TWI743969B - System and method for detection of thoracic and lumbar vertebral fractures - Google Patents

System and method for detection of thoracic and lumbar vertebral fractures Download PDF

Info

Publication number
TWI743969B
TWI743969B TW109129651A TW109129651A TWI743969B TW I743969 B TWI743969 B TW I743969B TW 109129651 A TW109129651 A TW 109129651A TW 109129651 A TW109129651 A TW 109129651A TW I743969 B TWI743969 B TW I743969B
Authority
TW
Taiwan
Prior art keywords
image
plain
ray
fractures
preprocessing
Prior art date
Application number
TW109129651A
Other languages
Chinese (zh)
Other versions
TW202141516A (en
Inventor
張明超
周伯鑫
盧鴻興
陳泓勳
李意筑
Original Assignee
臺北榮民總醫院
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺北榮民總醫院, 國立陽明交通大學 filed Critical 臺北榮民總醫院
Application granted granted Critical
Publication of TWI743969B publication Critical patent/TWI743969B/en
Publication of TW202141516A publication Critical patent/TW202141516A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone
    • G06T2207/30012Spine; Backbone

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided herein is a method for detection of thoracic and lumbar vertebral fractures on plain lateral radiographs (PLRs), comprising the steps of data preprocessing, developing model ensemble, and marking vertebral fractures according to position detected by data pre-processing and prediction result of model ensemble.

Description

偵測胸部及腰部脊椎骨折之系統及方法System and method for detecting chest and lumbar vertebral fractures

本發明涉及一種用於在素片X光側面放射影像(plain lateral radiographs,PLRs)上檢測胸部及腰部脊椎骨折之系統及方法。 The invention relates to a system and method for detecting chest and lumbar vertebral fractures on plain lateral radiographs (PLRs).

脊椎骨折(Vertebral fractures,VFs)是骨質疏鬆症之相關脆弱性骨折中最常見的骨折,脊椎骨折後會造成背痛、脊柱後凸變形、生活品質不佳,進而造成其他部位的脆弱性骨折及死亡率增加相關(1,2)。儘管隨著脊椎變形嚴重程度的增加,臨床診斷的比例有所增加,但是由於臨床上無症狀而無背痛的情況(4-6),有些放射影像學上的脊椎骨折(VFs)在臨床上被誤診(3),即所謂的「臨床沉默」的脊椎骨折(VFs)(7)。然而,儘管檢測脊椎骨折(VFs)相當重要,但其中一些骨折仍未得到充分診斷。在多中心、多國研究中,全球診斷脊椎骨折(VFs)偽陰性的發生率為34%(8)。綜上所述,對醫師而言,重要的是提供脊椎骨折(VFs)的早期診斷與治療,並避免延遲治療。 Vertebral fractures (VFs) are the most common fractures in osteoporosis-related fragility fractures. After vertebral fractures, they can cause back pain, kyphosis, and poor quality of life, which in turn can cause fragility fractures in other parts of the body. Increased mortality is associated (1,2). Although the proportion of clinical diagnosis has increased with the increase in the severity of vertebral deformation, due to clinically asymptomatic and no back pain (4-6), some radiographic vertebral fractures (VFs) are clinically Misdiagnosed (3), so-called "clinically silent" vertebral fractures (VFs) (7). However, despite the importance of detecting vertebral fractures (VFs), some of these fractures have not been fully diagnosed. In a multicenter, multinational study, the global incidence of false negative diagnoses of vertebral fractures (VFs) was 34% (8). In summary, it is important for physicians to provide early diagnosis and treatment of vertebral fractures (VFs) and avoid delays in treatment.

人工智慧(artificial intelligence,AI)深度學習的最新進展顯示出對非醫學影像進行電腦輔助診斷的顯著進步,且AI被認為是下一代技術革命(9)。 一些作者報導了人工智慧模組系統在電腦斷層(Computed Tomography,CT)掃描(10)上,自動檢測脊椎骨骨折的靈敏度為95.7%。 The latest advances in artificial intelligence (AI) deep learning show significant progress in computer-aided diagnosis of non-medical images, and AI is considered the next generation of technological revolution (9). Some authors reported that the artificial intelligence module system automatically detects vertebral fractures with a sensitivity of 95.7% on Computed Tomography (CT) scans (10).

但是,相較於電腦斷層(CT)掃描,素片X光放射影像仍是一線篩查及初始檢查方法,儘管電腦斷層(CT)掃描中脊椎骨折(VFs)的檢測精度較高且可視化效果較佳(13),素片X光放射影像仍具有可用性高、放射線少,以及醫療範圍廣的優勢(11,12)。此外,在較小醫院的急診室或臨床就診高峰時間,放射科醫師或骨科醫師無法總是能即時會診與閱片時(9),在這種情況下,由AI輔助診斷以進行脊椎骨折(VFs)識別可能是替代方法之一。到目前為止,很少有文獻研究過AI深度學習模組在透過素片X光放射影像進行脊椎骨折(VFs)檢測中的應用。 However, compared to computed tomography (CT) scans, plain X-ray radiography is still the first-line screening and initial inspection method, although the detection accuracy of vertebral fractures (VFs) in computed tomography (CT) scans is higher and the visualization effect is better. Good (13), plain X-ray radiography still has the advantages of high availability, less radiation, and wide medical coverage (11,12). In addition, in the emergency room or peak time of clinical visits in smaller hospitals, radiologists or orthopedists cannot always consult and read the radiographs immediately (9). In this case, AI assists in the diagnosis of vertebral fractures ( VFs) identification may be one of the alternative methods. So far, few literatures have studied the application of AI deep learning module in the detection of vertebral fractures (VFs) through plain X-ray radiographic images.

需要開發一種更有效且節省時間的基於素片X光側面放射影像(PLRs)自動檢測胸部及腰部脊椎骨折(VFs)之系統及方法。 There is a need to develop a more effective and time-saving system and method for automatic detection of chest and lumbar vertebral fractures (VFs) based on plain radiography (PLRs).

本揭露之目的係在於提供一種偵測胸部及腰部脊椎骨折之方法,包括:取得一素片X光側面放射影像;預處理數據,包括:提供該素片X光側面放射影像;於該素片X光側面放射影像,使用物體偵測演算法定位脊椎;藉由高斯模糊、中值濾波器、和對比自適性直方圖等化(Contrast Adaptive Histogram Equalization)預處理該素片X光側面放射影像; 藉由調整方法再定義該素片X光側面放射影像之寬度及高度;以及最佳化該素片X光側面放射影像之定位;發展模型集成,包括:依據遷移學習方法以及ImageNet訓練權重解凍隱藏層;以及使分類模型學習預處理之該素片X光側面放射影像之特徵;以及依據數據預處理以及模型集成之預測結果所偵測之位置標示胸部及腰部脊椎骨折。 The purpose of this disclosure is to provide a method for detecting chest and lumbar vertebral fractures, including: obtaining a plain X-ray lateral radiographic image; preprocessing the data, including: providing the plain X-ray lateral radiographic image; X-ray profile image, using object detection algorithm to locate the spine; Preprocess the plain X-ray profile image by Gaussian blur, median filter, and Contrast Adaptive Histogram Equalization; Redefine the width and height of the plain X-ray profile image by adjusting the method; and optimize the positioning of the plain X-ray profile image; develop model integration, including: defrosting and hiding according to transfer learning methods and ImageNet training weights Layer; and the characteristics of the plain X-ray side radiographic image preprocessed by the classification model; and the position detected based on the data preprocessing and model integration prediction results to indicate the chest and lumbar vertebral fractures.

如請求項1所述之方法,其中最佳化該素片X光側面放射影像之定位之方法係選自(1)調整影像尺寸以及無影像預處理;(2)調整影像尺寸以及實施對比自適性直方圖等化;(3)維持原始影像比例以及無影像預處理;以及(4)維持原始影像比例以及實施對比自適性直方圖等化所構成之群組。 The method according to claim 1, wherein the method for optimizing the positioning of the plain X-ray side-radiation image is selected from (1) image size adjustment and no image preprocessing; (2) image size adjustment and self-comparison The adaptive histogram equalization; (3) maintain the original image ratio and no image preprocessing; and (4) maintain the original image ratio and implement the group of adaptive histogram equalization.

如請求項2所述之方法,其中最佳化該素片X光側面放射影像之定位之方法係調整影像尺寸以及無影像預處理。 The method according to claim 2, wherein the method of optimizing the positioning of the plain X-ray lateral radiation image is to adjust the image size and without image preprocessing.

如請求項1所述之方法,其中該模型集成係於快速人工智慧(fast.AI)庫中預訓練。 The method according to claim 1, wherein the model integration is pre-trained in a fast artificial intelligence (fast.AI) library.

