TWI744588B - Electrolyte composition and metal-ion battery employing the same - Google Patents

Electrolyte composition and metal-ion battery employing the same Download PDF

Info

Publication number
TWI744588B
TWI744588B TW107147656A TW107147656A TWI744588B TW I744588 B TWI744588 B TW I744588B TW 107147656 A TW107147656 A TW 107147656A TW 107147656 A TW107147656 A TW 107147656A TW I744588 B TWI744588 B TW I744588B
Authority
TW
Taiwan
Prior art keywords
chloride
dimethyl
metal
ion battery
electrolyte composition
Prior art date
Application number
TW107147656A
Other languages
Chinese (zh)
Other versions
TW202021184A (en
Inventor
黃筱雯
許峻綜
張哲維
潘秉毅
江建志
楊昌中
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201910237766.4A priority Critical patent/CN111224163B/en
Priority to US16/654,920 priority patent/US11258100B2/en
Publication of TW202021184A publication Critical patent/TW202021184A/en
Application granted granted Critical
Publication of TWI744588B publication Critical patent/TWI744588B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

An electrolyte composition and a metal-ion battery employing the same are provided. The electrolyte composition includes a metal chloride, an imidazolium salt of Formula (I), an alkali halide, and an oxalate-containing borate
Figure 107147656-A0101-11-0002-2
, wherein R1 , R2 , and R3 are independently C1-8 alkyl, C2-8 alkenyl、C2-8 alkynyl, C1-8 alkoxy, C2-8 alkoxyalkyl, or C1-8 fluoroalkyl; and X- is F- , Cl- , Br- , or I- . The metal chloride is aluminum chloride, iron chloride, zinc chloride, copper chloride, manganese chloride, chromium chloride, or a combination thereof.

Description

電解質組成物及包含其之金屬離子電池Electrolyte composition and metal ion battery containing the same

本揭露關於電解質組成物及包含其之金屬離子電池。This disclosure relates to an electrolyte composition and a metal ion battery containing the electrolyte composition.

鋁在地球上蘊藏量非常豐富,以鋁作為材料的電子裝置具有較低的成本。由於鋁具有低可燃性及電子氧化還原性質,大幅提昇金屬離子電池在使用上的安全性。Aluminum is abundant in the earth, and electronic devices using aluminum as a material have a lower cost. Because aluminum has low flammability and electronic redox properties, the safety of metal ion batteries in use is greatly improved.

傳統金屬離子電池所使用之電解質組成物包含離子液體。以鋁離子電池為例,某些鋁離子電池採用氯化鋁/咪唑氯鹽作為電解質組成物。雖然傳統使用氯化鋁/咪唑氯鹽的電解質組成物其具有良好的電化學可逆性,然而傳統電解質組成物其操作電位偏低,使得能量密度和產品使用範圍受到限制。此外,在傳統電解質組成物中,氯化鋁與咪唑氯鹽的莫耳比例不小於1.3。如此一來,過量的氯化鋁容易和環境中的水分子反應,造成電解質分解,而使電池的循環穩定性降低,導致在量產上受到限制。The electrolyte composition used in traditional metal ion batteries contains ionic liquids. Taking aluminum ion batteries as an example, some aluminum ion batteries use aluminum chloride/imidazole chloride salt as the electrolyte composition. Although the traditional electrolyte composition using aluminum chloride/imidazole chloride salt has good electrochemical reversibility, the operating potential of the traditional electrolyte composition is relatively low, which limits the energy density and product use range. In addition, in the conventional electrolyte composition, the molar ratio of aluminum chloride to imidazole chloride salt is not less than 1.3. As a result, the excessive aluminum chloride easily reacts with the water molecules in the environment, causing the electrolyte to decompose, which reduces the cycle stability of the battery, which limits mass production.

因此,業界需要一種新的電解質組成物,以解決上述問題。Therefore, the industry needs a new electrolyte composition to solve the above-mentioned problems.

根據本揭露實施例,本揭露提供一種電解質組成物,包含。本揭露所述電解質組成物包含一金屬氯化物、一具有式(I)所示結構的咪唑鹽、一鹼金族鹵化物、以及,一含草酸根的硼酸鹽。

Figure 02_image001
式(I) 其中,R1 , R2 , R3 可獨立為C1-8 烷基、C2-8 烯基、C2-8 炔基、C1-8 烷氧基、C2-8 烷氧烷基、或C1-8 氟烷基;以及,X- 為F- , Cl- , Br- ,或I- 。該金屬氯化物為氯化鋁、氯化鐵、氯化鋅、氯化銅、氯化錳、氯化鉻、或上述之組合。According to an embodiment of the present disclosure, the present disclosure provides an electrolyte composition including. The electrolyte composition of the present disclosure includes a metal chloride, an imidazole salt having a structure represented by formula (I), an alkali gold halide, and a borate containing oxalate.
Figure 02_image001
Formula (I) wherein, R 1 , R 2 , and R 3 may independently be C 1-8 alkyl, C 2-8 alkenyl, C 2-8 alkynyl, C 1-8 alkoxy, C 2-8 alkoxyalkyl, or C 1-8 fluoroalkyl group; and, X - is F -, Cl -, Br - , or I -. The metal chloride is aluminum chloride, iron chloride, zinc chloride, copper chloride, manganese chloride, chromium chloride, or a combination of the foregoing.

根據本揭露實施例,本揭露提供一種金屬離子電池。該金屬離子電池可包含一正極、一隔離膜、一負極、以及上述電解質組成物。其中,該負極可以隔離膜與該正極相隔,且上述電解質組成物可設置於該正極與該負極之間。According to an embodiment of the present disclosure, the present disclosure provides a metal ion battery. The metal ion battery may include a positive electrode, a separator, a negative electrode, and the above-mentioned electrolyte composition. Wherein, the negative electrode can be separated from the positive electrode by a separator, and the above-mentioned electrolyte composition can be arranged between the positive electrode and the negative electrode.

以下針對本揭露所述之電解質組成物及金屬離子電池作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式僅為簡單描述本揭露。當然,這些僅用以舉例而非本揭露之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關聯性。且在圖式中,實施例之形狀、數量、或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,此外,特定之實施例僅為揭示本揭露使用之特定方式,其並非用以限定本揭露。The following is a detailed description of the electrolyte composition and the metal ion battery described in this disclosure. It should be understood that the following description provides many different embodiments or examples for implementing different aspects of the present disclosure. The specific elements and arrangements described below are only a brief description of the present disclosure. Of course, these are merely examples and not the limitation of this disclosure. In addition, repeated reference numerals or labels may be used in different embodiments. These repetitions are only to briefly and clearly describe the disclosure, and do not represent any relevance between the different embodiments and/or structures discussed. Moreover, in the drawings, the shape, number, or thickness of the embodiments can be expanded, and are marked for simplicity or convenience. Furthermore, the parts of each element in the drawing will be described separately. It is worth noting that the elements not shown or described in the figure are in the form known to those with ordinary knowledge in the technical field. In addition, the specific The embodiments are only for revealing specific ways of using the present disclosure, and they are not used to limit the present disclosure.

本揭露提供一種電解質組成物及包含其之金屬離子電池。根據本揭露實施例,本揭露所述電解質組成物包含金屬氯化物並搭配特定結構的咪唑鹽,且金屬氯化物與咪唑鹽的莫耳比係控制在一特定範圍內。除了金屬氯化物與咪唑鹽外,本揭露所述電解質組成物還包含特定含量的鹼金族鹵化物與特定含量的含草酸根的硼酸鹽。如此一來,本揭露所述電解質組成物具備高導電性、穩定性、及氧化還原反應性,可提升包含該電解質組成物的金屬離子電池之操作電位(中值電壓可不小3.0V)、能量密度、循環穩定性、以及延長金屬離子電池的循環壽命。The present disclosure provides an electrolyte composition and a metal ion battery containing the electrolyte composition. According to an embodiment of the present disclosure, the electrolyte composition of the present disclosure includes a metal chloride and is matched with an imidazole salt of a specific structure, and the molar ratio of the metal chloride to the imidazole salt is controlled within a specific range. In addition to metal chlorides and imidazole salts, the electrolyte composition of the present disclosure also contains a specific content of alkali gold halide and a specific content of oxalate-containing borate. In this way, the electrolyte composition of the present disclosure has high conductivity, stability, and redox reactivity, which can increase the operating potential (median voltage of not less than 3.0V) and energy of the metal ion battery containing the electrolyte composition. Density, cycle stability, and extend the cycle life of metal ion batteries.

根據本揭露實施例,本揭露所述電解質組成物包含一金屬氯化物、一具有式(I)所示結構的咪唑鹽、一鹼金族鹵化物、以及一含草酸根的硼酸鹽,

Figure 02_image001
式(I) 其中,R1 , R2 , R3 可獨立為C1-8 烷基、C2-8 烯基、C2-8 炔基、C1-8 烷氧基、C2-8 烷氧烷基、或C1-8 氟烷基;以及,X- 為F- , Cl- , Br- ,或I- 。According to an embodiment of the present disclosure, the electrolyte composition of the present disclosure includes a metal chloride, an imidazole salt having a structure represented by formula (I), an alkali gold halide, and a borate containing oxalate,
Figure 02_image001
Formula (I) wherein, R 1 , R 2 , and R 3 may independently be C 1-8 alkyl, C 2-8 alkenyl, C 2-8 alkynyl, C 1-8 alkoxy, C 2-8 alkoxyalkyl, or C 1-8 fluoroalkyl group; and, X - is F -, Cl -, Br - , or I -.

