquid crystal cell 722 is in the off state (no voltage is applied), the polarization of the incident light is not affected, when the liquid crystal cell 722 is in the on state (voltage is applied), the polarization of the incident light is rotated by 90 degrees to x direction. In other words, when the liquid crystal cell 722 is opened, the liquid crystal cell acts as a half-wave plate to change the polarization of incident light. The anisotropic lens 724 is provided on the light path passing through the liquid crystal cell 722. The refractive index (that is, the focal length) of the anisotropic lens 724 depends on the polarization of the light. For example, when the light is polarized in the direction of the optical axis A1 of the anisotropic lens, the refractive index is the largest. When crossing, the refractive index is the smallest. Because the opening and closing of the liquid crystal cell 722 changes the polarization of light, the focal length of the anisotropic lens also changes. The liquid crystal lens module 720 is also called a passive liquid crystal lens because the liquid crystal cell does not actively focus or diverge light.

如上所述施加到液晶透鏡模組、液晶透鏡單元和液晶單元的電極的電壓分佈可以由耦合到電極的控制器控制。在一些實施例中,控制器例如是中央處理單元(CPU)、微處理器、數位信號處理器(digital signal processor;DSP)、可程式化控制器、可程式化邏輯元件(programmable logic device;PLD)或其他類似元件,或者所述元件的組合,不受本發明的特別限制。此外,在一些實施例中,控制器的每個功能可以多個程式碼實現。這些程式碼將儲存在儲存器或非暫時性儲存介質中,以便這些程式碼可以由控制器執行。或者,在一實施例中,控制器的每個功能可以一個或多個電路實現。本發明不旨在限制控制器的每個功能是通過軟件還是硬件實現。The voltage distribution applied to the liquid crystal lens module, the liquid crystal lens unit, and the electrodes of the liquid crystal cell as described above can be controlled by a controller coupled to the electrodes. In some embodiments, the controller is, for example, a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a programmable controller, and a programmable logic device (PLD). ) Or other similar elements, or combinations of the elements, are not particularly limited by the present invention. In addition, in some embodiments, each function of the controller can be implemented by multiple codes. These codes will be stored in memory or non-transitory storage media so that these codes can be executed by the controller. Or, in an embodiment, each function of the controller may be implemented by one or more circuits. The present invention is not intended to limit whether each function of the controller is realized by software or hardware.

藉由在結構光投射器中提供具有可調變焦距的液晶透鏡,結構光投射器的聚焦範圍變得可調並且能夠涵蓋更寬的範圍,使得能夠測量3D物體上不同距離處的特徵。此外,與聚焦鏡頭中的傳統音圈馬達(voice coil motor;VCM)相比,使用液晶透鏡的光學投射器具有更小型和低功耗的優點。因此,本發明的光學投射器可以容易地安裝在移動電子裝置中,為移動電子裝置提供3D感測的特徵。By providing a liquid crystal lens with an adjustable zoom in the structured light projector, the focus range of the structured light projector becomes adjustable and can cover a wider range, making it possible to measure features at different distances on a 3D object. In addition, compared with the traditional voice coil motor (VCM) in the focusing lens, the optical projector using the liquid crystal lens has the advantages of smaller size and low power consumption. Therefore, the optical projector of the present invention can be easily installed in a mobile electronic device, providing the mobile electronic device with 3D sensing features.

圖11A與圖11B分別為本發明的一實施例的可調式光投射器在結構光模式與泛光模式的剖面示意圖。請參照圖11A與圖11B,本實施例的可調式光投射器800包括至少一光源810(圖11A與圖11B中是以多個光源810為例)、一固定式光學相位調制器820、一可調式液晶面板900及一驅動器830。這些光源810用以發出多個光束811(在圖11A與圖11B中示意性地繪示一個光源810發出一個光束811為例)。在本實施例中,這些光源810分別為一個垂直共振腔面射型雷射的多個發光區(或發光點),或分別為多個邊射型雷射(edge-emitting laser, EEL),或分別為多個其他適當的雷射發射器或雷射二極體。11A and 11B are schematic cross-sectional views of the adjustable light projector in the structured light mode and the flood light mode, respectively, according to an embodiment of the present invention. Referring to FIGS. 11A and 11B, the adjustable light projector 800 of this embodiment includes at least one light source 810 (in FIGS. 11A and 11B are multiple light sources 810 as an example), a fixed optical phase modulator 820, and Adjustable LCD panel 900 and a driver 830. These light sources 810 are used to emit multiple light beams 811 (in FIGS. 11A and 11B, one light source 810 is schematically shown as an example of emitting one light beam 811 ). In this embodiment, the light sources 810 are multiple light-emitting areas (or light-emitting points) of a vertical cavity surface-emitting laser, or multiple edge-emitting lasers (EEL), respectively. Or multiple other suitable laser transmitters or laser diodes, respectively.

固定式光學相位調制器820配置於光束811的路徑上,且用以調制光束811的相位。在本實施例中,固定式光學相位調制器820例如為繞射光學元件或透鏡陣列,其將光束811調制成一結構光。The fixed optical phase modulator 820 is disposed on the path of the light beam 811 and used to modulate the phase of the light beam 811. In this embodiment, the fixed optical phase modulator 820 is, for example, a diffractive optical element or a lens array, which modulates the light beam 811 into a structured light.

可調式液晶面板900配置於光束811的路徑上,且用以使光束811在一結構光(如圖11A所繪示)與一泛光(如圖11B所繪示)之間切換。在本實施例中,可調式液晶面板900配置於來自固定式光學相位調制器820的光束811的路徑上。可調式液晶面板900包括一第一基板910、一第二基板920、一液晶層930、一第一電極層940及一第二電極層950。液晶層930配置於第一基板210與第二基板920之間。第一電極層940與第二電極層950的至少其中之一為圖案化層。圖11A與圖11B繪示第一電極層940為圖案化層。然而,在其他實施例中,第二電極層950可以是圖案化層,或者第一電極層940與第二電極層950兩者皆為圖案化層。在本實施例中,第一基板910與第二基板920為透明基板,例如玻璃基板或塑膠基板。第一電極層940與第二電極層950可以是由氧化銦錫(indium tin oxide, ITO)、其他導電金屬氧化物或其他透明導電材料所製成。The adjustable liquid crystal panel 900 is disposed on the path of the light beam 811, and is used to switch the light beam 811 between a structured light (as shown in FIG. 11A) and a flood light (as shown in FIG. 11B). In this embodiment, the adjustable liquid crystal panel 900 is arranged on the path of the light beam 811 from the fixed optical phase modulator 820. The adjustable liquid crystal panel 900 includes a first substrate 910, a second substrate 920, a liquid crystal layer 930, a first electrode layer 940, and a second electrode layer 950. The liquid crystal layer 930 is disposed between the first substrate 210 and the second substrate 920. At least one of the first electrode layer 940 and the second electrode layer 950 is a patterned layer. 11A and 11B show that the first electrode layer 940 is a patterned layer. However, in other embodiments, the second electrode layer 950 may be a patterned layer, or both the first electrode layer 940 and the second electrode layer 950 may be patterned layers. In this embodiment, the first substrate 910 and the second substrate 920 are transparent substrates, such as glass substrates or plastic substrates. The first electrode layer 940 and the second electrode layer 950 may be made of indium tin oxide (ITO), other conductive metal oxides, or other transparent conductive materials.

