TWI744075B - Titanium-aluminum intermetallic and method for manufacturing the same for improving casting fluidity - Google Patents

Titanium-aluminum intermetallic and method for manufacturing the same for improving casting fluidity Download PDF

Info

Publication number
TWI744075B
TWI744075B TW109138781A TW109138781A TWI744075B TW I744075 B TWI744075 B TW I744075B TW 109138781 A TW109138781 A TW 109138781A TW 109138781 A TW109138781 A TW 109138781A TW I744075 B TWI744075 B TW I744075B
Authority
TW
Taiwan
Prior art keywords
titanium
aluminum intermetallic
casting
fluidity
aluminum
Prior art date
Application number
TW109138781A
Other languages
Chinese (zh)
Other versions
TW202219288A (en
Inventor
孫宏源
蔣承學
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW109138781A priority Critical patent/TWI744075B/en
Application granted granted Critical
Publication of TWI744075B publication Critical patent/TWI744075B/en
Publication of TW202219288A publication Critical patent/TW202219288A/en

Links

Images

Abstract

A titanium-aluminum intermetallic for improving casting fluidity, calculated in atomic percentage, the titanium-aluminum intermetallic includes the following elements: Al: 40-50 at%, Cr: 1-8 at%, Nb: 1-8 at% , Mo: 1-5 at%, Mn: 1-6 at%, Ni+Si+Fe: 1-15 at% and B: 0.05-0.8 at%, the rest is Ti and unavoidable impurities. The titanium-aluminum intermetallic of the present invention has better casting fluidity, i.e., better castability.

Description

用以改善鑄造流動性之鈦鋁介金屬及其製造方法 Titanium-aluminum dielectric metal for improving casting fluidity and manufacturing method thereof

本發明是有關於一種鈦鋁介金屬及其製造方法,且特別是有關於一種以改善鑄造流動性之鈦鋁介金屬及其製造方法。 The present invention relates to a titanium-aluminum intermetallic and a manufacturing method thereof, and more particularly to a titanium-aluminum intermetallic and a manufacturing method thereof for improving casting fluidity.

全球汽車產量仍在持續增長,由於降低油耗和改善城市空氣品質的要求,對低能耗高性能發動機需求量也在日益增大,渦輪增壓器能顯著提高發動機功率、改善排放、降低油耗,因而採用帶渦輪增壓器的小型發動機來替代自然吸氣的發動機是現代汽車工業的一個基本趨勢,由於渦輪葉片承受的是發動機高溫高壓的廢氣,乘用車柴油機排放廢氣溫度最高大約為850℃,而汽油機則可達1050℃,增壓器葉輪和渦輪尺寸不大,一般直徑不超過100mm,但轉速很高,最高達250000r/min,在惡劣的工作環境下連續高速工作,所以對材料和性能的要求非常高,因此開發一種高性能汽車發動機的轉子及葉片材料非常有必要。 Global automobile production is still growing. Due to the requirements for reducing fuel consumption and improving urban air quality, the demand for low-energy high-performance engines is also increasing. Turbochargers can significantly increase engine power, improve emissions, and reduce fuel consumption. The use of small engines with turbochargers to replace naturally aspirated engines is a basic trend in the modern automobile industry. Because turbine blades bear the high temperature and high pressure exhaust gas of the engine, the highest exhaust gas temperature of passenger car diesel engines is about 850°C. The gasoline engine can reach 1050℃. The size of the turbocharger impeller and turbine is not large. Generally, the diameter does not exceed 100mm, but the speed is high, up to 250,000r/min. It can work continuously at high speed under harsh working environment, so it is very important for materials and performance. The requirements are very high, so it is very necessary to develop a high-performance automotive engine rotor and blade material.

相較其他金屬間化合物而言,鈦鋁(TiAl)介金屬的綜合性能良好,其具有低密度、高熔點、高的抗氧化性以及優良的高溫強度及剛度等性質,同時鈦鋁介金屬彈性模量遠高於其它結構材料,作為結構工件使用可以明顯增進高頻振動的承受度;與鎳(Ni)基合金相比,鈦鋁介金屬又有較高的高溫抗蠕變性及良好的阻燃性能。 Compared with other intermetallic compounds, the overall performance of titanium aluminum (TiAl) intermetallic is good. It has low density, high melting point, high oxidation resistance and excellent high temperature strength and rigidity. At the same time, titanium aluminum intermetallic elasticity The modulus is much higher than other structural materials. As a structural workpiece, it can significantly improve the tolerance of high-frequency vibration. Compared with nickel (Ni)-based alloys, titanium-aluminum intermetallics have higher high-temperature creep resistance and good Flame retardant performance.