如請求項4所述之方法,其中該模型集成係ResNet34、DenseNet121、以及DenseNet201模型組合預訓練。 The method according to claim 4, wherein the model integration is pre-training of a combination of ResNet34, DenseNet121, and DenseNet201 models.

如請求項1所述之方法,其中預處理數據之步驟另包括:維持影像比例以及以色塊填充影像,以對應骨折分類模型224*224像素輸出格式。 The method according to claim 1, wherein the step of preprocessing the data further includes: maintaining the image ratio and filling the image with color blocks to correspond to the fracture classification model in a 224*224 pixel output format.

當結合附圖閱讀時,將更好理解前述發明內容以及以下對本發明之詳細描述。為了說明本發明,於附圖中顯示出目前較佳具體實施例。 When read in conjunction with the accompanying drawings, one will better understand the foregoing content of the invention and the following detailed description of the invention. To illustrate the present invention, the presently preferred embodiments are shown in the drawings.

於圖式中:圖1提供根據本發明之AI深度學習的原始模型之圖示。設計快速人工智慧(fast.AI)庫中的YOLOv3及其分類模型以檢測每節脊椎水平的脊椎骨折。分類集成模型由ResNet34、DenseNet121,以及DenseNet201組成,設計這些模型以進行裂縫識別。這些模型被合併並定義為人工智慧深度學習集成模組(artificial intelligence deep learning ensemble model,AIDLEM)。 In the diagram: Figure 1 provides an illustration of the original model of AI deep learning according to the present invention. Design YOLOv3 and its classification model in the fast artificial intelligence (fast.AI) library to detect vertebral fractures at the level of each spine. The classification ensemble model is composed of ResNet34, DenseNet121, and DenseNet201, and these models are designed for crack recognition. These models are combined and defined as artificial intelligence deep learning ensemble model (AIDLEM).

圖2所示為由ResNet34、DenseNet121,以及DenseNet201組成的集合型模組。相較於ResNet34、DenseNet121,以及DenseNet模型,集合型模組說明了較高的準確度並保持穩定。 Figure 2 shows a collective module composed of ResNet34, DenseNet121, and DenseNet201. Compared with ResNet34, DenseNet121, and DenseNet models, the collective module shows higher accuracy and stability.

圖3所示為每種骨折嚴重度等級的接收者操作特徵(receiver operating characteristic,ROC)曲線以及曲線下面積(area under the curve,AUC)。骨折1級、2級,以及3級的曲線下面積(AUC)分別為0.917、0.989,以及0.990。AIDLEM對2級與3級骨折的區別優於對1級骨折的區別。 Figure 3 shows the receiver operating characteristic (ROC) curve and the area under the curve (AUC) of each fracture severity level. The area under the curve (AUC) for fractures of grade 1, grade 2, and grade 3 were 0.917, 0.989, and 0.990, respectively. AIDLEM's difference between grade 2 and grade 3 fractures is better than the difference between grade 1 fractures.

圖4提供透過AIDLEM進行的脊椎骨折檢測之圖示。輸出為精確的結果,紅色框為具有預測概率的骨折椎體位置。 Figure 4 provides an illustration of vertebral fracture detection performed by AIDLEM. The output is an accurate result, and the red box is the position of the fractured vertebral body with the predicted probability.

圖5a、5b、5c,以及5d提供透過AIDLEM檢測脊椎骨折之圖示,包括圖5a:偽陽性結果:嚴重骨質疏鬆症(DEXA T score=-3.3);圖5b:偽陽性結果:肺部紋路或橫膈膜;圖5c:偽陰性結果:輕度(grade I)的脊椎骨骨折;以及圖5d:偽陰性結果:骨折程度更嚴重度(grade III)的脊椎骨骨折(骨折脊椎體高度減少超過80%)(vertebral plana扁平脊椎骨)。 Figures 5a, 5b, 5c, and 5d provide illustrations of the detection of vertebral fractures through AIDLEM, including Figure 5a: false positive result: severe osteoporosis (DEXA T score=-3.3); Figure 5b: false positive result: lung lines Or diaphragm; Figure 5c: false negative result: mild (grade I) vertebral fracture; and Figure 5d: false negative result: more severe fracture (grade III) vertebral fracture (fractured vertebral body height reduced by more than 80 %) (vertebral plana flat spine).

茲配合圖式,本說明書之實施例可清楚地揭露本發明之上述及其他技術內容、特徵和效果。藉由具體實施例之說明,習知技術者可進一步理解實現上述目的而採用之技術手段和效果。此外,由於習知技術者可清楚理解和實施本發明所揭露之內容,故於不背離本發明概念之所有均等變換或修改均由請求項所涵蓋。 In conjunction with the drawings, the embodiments of this specification can clearly reveal the above-mentioned and other technical contents, features and effects of the present invention. Through the description of the specific embodiments, those skilled in the art can further understand the technical means and effects used to achieve the above-mentioned objectives. In addition, since those skilled in the art can clearly understand and implement the content disclosed in the present invention, all equivalent changes or modifications that do not deviate from the concept of the present invention are covered by the claims.

本發明提供一種透過一應用人工智慧深度學習集成模型(AIDLEM),以在素片X光側面放射影像(PLRs)上檢測胸部及腰部脊椎骨折(VFs)之方法。 The present invention provides a method for detecting chest and lumbar vertebral fractures (VFs) on plain X-ray profile radiography (PLRs) through an integrated artificial intelligence deep learning model (AIDLEM).

AIDLEM在臨床上可用於透過脊柱的素片X光側面放射影像(PLRs)識別脊椎骨折(VFs),具有高準確度、靈敏度,以及特異性。醫師必須事先上傳原始的DICOM版本的素片X光側面放射影像(PLRs),而無需任何影像預處理,這對於醫師而言可能更有效、更省時。 AIDLEM can be used clinically to identify vertebral fractures (VFs) through plain X-ray lateral radiography (PLRs) of the spine, with high accuracy, sensitivity, and specificity. The physician must upload the original DICOM version of plain X-ray profile radiography (PLRs) in advance without any image preprocessing, which may be more effective and time-saving for the physician.

先前已報導,在胸椎及腰椎電腦斷層(CT)掃描的脊椎骨折(VFs)檢測中開發了自動機器電腦系統,其準確率達95%,靈敏度達95.7%(10)。然而,輻射暴露仍然是一個問題。脊柱電腦斷層(CT)掃描的輻射劑量可能取決於電腦斷層(CT)掃描儀及其標準方法(22,23)。通常,在胸椎及腰椎電腦斷層(CT)掃描中的計算有效劑量(calculated effective doses,CED)分別約為10及5.6mSv(22,24)。腰部AP及側面素片X光放射影像的計算有效劑量(CED)分別為2.2及1.5mSv(22)。相較於腰椎放射影像,脊柱電腦斷層(CT)掃描的輻射劑量高出許多。為了 進行放射線照射及醫學治療,醫師通常最先使用素片X光放射影像作為評估包括脊椎骨折(VFs)在內的各種脊柱疾病的方式。 It has been previously reported that an automatic computerized computer system has been developed for the detection of vertebral fractures (VFs) on computerized tomography (CT) scans of the thoracic and lumbar spine, with an accuracy rate of 95% and a sensitivity of 95.7% (10). However, radiation exposure is still a problem. The radiation dose of a computed tomography (CT) scan of the spine may depend on the computed tomography (CT) scanner and its standard methods (22,23). Generally, the calculated effective doses (CED) in the computed tomography (CT) scans of the thoracic and lumbar spine are approximately 10 and 5.6 mSv, respectively (22, 24). The calculated effective dose (CED) of the waist AP and side plain X-ray radiographic images were 2.2 and 1.5 mSv, respectively (22). Compared with radiographic images of the lumbar spine, the radiation dose of a computed tomography (CT) scan of the spine is much higher. for For radiation exposure and medical treatment, physicians usually use plain X-ray radiography as the first method to evaluate various spinal diseases including vertebral fractures (VFs).