第一電極層940與第二電極層950皆配置於第一基板910與第二基板920的其中之一上,或分別配置於第一基板910與第二基板920上。驅動器830電性連接至第一電極層940與第二電極層950,且用以改變第一電極層940與第二電極層950之間的電壓差,進而使光束811在結構光與泛光之間切換。具體而言,液晶層930的光學空間相位分佈會隨著此電壓差的改變而改變,進而使光束811在結構光與泛光之間切換。The first electrode layer 940 and the second electrode layer 950 are both disposed on one of the first substrate 910 and the second substrate 920, or are disposed on the first substrate 910 and the second substrate 920, respectively. The driver 830 is electrically connected to the first electrode layer 940 and the second electrode layer 950, and is used to change the voltage difference between the first electrode layer 940 and the second electrode layer 950, so that the light beam 811 is in between the structured light and the flood light. Switch between. Specifically, the optical spatial phase distribution of the liquid crystal layer 930 changes as the voltage difference changes, so that the light beam 811 is switched between structured light and flood light.

舉例而言,在圖11A中,第一電極層940與第二電極層950之間的電壓差約為零,且液晶層930的折射率分佈是均勻的,因此液晶層930類似一透明層。所以,來自固定式光學相位調制器820的結構光會穿透此透明層而仍然為一結構光,且可調式光投射器800是處於一結構光模式中。在圖11B中,第一電極層940與第二電極層950之間的電壓差不等於零,且液晶層930的折射率分佈為不均勻,因此液晶層930類似一透鏡陣列。所以,來自固定式光學相位調制器820的結構光被此透鏡陣列轉換為一泛光,且可調式光投射器800處於一泛光模式。此結構光可以照射在物體上而在物體上形成具有多個點、具有條紋或具有其他適當圖案的光圖案。此泛光可均勻地照射物體。For example, in FIG. 11A, the voltage difference between the first electrode layer 940 and the second electrode layer 950 is about zero, and the refractive index distribution of the liquid crystal layer 930 is uniform, so the liquid crystal layer 930 is similar to a transparent layer. Therefore, the structured light from the fixed optical phase modulator 820 will penetrate the transparent layer and still be a structured light, and the adjustable light projector 800 is in a structured light mode. In FIG. 11B, the voltage difference between the first electrode layer 940 and the second electrode layer 950 is not equal to zero, and the refractive index distribution of the liquid crystal layer 930 is not uniform, so the liquid crystal layer 930 is similar to a lens array. Therefore, the structured light from the fixed optical phase modulator 820 is converted into a floodlight by the lens array, and the adjustable light projector 800 is in a floodlight mode. The structured light can be irradiated on the object to form a light pattern with multiple dots, stripes or other suitable patterns on the object. This floodlight can illuminate the object evenly.

在本實施例的可調式光投射器中,可調式液晶面板900被用來使光束811在結構光與泛光之間切換,因此本實施例將泛光系統與結構光系統整合成單一系統,其減少了具有結構光與泛光功能的電子裝置的成本與體積。In the adjustable light projector of this embodiment, the adjustable liquid crystal panel 900 is used to switch the beam 811 between structured light and floodlight. Therefore, this embodiment integrates the floodlight system and the structured light system into a single system. It reduces the cost and volume of electronic devices with structured light and floodlight functions.

在另一實施例中,固定式光學相位調制器820用以將光束811調制成一泛光。此外,當第一電極層940與第二電極層950之間的電壓差約為零時,來自固定式光學相位調制器820的泛光穿透液晶層930(此時其為一透明層)且仍然為一泛光。當第一電極層940與第二電極層950之間的電壓差不為零時,來自固定式光學相位調制器820的泛光被液晶層930(此時其為類似透鏡陣列的一光學層)轉換成一結構光。In another embodiment, the fixed optical phase modulator 820 is used to modulate the light beam 811 into a floodlight. In addition, when the voltage difference between the first electrode layer 940 and the second electrode layer 950 is about zero, the flood light from the fixed optical phase modulator 820 penetrates the liquid crystal layer 930 (it is a transparent layer at this time) and Still a flood. When the voltage difference between the first electrode layer 940 and the second electrode layer 950 is not zero, the floodlight from the fixed optical phase modulator 820 is covered by the liquid crystal layer 930 (in this case, it is an optical layer similar to a lens array) Converted into a structured light.

在又一實施例中,固定式光學相位調制器820用以將光束調制成一準直光,且第一電極層940與第二電極層950之間的兩種電壓差分別將液晶層930切換至兩種折射率分佈,進而分別將來自固定式光學相位調制器820的準直光切換成一結構光與一泛光。In another embodiment, the fixed optical phase modulator 820 is used to modulate the light beam into a collimated light, and the two voltage differences between the first electrode layer 940 and the second electrode layer 950 separate the liquid crystal layer 930 Switch to two refractive index distributions, and then respectively switch the collimated light from the fixed optical phase modulator 820 into a structured light and a flood light.

圖12A、圖12B及圖12C分別為圖11A與圖11B中的第一電極層之根據本發明的三個實施例的上視示意圖。請參照圖12A、圖12B與圖12C,圖案化層(如第一電極層940或第二電極層950,且圖中是繪示第一電極層940為例)具有多個微開孔942,其具有小於1毫米的一最大直徑D。微開孔942的形狀包括圓形(如圖12A所繪示)、矩形(如圖12B所繪示)、正方形、六邊形(如圖12C所繪示)、其他幾何形狀、其他不規則形狀或其組合。12A, 12B, and 12C are schematic top views of the first electrode layer in FIGS. 11A and 11B according to three embodiments of the present invention, respectively. 12A, 12B and 12C, the patterned layer (such as the first electrode layer 940 or the second electrode layer 950, and the first electrode layer 940 is shown as an example) has a plurality of micro-openings 942, It has a maximum diameter D less than 1 mm. The shape of the micro-opening 942 includes a circle (as shown in FIG. 12A), a rectangle (as shown in FIG. 12B), a square, a hexagon (as shown in FIG. 12C), other geometric shapes, and other irregular shapes Or a combination.

圖13A、圖13B及圖13C為圖12A的第一電極層的其他三種變化的上視示意圖。請參照圖12A、圖13A、圖13B及圖13C,微開孔942的尺寸與位置可以是規律的或不規律的。舉例而言,在圖12A中,微開孔942的尺寸彼此相等,且微開孔942的位置是規律的。在圖13A中,微開孔942的尺寸彼此相等,且微開孔942的位置是不規律的。在圖13B中,微開孔942具有不同的尺寸,且微開孔942的位置是規律的。在圖13C中,微開孔942具有不同尺寸,且微開孔942的位置是不規律的。13A, 13B, and 13C are schematic top views of other three variations of the first electrode layer in FIG. 12A. Referring to FIGS. 12A, 13A, 13B, and 13C, the size and position of the micro-opening 942 can be regular or irregular. For example, in FIG. 12A, the sizes of the micro-openings 942 are equal to each other, and the positions of the micro-openings 942 are regular. In FIG. 13A, the sizes of the micro-openings 942 are equal to each other, and the positions of the micro-openings 942 are irregular. In FIG. 13B, the micro-openings 942 have different sizes, and the positions of the micro-openings 942 are regular. In FIG. 13C, the micro-openings 942 have different sizes, and the positions of the micro-openings 942 are irregular.