然而,動力裝置所用的渦輪葉片及渦輪轉子,像是航太發動機葉片、船用發電機葉片或車用渦輪轉子等,其大多為複雜結構的薄型零件。若使用鈦鋁介金屬做為上述薄型零件之材料,則普遍 僅能利用積層製造或是後加工技術進行該薄型零件之產品製作,故衍生製造成本高、材料損失大及加工困難度高等缺點。雖然嘗試以鑄造技術克服前述缺點並直接得到完整產品形貌,但是目前仍受限於鈦鋁介金屬因本身材料流動性較差,而導致鑄造成形不易,使得鑄造最終產品的性質不佳。 However, turbine blades and turbine rotors used in power plants, such as aerospace engine blades, marine generator blades, or vehicle turbine rotors, are mostly thin parts with complex structures. If titanium-aluminum intermetallic is used as the material of the above-mentioned thin parts, it is generally The thin parts can only be produced by using layered manufacturing or post-processing technology, so it has disadvantages such as high manufacturing cost, large material loss, and high processing difficulty. Although attempts have been made to overcome the aforementioned shortcomings by casting technology and directly obtain the complete product morphology, the current limitations of the titanium-aluminum intermetallic material are poor fluidity, which makes the casting difficult to shape, which makes the final casting product poor in properties.

因此,便有需要提供一種用以改善鑄造流動性之鈦鋁介金屬及其製造方法,以解決前述的問題。 Therefore, there is a need to provide a titanium-aluminum intermetallic for improving casting fluidity and a manufacturing method thereof to solve the aforementioned problems.

本發明之一目的是提供一種用以改善鑄造流動性之鈦鋁介金屬及其製造方法,其具有較佳的鑄造流動性。 One object of the present invention is to provide a titanium-aluminum intermetallic for improving casting fluidity and a manufacturing method thereof, which has better casting fluidity.

依據上述之目的,本發明提供一種用以改善鑄造流動性的鈦鋁介金屬,以原子百分比計算,該鈦鋁介金屬包括下列元素:Al:40~50at%、Cr:1~8at%、Nb:1~8at%、Mo:1~5at%、Mn:1~6at%、Ni+Si+Fe:1~15at%及B:0.05~0.8at%,其餘部分為Ti及不可避免之雜質。 According to the above-mentioned purpose, the present invention provides a titanium-aluminum intermetallic for improving casting fluidity. The titanium-aluminum intermetallic includes the following elements: Al: 40-50at%, Cr: 1-8at%, Nb, calculated by atomic percentage : 1~8at%, Mo: 1~5at%, Mn: 1~6at%, Ni+Si+Fe: 1~15at% and B: 0.05~0.8at%, the rest is Ti and unavoidable impurities.

本發明更提供一種用以改善鑄造流動性之鈦鋁介金屬的製造方法,包括下列步驟:一熔煉步驟:將鈦鋁介金屬之多個熔煉原料放置在一感應熔煉設備內,將該些熔煉原料熔融成一具有鑄造流動性的鈦鋁介金屬熔湯;以及一澆鑄固化步驟:將該鈦鋁介金屬熔湯進行澆鑄,以固化成一鈦鋁介金屬,其中該鈦鋁介金屬,以原子百分比計算,該鈦鋁介金屬包括下列元素:Al:40~50at%、Cr:1~8at%、Nb:1~8at%、Mo:1~5at%、Mn:1~6at%、Ni+Si+Fe:1~15at%及B:0.05~0.8at%,其餘部分為Ti及不可避免之雜質。 The present invention further provides a manufacturing method of titanium-aluminum intermetallic for improving casting fluidity, which includes the following steps: a smelting step: placing a plurality of smelting raw materials of the titanium-aluminum intermetallic in an induction melting device, and smelting these The raw materials are melted into a titanium-aluminum intermetallic broth with casting fluidity; and a casting solidification step: the titanium-aluminum intermetallic broth is cast to solidify into a titanium-aluminum intermetallic, wherein the titanium-aluminum intermetallic is expressed in atomic percentages By calculation, the titanium aluminum intermetallic includes the following elements: Al: 40~50at%, Cr: 1~8at%, Nb: 1~8at%, Mo: 1~5at%, Mn: 1~6at%, Ni+Si+ Fe: 1~15at% and B: 0.05~0.8at%, the rest is Ti and unavoidable impurities.