我們結合YOLO與集成分類模型以分別檢測並區分裂縫。此外,由於我們只有941張放射影像,我們使用轉移學習(transfer learning)與資料增強(Data Augmentation)技術,以克服訓練材料較少的問題,以有限的臨床資料,進行新模型的訓練。考量到訓練資料數量與模型參數的數量差異,我們使用在ImageNet資料集訓練的權重作為本研究權重的初始值,再搭配臺北榮總的資料進行轉移學習。訓練的過程分為兩階段冷凍(freeze)與逐步解凍(unfreeze)來調整模型參數。我們先假設ImageNet訓練所得的權重能夠抽取出足夠好的影像特徵,這時候冷凍所有卷積網路層的權重,調整因類別不同而隨機初始化的權重。然而ImageNet資料集的影像與放射影像還是有所差異,因此,我們逐步解凍並訓練Convolutional Neural Network(CNN)的其餘各層,使該模型在避免過度擬合的同時學習放射影像的特徵,並獲得較所有冷凍層(準確度86%)更好的結果(準確度92.20%)。 We combine YOLO with an integrated classification model to detect and distinguish cracks separately. In addition, since we only have 941 radiographic images, we use transfer learning and data augmentation techniques to overcome the problem of less training materials and train new models with limited clinical data. Taking into account the difference between the number of training data and the number of model parameters, we use the weights trained on the ImageNet dataset as the initial value of the weights for this study, and then use the data from the Taipei President for transfer learning. The training process is divided into two stages: freezing (freeze) and gradual thawing (unfreeze) to adjust the model parameters. We first assume that the weights obtained by ImageNet training can extract sufficiently good image features. At this time, the weights of all convolutional network layers are frozen, and the weights that are randomly initialized due to different categories are adjusted. However, the images of the ImageNet dataset are still different from radiological images. Therefore, we gradually unfreeze and train the remaining layers of the Convolutional Neural Network (CNN) so that the model can learn the features of radiological images while avoiding overfitting, and obtain better results. All frozen layers (accuracy 86%) have better results (accuracy 92.20%).

有關肺部標記、胸椎橫隔膜、骨質疏鬆程度(DEXA T分數≦-2.5)以及豆罐效應(26)之因素可能會影響AIDLEM的識別。在獲取素片X光側面放射影像(PLRs)時,技術人員必須確保每個脊椎都與投影機平行,以避免因投影機傾斜而產生偏差。與老化有關的終板的雙凹正常外觀被稱為「豆罐效應」(26)。此外,老化有關的脊椎變化也被報導(27,28),其外觀可能與骨質疏鬆性脊椎骨折(VFs)中報導的相似。退化性脊柱側彎可能在同一張放射影像的每個脊椎上具有多個終板方向,即使在適當的患者位置下,投影機也可在多個脊椎水平上傾斜。 Factors related to lung markings, thoracic spine diaphragm, degree of osteoporosis (DEXA T score≦-2.5), and bean pot effect (26) may affect the recognition of AIDLEM. When acquiring plain X-ray side radiography (PLRs), technicians must ensure that each spine is parallel to the projector to avoid deviation caused by the tilt of the projector. The biconcave normal appearance of the endplate associated with aging is called the "bean pot effect" (26). In addition, aging-related spinal changes have also been reported (27,28), and their appearance may be similar to those reported in osteoporotic vertebral fractures (VFs). Degenerative scoliosis may have multiple endplate orientations on each spine in the same radiographic image, and the projector can be tilted on multiple spine levels even in the proper patient position.

Genant骨折分級可能會偏向該些結果。Guglielmi等人(29)報導以專門的6點形態學方法研究在T5-T10骨折鑑定中具有大於20%的失敗率。肺部標記可能是解釋這些結果的因素之一。Burns等人報導,在電腦斷層(CT)影像自動檢測中,相較於Genant 1級與2級骨折,Genant 3級骨折的檢測靈敏度較高(10)。因此,可容易地在電腦斷層(CT)影像上檢測到具有較高Genant等級的更多變形的脊椎。 Genant fracture classification may bias these results. Guglielmi et al. (29) reported that a special 6-point morphological study has a failure rate of greater than 20% in the identification of T5-T10 fractures. Lung markers may be one of the factors explaining these results. Burns et al. reported that in the automatic detection of computerized tomography (CT) images, Genant grade 3 fractures are more sensitive than Genant grade 1 and grade 2 fractures (10). Therefore, a more deformed spine with a higher Genant grade can be easily detected on a computerized tomography (CT) image.

人類放射科醫師對Genant 1級的脊椎骨折(VFs)診斷不佳(30,31)。對於Genant 3級脊椎骨折(VFs),椎體因局部嚴重變形,使得上、下終板閉合。由於嚴重變形的脊椎骨折(VFs)的邊界框,YOLOv3可能會定義頭狀脊椎骨的下終板及尾狀脊椎骨的上終板。AIDLEM的錯誤識別可能會將嚴重的脊椎骨折(VFs)識別為正常脊椎。而且,嚴重的變形體不僅會導致矢狀面的後凸變形,還會導致冠狀面的退化性脊柱側彎(32)。 Human radiologists have a poor diagnosis of Genant grade 1 vertebral fractures (VFs) (30,31). For Genant grade 3 vertebral fractures (VFs), the vertebral body is severely deformed locally, causing the upper and lower endplates to close. Due to the bounding box of severely deformed vertebral fractures (VFs), YOLOv3 may define the lower endplate of the head vertebrae and the upper endplate of the caudate vertebrae. AIDLEM's misidentification may identify severe vertebral fractures (VFs) as normal spine. Moreover, severe deformities not only cause kyphosis in the sagittal plane, but also degenerative scoliosis in the coronal plane (32).

只有素片X光側面放射影像(PLRs)用於脊椎骨折(VFs)識別。在素片X光前後投射放射影像,一些爆裂性骨折具有椎間隙增寬的特徵(33),且在胸腰交界處的素片X光側面放射影像(PLRs)中,可能會看不到清晰的骨折。 Only plain X-ray profile radiographs (PLRs) are used to identify vertebral fractures (VFs). Radiographic images are projected before and after plain X-rays. Some burst fractures are characterized by widening of the intervertebral space (33), and plain X-ray lateral radiography (PLRs) at the thoracolumbar junction may not be clear Fractures.

根據本發明,AIDLEM在腰椎脊椎骨折(VFs)檢測上具有較佳表現,其準確度、靈敏度,以及特異性分別為92.41%(260/282;95% CI,92.15-92.67%)、91.23%(129/141;95% CI,90.83-91.62%),以及93.61%(132/141;95% CI,93.27-93.92%)。關於分類錯誤的統計數據,偽陽性及陰性的最常見原因分別為骨質疏鬆症(42.9%)以及Genant 1級骨折(68.8%)。關於骨質疏鬆症的嚴重程度,AIDLEM難以區分嚴重骨質疏鬆症(T分數≦-2.5),其特異性為91.13%(260/285;95% CI,90.91-91.35),低於非嚴重骨質疏鬆症的特異性為94.85% (222/234;95% CI,94.76-94.94)。關於Genant骨折的等級,1級、2級,以及3級脊椎骨折(VFs)的分類AUC分別為0.917、0.989,以及0.990。 According to the present invention, AIDLEM has better performance in the detection of lumbar spine fractures (VFs), and its accuracy, sensitivity, and specificity are 92.41% (260/282; 95% CI, 92.15-92.67%) and 91.23% ( 129/141; 95% CI, 90.83-91.62%), and 93.61% (132/141; 95% CI, 93.27-93.92%). Regarding the statistical data of misclassification, the most common causes of false positives and negatives were osteoporosis (42.9%) and Genant grade 1 fractures (68.8%). Regarding the severity of osteoporosis, AIDLEM is difficult to distinguish severe osteoporosis (T score≦-2.5), and its specificity is 91.13% (260/285; 95% CI, 90.91-91.35), which is lower than non-severe osteoporosis The specificity is 94.85% (222/234; 95% CI, 94.76-94.94). Regarding the grades of Genant fractures, the classification AUCs of grade 1, grade 2, and grade 3 vertebral fractures (VFs) are 0.917, 0.989, and 0.990, respectively.

透過以下實施例進一步說明本發明,提供這些實施例係為說明而非限制。 The present invention is further illustrated through the following examples, which are provided for illustration rather than limitation.

實施例 Example

材料與方法 Materials and Methods

回顧性納入941例患者(平均年齡76±12.4;1,111例胸部及腰部脊椎骨折(VFs))的資料集,於2016年1月至2018年12月期間進行AIDLEM訓練(n=565)、驗證(n=188),以及測試(n=188)。進行目標檢測、素片X光側面放射影像(PLRs)的數據預處理、遷移學習,以及集成學習以提高準確度並開發穩定的集成模型。準確度、靈敏度、特異性、95%信賴區間、ROC(接收者操作特徵)曲線以及曲線下面積(AUC)用於分析AIDLEM。 The data set of 941 patients (mean age 76±12.4; 1,111 cases of thoracic and lumbar spine fractures (VFs)) were retrospectively included, and AIDLEM training (n=565) and verification ( n=188), and test (n=188). Perform target detection, data preprocessing of plain X-ray profile radiography (PLRs), transfer learning, and integrated learning to improve accuracy and develop stable integrated models. Accuracy, sensitivity, specificity, 95% confidence interval, ROC (receiver operating characteristic) curve, and area under the curve (AUC) are used to analyze AIDLEM.