根據本揭露實施例,該金屬氯化物可為氯化鋁、氯化鐵、氯化鋅、氯化銅、氯化錳、氯化鉻、或上述之組合。在此,本揭露所述之金屬氯化物可為帶不同正電價數金屬的氯化物。舉例來說,本揭露所述之氯化鋁可為AlCl2 、AlCl3 、或其組合;氯化銅可為CuCl、CuCl2 、或其組合;氯化鐵可為FeCl2 、FeCl3 、或其組合;氯化鉻可為CrCl2 、CrCl3 、或其組合;氯化鋅可為ZnCl2 、ZnCl4 、或其組合;以及,氯化錳可為MnCl2 、MnCl3 、或其組合。According to an embodiment of the present disclosure, the metal chloride may be aluminum chloride, ferric chloride, zinc chloride, copper chloride, manganese chloride, chromium chloride, or a combination thereof. Here, the metal chlorides mentioned in the present disclosure may be chlorides with metals with different positive valence numbers. For example, the aluminum chloride described in the present disclosure may be AlCl 2 , AlCl 3 , or a combination thereof; copper chloride may be CuCl, CuCl 2 , or a combination thereof; iron chloride may be FeCl 2 , FeCl 3 , or The combination; chromium chloride can be CrCl 2 , CrCl 3 , or a combination thereof; zinc chloride can be ZnCl 2 , ZnCl 4 , or a combination thereof; and manganese chloride can be MnCl 2 , MnCl 3 , or a combination thereof.

根據本揭露實施例,C1-8 烷基可為直鏈或分支(linear or branched)鏈的烷基。舉例來說,C1-8 烷基可為甲基(methyl)、乙基(ethyl)、丙基(propyl)、丁基(butyl)、戊基(pentyl)、己基(hexyl)、庚烯基(heptyl)、辛烯基(octyl)、或其異構體(isomer)。根據本揭露實施例,C2-8 烯基可為直鏈或分支(linear or branched)鏈的烯基。舉例來說,C2-8 烯基可為乙烯基(ethenyl) 、丙烯基(propenyl)、丁烯基(butenyl)、戊烯基(pentenyl)、己烯基(hexenyl)、庚烯基(heptenyl)、辛烯基(octenyl)、或其異構體(isomer)。根據本揭露實施例,C2-8 炔基可為直鏈或分支(linear or branched)鏈的炔基。舉例來說,C2-8 炔基可為乙炔基(ethynyl)、丙炔基(propynyl)、丁炔基(butynyl)、戊炔基(pentynyl)、己炔基(hexynyl)、庚炔基(heptynyl)、辛炔基(octynyl)、或其異構體(isomer)。根據本揭露實施例,C1-8 烷氧基可為直鏈或分支(linear or branched)鏈的烷氧基。舉例來說,C1-8 烷氧基可為甲氧基(methoxy)、乙氧基(ethoxy)、丙氧基(propoxy)、丁氧基(butoxy)、戊氧基(pentoxy)、己氧基(hexoxy)、庚氧基(heptoxy)、辛氧基(octoxy)、或其異構體(isomer)。根據本揭露實施例,C2-8 烷氧烷基可為直鏈或分支(linear or branched)鏈的烷氧烷基。C2-8 烷氧烷基可為甲氧甲基(methoxymethyl)、乙氧甲基(ethoxymethyl)、甲氧乙基(methoxyethyl)、丙氧甲基(propoxymethyl)、或其異構體(isomer)。根據本揭露實施例,C1-8 氟烷基係指碳上的氫全部或部份被氟取代的烷基,且可為直鏈(linear)或分支鍵(branched),例如氟甲基、氟乙基、氟丙基、或其異構體(isomer)。在此,本揭露所述氟甲基可為單氟甲基、二氟甲基、或全氟甲基,而氟乙基可為單氟乙基、二氟乙基、三氟乙基、四氟乙基、或全氟乙基。According to an embodiment of the present disclosure, the C 1-8 alkyl group may be a linear or branched chain alkyl group. For example, C 1-8 alkyl can be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptenyl (heptyl), octyl (octyl), or isomers thereof. According to an embodiment of the present disclosure, the C 2-8 alkenyl group may be a linear or branched alkenyl group. For example, the C 2-8 alkenyl group can be ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl ), octenyl, or isomers thereof. According to an embodiment of the present disclosure, the C 2-8 alkynyl group may be a linear or branched alkynyl group. For example, C 2-8 alkynyl group can be ethynyl (ethynyl), propynyl (propynyl), butynyl (butynyl), pentynyl (pentynyl), hexynyl (hexynyl), heptynyl ( heptynyl), octynyl, or isomers thereof. According to an embodiment of the present disclosure, the C 1-8 alkoxy group may be a linear or branched chain alkoxy group. For example, the C 1-8 alkoxy group can be methoxy, ethoxy, propoxy, butoxy, pentoxy, and hexoxy. Hexoxy, heptoxy, octoxy, or isomers thereof. According to an embodiment of the present disclosure, the C 2-8 alkoxyalkyl group may be a linear or branched alkoxyalkyl group. The C 2-8 alkoxyalkyl group can be methoxymethyl, ethoxymethyl, methoxyethyl, propoxymethyl, or isomers thereof . According to the embodiment of the present disclosure, C 1-8 fluoroalkyl refers to an alkyl in which all or part of the hydrogen on the carbon is replaced by fluorine, and can be linear or branched, such as fluoromethyl, Fluoroethyl, fluoropropyl, or isomers thereof. Here, the fluoromethyl group in the present disclosure can be monofluoromethyl, difluoromethyl, or perfluoromethyl, and the fluoroethyl group can be monofluoroethyl, difluoroethyl, trifluoroethyl, or tetrafluoroethyl. Fluoroethyl, or perfluoroethyl.

根據本揭露實施例,R1 , R2 , R3 可獨立為甲基(methyl)、乙基(ethyl)、丙基(propyl)、丁基(butyl)、戊基(pentyl)、己基(hexyl)、庚烯基(heptyl)、辛烯基(octyl)、或其異構體(isomer)。根據本揭露實施例,C2-8 烯基可為直鏈或分支(linear or branched)鏈的烯基。舉例來說,C2-8 烯基可為乙烯基(ethenyl) 、丙烯基(propenyl)、丁烯基(butenyl)、戊烯基(pentenyl)、己烯基(hexenyl)、庚烯基(heptenyl)、辛烯基(octenyl)、乙烯基(ethenyl) 、丙烯基(propenyl)、丁烯基(butenyl)、戊烯基(pentenyl)、己烯基(hexenyl)、庚烯基(heptenyl)、辛烯基(octenyl)、乙炔基(ethynyl)、丙炔基(propynyl)、丁炔基(butynyl)、戊炔基(pentynyl)、己炔基(hexynyl)、庚炔基(heptynyl)、辛炔基(octynyl)、甲氧甲基(methoxymethyl)、乙氧甲基(ethoxymethyl)、甲氧乙基(methoxyethyl)、丙氧甲基(propoxymethyl)、氟甲基、氟乙基、或氟丙基。According to the embodiment of the present disclosure, R 1 , R 2 , and R 3 may independently be methyl, ethyl, propyl, butyl, pentyl, hexyl ), heptyl, octyl, or isomers thereof. According to an embodiment of the present disclosure, the C 2-8 alkenyl group may be a linear or branched alkenyl group. For example, the C 2-8 alkenyl group can be ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl ), octenyl (octenyl), vinyl (ethenyl), propenyl (propenyl), butenyl (butenyl), pentenyl (pentenyl), hexenyl (hexenyl), heptenyl (heptenyl), oct Alkenyl (octenyl), ethynyl (ethynyl), propynyl (propynyl), butynyl (butynyl), pentynyl (pentynyl), hexynyl (hexynyl), heptynyl (heptynyl), octynyl (octynyl), methoxymethyl, ethoxymethyl, methoxyethyl, propoxymethyl, fluoromethyl, fluoroethyl, or fluoropropyl.

根據本揭露實施例,本揭露具有式(I)所示結構的咪唑鹽可為

Figure 02_image003
,其中R1 與X的定義如上述。舉例來說,本揭露所述咪唑鹽可為1,2-二甲基-3-丙基咪唑氯鹽(1,2-dimethyl-3-propylimidazolium chloride、DMPIC)、1,2-二甲基-3-丙基咪唑碘鹽(1,2-dimethyl-3-propylimidazolium iodide)、1,2-二甲基-3-丙基咪唑溴鹽(1,2-dimethyl-3-propylimidazolium bromide)、1,2-二甲基-3-丙基咪唑氟鹽(1,2-dimethyl-3-propylimidazolium fluoride)、1,2-二甲基-3-丁基咪唑氯鹽(1,2-dimethyl-3-butylimidazolium chloride、DMBIC)、1,2-二甲基-3-丁基咪唑碘鹽(1,2-dimethyl-3-butylimidazolium iodide)、1,2-二甲基-3-丁基咪唑溴鹽(1,2-dimethyl-3-butylimidazolium bromide)、1,2-二甲基-3-丁基咪唑氟鹽(1,2-dimethyl-3-butylimidazolium fluoride)、1,2-二甲基-3-乙基咪唑氯鹽(1,2-dimethyl-3-ethylimidazolium chloride、DMEIC)、1,2-二甲基-3-乙基咪唑碘鹽(1,2-dimethyl-3-ethylimidazolium iodide)、1,2-二甲基-3-乙基咪唑溴鹽(1,2-dimethyl-3-ethylimidazolium bromide)、1,2-二甲基-3-乙基咪唑氟鹽(1,2-dimethyl-3-ethylimidazolium fluoride)、或上述之組合。According to the embodiment of the present disclosure, the imidazole salt having the structure represented by formula (I) of the present disclosure may be
Figure 02_image003
, Where R 1 and X are as defined above. For example, the imidazole salt in the present disclosure can be 1,2-dimethyl-3-propylimidazolium chloride (DMPIC), 1,2-dimethyl- 3-propylimidazolium iodide (1,2-dimethyl-3-propylimidazolium iodide), 1,2-dimethyl-3-propylimidazolium bromide (1,2-dimethyl-3-propylimidazolium bromide), 1, 2-dimethyl-3-propylimidazolium fluoride (1,2-dimethyl-3-propylimidazolium fluoride), 1,2-dimethyl-3-butylimidazolium fluoride (1,2-dimethyl-3- butylimidazolium chloride, DMBIC), 1,2-dimethyl-3-butylimidazolium iodide (1,2-dimethyl-3-butylimidazolium iodide), 1,2-dimethyl-3-butylimidazolium bromide ( 1,2-dimethyl-3-butylimidazolium bromide), 1,2-dimethyl-3-butylimidazolium fluoride (1,2-dimethyl-3-butylimidazolium fluoride), 1,2-dimethyl-3- Ethyl imidazole chloride (1,2-dimethyl-3-ethylimidazolium chloride, DMEIC), 1,2-dimethyl-3-ethylimidazolium iodide (1,2-dimethyl-3-ethylimidazolium iodide), 1, 2-dimethyl-3-ethylimidazolium bromide (1,2-dimethyl-3-ethylimidazolium bromide), 1,2-dimethyl-3-ethylimidazolium bromide (1,2-dimethyl-3- ethylimidazolium fluoride), or a combination of the above.