本發明之鈦鋁介金屬具有較佳的鑄造流動性,亦即具有較佳的鑄造性。 The titanium-aluminum intermetallic of the present invention has better casting fluidity, that is, better castability.

1:製造設備 1: Manufacturing equipment

11:封閉腔體 11: Closed cavity

12:感應熔煉裝置 12: Induction melting device

121:水冷式坩堝單元 121: Water-cooled crucible unit

122:感應線圈單元 122: induction coil unit

13:水冷式模具 13: Water-cooled mold

14:真空裝置 14: Vacuum device

15:氮氣供應源 15: Nitrogen supply source

16:管路單元 16: pipeline unit

17:量尺 17: Measuring Ruler

20:鈦鋁介金屬熔湯 20: Titanium-aluminum intermetallic molten soup

20’:鈦鋁介金屬 20’: Titanium-aluminum intermetallic

S1:步驟 S1: Step

S2:步驟 S2: Step

圖1為本發明之一實施例之用以改善鑄造流動性之鈦鋁介金屬的 製造方法之流程圖。 Figure 1 is an embodiment of the invention for improving the casting fluidity of titanium aluminum intermetallic Flow chart of manufacturing method.

圖2為本發明之一實施例之鈦鋁介金屬的製造設備之剖面示意圖。 Fig. 2 is a schematic cross-sectional view of a manufacturing equipment of titanium-aluminum intermetallic metal according to an embodiment of the present invention.

圖3a為本發明之鑄造流動性實驗之模具之立體示意圖。 Figure 3a is a three-dimensional schematic diagram of the mold for the casting fluidity experiment of the present invention.

圖3b為本發明之鑄造流動性實驗之操作示意圖。 Figure 3b is a schematic diagram of the operation of the casting fluidity experiment of the present invention.

圖4為本發明之鈦鋁介金屬熔湯澆鑄後之樣貌示意圖,其顯示量測鈦鋁介金屬的螺旋流道長度。 Fig. 4 is a schematic diagram of the appearance after casting of the titanium-aluminum intermetallic molten bath of the present invention, which shows the measurement of the length of the spiral flow channel of the titanium-aluminum intermetallic.

為讓本發明之上述目的、特徵和特點能更明顯易懂,茲配合圖式將本發明相關實施例詳細說明如下。 In order to make the above objectives, features and characteristics of the present invention more obvious and understandable, the relevant embodiments of the present invention will be described in detail as follows in conjunction with the drawings.

圖1為本發明之一實施例之用以改善鑄造流動性之鈦鋁介金屬的製造方法之流程圖。本發明之鈦鋁介金屬的製造方法主要包括下列步驟:(1)熔煉步驟S1:將鈦鋁介金屬之多個熔煉原料放置在一感應熔煉設備內,將該些熔煉原料熔融成一具有鑄造流動性的鈦鋁介金屬熔湯;以及(2)澆鑄固化步驟S2:將該鈦鋁介金屬熔湯進行澆鑄,以固化成一鈦鋁介金屬。 FIG. 1 is a flow chart of a method of manufacturing a titanium-aluminum intermetallic for improving casting fluidity according to an embodiment of the present invention. The manufacturing method of the titanium-aluminum intermetallic of the present invention mainly includes the following steps: (1) Melting step S1: placing a plurality of smelting raw materials of the titanium-aluminum intermetallic in an induction melting device, and melting the smelting raw materials into a casting flow And (2) Casting and solidifying step S2: casting the titanium-aluminum-metallic broth to solidify into a titanium-aluminum-metallic broth.

圖2為本發明之一實施例之鈦鋁介金屬的製造設備之剖面示意圖。該鈦鋁介金屬的製造設備1包括一封閉腔體11、一感應熔煉裝置12、一水冷式模具13、一真空裝置14及一保護氣體供應源15。該感應熔煉裝置12設置於該封閉腔體11內。該感應熔煉裝置12包括一水冷式坩堝單元121及一感應線圈單元122。該水冷式坩堝單元121用以容置多個熔煉原料。該感應線圈單元122環繞該水冷式坩堝單元121,用以感應加熱該些熔煉原料成鈦鋁介金屬熔湯20。該水冷式模具13設置於該封閉腔體11內,用以容置澆鑄後之鈦鋁介金屬熔湯20。該真空裝置14藉由管路單元16連通該封閉腔體11,用以對該封閉腔體11抽真空。該真空裝置14可為真空泵。該保護氣體供應源15藉由該管路單元16連通該封閉腔體11,用以供應保護氣體至該 封閉腔體11。 2 is a schematic cross-sectional view of a manufacturing equipment of titanium aluminum dielectric metal according to an embodiment of the present invention. The titanium-aluminum intermetallic manufacturing equipment 1 includes a closed cavity 11, an induction melting device 12, a water-cooled mold 13, a vacuum device 14 and a protective gas supply source 15. The induction melting device 12 is arranged in the closed cavity 11. The induction melting device 12 includes a water-cooled crucible unit 121 and an induction coil unit 122. The water-cooled crucible unit 121 is used for accommodating a plurality of smelting raw materials. The induction coil unit 122 surrounds the water-cooled crucible unit 121 and is used to inductively heat the smelting raw materials into a titanium-aluminum-metal molten stock 20. The water-cooled mold 13 is arranged in the closed cavity 11 to contain the molten titanium-aluminum-metallic broth 20 after casting. The vacuum device 14 is connected to the closed cavity 11 through a pipeline unit 16 for vacuuming the closed cavity 11. The vacuum device 14 may be a vacuum pump. The shielding gas supply source 15 is connected to the closed cavity 11 through the pipeline unit 16 for supplying shielding gas to the Seal the cavity 11.