1.研究對象 1. Research object

回顧性研究無需知情同意書,在該研究中我們分析了先前獲得的影像。自2016年1月至2018年12月,所有的腰椎及胸腰椎素片X光放射影像均包括在內。 The retrospective study does not require informed consent, and in this study we analyzed previously obtained images. From January 2016 to December 2018, all lumbar and thoracolumbar vertebral X-ray radiographic images are included.

放射影像報告中調查的「壓迫」或「爆裂」骨折的關鍵詞中包含用於訓練、驗證,以及測試的資料庫,且患者年齡超過60歲。骨折分類基於Genant分級(14),其被認為是透過素片X光側面放射影像(PLRs)評估的脊柱骨折分類之一。 The keywords of "compression" or "burst" fractures investigated in the radiographic report included databases used for training, verification, and testing, and the patients were over 60 years old. The classification of fractures is based on the Genant classification (14), which is considered to be one of the classifications of spine fractures assessed by plain radiographs (PLRs).

2.X射線放射攝影技術 2. X-ray radiography technology

X射線方法描述如下:腰椎及胸腰椎的AP與側面放射影像以X射線高壓產生器(SHIMADZU,UD150B-40)進行。電壓為94kVp,平均電流為56mAs,持續360毫秒,具體取決於患者的身體習性。 The X-ray method is described as follows: AP and profile radiographic images of the lumbar and thoracolumbar spine are performed with an X-ray high-pressure generator (SHIMADZU, UD150B-40). The voltage is 94kVp, the average current is 56mAs, and the duration is 360 milliseconds, depending on the patient's physical habits.

3.數據預處理 3. Data preprocessing

為了識別胸部及腰部脊椎骨折(VFs),我們需要首先將椎體定位於素片X光側面放射影像(PLRs)中。YOLO(You Only Look Once,您只看一次)為2015年提出的物體檢測演算法之一,分別開發了YOLOv1(15)、YOLOv2(16),以及YOLOv3(17)世代。YOLO方法的主要優點為可在一輪CNN(Convolution Neural Network,卷積神經網路)中快速預測物體的定位、類別,以及綁定框並進行回歸。此外,YOLOv3方法的突破更適用於嚴重脊椎骨折(VFs)或變形的小物體檢測(17)。因此,我們採用YOLOv3模型檢測椎體(圖1)。 In order to identify thoracic and lumbar vertebral fractures (VFs), we need to first locate the vertebral body in plain X-ray lateral radiography (PLRs). YOLO (You Only Look Once) is one of the object detection algorithms proposed in 2015. The YOLOv1 (15), YOLOv2 (16), and YOLOv3 (17) generations were developed respectively. The main advantage of the YOLO method is that it can quickly predict the location, category, and bound box of an object in a round of CNN (Convolution Neural Network) and perform regression. In addition, the breakthrough of the YOLOv3 method is more suitable for the detection of severe vertebral fractures (VFs) or deformed small objects (17). Therefore, we use the YOLOv3 model to detect vertebral bodies (Figure 1).

由於胸椎(T1-T12)位於肺與橫膈膜附近,因此這些解剖位置可能會影響素片X光側面放射影像(PLRs)的清晰度及對比度。YOLOv3處理的脊椎檢測可能會導致紋理、不同亮度,以及不同影像大小。為了克服這些缺點,我們使用有關高斯模糊、中值濾波器,以及對比自適性直方圖等化(Contrast Adaptive Histogram Equalization,CLAHE)的影像預處理,以減少雜訊並調整亮度及對比度。其次,我們使用再調整尺寸(Resize)方法再定義該影像的寬度及高度,或保持該原始影像比例,並以色塊填充它以符合224*224像素的裂縫分類模型輸入格式。 Because the thoracic vertebrae (T1-T12) are located near the lungs and diaphragm, these anatomical positions may affect the clarity and contrast of plain radiographs (PLRs). The spine detection processed by YOLOv3 may result in textures, different brightness, and different image sizes. To overcome these shortcomings, we use Gaussian blur, median filter, and Contrast Adaptive Histogram Equalization (CLAHE) image preprocessing to reduce noise and adjust brightness and contrast. Secondly, we use the Resize method to redefine the width and height of the image, or keep the original image ratio, and fill it with color blocks to conform to the 224*224 pixel crack classification model input format.

我們嘗試四種不同的數據預處理方法以優化由YOLOv3定位的素片X光側面放射影像(PLRs):(1)再調整影像尺寸且不進行影像預處理(2)再調整影像尺寸並進行對比自適性直方圖等化(CLAHE)(18)保持原始影像寬高比且不 進行影像預處理(4)保持原始影像寬高比並進行對比自適性直方圖等化(CLAHE)。結合以上數據預處理方法與ResNet以及DenseNet的分類模型框架,以確定數據預處理方法是否具有最佳表現。根據初步的預處理結果,可以發現在保持原始影像寬高比的情況下進行數據預處理,而且沒有影像預處理比其他方法具有最佳表現。因此,我們選擇此方法作為數據預處理的主程式(參閱圖1)。 We tried four different data preprocessing methods to optimize plain X-ray profile radiography (PLRs) positioned by YOLOv3: (1) Re-adjust the image size without image pre-processing (2) Re-adjust the image size and compare Adaptive Histogram Equalization (CLAHE) (18) maintains the original image aspect ratio and does not Perform image preprocessing (4) to maintain the original image aspect ratio and perform contrast adaptive histogram equalization (CLAHE). Combine the above data preprocessing method with ResNet and DenseNet's classification model framework to determine whether the data preprocessing method has the best performance. According to the preliminary preprocessing results, it can be found that data preprocessing is performed while maintaining the original image aspect ratio, and no image preprocessing has the best performance than other methods. Therefore, we choose this method as the main program for data preprocessing (see Figure 1).

4.模型集成與AI深度學習模型開發 4. Model integration and AI deep learning model development

在數據預處理後,我們開發了一種分類模型來檢測脊椎骨折(VFs)(圖1)。在深度學習庫中,我們選擇了基於PyTorch框架的fast.AI庫。該模型庫的優點為包含常見的深度學習模型,並提供用於優化與調整參數的軟體包。組合該模型並將其定義為人工智慧深度學習集成模型(AIDLEM)(參閱圖1)。 After data preprocessing, we developed a classification model to detect vertebral fractures (VFs) (Figure 1). In the deep learning library, we chose the fast.AI library based on the PyTorch framework. The advantage of this model library is that it contains common deep learning models and provides software packages for optimizing and adjusting parameters. Combine this model and define it as an Artificial Intelligence Deep Learning Integrated Model (AIDLEM) (see Figure 1).

由於受到少量醫學影像的限制,該策略使用快速人工智慧(fast.AI)庫中的預訓練模型。依據遷移學習方法(19)以及ImageNet訓練權重,我們解凍了隱藏層,並使分類模型學習醫學影像的特徵。在選擇預訓練模型時,我們選擇了一個更簡單的模型,ResNet34。此外,我們參考CheXNet模型,該模型在胸部放射影像上亦表現良好(20),並嘗試其基本框架DenseNet121以及DenseNet201。面對不同的資料集,每個模型的表現都不穩定。因此,我們應用集成學習,結合了三個模型的預測結果,進而闡明更準確且穩定的結果(參閱圖2)。最後,依據YOLOv3方法檢測的位置以及該集成模型的預測結果,透過素片X光側面放射影像(PLRs)對脊椎骨折(VFs)進行標記。 Due to the limitation of a small number of medical images, this strategy uses a pre-trained model in the fast artificial intelligence (fast.AI) library. According to the transfer learning method (19) and ImageNet training weights, we unfreeze the hidden layer and make the classification model learn the features of medical images. When choosing a pre-training model, we chose a simpler model, ResNet34. In addition, we refer to the CheXNet model, which also performs well on chest radiographs (20), and try its basic frameworks DenseNet121 and DenseNet201. Faced with different data sets, the performance of each model is not stable. Therefore, we apply ensemble learning to combine the prediction results of the three models to clarify more accurate and stable results (see Figure 2). Finally, according to the position detected by the YOLOv3 method and the prediction result of the integrated model, the vertebral fractures (VFs) are marked through plain X-ray profile radiography (PLRs).

5.統計分析 5. Statistical analysis

我們使用準確度、敏感度、特異性、95%信賴區間,以及ROC曲線等分析方法評估AIDLEM在解剖部位、骨質疏鬆症,以及Genant骨折分級中的表現。 We use analysis methods such as accuracy, sensitivity, specificity, 95% confidence interval, and ROC curve to evaluate the performance of AIDLEM in anatomical locations, osteoporosis, and Genant fracture classification.