圖14A為圖11A的可調式液晶面板的剖面示意圖,且圖14B與圖14C繪示圖14A的可調式液晶面板的其他兩種變化。請參照圖14A,可調式液晶面板900具有液晶層930,其包括聚合物網絡液晶(polymer network liquid crystal, PNLC),其包括液晶分子932與聚合物網絡(polymer network)934。請參照圖14B,可調式液晶面板900a可具有液晶層930a,其包括向列型液晶(nematic liquid crystal)。請參照圖14C,可調式液晶面板900b可具有液晶層930b,其包括聚合物分散液晶(polymer dispersed liquid crystal, PDLC),其包括液晶分子932b與聚合物934b。14A is a schematic cross-sectional view of the adjustable liquid crystal panel of FIG. 11A, and FIGS. 14B and 14C illustrate other two variations of the adjustable liquid crystal panel of FIG. 14A. 14A, the adjustable liquid crystal panel 900 has a liquid crystal layer 930, which includes a polymer network liquid crystal (PNLC), which includes liquid crystal molecules 932 and a polymer network 934. 14B, the adjustable liquid crystal panel 900a may have a liquid crystal layer 930a, which includes a nematic liquid crystal (nematic liquid crystal). 14C, the adjustable liquid crystal panel 900b may have a liquid crystal layer 930b, which includes a polymer dispersed liquid crystal (PDLC), which includes liquid crystal molecules 932b and a polymer 934b.

圖15A為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖15A,本實施例的可調式液晶面板900c類似於圖14B的可調式液晶面板900a,且其主要差異如下所述。在本實施例中,可調式液晶面板900c更包括一第一配向層960與一第二配向層970。第一配向層960配置於第一基板910與液晶層930a之間,且第二配向層970配置於第二基板920與液晶層930a之間。在本實施例中,第一配向層960配置於第一電極層940與液晶層930a之間,且第二配向層970配置於第二電極層950與液晶層930a之間。在本實施例中,第一配向層960與第二配向層970為水平配向層(parallel alignment layer)。15A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. Please refer to FIG. 15A, the adjustable liquid crystal panel 900c of this embodiment is similar to the adjustable liquid crystal panel 900a of FIG. 14B, and the main differences are as follows. In this embodiment, the adjustable liquid crystal panel 900c further includes a first alignment layer 960 and a second alignment layer 970. The first alignment layer 960 is disposed between the first substrate 910 and the liquid crystal layer 930a, and the second alignment layer 970 is disposed between the second substrate 920 and the liquid crystal layer 930a. In this embodiment, the first alignment layer 960 is disposed between the first electrode layer 940 and the liquid crystal layer 930a, and the second alignment layer 970 is disposed between the second electrode layer 950 and the liquid crystal layer 930a. In this embodiment, the first alignment layer 960 and the second alignment layer 970 are parallel alignment layers.

圖15B為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖15B,本實施例之可調式液晶面板900d類似於可調式液晶面板900c,且其主要差異如下所述。在本實施例的可調式液晶面板900d中,第一配向層960d與第二配向層970d為垂直配向層(vertical alignment layer)。15B is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. 15B, the adjustable liquid crystal panel 900d of this embodiment is similar to the adjustable liquid crystal panel 900c, and the main differences are as follows. In the adjustable liquid crystal panel 900d of this embodiment, the first alignment layer 960d and the second alignment layer 970d are vertical alignment layers.

圖15C為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖15C,本實施例之可調式液晶面板900e類似於可調式液晶面板900c,而其主要差異如下所述。在本實施例之可調式液晶面板900e中,第一配向層960與第二配向層970d為一垂直配向層與一水平配向層的組合。舉例而言,第一配向層960為水平配向層,而第二配向層970d為垂直配向層。15C is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. Please refer to FIG. 15C. The adjustable liquid crystal panel 900e of this embodiment is similar to the adjustable liquid crystal panel 900c, and the main differences are as follows. In the adjustable liquid crystal panel 900e of this embodiment, the first alignment layer 960 and the second alignment layer 970d are a combination of a vertical alignment layer and a horizontal alignment layer. For example, the first alignment layer 960 is a horizontal alignment layer, and the second alignment layer 970d is a vertical alignment layer.

圖16A繪示圖15A或圖15C中的第一配向層或第二配向層之根據本發明的一實施例的配向(alignment direction)。請參照圖16A,在一實施例中,第一配向層960與第二配向層970的配向L1具有均勻的空間分佈。換言之,在第一配向層960或第二配向層970的不同區域中的配向的方位角(azimuthal angle)彼此相同。FIG. 16A shows the alignment direction of the first alignment layer or the second alignment layer in FIG. 15A or FIG. 15C according to an embodiment of the present invention. Referring to FIG. 16A, in one embodiment, the alignment L1 of the first alignment layer 960 and the second alignment layer 970 has a uniform spatial distribution. In other words, the azimuthal angles of the alignment in different regions of the first alignment layer 960 or the second alignment layer 970 are the same as each other.

圖16B繪示圖15A或圖15C中的第一配向層或第二配向層之根據本發明的另一實施例的另一種變化的配向。請參照圖16B,在另一實施例中,第一配向層960a與第二配向層970a的配向L1具有不規則的空間分佈。換言之,在第一配向層960a或第二配向層970a的不同區域中的配向的方位角彼此不同。不同的配向與不同的方位角可折射或繞射來自光源810的不同偏振方向的光束811。FIG. 16B illustrates another variation of the alignment of the first alignment layer or the second alignment layer in FIG. 15A or FIG. 15C according to another embodiment of the present invention. Referring to FIG. 16B, in another embodiment, the alignment L1 of the first alignment layer 960a and the second alignment layer 970a has an irregular spatial distribution. In other words, the azimuth angles of the alignment in different regions of the first alignment layer 960a or the second alignment layer 970a are different from each other. Different orientations and different azimuth angles can refract or diffract the light beam 811 from the light source 810 in different polarization directions.

圖17A為採用圖16B的配向層的一可調式光投射器的剖面示意圖。圖17B為圖17A中的光斑區域與配向層的上視示意圖。請參照圖17A與圖17B,本實施例的可調式光投射器800c類似於圖11A的可調式光投射器800,且其主要差異如下所述。在本實施例的可調式光投射器800c中,第一配向層960a與第二配向層970a的配向之不規則的空間分佈之局部相同配向區域R1小於可調式液晶面板900c上之被來自固定式光學相位調制器820的光束811照射的一光斑區域R2。因此,具有各種偏振方向的光束811皆可被液晶層900c折射或繞射。FIG. 17A is a schematic cross-sectional view of an adjustable light projector using the alignment layer of FIG. 16B. FIG. 17B is a schematic top view of the spot area and the alignment layer in FIG. 17A. Referring to FIGS. 17A and 17B, the adjustable light projector 800c of this embodiment is similar to the adjustable light projector 800 of FIG. 11A, and the main differences are as follows. In the adjustable light projector 800c of the present embodiment, the irregular spatial distribution of the first alignment layer 960a and the second alignment layer 970a have a locally identical alignment area R1 that is smaller than the fixed alignment area R1 on the adjustable liquid crystal panel 900c. A spot area R2 irradiated by the light beam 811 of the optical phase modulator 820. Therefore, the light beams 811 having various polarization directions can be refracted or diffracted by the liquid crystal layer 900c.

圖18A、圖18B及圖18C繪示一可調式液晶面板的剖面示意圖及在三種不同的模式下施加至液晶層的電壓差。請參照圖18A、圖18B及圖18C,本實施例的可調式液晶面板900f類似於圖14C之可調式液晶面板900b,且其主要差異如下所述。本實施例之可調式液晶面板900f更包括一高阻抗層980(相同於圖8之高阻抗材料層640),其鄰接圖案化層(如第一電極層940)。在圖18A中,當第一電極層940與第二電極層950之間的電壓差為零,施加於液晶層930b的電壓差ΔV為零,且液晶層930b處於一散射模式,且用以散射來自固定光學相位調制器820的光束811。18A, 18B, and 18C show schematic cross-sectional views of an adjustable liquid crystal panel and the voltage difference applied to the liquid crystal layer in three different modes. Please refer to FIGS. 18A, 18B, and 18C. The adjustable liquid crystal panel 900f of this embodiment is similar to the adjustable liquid crystal panel 900b of FIG. 14C, and the main differences are as follows. The adjustable liquid crystal panel 900f of this embodiment further includes a high-impedance layer 980 (same as the high-impedance material layer 640 in FIG. 8), which is adjacent to the patterned layer (such as the first electrode layer 940). In FIG. 18A, when the voltage difference between the first electrode layer 940 and the second electrode layer 950 is zero, the voltage difference ΔV applied to the liquid crystal layer 930b is zero, and the liquid crystal layer 930b is in a scattering mode for scattering The light beam 811 from the fixed optical phase modulator 820.