舉例,本發明之熔煉步驟S1是指在抽真空後,將含鈦(Ti)、鋁(Al)、鉻(Cr)、鈮(Nb)、鉬(Mo)、錳(Mn)、鎳(Ni)、矽(Si)、鐵(Fe)及硼(B)等的熔煉材料置入感應熔煉裝置12進行真空熔煉,使該些熔煉材料熔融混合成具有特定配比之鈦鋁介金屬熔湯20。例如,真空度:10-2~10-4torr,保護氣體:0.3~0.7Mpa(例如氬氣或氦氣)。含Ti、Al、Cr、Nb、Mo、Mn、Ni、Si、Fe及B等的該些熔煉材料包括鋁鈮合金、二硼化鈦及含Cr、Mo、Mn、Ni、Si及Fe的純元素。在熔煉步驟S1之熔煉溫度範圍約為1550~1650℃,進行5~10分鐘的持溫熔煉。 For example, the smelting step S1 of the present invention refers to removing titanium (Ti), aluminum (Al), chromium (Cr), niobium (Nb), molybdenum (Mo), manganese (Mn), nickel (Ni) after vacuuming ), silicon (Si), iron (Fe), boron (B) and other smelting materials are placed in the induction melting device 12 for vacuum smelting, so that these smelting materials are melted and mixed into a titanium-aluminum intermetallic broth with a specific ratio 20 . For example, vacuum degree: 10 -2 ~10 -4 torr, protective gas: 0.3 ~ 0.7Mpa (such as argon or helium). These smelted materials containing Ti, Al, Cr, Nb, Mo, Mn, Ni, Si, Fe, and B include aluminum-niobium alloy, titanium diboride, and pure Cr, Mo, Mn, Ni, Si, and Fe. element. In the smelting step S1, the smelting temperature range is about 1550 to 1650°C, and the temperature holding smelting is performed for 5 to 10 minutes.

再者,本發明之澆鑄固化步驟S2將該鈦鋁介金屬熔湯20進行澆鑄(澆鑄溫度約為:1550~1650℃),例如澆鑄至該水冷式模具13,經過冷卻後,可固化成一種鈦鋁介金屬20’,藉此使固化後之鈦鋁介金屬20,以原子百分比計算,包括下列元素:Al:40~50at%、Cr:1~8at%、Nb:1~8at%、Mo:1~5at%、Mn:1~6at%、Ni+Si+Fe:1~15at%及B:0.05~0.8at%,其餘部分為Ti及不可避免之雜質。詳言之,當前述熔煉材料加入感應熔煉裝置12以形成熔融合金後,接著便取樣測量該感應熔煉裝置12中熔融合金之原子成分比例,以確定該熔融混合之鈦鋁介金屬熔湯20之組成原子百分比維持在,Al:40~50at%、Cr:1~8at%、Nb:1~8at%、Mo:1~5at%、Mn:1~6at%、Ni+Si+Fe:1~15at%及B:0.05~0.8at%,其餘部分為Ti及不可避免之雜質。在Ni+Si+Fe:1~15at%的條件下,Ni