為了獲得點預估量以及區間預估量,我們採用自舉法對測試數據進行1000次置換重新採樣,然後以SPSS軟體計算T檢驗的平均準確度、平均靈敏度、平均特異性,以及95%信賴區間。此外,我們為AIDLEM設置了不同的分類概率閾值,並繪製ROC(接收者操作特徵)曲線、計算曲線下面積(AUC)以研究模型表現。 In order to obtain point estimates and interval estimates, we used the bootstrap method to perform 1000 replacements and resampling of the test data, and then SPSS software was used to calculate the average accuracy, average sensitivity, average specificity, and 95% confidence of the T test. Interval. In addition, we set different classification probability thresholds for AIDLEM, draw ROC (receiver operating characteristic) curve, calculate area under the curve (AUC) to study model performance.

公式:

Figure 109129651-A0305-02-0012-1
接收者操作特徵曲線(ROC曲線):設置不同的分類閾值,記錄對應的靈敏度與1-特異性,然後繪製ROC曲線
Figure 109129651-A0305-02-0012-2
formula:
Figure 109129651-A0305-02-0012-1
Receiver operating characteristic curve (ROC curve): set different classification thresholds, record the corresponding sensitivity and 1-specificity, and then draw the ROC curve
Figure 109129651-A0305-02-0012-2

Figure 109129651-A0305-02-0012-10
樣本平均值
Figure 109129651-A0305-02-0012-10
: Sample average

S樣本標準偏差 S : sample standard deviation

n樣本大小 n : sample size

t 0.025自由度=n-1 95%信賴區間(95% CI):使用自舉法對測試數據進行替換以進行1000次重新採樣,然後透過SPSS透過T檢驗計算95%信賴區間。 t 0.025 : degree of freedom = n -1 95% confidence interval (95% CI): use the bootstrap method to replace the test data to perform 1000 re-sampling, and then use SPSS to calculate the 95% confidence interval through T test.

6.結果 6. Results

6.1 資料集的人口統計數據 6.1 Demographic data of the data set

AIDLEM含括具有1,111例在胸部(T1-T12)或腰部(L1-L5)脊椎骨折(VFs)的素片X光側面放射影像(PLRs)的941位患者。表1說明人口統計學數據與骨折位置。 AIDLEM included 941 patients with plain radiographs (PLRs) of 1,111 spine fractures (VFs) in the chest (T1-T12) or lumbar (L1-L5). Table 1 illustrates demographic data and fracture location.

Figure 109129651-A0305-02-0013-3
Figure 109129651-A0305-02-0013-3

6.2 資料集 6.2 Data set

回顧性研究了在941位患者中的胸腰椎及腰椎的素片X光側面放射影像(PLRs)。但是,由於胸椎被肺部標記與橫膈膜所覆蓋,我們調查胸椎的邊 緣比腰椎更不清楚的事實。因此,我們將所有素片X光側面放射影像(PLRs)分別分為胸椎(T1-T12)、腰椎(L1-L5),以及整個脊椎(T1-L5),並評估解剖位置是否在脊椎骨折(VFs)檢測中具有作用。 A retrospective study of plain radiographs (PLRs) of the thoracolumbar and lumbar spine in 941 patients. However, since the thoracic spine is covered by lung markings and diaphragm, we investigate the edges of the thoracic spine The fact that the margin is more unclear than the lumbar spine. Therefore, we divided all plain X-ray lateral radiographs (PLRs) into thoracic vertebrae (T1-T12), lumbar vertebrae (L1-L5), and the entire spine (T1-L5), and assessed whether the anatomical location is a vertebral fracture ( VFs) have a role in detection.

收集這些素片X光側面放射影像(PLRs)後,與訓練數據、驗證數據,以及測試數據有關的記錄數目分別為565、188,以及188(表2)。正常椎體的數量為骨折椎體的5到6倍,因此我們利用子採樣方法解決數據不平衡的問題,然後建立了骨折分類模型。 After collecting these plain X-ray profile radiography (PLRs), the number of records related to training data, verification data, and test data were 565, 188, and 188 (Table 2). The number of normal vertebrae is 5 to 6 times that of fractured vertebrae, so we use sub-sampling method to solve the problem of data imbalance, and then establish a fracture classification model.

Figure 109129651-A0305-02-0014-4
Figure 109129651-A0305-02-0014-4

6.3 常規分區表現 6.3 Regular partition performance

表3列出了胸椎(T1-T12)、腰椎(L1-L5),以及整個脊椎(T1-L5)的測試結果。發現AIDLEM在腰部脊椎骨折(VFs)檢測中具有最佳表現。自舉1,000次用於腰部椎脊椎骨折(VFs)檢測的平均準確度、靈敏度,以及特異性分別為92.41%(260/282;95% CI,92.15-92.67%)、91.23%(129/141;95% CI,90.83-91.62%),以及93.61%(132/141;95% CI,93.27-93.92%)。胸椎(T1-T12)以及整個脊椎(T1-L5)的結果相似(表3)。 Table 3 lists the test results of the thoracic spine (T1-T12), lumbar spine (L1-L5), and the entire spine (T1-L5). It is found that AIDLEM has the best performance in the detection of lumbar vertebral fractures (VFs). The average accuracy, sensitivity, and specificity of 1,000 bootstraps for detection of lumbar spine fractures (VFs) were 92.41% (260/282; 95% CI, 92.15-92.67%) and 91.23% (129/141; 95% CI, 90.83-91.62%), and 93.61% (132/141; 95% CI, 93.27-93.92%). The results were similar for the thoracic spine (T1-T12) and the entire spine (T1-L5) (Table 3).

Figure 109129651-A0305-02-0015-5
Figure 109129651-A0305-02-0015-5
Figure 109129651-A0305-02-0016-7
Figure 109129651-A0305-02-0016-7

此外,胸椎(T1-T12)以及腰椎(L1-L5)的混淆矩陣(表4)顯示,腰椎的AIDLEM較胸椎的AIDLEM更公平,該模型傾向於預測骨折。 In addition, the confusion matrix of the thoracic spine (T1-T12) and lumbar spine (L1-L5) (Table 4) shows that the AIDLEM of the lumbar spine is fairer than the AIDLEM of the thoracic spine, and this model tends to predict fractures.

Figure 109129651-A0305-02-0016-8
Figure 109129651-A0305-02-0016-8

此外,我們根據骨質疏鬆症的嚴重程度將腰椎資料集分為兩個亞組(DEXA T分數>-2.5為非嚴重骨質疏鬆組或DEXA T分數≦-2.5為嚴重骨質疏鬆組)。 In addition, we divided the lumbar spine data set into two subgroups according to the severity of osteoporosis (DEXA T score>-2.5 for non-severe osteoporosis group or DEXA T score ≦-2.5 for severe osteoporosis group).

非嚴重及嚴重骨質疏鬆性腰椎脊椎骨折(VFs)檢測的靈敏度分別為83.1%(39/47;95% CI,82.76-83.45%)以及96.69%(59/62;95% CI,96.55-96.83%)。非嚴重及嚴重骨質疏鬆性腰椎脊椎骨折(VFs)檢測的特異性分別為94.85%(222/234;95% CI,94.76-94.94%)以及91.13%(260/285;95% CI,90.91-91.35%)(表3),這表示骨質疏鬆症的嚴重程度在AIDLEM腰椎的脊椎骨折(VFs)檢測中具有重要作用。具有嚴重骨質疏鬆症的脊椎骨折(VFs)比具有非嚴重骨質疏鬆症的脊椎骨折(VFs)更易於檢測,這說明了更高的靈敏度。另一方面,AIDLEM有時在將具有嚴重骨質疏鬆症的正常脊椎檢測為脊椎骨折(VFs)時會出錯,因此表現出較低的特異性。 The sensitivity of detection of non-severe and severe osteoporotic lumbar spine fractures (VFs) was 83.1% (39/47; 95% CI, 82.76-83.45%) and 96.69% (59/62; 95% CI, 96.55-96.83%), respectively ). The specificities of non-severe and severe osteoporotic lumbar spine fractures (VFs) were 94.85% (222/234; 95% CI, 94.76-94.94%) and 91.13% (260/285; 95% CI, 90.91-91.35, respectively) %) (Table 3), which indicates that the severity of osteoporosis plays an important role in the detection of vertebral fractures (VFs) of the AIDLEM lumbar spine. Vertebral fractures (VFs) with severe osteoporosis are easier to detect than vertebral fractures (VFs) with non-severe osteoporosis, which indicates a higher sensitivity. On the other hand, AIDLEM sometimes makes mistakes in detecting normal spine with severe osteoporosis as vertebral fractures (VFs), and therefore exhibits low specificity.