根據本揭露實施例,本揭露所述電解質組成物除了具有式(I)所示結構的咪唑鹽外,不包含其他咪唑鹽以及離子液體,以避免該電解質組成物的導電性、穩定性、及氧化還原反應性受其他咪唑鹽以及離子液體的影響而降低。According to the embodiments of the present disclosure, the electrolyte composition of the present disclosure does not include other imidazole salts and ionic liquids except for the imidazole salt having the structure represented by formula (I), so as to avoid the conductivity, stability, and conductivity of the electrolyte composition. The redox reactivity is reduced by the influence of other imidazole salts and ionic liquids.

在此,當以其他咪唑鹽(例如1-丁基-3-甲基咪唑氯鹽(BMIC)或1-乙基-3-甲基咪唑氯鹽(EMIC))取代本揭露所述電解質組成物所使用的具有式(I)所示結構之咪唑鹽時,則會觀察到包含該電解質組成物的金屬離子電池在放電過程中具有較長的低電位平台及較短的高電位平台,導致金屬離子電池之操作電位降低。舉例來說,以1-丁基-3-甲基咪唑氯鹽(BMIC)或1-乙基-3-甲基咪唑氯鹽(EMIC)取代1-丁基-3-甲基咪唑氯鹽(BMIC)或1-乙基-3-甲基咪唑氯鹽(EMIC),所得金屬離子電池的放電中值電壓會小於2.5V。Here, when other imidazole salts (such as 1-butyl-3-methylimidazole chloride (BMIC) or 1-ethyl-3-methylimidazole chloride (EMIC)) are substituted for the electrolyte composition of the present disclosure When the imidazole salt with the structure represented by formula (I) is used, it will be observed that the metal ion battery containing the electrolyte composition has a longer low potential platform and a shorter high potential platform during the discharge process, resulting in metal The operating potential of the ion battery decreases. For example, replace 1-butyl-3-methylimidazole chloride with 1-butyl-3-methylimidazole chloride (BMIC) or 1-ethyl-3-methylimidazole chloride (EMIC) ( BMIC) or 1-ethyl-3-methylimidazole chloride (EMIC), the resulting metal ion battery discharge median voltage will be less than 2.5V.

根據本揭露實施例,在本揭露所述電解質組成物中,該金屬氯化物與該咪唑鹽的莫耳比值為1.05至1.2,例如1.08、1.1、1.12、1.15、或1.18。若金屬氯化物與該咪唑鹽的莫耳比值過低,則所得電解質組成物偏路易士鹼性,鹼金族鹵化物較不易完全溶解於電解質組成物中形成共熔體,導致電解質組成物的導電性、穩定性、及 氧化還原反應性降低;以及,若金屬氯化物與該咪唑鹽的莫耳比值過高,則所得電解質組成物偏路易士酸性,導致電解質組成物的導電性、穩定性、氧化還原反應性降低、及無法增大電位視窗。According to an embodiment of the present disclosure, in the electrolyte composition of the present disclosure, the molar ratio of the metal chloride to the imidazole salt is 1.05 to 1.2, such as 1.08, 1.1, 1.12, 1.15, or 1.18. If the molar ratio of the metal chloride to the imidazole salt is too low, the resulting electrolyte composition will be Lewis alkaline, and the alkali-gold halide will be less likely to be completely dissolved in the electrolyte composition to form a eutectic, resulting in the electrolyte composition The conductivity, stability, and redox reactivity are reduced; and if the molar ratio of the metal chloride to the imidazole salt is too high, the resulting electrolyte composition will be Lewis acidic, resulting in conductivity and stability of the electrolyte composition , Redox reactivity is reduced, and the potential window cannot be enlarged.

根據本揭露實施例,本揭露所述鹼金族鹵化物可為氯化鋰、氯化鈉、氯化鉀、氯化銣、氯化銫、氟化鋰、氟化鈉、氟化鉀、氟化銣、氟化銫、溴化鋰、溴化鈉、溴化鉀、溴化銣、溴化銫、碘化鋰、碘化鈉、碘化鉀、碘化銣、碘化銫、或上述之組合。According to the embodiment of the present disclosure, the alkali gold halide of the present disclosure may be lithium chloride, sodium chloride, potassium chloride, rubidium chloride, cesium chloride, lithium fluoride, sodium fluoride, potassium fluoride, and fluorine. Rubidium, cesium fluoride, lithium bromide, sodium bromide, potassium bromide, rubidium bromide, cesium bromide, lithium iodide, sodium iodide, potassium iodide, rubidium iodide, cesium iodide, or a combination of the above.

根據本揭露實施例,該鹼金族鹵化物的重量與金屬氯化物及咪唑鹽的總重之比可為1:100至6:100,例如2:100至6:100,又例如2.5:100、3:100、4:100、5:100、或5.5:100。若鹼金族鹵化物的重量與金屬氯化物及咪唑鹽的總重之比過低,則所得電解質組成物偏路易士酸性,且形成電解質組成物在充放電過程中易形成Al2 C7 - ,易在負極上形成鍍鋁層,導致金屬離子電池之操作電位、能量密度、循環穩定性、以及循環壽命降低;以及,若鹼金族鹵化物的重量與金屬氯化物及咪唑鹽的總重之比過高,鹼金族鹵化物無法完全溶解於電解質組成物中形成共熔體,導致電解質組成物的導電性、穩定性、及氧化還原反應性降低。According to an embodiment of the present disclosure, the ratio of the weight of the alkali gold halide to the total weight of the metal chloride and the imidazole salt may be 1:100 to 6:100, such as 2:100 to 6:100, or 2.5:100 , 3:100, 4:100, 5:100, or 5.5:100. If the ratio of the weight of the alkali gold halide to the total weight of the metal chloride and imidazole salt is too low, the resulting electrolyte composition will be Lewis acidic, and the electrolyte composition will easily form Al 2 C 7 -during charge and discharge. , It is easy to form an aluminum-plated layer on the negative electrode, resulting in the reduction of the operating potential, energy density, cycle stability, and cycle life of the metal ion battery; and, if the weight of the alkali gold halide and the total weight of the metal chloride and imidazole salt If the ratio is too high, the alkali gold halide cannot be completely dissolved in the electrolyte composition to form a eutectic, resulting in a decrease in the conductivity, stability, and redox reactivity of the electrolyte composition.

根據本揭露實施例,本揭露所述含草酸根的硼酸鹽可為

Figure 02_image005
,其中R4 及R5 係鹵素(例如氟、氯、溴、或碘);以及,M+ 係Li+ 或Na+ 。此外, R4 及R5 亦可構成一草酸根(
Figure 02_image007
),因此揭露所述含草酸根的硼酸鹽可為
Figure 02_image009
,其中M+ 係Li+ 或Na+ 。According to the embodiment of the present disclosure, the oxalate-containing borate of the present disclosure may be
Figure 02_image005
, Wherein R 4 and R 5 are halogen (for example, fluorine, chlorine, bromine, or iodine); and, M + is Li + or Na + . In addition, R 4 and R 5 can also form an oxalate (
Figure 02_image007
), so it is revealed that the oxalate-containing borate can be
Figure 02_image009
, Where M + is Li + or Na + .