在18B中,當第一電極層940與第二電極層950之間的電壓差為高頻的交流電壓時(此「高頻」例如是大於1 kHz且小於等於60 kHz的頻率),施加於液晶層930的電壓差ΔV由於高阻抗層980的作用而隨著位置逐漸變化,且液晶層930b處於一散射且聚光模式,且用以些微散射且會聚來自固定式光學相位調制器820的光束811。In 18B, when the voltage difference between the first electrode layer 940 and the second electrode layer 950 is a high-frequency AC voltage (this "high frequency" is, for example, a frequency greater than 1 kHz and less than or equal to 60 kHz), the The voltage difference ΔV of the liquid crystal layer 930 gradually changes with the position due to the action of the high impedance layer 980, and the liquid crystal layer 930b is in a scattering and condensing mode, and is used to slightly scatter and condense the light beam from the fixed optical phase modulator 820 811.

在18C中,當第一電極層940與第二電極層950之間的電壓差為低頻的交流電壓時(此「低頻」例如是大於等於60 Hz且小於等於1 kHz的頻率),施加於液晶層930的電壓差ΔV在不同的位置上大約保持恆定,液晶層930b處於一透明模式且類似一透明層,且光束811穿透液晶層930b。此外,上述「高頻」大於上述「低頻」。In 18C, when the voltage difference between the first electrode layer 940 and the second electrode layer 950 is a low-frequency alternating voltage (this "low frequency" is, for example, a frequency greater than or equal to 60 Hz and less than or equal to 1 kHz), the liquid crystal is applied The voltage difference ΔV of the layer 930 remains approximately constant at different positions, the liquid crystal layer 930b is in a transparent mode and resembles a transparent layer, and the light beam 811 penetrates the liquid crystal layer 930b. In addition, the aforementioned "high frequency" is greater than the aforementioned "low frequency".

圖19A為本發明的另一實施例的可調式液晶面板的剖面示意圖,且圖19B為圖19A中的第一基板的上視示意圖。請參照圖19A與圖19B,本實施例的可調式液晶面板900g類似於圖15A之可調式液晶面板900c,且其主要差異如下所述。在本實施例之可調式液晶面板900g中,第一電極層940g與第二電極層950g兩者皆配置於同一基板(例如第一基板910),且皆為圖案化層。第一電極層940g與第二電極層950g具有橫向電場切換(in-plane switch, IPS)的電極設計。具體而言,第一電極層940g包括多個導電微圖案942g,且第二電極層950g包括多個導電微圖案952g。導電微圖案942g與導電微圖案952g沿著一方向(例如圖19A與圖19B中的右方向)交替配置。導電微圖案942g與導電微圖案952g可具有直線形狀。舉例而言,導電微圖案942g與導電微圖案952g的每一者可沿著垂直於圖19A的圖面的一方向延伸。然而,在本實施例中,導電微圖案942g與導電微圖案952g可具有如圖19B所繪示的之字形狀(zigzag shape)。FIG. 19A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention, and FIG. 19B is a schematic top view of the first substrate in FIG. 19A. 19A and 19B, the adjustable liquid crystal panel 900g of this embodiment is similar to the adjustable liquid crystal panel 900c of FIG. 15A, and the main differences are as follows. In the adjustable liquid crystal panel 900g of this embodiment, both the first electrode layer 940g and the second electrode layer 950g are disposed on the same substrate (for example, the first substrate 910), and both are patterned layers. The first electrode layer 940g and the second electrode layer 950g have an in-plane switch (IPS) electrode design. Specifically, the first electrode layer 940g includes a plurality of conductive micro patterns 942g, and the second electrode layer 950g includes a plurality of conductive micro patterns 952g. The conductive micropatterns 942g and the conductive micropatterns 952g are alternately arranged along one direction (for example, the right direction in FIGS. 19A and 19B). The conductive micropattern 942g and the conductive micropattern 952g may have a linear shape. For example, each of the conductive micropattern 942g and the conductive micropattern 952g may extend along a direction perpendicular to the plane of FIG. 19A. However, in this embodiment, the conductive micropattern 942g and the conductive micropattern 952g may have a zigzag shape as shown in FIG. 19B.

圖20A為本發明的另一實施例的可調式液晶面板的剖面示意圖,且圖20B為圖20A中的第一基板的上視示意圖。本實施例的可調式液晶面板900h類似於圖19A中的可調式液晶面板900g,且其主要差異如下所述。在本實施例的可調式液晶面板900h中,第一電極層940g與第二電極層950h具有邊緣場切換(fringe-field switch, FFS)的電極設計。第二電極層950h為一平坦連續層,其介於第一電極層940g與第一基板910之間,且第一電極層940g與第二電極層950被配置其間的絕緣層990將彼此絕緣。圖20A與圖20B中的第一電極層940g相同於圖19A與圖19B中的第一電極層940g的描述。20A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention, and FIG. 20B is a schematic top view of the first substrate in FIG. 20A. The adjustable liquid crystal panel 900h of this embodiment is similar to the adjustable liquid crystal panel 900g in FIG. 19A, and the main differences are as follows. In the adjustable liquid crystal panel 900h of this embodiment, the first electrode layer 940g and the second electrode layer 950h have a fringe-field switch (FFS) electrode design. The second electrode layer 950h is a flat continuous layer between the first electrode layer 940g and the first substrate 910, and the first electrode layer 940g and the second electrode layer 950 are disposed between the insulating layer 990 to insulate each other. The first electrode layer 940g in FIGS. 20A and 20B is the same as the description of the first electrode layer 940g in FIGS. 19A and 19B.

圖21A為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖21A,本實施例的可調式液晶面板900j類似於圖14B之可調式液晶面板900a,且其主要差異如下所述。在可調式液晶面板900j中,第一電極層940與第二電極層950j為分別配置於第一基板910上與第二基板920上的二個圖案化層,且此二個圖案化層的圖案彼此相同。然而,在其他實施例中,此二個圖案化層的圖案可以彼此不同。21A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. Please refer to FIG. 21A. The adjustable liquid crystal panel 900j of this embodiment is similar to the adjustable liquid crystal panel 900a of FIG. 14B, and the main differences are as follows. In the adjustable liquid crystal panel 900j, the first electrode layer 940 and the second electrode layer 950j are two patterned layers respectively disposed on the first substrate 910 and the second substrate 920, and the patterns of the two patterned layers Same as each other. However, in other embodiments, the patterns of the two patterned layers may be different from each other.