根據Genant分類(14),脊椎骨折(VFs)分為:1級(降低20%-25%高度)、2級(降低25%-40%高度),以及3級(降低>40%高度)。骨折分類結果見表3。我們調查了該模型在2級與3級的表現優於1級。2級骨折檢測的準確度及靈敏度分別為94.94%(99/104;95% CI,94.74-95.14%)以及99.21%(53/54;95% CI,98.41-100.0%)。此外,在圖3中所示為所有裂縫類型的ROC曲線,2級與3級的AUC面積接近且較高,這表示脊椎骨折嚴重程度越高,模型越容易預測。 According to the Genant classification (14), vertebral fractures (VFs) are divided into: Grade 1 (20%-25% height reduction), Grade 2 (25%-40% height reduction), and Grade 3 (>40% height reduction). The results of fracture classification are shown in Table 3. We investigated the performance of this model at level 2 and level 3 better than level 1. The accuracy and sensitivity of grade 2 fracture detection were 94.94% (99/104; 95% CI, 94.74-95.14%) and 99.21% (53/54; 95% CI, 98.41-100.0%), respectively. In addition, in Figure 3, the ROC curves of all fracture types are shown. The AUC areas of Grade 2 and Grade 3 are close and higher, which means that the higher the severity of vertebral fractures, the easier the model can predict.

6.4 正確及錯誤分類的情況 6.4 Correct and wrong classification

在圖4中揭示了透過AIDLEM進行精確脊椎骨折(VFs)檢測的一個實例。輸出影像所示為骨折的位置及可能性。醫師只需輸入原始的放射影像,模型便會進行數據預處理,自動確定骨折,然後輸出結果以幫助骨科醫師做出判斷或診斷。在診所中使用時,無需人工預處理而直接上傳的程序效率更高。 Figure 4 shows an example of accurate vertebral fractures (VFs) detection through AIDLEM. The output image shows the location and likelihood of the fracture. The doctor only needs to input the original radiological image, the model will preprocess the data, automatically determine the fracture, and then output the result to help the orthopedist make a judgment or diagnosis. When used in the clinic, the program that directly uploads without manual preprocessing is more efficient.

但是,該模型也存在一些分類錯誤的情況。對於分類錯誤的脊椎骨折(VFs),我們使用Grad-CAM(21)方法繪製了一個熱圖,以可視化吸引模型注 意力並以紅色表示熱點區域的位置。偽陽性的常見原因為嚴重的骨質疏鬆症(DEXA T分數≦-2.5)(42.9%)以及肺部標記(23.8%)。Grad-CAM熱圖顯示AI模型聚焦於脊椎的凹形外觀(圖5(a))以及肺部標記或橫膈膜的局部區域(圖5(b)),進而將正常脊椎預測為骨折。此外,偽陰性經常發生在1級骨折(68.8%)以及肺部標記(18.7%)中,然後由於上終板(圖5(c))或受肺部標記、橫膈膜(圖5(d))的影響而將脊椎骨折(VFs)檢測判斷為正常,其從Grad-CAM熱圖顯示。 However, the model also has some misclassifications. For misclassified vertebral fractures (VFs), we used the Grad-CAM (21) method to draw a heat map to visually attract model attention. Inspiration and the location of the hotspot area are indicated in red. The common causes of false positives are severe osteoporosis (DEXA T score≦-2.5) (42.9%) and lung markers (23.8%). The Grad-CAM heat map shows that the AI model focuses on the concave appearance of the spine (Figure 5(a)) and the lung markings or the local area of the diaphragm (Figure 5(b)), and then predicts the normal spine as a fracture. In addition, false negatives often occur in grade 1 fractures (68.8%) and lung markers (18.7%), and then due to upper endplate (Figure 5(c)) or affected by lung markers, diaphragm (Figure 5(d) )) and the detection of vertebral fractures (VFs) is judged to be normal, which is displayed from the Grad-CAM heat map.

結論是,AIDLEM能以較高的準確度、靈敏度,以及特異性檢測到素片X光側面放射影像(PLRs)上的脊椎骨折(VFs),尤其是對於Genant等級為2級與3級的非嚴重骨質疏鬆性腰椎脊椎骨折(VFs)。該模型可以幫助醫師有效地診斷脊椎骨折(VFs)。 The conclusion is that AIDLEM can detect vertebral fractures (VFs) on plain X-ray profile radiographs (PLRs) with high accuracy, sensitivity, and specificity, especially for non-Genant grades 2 and 3 Severe osteoporotic lumbar spine fractures (VFs). This model can help physicians effectively diagnose vertebral fractures (VFs).

於本說明書實施例揭示之內容,本發明所屬領域具有通常知識者可明顯得知前述實施例僅為例示且可組合實施;本發明所屬技術領域具有通常知識者可藉由諸多變換、替換而實施,並不背離本發明。依據說明書實施例,本發明可有多種變換仍無礙於實施。本說明書提供之請求項界定本發明之範圍,該範圍涵蓋前述方法與結構及與其相等之創作。 From the contents disclosed in the embodiments of this specification, those with ordinary knowledge in the field to which the present invention belongs can clearly understand that the foregoing embodiments are only examples and can be implemented in combination; those with ordinary knowledge in the technical field to which the present invention belongs can be implemented by many transformations and substitutions. , Does not depart from the present invention. According to the embodiments of the specification, the present invention can have many variations without hindering its implementation. The claims provided in this specification define the scope of the present invention, which covers the aforementioned methods and structures and their equivalent creations.

參考文獻: references:

1. O'Neill TW, Cockerill W, Matthis C, Raspe HH, Lunt M, Cooper C, Banzer D, Cannata JB, Naves M, Felsch B, Felsenberg D, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lyritis G, Masaryk P, Poor G, Reid DM, Reisinger W, Scheidt-Nave C, Stepan JJ, Todd CJ, Woolf AD, Reeve J, Silman AJ. Back pain, disability, and radiographic vertebral fracture in European women: a prospective study. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2004;15(9):760-765. doi: 10.1007/s00198-004-1615-4 1. O'Neill TW, Cockerill W, Matthis C, Raspe HH, Lunt M, Cooper C, Banzer D, Cannata JB, Naves M, Felsch B, Felsenberg D, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lyritis G, Masaryk P, Poor G, Reid DM, Reisinger W, Scheidt-Nave C, Stepan JJ, Todd CJ, Woolf AD, Reeve J, Silman AJ. Back pain, disability, and radiographic vertebral fracture in European women : a prospective study. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2004;15(9):760-765. doi: 10.1007/s00198-004-1615-4

2. Cockerill W, Lunt M, Silman AJ, Cooper C, Lips P, Bhalla AK, Cannata JB, Eastell R, Felsenberg D, Gennari C, Johnell O, Kanis JA, Kiss C, Masaryk P, Naves M, Poor G, Raspe H, Reid DM, Reeve J, Stepan J, Todd C, Woolf AD, O'Neill TW. Health-related quality of life and radiographic vertebral fracture. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2004;15(2):113-119. doi: 10.1007/s00198-003-1547-4 2. Cockerill W, Lunt M, Silman AJ, Cooper C, Lips P, Bhalla AK, Cannata JB, Eastell R, Felsenberg D, Gennari C, Johnell O, Kanis JA, Kiss C, Masaryk P, Naves M, Poor G, Raspe H, Reid DM, Reeve J, Stepan J, Todd C, Woolf AD, O'Neill TW. Health-related quality of life and radiographic vertebral fracture. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2004;15(2):113-119. doi: 10.1007/s00198-003-1547-4

3. Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK, Black DM, Ensrud KE. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2005;20(7):1216-1222. doi: 10.1359/jbmr.050314 3. Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK, Black DM, Ensrud KE. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2005;20(7):1216-1222. doi: 10.1359/jbmr.050314

4. Lentle BC, Brown JP, Khan A, Leslie WD, Levesque J, Lyons DJ, Siminoski K, Tarulli G, Josse RG, Hodsman A. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J 2007;58(1):27-36. 4. Lentle BC, Brown JP, Khan A, Leslie WD, Levesque J, Lyons DJ, Siminoski K, Tarulli G, Josse RG, Hodsman A. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J 2007;58(1):27-36.