Figure 109138781-A0101-12-0004-8
8at%,Si
Figure 109138781-A0101-12-0004-9
8at%,Fe
Figure 109138781-A0101-12-0004-11
8at%。 Furthermore, in the casting and solidification step S2 of the present invention, the titanium-aluminum intermetallic molten stock 20 is cast (the casting temperature is about 1550~1650°C), for example, it is cast into the water-cooled mold 13, and after cooling, it can be solidified into a Titanium-aluminum intermetallic 20', by which the cured titanium-aluminum intermetallic 20 is calculated in atomic percentage, including the following elements: Al: 40~50at%, Cr: 1~8at%, Nb: 1~8at%, Mo : 1~5at%, Mn: 1~6at%, Ni+Si+Fe: 1~15at% and B: 0.05~0.8at%, the rest is Ti and unavoidable impurities. In detail, after the aforementioned molten material is added to the induction melting device 12 to form a molten alloy, then a sample is taken to measure the atomic composition ratio of the molten alloy in the induction melting device 12 to determine the ratio of the molten mixed titanium-aluminum-metallic broth 20 The composition atomic percentage is maintained at: Al: 40~50at%, Cr: 1~8at%, Nb: 1~8at%, Mo: 1~5at%, Mn: 1~6at%, Ni+Si+Fe: 1~15at % And B: 0.05~0.8at%, the rest is Ti and unavoidable impurities. Under the condition of Ni+Si+Fe: 1~15at%, Ni
Figure 109138781-A0101-12-0004-8
8at%, Si
Figure 109138781-A0101-12-0004-9
8at%, Fe
Figure 109138781-A0101-12-0004-11
8at%.

鉻(Cr)、鐵(Fe)、錳(Mn)及鎳(Ni)的加入可降低鈦鋁介金屬之合金液相線溫度,提高鈦鋁介金屬熔湯的過熱度,減緩凝固時間,同時明顯提高固液相線區間,增加合金流動性。矽(Si)一方面能夠提高合金的抗氧化性,可減少高溫鈦鋁介金屬熔湯表面形成氧化膜,從而降低鈦鋁介金屬熔湯表面張力,提高合 金流動性;另一方面可以減少鈦鋁介金屬熔湯與殼模之間的反應程度,提高邊界金屬熔湯的流動速度。硼(B)有晶粒細化之功效有益於提升流動性,因細小的晶粒會阻礙粗大樹枝晶的生長,從而使臨界固相率提高,因此會增加流動時間與充填長度。 The addition of chromium (Cr), iron (Fe), manganese (Mn) and nickel (Ni) can lower the alloy liquidus temperature of the titanium-aluminum intermetallic, increase the superheat of the titanium-aluminum intermetallic melt, and slow down the solidification time. Significantly increase the solid-liquid line interval and increase the alloy fluidity. Silicon (Si) on the one hand can improve the oxidation resistance of the alloy, and can reduce the formation of oxide film on the surface of the high-temperature titanium-aluminum-metal molten bath, thereby reducing the surface tension of the titanium-aluminum-metal molten bath and improving the alloy. Gold fluidity; on the other hand, it can reduce the degree of reaction between the titanium-aluminum intermetallic broth and the shell mold, and increase the flow rate of the boundary metal broth. Boron (B) has the effect of grain refinement and is beneficial to improve fluidity, because fine grains will hinder the growth of coarse dendrites, thereby increasing the critical solid phase ratio, thus increasing the flow time and filling length.

由於鈦鋁介金屬之鑄造流動性相當複雜,因此本發明之澆鑄固化步驟S2必須設計一種實驗方法才能收集有效之數據收集。請參考圖3a,其顯示鑄造流動性實驗之模具。請參考圖3b,其顯示鑄造流動性實驗之示意圖。在本實施例中,該模具30為陶瓷模具,並將鈦鋁介金屬熔湯20澆鑄至該模具30內,採澆鑄後之鈦鋁介金屬20’的螺旋流道進行鑄造流動性實驗,流道尺寸設計為長×寬(8mm×8mm),以螺旋流道長度可判斷其鑄造流動性的程度,並得知提升之效果,並與商用鈦鋁介金屬材料(TiAl4822)進行比較。請參考圖4,其顯示鈦鋁介金屬熔湯澆鑄後之樣貌,並使用量尺17量測澆鑄後之鈦鋁介金屬20’的螺旋流道長度,用以將該鑄造流動性的程度數值化。本發明之實施例1~4與比較例11之鈦鋁介金屬的成分比例及螺旋流道長度的差異,如下表1所示:

Figure 109138781-A0305-02-0007-1
Since the casting fluidity of the titanium-aluminum intermetallic is quite complicated, an experimental method must be designed in the casting and solidification step S2 of the present invention to collect effective data collection. Please refer to Figure 3a, which shows the mold for the casting fluidity experiment. Please refer to Figure 3b, which shows a schematic diagram of the casting fluidity experiment. In this embodiment, the mold 30 is a ceramic mold, and the titanium-aluminum intermetallic broth 20 is cast into the mold 30, and the casting fluidity experiment is performed by using the spiral runner of the cast titanium-aluminum intermetallic 20'. The channel size is designed to be length×width (8mm×8mm), and the degree of casting fluidity can be judged by the length of the spiral flow channel, and the effect of the improvement can be known, and compared with the commercial titanium-aluminum intermetallic material (TiAl4822). Please refer to Figure 4, which shows the appearance of the titanium-aluminum intermetallic molten metal after casting, and use the ruler 17 to measure the length of the spiral runner of the titanium-aluminum intermetallic 20' after casting, in order to use the degree of fluidity of the casting Numericalization. The difference in the composition ratio of the titanium-aluminum intermetallic metal and the length of the spiral flow channel between Examples 1 to 4 of the present invention and Comparative Example 11 is shown in Table 1 below:
Figure 109138781-A0305-02-0007-1

由上述表1可知,實施例2之鈦鋁介金屬的螺旋流 道長度73.8cm為最長,代表實施例2之鈦鋁介金屬之鑄造流動性最好,亦即鑄造性最佳。 It can be seen from Table 1 above that the spiral flow of the titanium-aluminum intermetallic in Example 2 The channel length of 73.8 cm is the longest, which represents that the casting fluidity of the titanium-aluminum intermetallic in Example 2 is the best, that is, the casting performance is the best.

綜上所述,本發明之鈦鋁介金屬,以原子百分比計算,該鈦鋁介金屬包括下列元素:Al:40~50at%、Cr:1~8at%、Nb:1~8at%、Mo:1~5at%、Mn:1~6at%、Ni+Si+Fe:1~15at%及B:0.05~0.8at%,其餘部分為Ti及不可避免之雜質所構成,具有較佳的鑄造流動性,亦即具有較佳的鑄造性。 In summary, the titanium-aluminum intermetallic of the present invention, calculated in atomic percentage, includes the following elements: Al: 40-50at%, Cr: 1-8at%, Nb: 1-8at%, Mo: 1~5at%, Mn: 1~6at%, Ni+Si+Fe: 1~15at% and B: 0.05~0.8at%, the rest is composed of Ti and inevitable impurities, which has better casting fluidity , That is, it has better castability.

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 To sum up, it only describes the preferred embodiments or examples of the technical means adopted by the present invention to solve the problems, and is not used to limit the scope of the patent implementation of the present invention. That is to say, all changes and modifications that are consistent with the scope of the patent application of the present invention or made in accordance with the scope of the patent of the present invention are all covered by the scope of the patent of the present invention.

S1:步驟 S1: Step

S2:步驟 S2: Step

Claims (10)