圖21B為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖21B,本實施例的可調式液晶面板900i類似於圖19A或圖20A中的可調式液晶面板900g或900h,且其主要差異如下所述。本實施例的可調式液晶面板900i包括配置於第一基板910上之如圖19A所繪示者的第一電極層940g與第二電極層950g,且包括配置於第二基板920上之如圖20A所繪示者的第一電極層940g與第二電極層950。也就是說,第一基板910側具有橫向電場切換的電極設計,且第二基板920側具有邊緣場切換的電極設計。然而,在其他實施例中,第一基板910側與第二基板920側可皆具有橫向電場切換的電極設計,或是第一基板210側與第二基板920側可皆具有邊緣場切換的電極設計。21B is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. Please refer to FIG. 21B. The adjustable liquid crystal panel 900i of this embodiment is similar to the adjustable liquid crystal panel 900g or 900h in FIG. 19A or FIG. 20A, and the main differences are as follows. The adjustable liquid crystal panel 900i of this embodiment includes a first electrode layer 940g and a second electrode layer 950g as shown in FIG. 19A, which are arranged on the first substrate 910, and includes the image shown on the second substrate 920. The first electrode layer 940g and the second electrode layer 950 shown in 20A. In other words, the first substrate 910 side has a lateral electric field switching electrode design, and the second substrate 920 side has a fringe field switching electrode design. However, in other embodiments, both the first substrate 910 side and the second substrate 920 side may have electrode designs for lateral electric field switching, or the first substrate 210 side and the second substrate 920 side may both have fringe field switching electrodes. design.

圖22為本發明的另一實施例的可調式光投射器的剖面示意圖。本實施例的可調式光投射器800k與圖11A及圖11B之可調式光投射器800類似,而兩者的差異在於固定式光學相位調制器820與可調式液晶面板900的排列順序。在圖11A與圖11B中,固定式光學相位調制器820配置於光源810與可調式液晶面板900之間。然而,在本實施例中,可調式液晶面板900配置於光源810與固定式光學相位調制器820之間,也就是固定式光學相位調制器820配置於來自可調式液晶面板900的光束的路徑上,如此當可調式液晶面板900在如前述實施例的不同模式間切換時,仍可以使後來通過固定式光學相位調制器820的光束在結構光與泛光之間切換。22 is a schematic cross-sectional view of an adjustable light projector according to another embodiment of the invention. The adjustable light projector 800k of this embodiment is similar to the adjustable light projector 800 of FIGS. 11A and 11B, and the difference between the two lies in the arrangement sequence of the fixed optical phase modulator 820 and the adjustable liquid crystal panel 900. In FIG. 11A and FIG. 11B, the fixed optical phase modulator 820 is disposed between the light source 810 and the adjustable liquid crystal panel 900. However, in this embodiment, the adjustable liquid crystal panel 900 is arranged between the light source 810 and the fixed optical phase modulator 820, that is, the fixed optical phase modulator 820 is arranged on the path of the light beam from the adjustable liquid crystal panel 900 In this way, when the adjustable liquid crystal panel 900 is switched between different modes as in the foregoing embodiment, the light beam passing through the fixed optical phase modulator 820 can still be switched between structured light and flood light.

圖23A與圖23B為本發明的另一實施例的可調式光投射器分別於結構光模式與泛光模式下的剖面示意圖。請參照圖23A與圖23B,本實施例的可調式光投射器800l類似於可調式光投射器800,而兩者的主要差異如下所述。在本實施例的可調式光投射器800l中,可調式液晶面板900l用以在多個狀態(圖23A與圖23B分別示意性地展示兩個狀態)之間切換,且這些狀態包括一透鏡陣列狀態(如圖23B所繪示),在透鏡陣列狀態下的可調式液晶面板900l包括一透鏡陣列,其包括多個排成陣列的透鏡905。在本實施例中,這些透鏡905為多個排成陣列的貝里相位(Pancharatnam-Berry phase)液晶透鏡,每一透鏡905的液晶層930l的液晶分子的配向如同圖9所繪示,其可藉由配向層960l與970l來達成。23A and FIG. 23B are schematic cross-sectional views of the adjustable light projector in the structured light mode and the flood light mode, respectively, according to another embodiment of the present invention. Please refer to FIGS. 23A and 23B. The adjustable light projector 8001 of this embodiment is similar to the adjustable light projector 800, and the main differences between the two are as follows. In the adjustable light projector 8001 of this embodiment, the adjustable liquid crystal panel 9001 is used to switch between a plurality of states (FIG. 23A and FIG. 23B schematically show two states respectively), and these states include a lens array In the state (as shown in FIG. 23B), the adjustable liquid crystal panel 9001 in the lens array state includes a lens array including a plurality of lenses 905 arranged in an array. In this embodiment, the lenses 905 are a plurality of Pancharatnam-Berry phase liquid crystal lenses arranged in an array, and the alignment of the liquid crystal molecules of the liquid crystal layer 9301 of each lens 905 is as shown in FIG. 9, which can be It is achieved by the alignment layers 960l and 970l.

在結構光模式下,可調式液晶面板900l的第一電極層940與第二電極層950之間沒有被施加電壓差,且可調式液晶面板900l如同一透明板,因此來自固定式光學相位調制器820的結構光被維持且穿透可調式液晶面板900l。此外,在泛光模式下,驅動器830在第一電極層940與第二電極層950之間施加一電壓差,且可調式液晶面板900l如同一透鏡陣列,且將來自固定式光學相位調制器820的結構光轉換為泛光。In the structured light mode, no voltage difference is applied between the first electrode layer 940 and the second electrode layer 950 of the adjustable liquid crystal panel 900l, and the adjustable liquid crystal panel 900l is like a transparent plate, so it comes from a fixed optical phase modulator The structured light of 820 is maintained and penetrates the adjustable liquid crystal panel 900l. In addition, in the flood mode, the driver 830 applies a voltage difference between the first electrode layer 940 and the second electrode layer 950, and the adjustable liquid crystal panel 9001 is like a lens array, and will come from the fixed optical phase modulator 820 The structured light is converted to flood light.

可調式液晶面板900l也可被用來取代圖3A、圖3B及圖3C的液晶透鏡單元122,以改變焦距。The adjustable liquid crystal panel 9001 can also be used to replace the liquid crystal lens unit 122 of FIGS. 3A, 3B, and 3C to change the focal length.

請再參照圖23A與圖23B,在本實施例中,透鏡陣列佈滿整個可調式液晶面板900l。然而,在其他實施例中,透鏡陣列可位於可調式液晶面板900l的一感興趣區域(region of interest)內,其可藉由第一電極層940與第二電極層950的至少其中之一的圖案設計及施加於其間的適當電壓差分布來達成。Please refer to FIGS. 23A and 23B again. In this embodiment, the lens array covers the entire adjustable liquid crystal panel 900l. However, in other embodiments, the lens array can be located in a region of interest of the adjustable liquid crystal panel 9001, which can be formed by at least one of the first electrode layer 940 and the second electrode layer 950 The pattern design and the appropriate voltage difference distribution applied between them are achieved.

在一實施例中,驅動器830用以改變透鏡陣列的這些透鏡905的每一者的焦距。在一實施例中,驅動器830用以改變透鏡陣列的這些透鏡905的每一者的位置。在一實施例中,驅動器830用以改變透鏡陣列的這些透鏡905的每一者的尺寸。在一實施例中,驅動器830用以改變透鏡陣列的這些透鏡905的每一者的焦距、位置及尺寸的至少其中之一。In an embodiment, the driver 830 is used to change the focal length of each of the lenses 905 of the lens array. In an embodiment, the driver 830 is used to change the position of each of the lenses 905 of the lens array. In an embodiment, the driver 830 is used to change the size of each of the lenses 905 of the lens array. In an embodiment, the driver 830 is used to change at least one of the focal length, position, and size of each of the lenses 905 of the lens array.