5. Francis RM, Aspray TJ, Hide G, Sutcliffe AM, Wilkinson P. Back pain in osteoporotic vertebral fractures. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2008;19(7):895-903. doi: 10.1007/s00198-007-0530-x 5. Francis RM, Aspray TJ, Hide G, Sutcliffe AM, Wilkinson P. Back pain in osteoporotic vertebral fractures. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2008; 19(7):895-903. doi: 10.1007/s00198-007-0530-x

6. Wong CC, McGirt MJ. Vertebral compression fractures: a review of current management and multimodal therapy. J Multidiscip Healthc 2013;6:205-214. doi: 10.2147/jmdh.S31659 6. Wong CC, McGirt MJ. Vertebral compression fractures: a review of current management and multimodal therapy. J Multidiscip Healthc 2013;6:205-214. doi: 10.2147/jmdh.S31659

7. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E. Risk of new vertebral fracture in the year following a fracture. Jama 2001;285(3):320-323. doi: 10.1001/jama.285.3.320 7. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E. Risk of new vertebral fracture in the year following a fracture. Jama 2001;285(3):320-323. doi: 10.1001/jama.285.3.320

8. Delmas PD, van de Langerijt L, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL. Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2005;20(4):557-563. doi: 10.1359/jbmr.041214 8. Delmas PD, van de Langerijt L, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL. Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2005;20(4):557-563. doi: 10.1359/jbmr.041214

9. Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, Skoldenberg O, Gordon M. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88(6):581-586. doi: 10.1080/17453674.2017.1344459 9. Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, Skoldenberg O, Gordon M. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88(6):581-586. doi: 10.1080 /17453674.2017.1344459

10. Burns JE, Yao J, Summers RM. Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images. Radiology 2017;284(3):788-797. doi: 10.1148/radiol.2017162100 10. Burns JE, Yao J, Summers RM. Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images. Radiology 2017;284(3):788-797. doi: 10.1148/radiol.2017162100

11. Lateef H, Patel D. What is the role of imaging in acute low back pain? Curr Rev Musculoskelet Med 2009;2(2):69-73. doi: 10.1007/s12178-008-9037-0 11. Lateef H, Patel D. What is the role of imaging in acute low back pain? Curr Rev Musculoskelet Med 2009;2(2):69-73. doi: 10.1007/s12178-008-9037-0

12. Berry GE, Adams S, Harris MB, Boles CA, McKernan MG, Collinson F, Hoth JJ, Meredith JW, Chang MC, Miller PR. Are plain radiographs of the spine necessary during evaluation after blunt trauma? Accuracy of screening torso computed tomography in thoracic/lumbar spine fracture diagnosis. J Trauma 2005;59(6):1410-1413; discussion 1413. doi: 10.1097/01.ta.0000197279.97113.0e 12. Berry GE, Adams S, Harris MB, Boles CA, McKernan MG, Collinson F, Hoth JJ, Meredith JW, Chang MC, Miller PR. Are plain radiographs of the spine necessary during evaluation after blunt trauma? Accuracy of screening torso computed tomography in thoracic/lumbar spine fracture diagnosis. J Trauma 2005;59(6):1410-1413; discussion 1413. doi: 10.1097/01.ta.0000197279.97113.0e

13. VandenBerg J, Cullison K, Fowler SA, Parsons MS, McAndrew CM, Carpenter CR. Blunt Thoracolumbar-Spine Trauma Evaluation in the Emergency Department: A Meta-Analysis of Diagnostic Accuracy for History, Physical Examination, and Imaging. J Emerg Med 2019;56(2):153-165. doi: 10.1016/j.jemermed.2018.10.032 13. VandenBerg J, Cullison K, Fowler SA, Parsons MS, McAndrew CM, Carpenter CR. Blunt Thoracolumbar-Spine Trauma Evaluation in the Emergency Department: A Meta-Analysis of Diagnostic Accuracy for History, Physical Examination, and Imaging. J Emerg Med 2019;56(2):153-165. doi: 10.1016/j.jemermed.2018.10.032

14. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 1993;8(9):1137-1148. doi: 10.1002/jbmr.5650080915 14. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 1993;8(9):1137 -1148. doi: 10.1002/jbmr.5650080915

15. Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. Proc Cvpr Ieee 2016:779-788. doi: 10.1109/Cvpr.2016.91 15. Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. Proc Cvpr Ieee 2016:779-788. doi: 10.1109/Cvpr.2016.91

16. Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger. 30th Ieee Conference on Computer Vision and Pattern Recognition (Cvpr 2017) 2017:6517-6525. doi: 10.1109/Cvpr.2017.690 16. Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger. 30th Ieee Conference on Computer Vision and Pattern Recognition (Cvpr 2017) 2017:6517-6525. doi: 10.1109/Cvpr.2017.690

17. Redmon J, Farhadi AJapa. Yolov3: An incremental improvement. 2018. 17. Redmon J, Farhadi AJapa. Yolov3: An incremental improvement. 2018.

18. Melton LJ, 3rd. Epidemiology of spinal osteoporosis. Spine 1997;22(24 Suppl):2s-11s. doi: 10.1097/00007632-199712151-00002 18. Melton LJ, 3rd. Epidemiology of spinal osteoporosis. Spine 1997;22(24 Suppl):2s-11s. doi: 10.1097/00007632-199712151-00002

19. Pan SJ, Yang QA. A Survey on Transfer Learning. Ieee T Knowl Data En 2010;22(10):1345-1359. doi: 10.1109/Tkde.2009.191 19. Pan SJ, Yang QA. A Survey on Transfer Learning. Ieee T Knowl Data En 2010;22(10):1345-1359. doi: 10.1109/Tkde.2009.191

20. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya KJapa. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. 2017. 20. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya KJapa. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. 2017.

21. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision2017; p. 618-626. 21. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision2017; p. 618-626 .

22. Tozakidou M, Reisinger C, Harder D, Lieb J, Szucs-Farkas Z, Muller-Gerbl M, Studler U, Schindera S, Hirschmann A. Systematic Radiation Dose Reduction in Cervical Spine CT of Human Cadaveric Specimens: How Low Can We Go? AJNR American journal of neuroradiology 2018;39(2):385-391. doi: 10.3174/ajnr.A5490 22. Tozakidou M, Reisinger C, Harder D, Lieb J, Szucs-Farkas Z, Muller-Gerbl M, Studler U, Schindera S, Hirschmann A. Systematic Radiation Dose Reduction in Cervical Spine CT of Human Cadaveric Specimens: How Low Can We Go? AJNR American journal of neuroradiology 2018;39(2):385-391. doi: 10.3174/ajnr.A5490

23. Simpson AK, Whang PG, Jonisch A, Haims A, Grauer JN. The radiation exposure associated with cervical and lumbar spine radiographs. Journal of spinal disorders & techniques 2008;21(6):409-412. doi: 10.1097/BSD.0b013e3181568656 23. Simpson AK, Whang PG, Jonisch A, Haims A, Grauer JN. The radiation exposure associated with cervical and lumbar spine radiographs. Journal of spinal disorders & techniques 2008;21(6):409-412. doi: 10.1097/BSD .0b013e3181568656

24. Richards PJ, George J, Metelko M, Brown M. Spine computed tomography doses and cancer induction. Spine 2010;35(4):430-433. doi: 10.1097/BRS.0b013e3181cdde47 24. Richards PJ, George J, Metelko M, Brown M. Spine computed tomography doses and cancer induction. Spine 2010;35(4):430-433. doi: 10.1097/BRS.0b013e3181cdde47

25. Cheng C-T, Ho T-Y, Lee T-Y, Chang C-C, Chou C-C, Chen C-C, Chung I-F, Liao C-HJEr. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. 2019:1-9. 25. Cheng CT, Ho TY, Lee TY, Chang CC, Chou CC, Chen CC, Chung IF, Liao C-HJEr. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. 2019:1- 9.

26. Griffith JF, Guglielmi G. Vertebral fracture. Radiologic clinics of North America 2010;48(3):519-529. doi: 10.1016/j.rcl.2010.02.012 26. Griffith JF, Guglielmi G. Vertebral fracture. Radiologic clinics of North America 2010;48(3):519-529. doi: 10.1016/j.rcl.2010.02.012

27. Diacinti D, Acca M, D'Erasmo E, Tomei E, Mazzuoli GF. Aging changes in vertebral morphometry. Calcified tissue international 1995;57(6):426-429. doi: 10.1007/bf00301945 27. Diacinti D, Acca M, D'Erasmo E, Tomei E, Mazzuoli GF. Aging changes in vertebral morphometry. Calcified tissue international 1995;57(6):426-429. doi: 10.1007/bf00301945

28. Frobin W, Brinckmann P, Kramer M, Hartwig E. Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. European radiology 2001;11(2):263-269. doi: 10.1007/s003300000556 28. Frobin W, Brinckmann P, Kramer M, Hartwig E. Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. European radiology 2001;11(2):263-269. doi: 10.1007/s003300000556

29. Guglielmi G, Palmieri F, Placentino MG, D'Errico F, Stoppino LP. Assessment of osteoporotic vertebral fractures using specialized workflow software for 6-point morphometry. European journal of radiology 2009;70(1):142-148. doi: 10.1016/j.ejrad.2007.12.001 29. Guglielmi G, Palmieri F, Placentino MG, D'Errico F, Stoppino LP. Assessment of osteoporotic vertebral fractures using specialized workflow software for 6-point morphometry. European journal of radiology 2009;70(1):142-148. doi : 10.1016/j.ejrad.2007.12.001