一種用以改善鑄造流動性的鈦鋁介金屬,以原子百分比計算,該鈦鋁介金屬包括下列元素:Al:40~50at%、Cr:2.211~8at%、Nb:1~8at%、Mo:1~5at%、Mn:1~6at%、Ni+Si+Fe:1~15at%及B:0.229~0.8at%,其餘部分為Ti及不可避免之雜質。 A titanium-aluminum intermetallic used to improve casting fluidity, calculated in atomic percentage, the titanium-aluminum intermetallic includes the following elements: Al: 40-50at%, Cr: 2.211-8at%, Nb: 1-8at%, Mo: 1~5at%, Mn: 1~6at%, Ni+Si+Fe: 1~15at% and B: 0.229~0.8at%, the rest is Ti and unavoidable impurities. 如申請專利範圍第1項所述之用以改善鑄造流動性的鈦鋁介金屬,其中在Ni+Si+Fe:1~15at%的條件下,Ni
Figure 109138781-A0305-02-0010-2
8at%,Si
Figure 109138781-A0305-02-0010-3
8at%,Fe
Figure 109138781-A0305-02-0010-4
8at%。
The titanium-aluminum intermetallic used to improve the casting fluidity as described in the first item of the scope of patent application, wherein under the condition of Ni+Si+Fe:1~15at%, Ni
Figure 109138781-A0305-02-0010-2
8at%, Si
Figure 109138781-A0305-02-0010-3
8at%, Fe
Figure 109138781-A0305-02-0010-4
8at%.
一種用以改善鑄造流動性之鈦鋁介金屬的製造方法,包括下列步驟:一熔煉步驟:將鈦鋁介金屬之多個熔煉原料放置在一感應熔煉設備內,將該些熔煉原料熔融成一具有鑄造流動性的鈦鋁介金屬熔湯;以及一澆鑄固化步驟:將該鈦鋁介金屬熔湯進行澆鑄,以固化成一鈦鋁介金屬,其中該鈦鋁介金屬,包括下列以原子百分比計算,Al:40~50at%、Cr:2.211~8at%、Nb:1~8at%、Mo:1~5at%、Mn:1~6at%、Ni+Si+Fe:1~15at%及B:0.229~0.8at%,其餘部分為Ti及不可避免之雜質。 A manufacturing method of titanium-aluminum intermetallic for improving casting fluidity, including the following steps: a smelting step: placing a plurality of smelting raw materials of titanium-aluminum intermetallic in an induction melting device, and melting the smelting raw materials into a Casting fluid titanium-aluminum intermetallic broth; and a casting solidification step: casting the titanium-aluminum intermetallic broth to solidify into a titanium-aluminum intermetallic metal, wherein the titanium-aluminum intermetallic metal includes the following calculations in atomic percentages, Al: 40~50at%, Cr: 2.211~8at%, Nb: 1~8at%, Mo: 1~5at%, Mn: 1~6at%, Ni+Si+Fe: 1~15at% and B: 0.229~ 0.8at%, the rest is Ti and unavoidable impurities. 如申請專利範圍第3項所述之用以改善鑄造流動性的鈦鋁介金屬的製造方法,其中在Ni+Si+Fe:1~15at%的條件下,Ni
Figure 109138781-A0305-02-0010-5
8at%,Si
Figure 109138781-A0305-02-0010-6
8at%,Fe
Figure 109138781-A0305-02-0010-7
8at%。
The manufacturing method of titanium-aluminum intermetallic used to improve casting fluidity as described in item 3 of the scope of patent application, wherein under the condition of Ni+Si+Fe:1~15at%, Ni
Figure 109138781-A0305-02-0010-5
8at%, Si
Figure 109138781-A0305-02-0010-6
8at%, Fe
Figure 109138781-A0305-02-0010-7
8at%.
如申請專利範圍第3項所述之用以改善鑄造流動性之鈦鋁介金屬的製造方法,其中在熔煉步驟之熔煉溫度範圍為1550~1650℃,進行5~10分鐘的持溫熔煉。 The manufacturing method of titanium-aluminum intermetallic for improving casting fluidity as described in item 3 of the scope of patent application, wherein the smelting temperature in the smelting step ranges from 1550 to 1650°C, and the holding temperature is smelted for 5 to 10 minutes. 如申請專利範圍第3項所述之用以改善鑄造流動性之鈦鋁介金屬的製造方法,其中含Ti、Al、Cr、Nb、Mo、Mn、Ni、Si、Fe及B的該些熔煉材料包括鋁鈮合金、二硼化鈦及含Cr、Mo、Mn、Ni、Si及Fe的純元素。 The manufacturing method of titanium-aluminum intermetallic for improving casting fluidity as described in item 3 of the scope of patent application, wherein the smelting containing Ti, Al, Cr, Nb, Mo, Mn, Ni, Si, Fe and B The materials include aluminum-niobium alloy, titanium diboride and pure elements containing Cr, Mo, Mn, Ni, Si and Fe. 如申請專利範圍第3項所述之用以改善鑄造流動性之鈦鋁介金屬的製造方法,其中該鈦鋁介金屬熔湯之澆鑄溫度為:1550~1650℃。 As described in item 3 of the scope of patent application, the manufacturing method of titanium-aluminum intermetallic for improving casting fluidity, wherein the casting temperature of the titanium-aluminum intermetallic molten soup is 1550-1650°C. 如申請專利範圍第3項所述之用以改善鑄造流動性之鈦鋁介金屬的製造方法,其中該澆鑄固化步驟包括:一鑄造流動性實驗,該鑄造流動性實驗以一螺旋流道長度判斷其鑄造流動性的程度。 The manufacturing method of titanium-aluminum intermetallic for improving casting fluidity as described in item 3 of the scope of patent application, wherein the casting solidification step includes: a casting fluidity test, and the casting fluidity test is judged by the length of a spiral runner The degree of casting fluidity. 如申請專利範圍第8項所述之用以改善鑄造流動性之鈦鋁介金屬的製造方法,其中該澆鑄固化步驟包括:一鑄造流動性實驗,該鑄造流動性實驗量測該螺旋流道長度,用以將該鑄造流動性的程度數值化。 The manufacturing method of titanium-aluminum intermetallic for improving casting fluidity as described in item 8 of the scope of patent application, wherein the casting solidification step includes: a casting fluidity experiment, and the casting fluidity experiment measures the length of the spiral runner , Used to quantify the degree of casting fluidity. 一種用以改善鑄造流動性的鈦鋁介金屬,以原子百分比計算,該鈦鋁介金屬由下列元素所構成:Al:40~50at%、Cr:2.211~8at%、Nb:1~8at%、Mo:1~5at%、Mn:1~6at%、Ni+Si+Fe:1~15at%及B:0.229~0.8at%,其餘部分為Ti及不可避免之雜質。 A titanium-aluminum intermetallic used to improve casting fluidity, calculated in atomic percentage, the titanium-aluminum intermetallic is composed of the following elements: Al: 40-50at%, Cr: 2.211-8at%, Nb: 1-8at%, Mo: 1~5at%, Mn: 1~6at%, Ni+Si+Fe: 1~15at% and B: 0.229~0.8at%, the rest is Ti and unavoidable impurities.
TW109138781A 2020-11-06 2020-11-06 Titanium-aluminum intermetallic and method for manufacturing the same for improving casting fluidity TWI744075B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109138781A TWI744075B (en) 2020-11-06 2020-11-06 Titanium-aluminum intermetallic and method for manufacturing the same for improving casting fluidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109138781A TWI744075B (en) 2020-11-06 2020-11-06 Titanium-aluminum intermetallic and method for manufacturing the same for improving casting fluidity