根據本揭露實施例,含草酸根的硼酸鹽係二草酸硼酸鋰(lithium bis(oxalato)borate,LiBOB)、二草酸硼酸鈉(sodium bis(oxalato)borate,NaBOB)、二氟草酸硼酸鋰(lithium difluoro(oxalato)borate,LiODFB)、二氟草酸硼酸鈉(sodium difluoro(oxalato)borate,NaODFB)、或上述之組合。由於本揭露所述電解質組成物包含該含草酸根硼酸鹽(例如二草酸硼酸鋰、或二氟草酸硼酸鋰),因此含該電解質組成物的金屬離子電池在充放電的過程中,可形成不會被離子液體(即本揭露所述之咪唑鹽)溶解的網狀(或樹枝狀)膜層,增加金屬離子電池的循環穩定性、以及循環壽命。當以其他鹼金族鹽(例如:LiPF6 、LiBF4 、LiClO4 、LiCF3 SO3 、LiAsF6 、LiSbF6 、LiAlCl4 、CH3 SO3 Li、CF3 SO3 Li、LiFSI(雙(氟磺醯基)胺鋰,lithium bis (fluorosulfonyl) imide)、或LiTFSI(雙(三氟甲磺醯基)亞胺鋰、lithium bis(trifluoromethylsulfonyl)imide)、碳酸酯(例如:碳酸伸乙酯(ethylene carbonate,EC)、碳酸伸乙烯酯(vinylene carbonate, VC)、碳酸2-氟伸乙酯(fluoroethylene carbonate,FEC))、或含硫化合物(亞硫酸乙烯酯(ES;ethylene sulfite)、或苯磺醯氯(benzenesulfonyl chloride))取代本揭露所述該含草酸根硼酸鹽時,在金屬離子電池充放電的過程中,由於該等鹼金族鹽類、碳酸酯、或含硫化合物所形成的膜會被離子液體溶解,因此無法像本揭露所述含草酸根硼酸鹽在電池充放電的過程中形成無法被離子液體溶解的網狀(或樹枝狀)膜層,無法改善金屬離子電池的循環穩定性、以及循環壽命。According to the disclosed embodiment, the oxalate-containing borate is lithium bis(oxalato)borate (LiBOB), sodium bis(oxalato)borate (NaBOB), lithium difluorooxalatoborate (lithium bis(oxalato) borate, NaBOB), and lithium bis(oxalato) borate (LiBOB). difluoro (oxalato) borate (LiODFB), sodium difluoro (oxalato) borate (NaODFB), or a combination of the above. Since the electrolyte composition of the present disclosure contains the oxalate-containing borate (for example, lithium dioxalate borate or lithium difluorooxalate borate), the metal ion battery containing the electrolyte composition can form non-oxidizing materials during charging and discharging. The mesh (or dendritic) membrane layer that will be dissolved by the ionic liquid (ie, the imidazole salt described in this disclosure) increases the cycle stability and cycle life of the metal ion battery. When using other alkali gold salts (for example: LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiFSI (double (fluorine) Lithium sulfonyl) amide, lithium bis (fluorosulfonyl) imide), or LiTFSI (bis(trifluoromethylsulfonyl) imide), lithium bis(trifluoromethylsulfonyl) imide), carbonate (for example: ethylene carbonate (ethylene carbonate) carbonate, EC), vinylene carbonate (VC), fluoroethylene carbonate (FEC)), or sulfur-containing compounds (ES; ethylene sulfite), or benzenesulfonate When benzenesulfonyl chloride (benzenesulfonyl chloride) replaces the oxalate-containing borate described in this disclosure, the film formed by the alkali metal salts, carbonates, or sulfur-containing compounds during the charging and discharging process of the metal ion battery Will be dissolved by the ionic liquid, so the oxalate-containing borate cannot form a network (or dendritic) film that cannot be dissolved by the ionic liquid during the charging and discharging process of the battery, and cannot improve the cycle stability of the metal ion battery. Performance, and cycle life.

根據本揭露實施例,本揭露所述含草酸根的硼酸鹽的莫耳數與金屬氯化物及咪唑鹽的總莫耳數之比為0.1:100至2:100,例如0.1:100至1.8:100,又例如0.2:100、0.5:100、0.8:100、1:100、1.2:100、1.5:100、或1.75:100。若含草酸根的硼酸鹽的莫耳數與金屬氯化物及咪唑鹽的總莫耳數之比過低,則在金屬離子電池充放電的過程中,含量過少的含草酸根的硼酸鹽無法形成網狀(或樹枝狀)膜層,因此無法進一步改善金屬離子電池的循環穩定性、以及循環壽命;以及,若含草酸根的硼酸鹽的莫耳數與金屬氯化物及咪唑鹽的總莫耳數之比過高,則易導致金屬離子電池的電量損耗增加,使得金屬離子電池的能量密度降低。According to an embodiment of the present disclosure, the ratio of the molar number of the oxalate-containing borate to the total molar number of the metal chloride and imidazole salt is 0.1:100 to 2:100, for example, 0.1:100 to 1.8: 100, another example is 0.2:100, 0.5:100, 0.8:100, 1:100, 1.2:100, 1.5:100, or 1.75:100. If the ratio of the molar number of the oxalate-containing borate to the total molar number of the metal chloride and imidazole salt is too low, the oxalate-containing borate with too little content cannot be formed during the charging and discharging process of the metal ion battery Net-like (or dendritic) film layer, so it is impossible to further improve the cycle stability and cycle life of metal ion batteries; and, if the moles of oxalate-containing borate and the total moles of metal chlorides and imidazole salts If the ratio of the numbers is too high, the power loss of the metal ion battery will increase and the energy density of the metal ion battery will decrease.

根據本揭露實施例,本揭露所述電解質組成物可由上述金屬氯化物、具有式(I)所示結構的咪唑鹽、上述鹼金族鹵化物、以及上述含草酸根的硼酸鹽所組成。According to the embodiment of the present disclosure, the electrolyte composition of the present disclosure may be composed of the above-mentioned metal chloride, the imidazole salt having the structure represented by formula (I), the above-mentioned alkali gold halide, and the above-mentioned oxalate-containing borate.

根據本揭露實施例,本揭露亦提供一種金屬離子電池。請參照第1圖,係為本揭露一實施例所述金屬離子電池100的示意圖。金屬離子電池100可包含一正極10、一負極12、及一隔離膜14,其中該隔離膜14可設置於該正極10及該負極12之間,以使得該負極以該隔離膜14與該正極相隔,避免該正極10與該負極12直接接觸。該金屬離子電池100包含上述電解質組成物20設置於該金屬離子電池100內,並位於該正極與該負極之間,使得電解質組成物20與該正極10及負極12接觸。該金屬離子電池100可為充電式之二次電池,但本揭露亦涵蓋一次電池。According to the embodiment of the present disclosure, the present disclosure also provides a metal ion battery. Please refer to FIG. 1, which is a schematic diagram of the metal ion battery 100 according to an embodiment of the disclosure. The metal ion battery 100 can include a positive electrode 10, a negative electrode 12, and a separator 14, wherein the separator 14 can be disposed between the positive electrode 10 and the negative electrode 12, so that the negative electrode is separated from the separator 14 and the positive electrode. Be separated to avoid direct contact between the positive electrode 10 and the negative electrode 12. The metal ion battery 100 includes the above-mentioned electrolyte composition 20 disposed in the metal ion battery 100 and located between the positive electrode and the negative electrode, so that the electrolyte composition 20 is in contact with the positive electrode 10 and the negative electrode 12. The metal ion battery 100 may be a rechargeable secondary battery, but this disclosure also covers a primary battery.

根據本揭露實施例,該正極10可包含一正極集電層及一正極活性材料設置於該正極集電層之上。根據本揭露實施例,該正極亦可由該正極集電層及正極活性材料所構成。根據本揭露實施例,該正極集電層可為導電性碳基材,例如:碳布、碳氈、或碳紙。舉例來說,該導電性碳基材可具有片電阻介於約1mW×cm2 至6mW×cm2 之間、以及含碳量大於約65wt%。根據本揭露實施例,正極集電層可為具有多孔結構的金屬材料,例如3D網狀結構金屬材料(例如鎳網、銅網、或鉬網)或發泡結構金屬材料(例如:發泡鎳、發泡銅、或發泡鉬)。根據本揭露實施例,具有多孔結構的金屬材料可具有一孔隙率P約為50%至80%(例如:約60%、或70%),孔隙率P可由下述公式決定:P=V1/V2´100%,其中V1係正極集電層中孔隙所佔的體積,以及V2係正極集電層總體的體積。根據本揭露實施例,該集電層可為導電性碳基材與金屬材料的複合層。According to an embodiment of the present disclosure, the positive electrode 10 may include a positive electrode collector layer and a positive electrode active material disposed on the positive electrode collector layer. According to an embodiment of the present disclosure, the positive electrode can also be composed of the positive electrode collector layer and the positive electrode active material. According to an embodiment of the present disclosure, the positive electrode current collector layer may be a conductive carbon substrate, such as carbon cloth, carbon felt, or carbon paper. For example, the conductive carbon substrate may have a sheet resistance between about 1 mW×cm 2 to 6 mW×cm 2 and a carbon content greater than about 65 wt %. According to an embodiment of the present disclosure, the positive collector layer may be a metal material with a porous structure, such as a 3D mesh structure metal material (such as nickel mesh, copper mesh, or molybdenum mesh) or a foamed structure metal material (such as foamed nickel). , Foamed copper, or foamed molybdenum). According to an embodiment of the present disclosure, a metal material with a porous structure may have a porosity P of about 50% to 80% (for example, about 60%, or 70%), and the porosity P can be determined by the following formula: P=V1/ V2´100%, where V1 is the volume occupied by the pores in the positive collector layer, and V2 is the overall volume of the positive collector layer. According to an embodiment of the present disclosure, the current collecting layer may be a composite layer of a conductive carbon substrate and a metal material.