在本實施例中,可調式液晶面板900l為一穿透式液晶面板,且配置於來自固定式光學相位調制器820的光束811的路徑上。然而,在其他實施例中,固定式光學相位調制器820可以配置於來自可調式液晶面板900l的光束811的路徑上(如同圖22所繪示者)。In this embodiment, the adjustable liquid crystal panel 9001 is a transmissive liquid crystal panel and is arranged on the path of the light beam 811 from the fixed optical phase modulator 820. However, in other embodiments, the fixed optical phase modulator 820 may be configured on the path of the light beam 811 from the adjustable liquid crystal panel 9001 (as shown in FIG. 22).

圖24為本發明的另一實施例的可調式光投射器的剖面示意圖。請參照圖24,本實施例的可調式光投射器800m類似於圖23A與圖23B的可調式光投射器800l,而兩者的主要差異如下所述。在本實施例的可調式光投射器800m中,可調式液晶面板900m為反射式液晶面板,其將來自光源810的光束811反射至固定式光學相位調制器820。然而,在其他實施例中,可調式液晶面板900m可以將來自固定式光學相位調制器820的光束811反射至物體12(如圖1所繪示)。24 is a schematic cross-sectional view of an adjustable light projector according to another embodiment of the invention. Please refer to FIG. 24. The adjustable light projector 800m of this embodiment is similar to the adjustable light projector 8001 of FIGS. 23A and 23B, and the main differences between the two are as follows. In the adjustable light projector 800m of this embodiment, the adjustable liquid crystal panel 900m is a reflective liquid crystal panel that reflects the light beam 811 from the light source 810 to the fixed optical phase modulator 820. However, in other embodiments, the adjustable liquid crystal panel 900m can reflect the light beam 811 from the fixed optical phase modulator 820 to the object 12 (as shown in FIG. 1).

在本實施例中,可調式液晶面板900m可包括可調式液晶面板900l及一配置於其上的反射器906,因此光束811可以通過可調式液晶面板900m的液晶層兩次。反射器906可以是塗佈於可調式液晶面板900l的基板上的反射膜,或可以是配置於可調式液晶面板900l的基板上的反射片,且反射器906可以是在此基板的內側或外側上。In this embodiment, the adjustable liquid crystal panel 900m may include the adjustable liquid crystal panel 900l and a reflector 906 disposed thereon, so the light beam 811 can pass through the liquid crystal layer of the adjustable liquid crystal panel 900m twice. The reflector 906 can be a reflective film coated on the substrate of the adjustable liquid crystal panel 900l, or can be a reflective sheet disposed on the substrate of the adjustable liquid crystal panel 900l, and the reflector 906 can be on the inside or outside of the substrate superior.

在本實施例中,由於光束811通過可調式液晶面板900m的液晶層兩次,光束811在液晶層中的光學路徑長度(optical path length)變為兩倍。因此,可調式液晶面板900m的液晶層的厚度可以被縮減。一般而言,液晶的反應時間(response time)平方反比於液晶層的厚度,因此可調式液晶面板900m的反應時間可以被有效地縮短。In this embodiment, since the light beam 811 passes through the liquid crystal layer of the adjustable liquid crystal panel 900 m twice, the optical path length of the light beam 811 in the liquid crystal layer becomes twice. Therefore, the thickness of the liquid crystal layer of the adjustable liquid crystal panel 900m can be reduced. Generally speaking, the response time of the liquid crystal is inversely squared to the thickness of the liquid crystal layer, so the 900 m response time of the adjustable liquid crystal panel can be effectively shortened.

在本實施例中,固態透鏡124配置於光束811的路徑上。然而,在其他實施例中,也可以不採用固態透鏡124。In this embodiment, the solid lens 124 is arranged on the path of the light beam 811. However, in other embodiments, the solid lens 124 may not be used.

綜上所述,在本發明的實施例的可調式光投射器中,利用可調式液晶面板來使光束在結構光與泛光之間切換,因此本發明的實施例將泛光系統與結構光系統整合成單一系統,其減少了具有結構光與泛光功能的電子裝置的成本與體積。上述多種可調式光投射器的每一者可取代光學感測裝置中的前述多種結構光投射器的任一者,以形成一個兼具泛光辨識功能與結構光辨識功能的光學感測裝置。在泛光辨識功能中,感測器可感測物體,並判斷物體是否為人臉。在結構光辨識功能中,感測器可感測物體上的光圖案,並判斷所偵測到的人臉是否為一電子裝置的使用者的臉。In summary, in the adjustable light projector of the embodiment of the present invention, the adjustable liquid crystal panel is used to switch the beam between structured light and floodlight. Therefore, the embodiment of the present invention combines the floodlight system with the structured light The system is integrated into a single system, which reduces the cost and volume of electronic devices with structured light and floodlight functions. Each of the aforementioned multiple adjustable light projectors can replace any of the aforementioned multiple structured light projectors in the optical sensing device to form an optical sensing device with both floodlight recognition and structured light recognition functions. In the flood recognition function, the sensor can sense an object and determine whether the object is a human face. In the structured light recognition function, the sensor can sense the light pattern on the object and determine whether the detected human face is the face of the user of an electronic device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to those defined by the attached patent scope.

10:光學感測裝置 12:物體 100、200a、200b、200c:結構光投射器 104:感測器 106:開口 110:光源 120、220、320、420a、420b、520、620、720:液晶透鏡模組 122:液晶透鏡單元 124:固態透鏡 130:繞射光學元件 222:液晶層 224a:第一基板 224b:第二基板 226:液晶分子 228、428a、428b:電源 230a:第一電極/電極 230b:第二電極/電極 230c:第三電極/電極 232a:配向膜/第一配向膜 232b:配向膜/第二配向膜 530a:電極 530b:浮動電極 640:高阻抗材料層 722:液晶單元 724:異向性透鏡 800、800c、800k、800l、800m:可調式光投射器 810:光源 811:光束 820:固定式光學相位調制器 830:驅動器 900、900a、900b、900c、900d、900e、900f、900g、900h、900i、900j、900l、900m:可調式液晶面板 905:透鏡 906:反射器 910:第一基板 920:第二基板 930、930a、930b、930l:液晶層 932、932b:液晶分子 934:聚合物網絡 934b:聚合物 940、940g:第一電極層 942:微開孔 942g、952g:導電微圖案 950、950g、950h、950j:第二電極層 960、960a、960d:第一配向層 960l、970l:配向層 970、970a、970d:第二配向層 980:高阻抗層 990:絕緣層 A1:光軸 D:最大直徑 F1、F2:焦距 L1:配向 LB:光束 LP:偏振光 R1:局部相同配向區域 R2:光斑區域 SL:結構光 ΔV:電壓差10: Optical sensing device 12: Object 100, 200a, 200b, 200c: structured light projector 104: Sensor 106: open 110: light source 120, 220, 320, 420a, 420b, 520, 620, 720: LCD lens module 122: liquid crystal lens unit 124: solid lens 130: Diffraction optics 222: liquid crystal layer 224a: first substrate 224b: second substrate 226: Liquid Crystal Molecules 228, 428a, 428b: power supply 230a: first electrode/electrode 230b: second electrode/electrode 230c: third electrode/electrode 232a: alignment film/first alignment film 232b: alignment film/second alignment film 530a: Electrode 530b: Floating electrode 640: High-impedance material layer 722: LCD unit 724: Anisotropic lens 800, 800c, 800k, 800l, 800m: adjustable light projector 810: light source 811: beam 820: fixed optical phase modulator 830: drive 900, 900a, 900b, 900c, 900d, 900e, 900f, 900g, 900h, 900i, 900j, 900l, 900m: adjustable LCD panel 905: lens 906: reflector 910: The first substrate 920: second substrate 930, 930a, 930b, 930l: liquid crystal layer 932, 932b: Liquid crystal molecules 934: polymer network 934b: polymer 940, 940g: first electrode layer 942: Micro-opening 942g, 952g: conductive micro pattern 950, 950g, 950h, 950j: second electrode layer 960, 960a, 960d: the first alignment layer 960l, 970l: alignment layer 970, 970a, 970d: second alignment layer 980: high impedance layer 990: Insulation layer A1: Optical axis D: Maximum diameter F1, F2: Focal length L1: Orientation LB: beam LP: Polarized light R1: Locally same alignment area R2: Spot area SL: structured light ΔV: Voltage difference