Publications (2)

Publication Number Publication Date
TWI744075B true TWI744075B (en) 2021-10-21
TW202219288A TW202219288A (en) 2022-05-16

Family

ID=80782741

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138781A TWI744075B (en) 2020-11-06 2020-11-06 Titanium-aluminum intermetallic and method for manufacturing the same for improving casting fluidity

Country Status (1)

Country Link
TW (1) TWI744075B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034384A (en) * 2017-04-26 2017-08-11 东北大学 A kind of excellent low cost titanium acieral of thermal deformation working ability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034384A (en) * 2017-04-26 2017-08-11 东北大学 A kind of excellent low cost titanium acieral of thermal deformation working ability

Also Published As

Publication number Publication date
TW202219288A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
AU2020101822A4 (en) Mn-Cu-based damping alloy powder for use in selective laser melting process and preparation method thereof
CN105861886B (en) A kind of alusil alloy and preparation method thereof for compressor of air conditioner cylinder body
TWI613296B (en) Aluminum alloy powder and manufacturing method of aluminum alloy object
US10018203B2 (en) Al alloy cast impeller for compressor and process for producing same
JP2010053743A (en) Die-cast compressor impeller
JP4266196B2 (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
CN112522564A (en) TiB2Particle reinforced nickel-based casting high-temperature alloy and preparation method thereof
TWI744075B (en) Titanium-aluminum intermetallic and method for manufacturing the same for improving casting fluidity
JP6428116B2 (en) Die for forging and manufacturing method thereof
JP5201775B2 (en) High temperature alloy
US20190368006A1 (en) PREFORM AND METHOD FOR PRODUCING TiAl-BASED TURBINE WHEEL
US11708626B2 (en) Titanium-aluminum intermetallic and manufacturing method thereof for improving casting fluidity
CN108165780B (en) Preparation method of Ni-Cr-Al-Fe high-temperature alloy
CN114737072B (en) K417G nickel-based high-temperature alloy refining preparation and forming method
CN109439955A (en) A method of high strength & high electric-conduction ultrafine wire alloy material is prepared using directional solidification
TWI807483B (en) Heat treatment method and device for titanium-aluminum intermetallic
US11807911B2 (en) Heat treatment method for titanium-aluminum intermetallic and heat treatment device therefor
Ma et al. Possibility of As-Cast Applications on β-Type Titanium Alloys Proposed in the Newly Expanded Area of Bot-Mdt Diagram
JP2008196367A (en) Cast impeller for compressor and its manufacturing method
KR20180081313A (en) Directional solidification ni base superalloy and manufacturing method therefor
CN104328311B (en) There is niobium casting TiAl alloy in the thermal crack resistant type of peritectic freezing feature
Li et al. Effects of AlCrFeNiTi HEA Addition on Microstructure and Mechanical Properties of Hypereutectic Al–20Si Alloy
JP5415655B1 (en) Compressor impeller made of Al alloy casting and manufacturing method thereof
CN116516212A (en) Preparation method of high-temperature high-strength high-Nb-TiAl alloy
Dong et al. Effect of casting process and Zr, V addition on microstructure and mechanical properties of Al–12Si-4.5 Cu–2Ni alloy