根據本揭露實施例,該正極活性材料可為具層狀結構之碳材、層狀雙氫氧化物(layered double hydroxide)、層狀氧化物、層狀硫族化合物(layered chalcogenide)、釩系氧化物、或金屬硫化物、或上述材料的團聚物。根據本揭露實施例,該具層狀結構之碳材可為石墨、奈米碳管、石墨烯、或上述之組合。根據本揭露實施例,該具層狀結構之碳材可為插層碳材,例如:石墨 (包含天然石墨、人工石墨、熱解石墨、發泡石墨、鱗片石墨、或膨脹石墨)、石墨烯、奈米碳管或上述材料之組合。根據本揭露實施例, 該正極活性材料可直接成長(例如以化學氣相沉積法(chemical vapor deposition、CVD)形成正極活性材料)於該正極集電層之上(即兩者之間沒有任何介質),或是利用黏著劑(例如:聚乙烯醇、聚四氟乙烯、羧甲基纖維素鈉、聚偏氟乙烯、聚苯乙烯丁二烯共聚物、氟化橡膠、聚氨脂、聚乙烯基吡咯烷酮、聚丙烯酸乙脂、聚氯乙烯、聚丙烯腈、聚丁二烯、聚丙烯酸、或上述之組合)將該正極活性材料固定於該正極集電層上。根據本揭露實施例,當正極集電層為多孔結構的金屬材料時,正極活性材料可進一步填入該金屬材料的孔洞中。According to an embodiment of the present disclosure, the positive electrode active material can be a carbon material with a layered structure, layered double hydroxide, layered oxide, layered chalcogenide, vanadium-based oxide Compounds, or metal sulfides, or agglomerates of the above materials. According to an embodiment of the present disclosure, the carbon material with a layered structure can be graphite, carbon nanotube, graphene, or a combination of the foregoing. According to an embodiment of the present disclosure, the carbon material with a layered structure can be an intercalated carbon material, such as graphite (including natural graphite, artificial graphite, pyrolytic graphite, foamed graphite, flake graphite, or expanded graphite), graphene , Carbon nanotubes or a combination of the above materials. According to an embodiment of the present disclosure, the positive electrode active material can be directly grown (for example, the positive electrode active material is formed by chemical vapor deposition (CVD)) on the positive electrode collector layer (that is, there is no dielectric between the two). ), or using adhesives (for example: polyvinyl alcohol, polytetrafluoroethylene, sodium carboxymethyl cellulose, polyvinylidene fluoride, polystyrene butadiene copolymer, fluorinated rubber, polyurethane, polyethylene Base pyrrolidone, polyethyl acrylate, polyvinyl chloride, polyacrylonitrile, polybutadiene, polyacrylic acid, or a combination of the above) the positive electrode active material is fixed on the positive electrode collector layer. According to an embodiment of the present disclosure, when the positive electrode collector layer is a porous structured metal material, the positive electrode active material can be further filled into the holes of the metal material.

根據本揭露實施例,該隔離膜14之材質可為玻璃纖維、 聚乙烯(polyethylene、PE)、聚丙烯(Polypropylene、PP)、不織布、木質纖維、聚醚碸樹脂(Poly(ether sulfones)、PES)、陶瓷纖維等或上述之組合。According to the disclosed embodiment, the material of the isolation film 14 can be glass fiber, polyethylene (PE), polypropylene (Polypropylene, PP), non-woven fabric, wood fiber, poly (ether sulfones), PES ), ceramic fiber, etc. or a combination of the above.

根據本揭露實施例,該負極12包含一負極活性材料,其中該負極活性材料可為一金屬(例如)或該金屬之合金、具層狀結構之碳材、層狀雙氫氧化物(layered double hydroxide)、層狀氧化物、層狀硫族化合物(layered chalcogenide)、釩系氧化物、金屬硫化物、或上述材料的團聚物。根據本揭露實施例,該金屬可為鋁、銅、鐵、銦、鎳、錫、鉻、釔、鈦、錳、或鉬。根據本揭露實施例,該具層狀結構之碳材可為石墨、奈米碳管、石墨烯、或上述之組合。根據本揭露實施例,該具層狀結構之碳材可為插層碳材,例如:石墨 (包含天然石墨、人工石墨、熱解石墨、發泡石墨、鱗片石墨、或膨脹石墨)、石墨烯、奈米碳管或上述材料之組合。根據本揭露實施例,該負極12可更包含一負極集電層, 該負極活性材料可直接成長(例如以化學氣相沉積法形成正極活性材料)於該負極集電層之上(即兩者之間沒有任何介質),或是利用黏著劑(例如:聚乙烯醇、聚四氟乙烯、羧甲基纖維素鈉、聚偏氟乙烯、聚苯乙烯丁二烯共聚物、氟化橡膠、聚氨脂、聚乙烯基吡咯烷酮、聚丙烯酸乙脂、聚氯乙烯、聚丙烯腈、聚丁二烯、聚丙烯酸、或上述之組合)將該負極活性材料固定於該負極集電層上。根據本揭露實施例,該負極集電層可為導電性碳基材,例如:碳布、碳氈、或碳紙。舉例來說,該導電性碳基材可具有片電阻介於約1mW×cm2 至6mW×cm2 之間、以及含碳量大於約65wt%。根據本揭露實施例,負極集電層可為具有多孔結構的金屬材料,例如3D網狀結構金屬材料(例如鎳網、銅網、或鉬網)或發泡結構金屬材料(例如:發泡鎳、發泡銅、或發泡鉬)。根據本揭露實施例,具有多孔結構的金屬材料可具有一孔隙率P約為50%至80%(例如:約60%、或70%),孔隙率P可由下述公式決定:P=V1/V2´100%,其中V1係負極集電層中孔隙所佔的體積,以及V2係負極集電層總體的體積。根據本揭露實施例,該負極集電層可為導電性碳基材與金屬材料的複合層。根據本揭露實施例,當負極集電層為多孔結構的金屬材料時,負極活性材料可進一步填入該金屬材料的孔洞中。根據本揭露實施例,該負極亦可由該負極集電層及負極活性材料所構成。根據本揭露實施例,該正極10及負極12的材其及結構相同。According to an embodiment of the present disclosure, the negative electrode 12 includes a negative electrode active material, wherein the negative electrode active material can be a metal (for example) or an alloy of the metal, a carbon material with a layered structure, a layered double hydroxide (layered double hydroxide) hydroxide), layered oxide, layered chalcogenide, vanadium-based oxide, metal sulfide, or agglomerates of the above materials. According to an embodiment of the present disclosure, the metal may be aluminum, copper, iron, indium, nickel, tin, chromium, yttrium, titanium, manganese, or molybdenum. According to an embodiment of the present disclosure, the carbon material with a layered structure can be graphite, carbon nanotube, graphene, or a combination of the foregoing. According to an embodiment of the present disclosure, the carbon material with a layered structure can be an intercalated carbon material, such as graphite (including natural graphite, artificial graphite, pyrolytic graphite, foamed graphite, flake graphite, or expanded graphite), graphene , Carbon nanotubes or a combination of the above materials. According to the disclosed embodiment, the negative electrode 12 may further include a negative electrode collector layer, and the negative electrode active material can be directly grown (for example, the positive electrode active material is formed by a chemical vapor deposition method) on the negative electrode collector layer (that is, both Without any medium between them), or use adhesives (for example: polyvinyl alcohol, polytetrafluoroethylene, sodium carboxymethyl cellulose, polyvinylidene fluoride, polystyrene butadiene copolymer, fluorinated rubber, poly Urethane, polyvinylpyrrolidone, polyethyl acrylate, polyvinyl chloride, polyacrylonitrile, polybutadiene, polyacrylic acid, or a combination of the above) fix the negative electrode active material on the negative electrode collector layer. According to an embodiment of the present disclosure, the negative electrode current collector layer may be a conductive carbon substrate, such as carbon cloth, carbon felt, or carbon paper. For example, the conductive carbon substrate may have a sheet resistance between about 1 mW×cm 2 to 6 mW×cm 2 and a carbon content greater than about 65 wt %. According to an embodiment of the present disclosure, the negative electrode current collector layer may be a metal material with a porous structure, such as a 3D mesh structure metal material (such as nickel mesh, copper mesh, or molybdenum mesh) or a foamed structure metal material (such as foamed nickel). , Foamed copper, or foamed molybdenum). According to an embodiment of the present disclosure, a metal material with a porous structure may have a porosity P of about 50% to 80% (for example, about 60%, or 70%), and the porosity P can be determined by the following formula: P=V1/ V2´100%, where V1 is the volume occupied by the pores in the negative electrode collector layer, and V2 is the overall volume of the negative electrode collector layer. According to an embodiment of the present disclosure, the negative electrode current collector layer may be a composite layer of a conductive carbon substrate and a metal material. According to an embodiment of the present disclosure, when the negative electrode current collector layer is a porous structured metal material, the negative electrode active material can be further filled into the holes of the metal material. According to an embodiment of the present disclosure, the negative electrode can also be composed of the negative electrode collector layer and the negative electrode active material. According to the disclosed embodiment, the material and structure of the positive electrode 10 and the negative electrode 12 are the same.

為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下:In order to make the above and other objectives, features, and advantages of the present disclosure more obvious and understandable, the following specific examples with accompanying drawings are described in detail as follows:

電解質組成物的製備 實施例1 將氯化鋁與1,2-二甲基-3-丙基咪唑氯鹽(1,2-dimethyl-3-propylimidazolium chloride、DMPIC)混合,,其中氯化鋁與1,2-二甲基-3-丙基咪唑氯鹽(DMPIC)的莫耳數比值為1.1。接著,加入氯化鋰,其中氯化鋰的重量百分比為5.2wt%,以氯化鋁及1,2-二甲基-3-丙基咪唑氯鹽的總重為基準。持續攪拌12小時後,加入二草酸硼酸鋰(lithium bis(oxalato)borate,LiBOB),其中二草酸硼酸鋰的莫耳百分比為1mol%,以氯化鋁及1,2-二甲基-3-丙基咪唑氯鹽的總莫耳數為基準。持續攪拌12小時後,得到電解質組成物(1)。Preparation Example 1 of the electrolyte composition aluminum chloride and 1,2-dimethyl-3-propylimidazolium chloride (1,2-dimethyl-3-propylimidazolium chloride, DMPIC) were mixed, wherein the aluminum chloride was mixed with The molar ratio of 1,2-dimethyl-3-propylimidazole chloride (DMPIC) is 1.1. Then, lithium chloride is added, wherein the weight percentage of lithium chloride is 5.2% by weight, based on the total weight of aluminum chloride and 1,2-dimethyl-3-propylimidazole chloride salt. After stirring for 12 hours, lithium bis(oxalato)borate (LiBOB) was added. The molar percentage of lithium bis(oxalato)borate was 1 mol%, and aluminum chloride and 1,2-dimethyl-3- The total number of moles of propylimidazole chloride is the basis. After continuing the stirring for 12 hours, an electrolyte composition (1) was obtained.