圖1是依照本發明一實施例的光學感測裝置的示意圖。 圖2是圖1的結構光投射器的剖面示意圖。 圖3A至3C是依照本發明至少一實施例的另一結構光投射器的剖面示意圖。 圖4A以及圖4B是依照本發明至少一實施例的圖2的不同液晶透鏡模組於兩個不同狀態下的剖面示意圖。 圖5至8是依照本發明至少一實施例的圖2的不同液晶透鏡模組的剖面示意圖。 圖9是依照本發明至少一實施例的液晶層的俯視示意圖。 圖10A至10B是依照本發明至少一實施例的另一液晶透鏡模組於兩個不同狀態下的剖面示意圖。 圖11A與圖11B分別為本發明的一實施例的可調式光投射器在結構光模式與泛光模式的剖面示意圖。 圖12A、圖12B及圖12C分別為圖11A與圖11B中的第一電極層之根據本發明的三個實施例的上視示意圖。 圖13A、圖13B及圖13C為圖12A的第一電極層的其他三種變化的上視示意圖。 圖14A為圖11A的可調式液晶面板的剖面示意圖。 圖14B與圖14C繪示圖14A的可調式液晶面板的其他兩種變化。 圖15A為本發明的另一實施例的可調式液晶面板的剖面示意圖。 圖15B為本發明的另一實施例的可調式液晶面板的剖面示意圖。 圖15C為本發明的另一實施例的可調式液晶面板的剖面示意圖。 圖16A繪示圖15A或圖15C中的第一配向層或第二配向層之根據本發明的一實施例的配向。 圖16B繪示圖15A或圖15C中的第一配向層或第二配向層之根據本發明的另一實施例的另一種變化的配向。 圖17A為採用圖16B的配向層的一可調式光投射器的剖面示意圖。 圖17B為圖17A中的光斑區域與配向層的上視示意圖。 圖18A、圖18B及圖18C繪示一可調式液晶面板的剖面示意圖及在三種不同的模式下施加至液晶層的電壓差。 圖19A為本發明的另一實施例的可調式液晶面板的剖面示意圖。 圖19B為圖19A中的第一基板的上視示意圖。 圖20A為本發明的另一實施例的可調式液晶面板的剖面示意圖。 圖20B為圖20A中的第一基板的上視示意圖。 圖21A為本發明的另一實施例的可調式液晶面板的剖面示意圖。 圖21B為本發明的另一實施例的可調式液晶面板的剖面示意圖。 圖22為本發明的另一實施例的可調式光投射器的剖面示意圖。 圖23A與圖23B為本發明的另一實施例的可調式光投射器分別於結構光模式與泛光模式下的剖面示意圖。 圖24為本發明的另一實施例的可調式光投射器的剖面示意圖。FIG. 1 is a schematic diagram of an optical sensing device according to an embodiment of the invention. Fig. 2 is a schematic cross-sectional view of the structured light projector of Fig. 1. 3A to 3C are schematic cross-sectional views of another structured light projector according to at least one embodiment of the present invention. 4A and 4B are schematic cross-sectional views of the different liquid crystal lens modules of FIG. 2 in two different states according to at least one embodiment of the present invention. 5 to 8 are schematic cross-sectional views of different liquid crystal lens modules of FIG. 2 according to at least one embodiment of the present invention. FIG. 9 is a schematic top view of a liquid crystal layer according to at least one embodiment of the present invention. 10A to 10B are schematic cross-sectional views of another liquid crystal lens module in two different states according to at least one embodiment of the present invention. 11A and 11B are schematic cross-sectional views of the adjustable light projector in the structured light mode and the flood light mode, respectively, according to an embodiment of the present invention. 12A, 12B, and 12C are schematic top views of the first electrode layer in FIGS. 11A and 11B according to three embodiments of the present invention, respectively. 13A, 13B, and 13C are schematic top views of other three variations of the first electrode layer in FIG. 12A. FIG. 14A is a schematic cross-sectional view of the adjustable liquid crystal panel of FIG. 11A. 14B and 14C show other two variations of the adjustable liquid crystal panel of FIG. 14A. 15A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. 15B is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. 15C is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. Fig. 16A shows the alignment of the first alignment layer or the second alignment layer in Fig. 15A or Fig. 15C according to an embodiment of the present invention. FIG. 16B illustrates another variation of the alignment of the first alignment layer or the second alignment layer in FIG. 15A or FIG. 15C according to another embodiment of the present invention. FIG. 17A is a schematic cross-sectional view of an adjustable light projector using the alignment layer of FIG. 16B. FIG. 17B is a schematic top view of the spot area and the alignment layer in FIG. 17A. 18A, 18B, and 18C show schematic cross-sectional views of an adjustable liquid crystal panel and the voltage difference applied to the liquid crystal layer in three different modes. 19A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. FIG. 19B is a schematic top view of the first substrate in FIG. 19A. 20A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. FIG. 20B is a schematic top view of the first substrate in FIG. 20A. 21A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. 21B is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the invention. 22 is a schematic cross-sectional view of an adjustable light projector according to another embodiment of the invention. 23A and FIG. 23B are schematic cross-sectional views of the adjustable light projector in the structured light mode and the flood light mode, respectively, according to another embodiment of the present invention. 24 is a schematic cross-sectional view of an adjustable light projector according to another embodiment of the invention.

800l:可調式光投射器 800l: adjustable light projector

810:光源 810: light source

811:光束 811: beam

820:固定式光學相位調制器 820: fixed optical phase modulator

830:驅動器 830: drive

900l:可調式液晶面板 900l: Adjustable LCD panel

905:透鏡 905: lens

910:第一基板 910: The first substrate

920:第二基板 920: second substrate

930l:液晶層 930l: liquid crystal layer

940:第一電極層 940: first electrode layer

950:第二電極層 950: second electrode layer

960l、970l:配向層 960l, 970l: alignment layer

980:高阻抗層 980: high impedance layer

Claims (13)