30. Binkley N, Krueger D, Gangnon R, Genant HK, Drezner MK. Lateral vertebral assessment: a valuable technique to detect clinically significant vertebral fractures. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2005;16(12):1513-1518. doi: 10.1007/s00198-005-1891-7 30. Binkley N, Krueger D, Gangnon R, Genant HK, Drezner MK. Lateral vertebral assessment: a valuable technique to detect clinically significant vertebral fractures. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2005;16(12):1513-1518. doi: 10.1007/s00198-005-1891-7

31. Vokes TJ, Dixon LB, Favus MJ. Clinical utility of dual-energy vertebral assessment (DVA). Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2003;14(11):871-878. doi: 10.1007/s00198-003-1461-9 31. Vokes TJ, Dixon LB, Favus MJ. Clinical utility of dual-energy vertebral assessment (DVA). Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2003;14 (11):871-878. doi: 10.1007/s00198-003-1461-9

32. Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I. Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2000;11(8):660-668. doi: 10.1007/s001980070063 32. Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I. Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2000;11(8):660-668. doi: 10.1007/s001980070063

33. Ruiz Santiago F, Tomas Munoz P, Moya Sanchez E, Revelles Paniza M, Martinez Martinez A, Perez Abela AL. Classifying thoracolumbar fractures: role of quantitative imaging. Quantitative imaging in medicine and surgery 2016;6(6):772-784. doi: 10.21037/qims.2016.12.04 33. Ruiz Santiago F, Tomas Munoz P, Moya Sanchez E, Revelles Paniza M, Martinez Martinez A, Perez Abela AL. Classifying thoracolumbar fractures: role of quantitative imaging. Quantitative imaging in medicine and surgery 2016;6(6):772- 784. doi: 10.21037/qims.2016.12.04

Claims (6)

一種偵測胸部及腰部脊椎骨折之方法,包括:取得一素片X光側面放射影像;預處理數據,包括:提供該素片X光側面放射影像;於該素片X光側面放射影像,使用物體偵測演算法定位脊椎;藉由高斯模糊、中值濾波器、和對比自適性直方圖等化(Contrast Adaptive Histogram Equalization)預處理該素片X光側面放射影像;藉由調整方法再定義該素片X光側面放射影像之寬度及高度;以及最佳化該素片X光側面放射影像之定位;發展模型集成,包括:依據遷移學習方法以及ImageNet訓練權重解凍隱藏層;以及使分類模型學習預處理之該素片X光側面放射影像之特徵;以及依據數據預處理以及模型集成之預測結果所偵測之位置標示胸部及腰部脊椎骨折;其中該物體偵測演算法係YOLO方法。 A method for detecting chest and lumbar vertebral fractures, including: obtaining a plain X-ray lateral radiographic image; preprocessing data, including: providing the plain X-ray lateral radiographic image; using the plain X-ray lateral radiographic image Object detection algorithm locates the spine; Preprocess the plain X-ray profile image with Gaussian blur, median filter, and Contrast Adaptive Histogram Equalization; redefine the image by adjusting the method The width and height of the plain X-ray lateral radiation image; and optimize the positioning of the plain X-ray lateral radiation image; develop model integration, including: unfreeze the hidden layer according to the transfer learning method and ImageNet training weights; and learn the classification model Preprocess the features of the plain X-ray side radiography; and mark the chest and lumbar vertebral fractures based on the data preprocessing and the prediction results of the model integration. The object detection algorithm is the YOLO method. 如請求項1所述之方法,其中最佳化該素片X光側面放射影像之定位之方法係選自(1)調整影像尺寸以及無影像預處理;(2)調整影像尺寸以及實施對比自適性直方圖等化;(3)維持原始影像比例以及無影像預處理;以及(4)維持原始影像比例以及實施對比自適性直方圖等化所構成之群組。 The method according to claim 1, wherein the method for optimizing the positioning of the plain X-ray side-radiation image is selected from (1) image size adjustment and no image preprocessing; (2) image size adjustment and self-comparison The adaptive histogram equalization; (3) maintain the original image ratio and no image preprocessing; and (4) maintain the original image ratio and implement the group of adaptive histogram equalization. 如請求項2所述之方法,其中最佳化該素片X光側面放射影像之定位之方法係調整影像尺寸以及無影像預處理。 The method according to claim 2, wherein the method of optimizing the positioning of the plain X-ray lateral radiation image is to adjust the image size and without image preprocessing. 如請求項1所述之方法,其中該模型集成係於快速人工智慧(fast.AI)庫中預訓練。 The method according to claim 1, wherein the model integration is pre-trained in a fast artificial intelligence (fast.AI) library. 如請求項4所述之方法,其中該模型集成係ResNet34、DenseNet121、以及DenseNet201模型組合預訓練。 The method according to claim 4, wherein the model integration is pre-training of a combination of ResNet34, DenseNet121, and DenseNet201 models. 如請求項1所述之方法,其中預處理數據之步驟另包括:維持影像比例以及以色塊填充影像以對應骨折分類模型224*224像素輸出格式。 The method according to claim 1, wherein the step of preprocessing the data further includes: maintaining the image ratio and filling the image with color blocks to correspond to the 224*224 pixel output format of the fracture classification model.
TW109129651A 2020-04-15 2020-08-28 System and method for detection of thoracic and lumbar vertebral fractures TWI743969B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063010233P 2020-04-15 2020-04-15
US63/010,233 2020-04-15

Publications (2)

Publication Number Publication Date
TWI743969B true TWI743969B (en) 2021-10-21
TW202141516A TW202141516A (en) 2021-11-01

Family

ID=78083712

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129651A TWI743969B (en) 2020-04-15 2020-08-28 System and method for detection of thoracic and lumbar vertebral fractures

Country Status (2)

Country Link
TW (1) TWI743969B (en)
WO (1) WO2021208323A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114187278A (en) * 2021-12-14 2022-03-15 山东众阳健康科技集团有限公司 Rib tiny fracture detection method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114494192B (en) * 2022-01-26 2023-04-25 西南交通大学 Thoracolumbar fracture identification segmentation and detection positioning method based on deep learning

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Badgeley, Marcus A., et al. "Deep learning predicts hip fracture using confounding patient and healthcare variables." NPJ digital medicine 2.1 (2019): 1-10.
Kim, Kang Cheol & Cho, Hyun & Jang, Tae & Choi, Jong & Seo, Jin. (2019). Automatic detection and segmentation of lumbar vertebra from X-ray images for compression fracture evaluation.
Rajpurkar, Pranav, et al. "Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists." PLoS medicine 15.11 (2018): e1002686.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114187278A (en) * 2021-12-14 2022-03-15 山东众阳健康科技集团有限公司 Rib tiny fracture detection method and system

Also Published As

Publication number Publication date
WO2021208323A2 (en) 2021-10-21
TW202141516A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP5603859B2 (en) Method for controlling an analysis system that automatically analyzes a digitized image of a side view of a target spine
US9064320B2 (en) Method and system for image analysis of selected tissue structures
US8811696B2 (en) Morphometry of the human hip joint and prediction of osteoarthritis
Korez et al. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray images: performance evaluation
US20210174503A1 (en) Method, system and storage medium with a program for the automatic analysis of medical image data
JP2007524438A (en) Compensation method in radiological image processing technology
TWI743969B (en) System and method for detection of thoracic and lumbar vertebral fractures
TW202015070A (en) Method and system of analyzing medical images
CN111247592B (en) System and method for quantifying organization over time
Jouffroy et al. Improved acetabular fracture diagnosis after training in a CT-based method
JP2011516988A (en) Prediction of vertebral fracture
Reid et al. Machine learning for automated abdominal aortic calcification scoring of DXA vertebral fracture assessment images: a pilot study
US20220237779A1 (en) Automated spine health assessment using neural networks
Chou et al. Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine
CN115689987A (en) DR image-based dual-view vertebral fracture characteristic detection method
Ogawa et al. Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study
Heilmeier et al. Osteoporosis imaging in the geriatric patient
Daemen et al. Three-dimensional surface imaging for clinical decision making in pectus excavatum
Xue et al. A dual-selective channel attention network for osteoporosis prediction in computed tomography images of lumbar spine
Sha et al. The improved faster-RCNN for spinal fracture lesions detection
Glinkowski et al. CT-scout based, semi-automated vertebral morphometry after digital image enhancement
Niu et al. A deep-learning system for automatic detection of osteoporotic vertebral compression fractures at thoracolumbar junction using low-dose computed tomography images
Wang et al. Fully automated deep learning system for osteoporosis screening using chest computed tomography images
Yi-Chu Li et al. Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists?
US20230029674A1 (en) Methods for generating skeletal characteristic values related to bone quality