實施例2 依實施例1所述電解質組成物(1)的製備方式進行,除了將二草酸硼酸鋰的莫耳百分比由1mol%降低至0.5mol%,得到電解質組成物(2)。Example 2 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that the molar percentage of lithium dioxalate borate was reduced from 1 mol% to 0.5 mol% to obtain the electrolyte composition (2).

實施例3 依實施例1所述電解質組成物(1)的製備方式進行,除了將二草酸硼酸鋰的莫耳百分比由1mol%增加至1.5mol%,得到電解質組成物(3)。Example 3 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that the molar percentage of lithium dioxalate borate was increased from 1 mol% to 1.5 mol% to obtain the electrolyte composition (3).

實施例4 依實施例1所述電解質組成物(1)的製備方式進行,除了將二草酸硼酸鋰的莫耳百分比由1mol%增加至2.0mol%,得到電解質組成物(4)。Example 4 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that the mole percentage of lithium dioxalate borate was increased from 1 mol% to 2.0 mol% to obtain the electrolyte composition (4).

比較例1 依實施例1所述電解質組成物(1)的製備方式進行,除了將氯化鋁與1,2-二甲基-3-丙基咪唑氯鹽(DMPIC)的莫耳數比由1.1降低至至0.95,得到電解質組成物(5)。Comparative Example 1 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that the molar ratio of aluminum chloride to 1,2-dimethyl-3-propylimidazolium chloride (DMPIC) was determined by 1.1 was reduced to 0.95 to obtain electrolyte composition (5).

比較例2 依實施例1所述電解質組成物(1)的製備方式進行,除了將氯化鋁與1,2-二甲基-3-丙基咪唑氯鹽(DMPIC)的莫耳數比由1.1降低至至1,得到電解質組成物(6)。Comparative Example 2 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that the molar ratio of aluminum chloride to 1,2-dimethyl-3-propylimidazolium chloride (DMPIC) was determined by 1.1 was reduced to 1, and electrolyte composition (6) was obtained.

比較例3 依實施例1所述電解質組成物(1)的製備方式進行,除了不添加二草酸硼酸鋰(LiBOB),得到電解質組成物(7)。Comparative Example 3 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that lithium dioxalate borate (LiBOB) was not added to obtain the electrolyte composition (7).

比較例4 依實施例1所述電解質組成物(1)的製備方式進行,除了將1,2-二甲基-3-丙基咪唑氯鹽(DMPIC)以1-乙基-3-甲基咪唑氯鹽(1-ethyl-3-methylimidazolium chloride、EMIC)取代,得到電解質組成物(8)。Comparative Example 4 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that 1,2-dimethyl-3-propylimidazole chloride salt (DMPIC) was used as 1-ethyl-3-methyl Imidazole chloride salt (1-ethyl-3-methylimidazolium chloride, EMIC) was substituted to obtain electrolyte composition (8).

比較例5 依實施例1所述電解質組成物(1)的製備方式進行,除了將1,2-二甲基-3-丙基咪唑氯鹽(DMPIC)以1-丁基-3-甲基咪唑氯鹽(1-butyl-3-methylimidazolium chloride、BMIC)取代,得到電解質組成物(9)。Comparative Example 5 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that 1,2-dimethyl-3-propylimidazole chloride salt (DMPIC) was used as 1-butyl-3-methyl Imidazole chloride salt (1-butyl-3-methylimidazolium chloride, BMIC) was substituted to obtain electrolyte composition (9).

比較例6 依實施例1所述電解質組成物(1)的製備方式進行,除了不添加氯化鋰,得到電解質組成物(10)。Comparative Example 6 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that no lithium chloride was added, and the electrolyte composition (10) was obtained.

比較例7 依實施例1所述電解質組成物(1)的製備方式進行,除了以亞硫酸乙烯酯(ES)取代二草酸硼酸鋰(LiBOB),得到電解質組成物(11)。Comparative Example 7 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that vinyl sulfite (ES) was substituted for lithium dioxalate borate (LiBOB) to obtain electrolyte composition (11).

比較例8 依實施例1所述電解質組成物(1)的製備方式進行,除了以碳酸2-氟伸乙酯(FEC)取代二草酸硼酸鋰(LiBOB),得到電解質組成物(12)。Comparative Example 8 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that 2-fluoroethylene carbonate (FEC) was substituted for lithium dioxalate borate (LiBOB) to obtain electrolyte composition (12).

實施例5 依實施例1所述電解質組成物(1)的製備方式進行,除了將氯化鋰的重量百分比由5.2wt%降低至1.3wt%,得到電解質組成物(13)。Example 5 The preparation method of the electrolyte composition (1) described in Example 1 was carried out, except that the weight percentage of lithium chloride was reduced from 5.2% by weight to 1.3% by weight, to obtain an electrolyte composition (13).

金屬離子電池 實施例6 首先,提供一鎳發泡板(尺寸為100mm ´100mm、厚度為0.2mm、孔隙率為90%、以及孔隙直徑為200μm)。接著,將該鎳發泡板置入真空高溫爐中,並通入氫氣及氬氣(作為傳輸氣體),並同時通入甲烷進行石墨氣相沉積(溫度為900至1100℃之間),得到表面具有石墨層包覆的鎳發泡板(石墨負載量為800-1500mg),作為石墨電極。接著,提供隔離膜(玻璃濾紙(6層1/2吋)、商品編號為沃特曼(Whatman) 934-AH)。接著,按照石墨電極(作為負極)、隔離膜、及石墨電極(作為正極)的順序排列,以鋁塑膜將其封裝並注入電解質組成物(1),得到金屬離子電池(1)。Metal ion battery Example 6 First, provide a nickel foam board (size 100mm x 100mm, thickness 0.2mm, porosity 90%, and pore diameter 200μm). Then, the nickel foamed plate was placed in a vacuum high-temperature furnace, and hydrogen and argon gas (as transport gas) were introduced, and methane was simultaneously introduced for graphite vapor deposition (temperature between 900 and 1100 ℃), to obtain The nickel foam board (the graphite loading amount is 800-1500mg) coated with a graphite layer on the surface is used as a graphite electrode. Next, provide an isolation film (glass filter paper (6 layers 1/2 inch), product code: Whatman 934-AH). Next, the graphite electrode (as a negative electrode), a separator, and a graphite electrode (as a positive electrode) are arranged in this order, and they are packaged with an aluminum plastic film and injected into the electrolyte composition (1) to obtain a metal ion battery (1).

接著,以80 mA/g電流對金屬離子電池(1)進行活化後,以500 mA/g電流對金屬離子電池(1)進行充電放電循環測試(充電至4.2v),並量測金屬離子電池(1)在第9循環時的放電中值電壓及能量密度、以及循環壽命(第15圈放電能量密度/最大能量密度 x 100%),結果如表1所示。Then, after activating the metal ion battery (1) with a current of 80 mA/g, perform a charge-discharge cycle test on the metal ion battery (1) with a current of 500 mA/g (charge to 4.2v), and measure the metal ion battery (1) The discharge median voltage and energy density at the 9th cycle, and the cycle life (15th cycle discharge energy density/maximum energy density x 100%). The results are shown in Table 1.

實施例7-9 依實施例6所述金屬離子電池(1)的製備方式進行,除了分別以電解質組成物(2)-(4)取代電解質組成物(1),得到金屬離子電池(2)-(4)。Example 7-9 The preparation method of the metal ion battery (1) described in Example 6 was carried out, except that the electrolyte composition (1) was replaced by the electrolyte composition (2)-(4), respectively, to obtain a metal ion battery (2) -(4).

接著,以上述方式分別量測金屬離子電池(2)-(4)在第9循環時的放電中值電壓及能量密度、以及循環壽命(第15圈放電能量密度/最大能量密度 x 100%),結果如表1所示。Next, measure the median discharge voltage and energy density and cycle life of the metal ion batteries (2)-(4) at the 9th cycle in the above-mentioned manner (discharge energy density at the 15th cycle/maximum energy density x 100%) , The results are shown in Table 1.

比較例9-16 依實施例6所述金屬離子電池(1)的製備方式進行,除了分別以電解質組成物(5)-(12)取代電解質組成物(1),得到金屬離子電池(5)-(12)。Comparative Examples 9-16 The preparation method of the metal ion battery (1) described in Example 6 was carried out, except that the electrolyte composition (1) was replaced by the electrolyte composition (5)-(12), respectively, to obtain a metal ion battery (5) -(12).

接著,以上述方式分別量測金屬離子電池(5)-(12)在第9循環時的放電中值電壓及能量密度、以及循環壽命(第15圈放電能量密度/最大能量密度 x 100%),結果如表1所示。Next, measure the median discharge voltage and energy density and cycle life of the metal ion batteries (5)-(12) at the 9th cycle in the above-mentioned manner (discharge energy density at the 15th cycle/maximum energy density x 100%) , The results are shown in Table 1.

實施例10 依實施例6所述金屬離子電池(1)的製備方式進行,除了分別以電解質組成物(13)取代電解質組成物(1),得到金屬離子電池(13)。Example 10 The preparation method of the metal ion battery (1) described in Example 6 was performed, except that the electrolyte composition (13) was used instead of the electrolyte composition (1) to obtain a metal ion battery (13).

接著,以上述方式分別量測金屬離子電池(13) 在第9循環時的放電中值電壓及能量密度、以及循環壽命(第15圈放電能量密度/最大能量密度 x 100%),結果如表1所示。Next, measure the median discharge voltage and energy density of the metal ion battery (13) at the 9th cycle and the cycle life (discharge energy density at the 15th cycle/maximum energy density x 100%) of the metal ion battery (13) in the above-mentioned manner. The results are shown in the table 1 shown.