一種可調式光投射器,包括:一光源,用以發出一光束;一固定式光學相位調制器,配置於該光束的路徑上,且用以調制該光束的相位;一可調式液晶面板,配置於該光束的路徑上,且用以在多個狀態之間切換,其中該些狀態包括一透鏡陣列狀態,且在該透鏡陣列狀態下的該可調式液晶面板包括一透鏡陣列;以及一驅動器,電性連接至該可調式液晶面板,且用以改變該透鏡陣列的多個透鏡的每一者的位置。 An adjustable light projector includes: a light source for emitting a light beam; a fixed optical phase modulator arranged on the path of the light beam and used for modulating the phase of the light beam; and an adjustable liquid crystal panel configured On the path of the light beam and used to switch between a plurality of states, wherein the states include a lens array state, and the adjustable liquid crystal panel in the lens array state includes a lens array; and a driver, It is electrically connected to the adjustable liquid crystal panel and used to change the position of each of the lenses of the lens array. 如請求項1所述的可調式光投射器,其中該透鏡陣列位於該可調式液晶面板對應於該固定式光學相位調制器的一區域內。 The adjustable light projector according to claim 1, wherein the lens array is located in an area of the adjustable liquid crystal panel corresponding to the fixed optical phase modulator. 如請求項1所述的可調式光投射器,其中該驅動器用以改變該透鏡陣列的該些透鏡的每一者的焦距。 The adjustable light projector according to claim 1, wherein the driver is used to change the focal length of each of the lenses of the lens array. 如請求項1所述的可調式光投射器,其中該驅動器用以改變該透鏡陣列的該些透鏡的每一者的尺寸。 The adjustable light projector according to claim 1, wherein the driver is used to change the size of each of the lenses of the lens array. 如請求項1所述的可調式光投射器,其中該驅動器用以改變該透鏡陣列的該些透鏡的每一者的焦距及尺寸。 The adjustable light projector according to claim 1, wherein the driver is used to change the focal length and size of each of the lenses of the lens array. 如請求項1所述的可調式光投射器,其中該固定式光學相位調制器用以將該光束調制成結構光或泛光。 The adjustable light projector according to claim 1, wherein the fixed optical phase modulator is used to modulate the beam into structured light or floodlight. 如請求項1所述的可調式光投射器,其中該固定式光學相位調制器用以將該光束調制成一準直光。 The adjustable light projector according to claim 1, wherein the fixed optical phase modulator is used to modulate the light beam into a collimated light. 如請求項1所述的可調式光投射器,其中該可調式液晶面板的液晶層的光學空間相位分布隨著該可調式液晶面板的多個電極層之間的電壓差的改變而改變,以使該光束在結構光與泛光之間切換。 The adjustable light projector according to claim 1, wherein the optical spatial phase distribution of the liquid crystal layer of the adjustable liquid crystal panel changes as the voltage difference between the plurality of electrode layers of the adjustable liquid crystal panel changes to Switch the beam between structured light and flood light. 如請求項1所述的可調式光投射器,其中該透鏡陣列包括多個排成陣列的貝里相位液晶透鏡。 The adjustable light projector according to claim 1, wherein the lens array includes a plurality of Berry phase liquid crystal lenses arranged in an array. 如請求項1所述的可調式光投射器,其中該可調式液晶面板為穿透式液晶面板。 The adjustable light projector according to claim 1, wherein the adjustable liquid crystal panel is a transmissive liquid crystal panel. 如請求項1所述的可調式光投射器,其中該可調式液晶面板為反射式液晶面板。 The adjustable light projector according to claim 1, wherein the adjustable liquid crystal panel is a reflective liquid crystal panel. 如請求項1所述的可調式光投射器,其中該固定式光學相位調制器配置於來自該可調式液晶面板的該光束的該路徑上。 The adjustable light projector according to claim 1, wherein the fixed optical phase modulator is arranged on the path of the light beam from the adjustable liquid crystal panel. 如請求項1所述的可調式光投射器,其中該可調式液晶面板配置於來自該固定式光學相位調制器的該光束的該路徑上。 The adjustable light projector according to claim 1, wherein the adjustable liquid crystal panel is arranged on the path of the light beam from the fixed optical phase modulator.
TW109111125A 2019-04-01 2020-04-01 Tunable light projector TWI747224B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/371,127 2019-04-01
US16/371,127 US11126060B2 (en) 2017-10-02 2019-04-01 Tunable light projector

Publications (2)

Publication Number Publication Date
TW202037976A TW202037976A (en) 2020-10-16
TWI747224B true TWI747224B (en) 2021-11-21

Family

ID=72985941

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109111125A TWI747224B (en) 2019-04-01 2020-04-01 Tunable light projector

Country Status (2)

Country Link
CN (1) CN111856483A (en)
TW (1) TWI747224B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220252893A1 (en) * 2021-02-09 2022-08-11 Himax Technologies Limited Light projection apparatus
CN112965279A (en) * 2021-03-18 2021-06-15 歌尔股份有限公司 Focusing optical system
CN115236904B (en) * 2022-08-02 2024-03-19 联创电子科技股份有限公司 Liquid crystal lens unit, liquid crystal lens device and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091354A1 (en) * 2008-10-09 2010-04-15 Dong Kyung Nam Apparatus and method for 2D and 3D image switchable display
TW201537224A (en) * 2014-03-19 2015-10-01 Innolux Corp Display device
TWI569040B (en) * 2015-05-07 2017-02-01 尚立光電股份有限公司 Autofocus head mounted display device
CN108828786A (en) * 2018-06-21 2018-11-16 深圳市光鉴科技有限公司 A kind of 3D camera
CN109459849A (en) * 2017-09-06 2019-03-12 脸谱科技有限责任公司 On-mechanical light beam for depth sense turns to

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916668A (en) * 2006-08-31 2007-02-21 上海理工大学 Method for fabricating microlens array with electric controlled and adjusted dimensions
JP5127419B2 (en) * 2007-11-28 2013-01-23 株式会社ジャパンディスプレイウェスト Liquid crystal display
US9946070B2 (en) * 2016-03-08 2018-04-17 Sharp Kabushiki Kaisha Automotive head up display
US10705214B2 (en) * 2017-07-14 2020-07-07 Microsoft Technology Licensing, Llc Optical projector having switchable light emission patterns
US10274719B2 (en) * 2017-08-21 2019-04-30 Liqxtal Technology Inc. Optical system
CN108332082B (en) * 2018-01-15 2020-06-30 深圳奥比中光科技有限公司 Lighting module
CN108490670B (en) * 2018-05-17 2021-10-08 京东方科技集团股份有限公司 Display assembly, display device and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091354A1 (en) * 2008-10-09 2010-04-15 Dong Kyung Nam Apparatus and method for 2D and 3D image switchable display
TW201537224A (en) * 2014-03-19 2015-10-01 Innolux Corp Display device
TWI569040B (en) * 2015-05-07 2017-02-01 尚立光電股份有限公司 Autofocus head mounted display device
CN109459849A (en) * 2017-09-06 2019-03-12 脸谱科技有限责任公司 On-mechanical light beam for depth sense turns to
CN108828786A (en) * 2018-06-21 2018-11-16 深圳市光鉴科技有限公司 A kind of 3D camera

Also Published As

Publication number Publication date
CN111856483A (en) 2020-10-30
TW202037976A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
US20200228764A1 (en) Tunable light projector
US11126060B2 (en) Tunable light projector
TW201915563A (en) Optical sensing device and structured light projector
TWI778262B (en) Tunable light projector
TWI747224B (en) Tunable light projector
TW202020401A (en) Adjustable light distribution for active depth sensing systems
WO2019015668A1 (en) Touch display panel, fingerprint recognition device, and display device
CN106226930B (en) Fresnel lens device
CN110546427B (en) Lamp unit and vehicle lamp system
US11287712B2 (en) Pattern generation device
CN114089348A (en) Structured light projector, structured light system, and depth calculation method
US10459149B2 (en) Backlight unit and display device including the same
JP2013073715A (en) Lighting system and driving method of lighting system
US20240230051A1 (en) Lighting apparatus, vehicle lamp system
TWI787708B (en) Tunable illuminator
US11256011B2 (en) Pattern generation device
US11543696B2 (en) Optical surface mapping system
CN112904629B (en) Adjustable light projector and adjustable light detector
US20120120665A1 (en) Lighting system
WO2023120128A1 (en) Lighting device, and vehicle lamp fitting system
JP2022183786A (en) Liquid crystal element and lighting device
JP2015011295A (en) Polarization conversion element
JP2020034837A (en) Light direction control device
JPWO2018150629A1 (en) Optical device and method for manufacturing optical device