表1

Figure 107147656-A0304-0001
Table 1
Figure 107147656-A0304-0001

由表1可得知,由於比較例9及比較例10所使用的電解質組成物其金屬氯化物及咪唑鹽的莫耳比小於1.05:1,即使比較例9及比較例10所使用的電解質組成物添加本揭露所述鹼金族鹵化物與含草酸根硼酸鹽,所得之金屬離子電池之操作電位(小於3.1V)、且循環壽命(低於70%)明顯較實施例6-10所述之金屬離子電池差。由於比較例11所使用的電解質組成物未添加本揭露所述含草酸根硼酸鹽,所得之金屬離子電池之能量密度(小於160mWh/g)明顯較實施例6-8所述之金屬離子電池差。由於比較例12及比較例13分別以EMIC及BMIC代替本揭露所述具有式(I)所示結構的咪唑鹽,所得之金屬離子電池之操作電位(小於2.1V)明顯較實施例6-10所述之金屬離子電池差。此外,由於比較例14所使用的電解質組成物未添加本揭露所述鹼金族鹵化物,所得之金屬離子電池之操作電位(小於2.3V)明顯較實施例6-10所述之金屬離子電池差。再者,由於比較例15及比較例16分別以ES及FEC代替本揭露所述含草酸根硼酸鹽,所得之金屬離子電池之能量密度(小於105mWh/g)明顯較實施例6-8所述之金屬離子電池之能量密度(大於163mWh/g)差。It can be seen from Table 1 that the molar ratio of the metal chloride and imidazole salt of the electrolyte composition used in Comparative Example 9 and Comparative Example 10 is less than 1.05:1, even though the electrolyte composition used in Comparative Example 9 and Comparative Example 10 Adding the alkali gold halide and oxalate-containing borate described in the present disclosure, the operating potential (less than 3.1V) and cycle life (less than 70%) of the resulting metal ion battery are significantly better than those described in Examples 6-10 The metal ion battery is poor. Since the electrolyte composition used in Comparative Example 11 did not add the oxalate-containing borate described in this disclosure, the energy density (less than 160mWh/g) of the resulting metal ion battery was significantly worse than that of the metal ion battery described in Examples 6-8 . Since Comparative Example 12 and Comparative Example 13 use EMIC and BMIC to replace the imidazole salt with the structure of formula (I) described in this disclosure, the operating potential (less than 2.1V) of the resulting metal ion battery is significantly higher than that of Examples 6-10. The metal ion battery described is poor. In addition, since the electrolyte composition used in Comparative Example 14 did not add the alkali-gold halide described in this disclosure, the operating potential of the resulting metal ion battery (less than 2.3V) was significantly higher than that of the metal ion battery described in Examples 6-10. Difference. Furthermore, since Comparative Example 15 and Comparative Example 16 replaced the oxalate-containing borate described in this disclosure with ES and FEC respectively, the energy density (less than 105 mWh/g) of the resulting metal ion battery was significantly higher than that described in Examples 6-8. The energy density (greater than 163mWh/g) of the metal ion battery is poor.

雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although this disclosure has been disclosed in several embodiments as above, it is not intended to limit this disclosure. Anyone with ordinary knowledge in the art can make any changes and modifications without departing from the spirit and scope of this disclosure. Therefore, the protection scope of this disclosure shall be subject to those defined by the attached patent application scope.

10:正極12:負極14:隔離膜20:電解質組成物100:金屬離子電池10: positive electrode 12: negative electrode 14: separator 20: electrolyte composition 100: metal ion battery

第1圖係本揭露一實施例所述金屬離子電池之示意圖。FIG. 1 is a schematic diagram of the metal ion battery according to an embodiment of the disclosure.

Figure 107147656-A0101-11-0002-3
Figure 107147656-A0101-11-0002-3

10:正極 10: positive

12:負極 12: negative electrode

14:隔離膜 14: Isolation film

20:電解質組成物 20: Electrolyte composition

100:金屬離子電池 100: Metal ion battery

Claims (17)

一種電解質組成物,包含:一金屬氯化物,其中該金屬氯化物為氯化鋁、氯化鐵、氯化鋅、氯化銅、氯化錳、氯化鉻、或上述之組合;一咪唑鹽,具有式(I)所示結構
Figure 107147656-A0305-02-0023-1
,其中R1,R2,R3係獨立為C1-8烷基、C2-8烯基、C2-8炔基、C1-8烷氧基、C2-8烷氧烷基、或C1-8氟烷基;以及,X-為F-,Cl-,Br-,或I-;一鹼金族鹵化物;以及一含草酸根的硼酸鹽(oxalato-containing borate),其中該金屬氯化物與該咪唑鹽的莫耳比值係1.05至1.2;該鹼金族鹵化物的重量與金屬氯化物及咪唑鹽的總重之比為1:100至6:100;以及,該含草酸根的硼酸鹽的莫耳數與金屬氯化物及咪唑鹽的總莫耳數之比為0.1:100至2:100。
An electrolyte composition comprising: a metal chloride, wherein the metal chloride is aluminum chloride, ferric chloride, zinc chloride, copper chloride, manganese chloride, chromium chloride, or a combination thereof; an imidazole salt , Has the structure shown in formula (I)
Figure 107147656-A0305-02-0023-1
, Where R 1 , R 2 , and R 3 are independently C 1-8 alkyl, C 2-8 alkenyl, C 2-8 alkynyl, C 1-8 alkoxy, C 2-8 alkoxyalkyl , or a C 1-8 fluoroalkyl group; and, X - is F -, Cl -, Br - , or I -; an alkali metal halides; and perborate-containing oxalate (oxalato-containing borate), The molar ratio of the metal chloride to the imidazole salt is 1.05 to 1.2; the ratio of the weight of the alkali gold halide to the total weight of the metal chloride and the imidazole salt is 1:100 to 6:100; and The ratio of the molar number of the oxalate-containing borate to the total molar number of the metal chloride and imidazole salt is 0.1:100 to 2:100.
如申請專利範圍第1項所述之電解質組成物,其中該咪唑鹽係
Figure 107147656-A0305-02-0023-2
,其中R1係C1-8烷基、C2-8烯基、C2-8炔基、C1-8烷氧基、C2-8烷氧烷基、或C1-8氟烷基;以及,X- 為F-,Cl-,Br-,或I-
The electrolyte composition described in item 1 of the scope of patent application, wherein the imidazole salt is
Figure 107147656-A0305-02-0023-2
, Where R 1 is C 1-8 alkyl, C 2-8 alkenyl, C 2-8 alkynyl, C 1-8 alkoxy, C 2-8 alkoxyalkyl, or C 1-8 fluoroalkane group; and, X - is F -, Cl -, Br - , or I -.
如申請專利範圍第2項所述之電解質組成物,其中該咪唑鹽係1,2-二甲基-3-丙基咪唑氯鹽(1,2-dimethyl-3-propylimidazolium chloride、DMPIC)、1,2-二甲基-3-丙基咪唑碘鹽(1,2-dimethyl-3-propylimidazolium iodide)、1,2-二甲基-3-丙基咪唑溴鹽(1,2-dimethyl-3-propylimidazolium bromide)、1,2-二甲基-3-丙基咪唑氟鹽(1,2-dimethyl-3-propylimidazolium fluoride)、1,2-二甲基-3-丁基咪唑氯鹽(1,2-dimethyl-3-butylimidazolium chloride、DMBIC)、1,2-二甲基-3-丁基咪唑碘鹽(1,2-dimethyl-3-butylimidazolium iodide)、1,2-二甲基-3-丁基咪唑溴鹽(1,2-dimethyl-3-butylimidazolium bromide)、1,2-二甲基-3-丁基咪唑氟鹽(1,2-dimethyl-3-butylimidazolium fluoride)、1,2-二甲基-3-乙基咪唑氯鹽(1,2-dimethyl-3-ethylimidazolium chloride、DMEIC)、1,2-二甲基-3-乙基咪唑碘鹽(1,2-dimethyl-3-ethylimidazolium iodide)、1,2-二甲基-3-乙基咪唑溴鹽(1,2-dimethyl-3-ethylimidazolium bromide)、1,2-二甲基-3-乙基咪唑氟鹽(1,2-dimethyl-3-ethylimidazolium fluoride)、或上述之組合。 The electrolyte composition described in item 2 of the scope of patent application, wherein the imidazole salt is 1,2-dimethyl-3-propylimidazolium chloride (DMPIC), 1 ,2-Dimethyl-3-propylimidazolium iodide (1,2-dimethyl-3-propylimidazolium iodide), 1,2-dimethyl-3-propylimidazolium iodide (1,2-dimethyl-3 -propylimidazolium bromide), 1,2-dimethyl-3-propylimidazolium fluoride (1,2-dimethyl-3-propylimidazolium fluoride), 1,2-dimethyl-3-butylimidazolium chloride (1 ,2-dimethyl-3-butylimidazolium chloride, DMBIC), 1,2-dimethyl-3-butylimidazolium iodide, 1,2-dimethyl-3 -Butylimidazole bromide (1,2-dimethyl-3-butylimidazolium bromide), 1,2-dimethyl-3-butylimidazolium fluoride (1,2-dimethyl-3-butylimidazolium fluoride), 1,2 -Dimethyl-3-ethylimidazolium chloride (1,2-dimethyl-3-ethylimidazolium chloride, DMEIC), 1,2-dimethyl-3-ethylimidazolium chloride (1,2-dimethyl-3 -ethylimidazolium iodide), 1,2-dimethyl-3-ethylimidazolium bromide, 1,2-dimethyl-3-ethylimidazolium bromide (1 ,2-dimethyl-3-ethylimidazolium fluoride), or a combination of the above. 如申請專利範圍第1項所述之電解質組成物,其中該鹼金族鹵化物係氯化鋰、氯化鈉、氯化鉀、氯化銣、氯化銫、氟化 鋰、氟化鈉、氟化鉀、氟化銣、氟化銫、溴化鋰、溴化鈉、溴化鉀、溴化銣、溴化銫、碘化鋰、碘化鈉、碘化鉀、碘化銣、碘化銫、或上述之組合。 The electrolyte composition described in item 1 of the scope of patent application, wherein the alkali gold halide is lithium chloride, sodium chloride, potassium chloride, rubidium chloride, cesium chloride, fluoride Lithium, sodium fluoride, potassium fluoride, rubidium fluoride, cesium fluoride, lithium bromide, sodium bromide, potassium bromide, rubidium bromide, cesium bromide, lithium iodide, sodium iodide, potassium iodide, rubidium iodide, Cesium iodide, or a combination of the above. 如申請專利範圍第1項所述之電解質組成物,其中該含草酸根的硼酸鹽係
Figure 107147656-A0305-02-0025-3
,其中R4及R5係鹵素,或R4及R5構成一草酸根(
Figure 107147656-A0305-02-0025-4
);以及,M+係Li+或Na+
The electrolyte composition described in item 1 of the scope of patent application, wherein the oxalate-containing borate is
Figure 107147656-A0305-02-0025-3
, Where R 4 and R 5 are halogen, or R 4 and R 5 constitute an oxalate (
Figure 107147656-A0305-02-0025-4
); And, M + is Li + or Na + .
如申請專利範圍第1項所述之電解質組成物,其中該含草酸根的硼酸鹽係二草酸硼酸鋰(lithium bis(oxalato)borate,LiBOB)、二草酸硼酸鈉(sodium bis(oxalato)borate,NaBOB)、二氟草酸硼酸鋰(lithium difluoro(oxalato)borate,LiODFB)、二氟草酸硼酸鈉(sodium difluoro(oxalato)borate,NaODFB)、或上述之組合。 The electrolyte composition described in item 1 of the scope of patent application, wherein the oxalato-containing borate is lithium bis(oxalato)borate (LiBOB), sodium bis(oxalato)borate, NaBOB), lithium difluoro (oxalato) borate (LiODFB), sodium difluoro (oxalato) borate (NaODFB), or a combination of the above. 一種金屬離子電池,包含:一正極;一隔離膜;一負極,其中該負極以隔離膜與該正極相隔;以及申請專利範圍第1-6項任一項所述之電解質組成物,設置於該正極與該負極之間。 A metal ion battery, comprising: a positive electrode; a separator; a negative electrode, wherein the negative electrode is separated from the positive electrode by a separator; Between the positive electrode and the negative electrode. 如申請專利範圍第7項所述之金屬離子電池,其中該正極由一正極集電層及一正極活性材料所構成。 According to the metal ion battery described in item 7 of the scope of patent application, the positive electrode is composed of a positive electrode current collector layer and a positive electrode active material. 如申請專利範圍第8項所述之金屬離子電池,其中該正極集電層係導電性碳基材、具有多孔結構的金屬材料、或上述之組合。 The metal ion battery described in item 8 of the scope of patent application, wherein the positive electrode collector layer is a conductive carbon substrate, a metal material with a porous structure, or a combination of the foregoing. 如申請專利範圍第8項所述之金屬離子電池,其中該正極活性材料係具層狀結構之碳材、層狀雙氫氧化物(layered double hydroxide)、層狀氧化物、層狀硫族化合物(layered chalcogenide)、釩系氧化物、或金屬硫化物。 The metal ion battery described in item 8 of the scope of patent application, wherein the positive electrode active material is a carbon material with a layered structure, a layered double hydroxide, a layered oxide, and a layered chalcogenide (layered chalcogenide), vanadium-based oxide, or metal sulfide. 如申請專利範圍第10項所述之金屬離子電池,其中具層狀結構之碳材係天然石墨、人工石墨、熱解石墨、發泡石墨、鱗片石墨、膨脹石墨、石墨烯、奈米碳管、或上述材料之組合。 For the metal ion battery described in item 10 of the scope of patent application, the carbon material with a layered structure is natural graphite, artificial graphite, pyrolytic graphite, foamed graphite, flake graphite, expanded graphite, graphene, carbon nanotubes , Or a combination of the above materials. 如申請專利範圍第7項所述之金屬離子電池,其中該負極包含一負極活性材料。 According to the metal ion battery described in item 7 of the scope of patent application, the negative electrode includes a negative electrode active material. 如申請專利範圍第12項所述之金屬離子電池,其中該負極活性材料係一金屬或該金屬之合金、具層狀結構之碳材、層狀雙氫氧化物(layered double hydroxide)、層狀氧化物、層狀硫族化合物(layered chalcogenide)、釩系氧化物、或金屬硫化物。 The metal ion battery described in item 12 of the scope of patent application, wherein the negative electrode active material is a metal or an alloy of the metal, a carbon material with a layered structure, a layered double hydroxide, a layered Oxide, layered chalcogenide, vanadium-based oxide, or metal sulfide. 如申請專利範圍第13項所述之金屬離子電池,其中該金屬係銅、鐵、鋁、鋅、銦、鎳、錫、鉻、釔、鈦、錳、或鉬。 The metal ion battery described in item 13 of the scope of patent application, wherein the metal is copper, iron, aluminum, zinc, indium, nickel, tin, chromium, yttrium, titanium, manganese, or molybdenum. 如申請專利範圍第13項所述之金屬離子電池,其中具層狀結構之碳材係天然石墨、人工石墨、熱解石墨、發泡石墨、鱗片 石墨、膨脹石墨、石墨烯、奈米碳管、或上述材料之組合。 The metal ion battery described in item 13 of the scope of patent application, wherein the carbon material with a layered structure is natural graphite, artificial graphite, pyrolytic graphite, foamed graphite, and flakes Graphite, expanded graphite, graphene, carbon nanotubes, or a combination of the above materials. 如申請專利範圍第12項所述之金屬離子電池,其中該負極更包含一負極集電層,該負極集電層係導電性碳基材、鎳網、發泡鎳、鉬網、發泡鉬、或上述之組合。 The metal ion battery according to item 12 of the scope of patent application, wherein the negative electrode further comprises a negative electrode current collector layer, the negative electrode current collector layer is a conductive carbon substrate, nickel mesh, foamed nickel, molybdenum mesh, foamed molybdenum , Or a combination of the above. 如申請專利範圍第7項所述之金屬離子電池,該隔離膜係玻璃纖維、聚乙烯(polyethylene、PE)、聚丙烯(Polypropylene、PP)、不織布、木質纖維、聚醚碸樹脂(Poly(ether sulfones)、PES)、陶瓷纖維、或上述之組合。 For the metal ion battery described in item 7 of the scope of patent application, the isolation film is made of glass fiber, polyethylene (PE), polypropylene (Polypropylene, PP), non-woven fabric, wood fiber, polyether resin (Poly(ether) sulfones), PES), ceramic fiber, or a combination of the above.
TW107147656A 2018-11-27 2018-12-28 Electrolyte composition and metal-ion battery employing the same TWI744588B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910237766.4A CN111224163B (en) 2018-11-27 2019-03-27 Electrolyte composition and metal ion battery comprising same
US16/654,920 US11258100B2 (en) 2018-11-27 2019-10-16 Electrolyte composition and metal-ion battery employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862771716P 2018-11-27 2018-11-27
US62/771,716 2018-11-27

Publications (2)

Publication Number Publication Date
TW202021184A TW202021184A (en) 2020-06-01
TWI744588B true TWI744588B (en) 2021-11-01

Family

ID=72175724

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107147656A TWI744588B (en) 2018-11-27 2018-12-28 Electrolyte composition and metal-ion battery employing the same

Country Status (1)

Country Link
TW (1) TWI744588B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969401A (en) * 2012-12-17 2015-10-07 赛昂能源有限公司 Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US20170033397A1 (en) * 2010-09-30 2017-02-02 Ut-Battelle, Inc High energy density aluminum battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170033397A1 (en) * 2010-09-30 2017-02-02 Ut-Battelle, Inc High energy density aluminum battery
CN104969401A (en) * 2012-12-17 2015-10-07 赛昂能源有限公司 Lithium-ion electrochemical cell, components thereof, and methods of making and using same

Also Published As

Publication number Publication date
TW202021184A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
TWI581482B (en) Nonaqueous electrolyte battery electrolyte, and its non-aqueous electrolyte battery
Zhang et al. Safety-reinforced succinonitrile-based electrolyte with interfacial stability for high-performance lithium batteries
EP2833468B1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium-ion secondary battery
EP3187487B1 (en) Ionic liquid and plastic crystal
WO2021208955A1 (en) Electrolyte additive, secondary battery electrolyte, secondary battery and terminal
WO2015046175A1 (en) Nonaqueous liquid electrolyte for use in secondary battery, and lithium-ion secondary battery
JP2014170689A (en) Nonaqueous electrolyte and lithium secondary battery
EP1846981A1 (en) Electrolyte solutions for electrochemical energy devices
WO2023124604A1 (en) Secondary battery
JP4292876B2 (en) Electrolyte for storage element and storage element
WO2023179384A1 (en) Positive electrode plate and lithium ion battery
JP2015064990A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
CN101651211A (en) Anode material composition, and anode and battery comprising same
CN110364695A (en) Lithium ion battery
TWI744588B (en) Electrolyte composition and metal-ion battery employing the same
JP2017157327A (en) Nonaqueous electrolyte solution for power storage device
JP7098276B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP5487443B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
CN111224163B (en) Electrolyte composition and metal ion battery comprising same
JP2015064991A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
WO2023123031A1 (en) Electrochemical device and electronic device
JP2018170237A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2018170238A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2016018619A (en) Nonaqueous electrolyte and lithium ion secondary battery having the same
CN112886062B (en) Electrolyte solution, electrochemical device, and electronic apparatus