TWI743847B - Electrode material and preparation method thereof - Google Patents

Electrode material and preparation method thereof Download PDF

Info

Publication number
TWI743847B
TWI743847B TW109120712A TW109120712A TWI743847B TW I743847 B TWI743847 B TW I743847B TW 109120712 A TW109120712 A TW 109120712A TW 109120712 A TW109120712 A TW 109120712A TW I743847 B TWI743847 B TW I743847B
Authority
TW
Taiwan
Prior art keywords
electrode material
particles
metal
item
patent application
Prior art date
Application number
TW109120712A
Other languages
Chinese (zh)
Other versions
TW202105802A (en
Inventor
顏文群
黃建修
許峻偉
劉品伸
Original Assignee
碩禾電子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 碩禾電子材料股份有限公司 filed Critical 碩禾電子材料股份有限公司
Priority to US16/930,307 priority Critical patent/US20210020909A1/en
Publication of TW202105802A publication Critical patent/TW202105802A/en
Application granted granted Critical
Publication of TWI743847B publication Critical patent/TWI743847B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

An electrode material and a preparation method thereof are provided. The electrode material includes a particle and a charged irregular geometric porous structure disposed on the particle. A material of the particle includes silicon, silicon oxide, metal, metal oxide, carbon, graphite or a composite material thereof.

Description

電極材料及其製備方法Electrode material and its preparation method

本發明是有關於一種電極材料及其製備方法,且特別是有關於一種鋰離子電池負極材料及其製備方法。The invention relates to an electrode material and a preparation method thereof, and particularly relates to a lithium ion battery negative electrode material and a preparation method thereof.

在現有的鋰電池產業,負極是以天然石墨或人造石墨等石墨材料為主。由於石墨具有低電化學位勢的本質特性,且其層狀結構也恰巧適合鋰離子的遷移遷出及儲存。此外,石墨在充放電過程中所造成的體積變化率小,因此,成為目前商業化鋰電池負極的主流材料。然而,近年來由於3C載具及電動車的輕量化及長效輸出,對於電池的能量密度的要求也快速提高,理論比電容只有372mAhg-1 的石墨已逐漸無法滿足未來儲能電池的需求。相形之下,具有9至11倍石墨比電容的鋰矽化合物,則成為高能量密度負極材料的技術發展主流。In the existing lithium battery industry, the negative electrode is mainly graphite materials such as natural graphite or artificial graphite. Because graphite has the essential characteristics of low electrochemical potential, and its layered structure also happens to be suitable for the migration and storage of lithium ions. In addition, the rate of volume change caused by graphite during charging and discharging is small, and therefore, it has become the mainstream material for the negative electrode of commercial lithium batteries. However, in recent years, due to the lightweight and long-term output of 3C vehicles and electric vehicles, the requirements for battery energy density have also increased rapidly . Graphite with a theoretical specific capacitance of only 372mAhg -1 has gradually been unable to meet the needs of future energy storage batteries. In contrast, lithium-silicon compounds with 9 to 11 times the graphite specific capacitance have become the mainstream technology development of high energy density anode materials.

然而,由於矽對鋰離子的高儲存量特性,迫使矽晶格在與鋰離子合金化時產生約莫400%的體積膨脹。此高體積膨脹率將使得矽彼此脫離,造成電極粉末化後自集電體(current collector)上剝落。此外,矽與電極的接觸面積變小距離拉長,電場無法有效作用在電極上,因此,鋰離子及電子無法有效被利用,造成電池循環次數的快速衰退,大幅降低電池壽命。另一方面,本質矽本身的導電能力差,造成內電阻高、散熱速度慢,也大幅影響電池性能上的表現。基於上述,如何避免矽電極的脫落,並增加矽電極傳導電子的能力,用以增加矽負極的循環壽命,為目前矽負極商品化最須優先克服的議題。However, due to the high storage capacity of silicon for lithium ions, the silicon lattice is forced to produce about 400% volume expansion when alloying with lithium ions. This high volume expansion rate will cause the silicon to separate from each other, causing the electrode to peel off from the current collector after powdering. In addition, the contact area between silicon and the electrode is reduced and the distance is elongated, and the electric field cannot effectively act on the electrode. Therefore, lithium ions and electrons cannot be effectively used, resulting in a rapid decline in battery cycle times and greatly reducing battery life. On the other hand, intrinsic silicon itself has poor conductivity, resulting in high internal resistance and slow heat dissipation, which also greatly affects the performance of the battery. Based on the above, how to prevent the silicon electrode from falling off and increase the ability of the silicon electrode to conduct electrons to increase the cycle life of the silicon anode is the most important issue that must be overcome in the current commercialization of the silicon anode.

本發明提供一種電極材料及其製備方法,將粒子、碳源與溶劑混合之後,透過高溫燒結在粒子表面產生帶電不規則幾何孔洞結構,藉以增強與黏著劑的吸附效果。The invention provides an electrode material and a preparation method thereof. After particles, a carbon source and a solvent are mixed, a charged irregular geometric pore structure is generated on the particle surface through high-temperature sintering, thereby enhancing the adsorption effect with an adhesive.

本發明的電極材料包括粒子以及配置於粒子表面上的帶電不規則幾何孔洞結構,粒子的材料包括矽、矽氧化物、金屬、金屬氧化物、碳、石墨或其複合材料。The electrode material of the present invention includes particles and charged irregular geometric pore structures arranged on the surface of the particles. The material of the particles includes silicon, silicon oxide, metal, metal oxide, carbon, graphite or their composite materials.

在本發明的一實施例中,粒子的粒徑為1 nm至100 μm。In an embodiment of the present invention, the particle size of the particles is 1 nm to 100 μm.

在本發明的一實施例中,金屬或金屬氧化物包括鹼金屬、鹼土金屬或過渡金屬。In an embodiment of the present invention, the metal or metal oxide includes alkali metal, alkaline earth metal or transition metal.

在本發明的一實施例中,帶電不規則幾何孔洞結構使粒子的原始表面積增加2倍至50倍。In an embodiment of the present invention, the charged irregular geometric pore structure increases the original surface area of the particles by 2 to 50 times.

本發明的電極材料的製備方法包括以下步驟。將粒子與碳源及溶劑混合,經熱處理燒結後,在粒子的表面上形成帶電不規則幾何孔洞結構。粒子的材料包括矽、矽氧化物、金屬、金屬氧化物、碳、石墨或其複合材料。The preparation method of the electrode material of the present invention includes the following steps. The particles are mixed with a carbon source and a solvent, and after heat treatment and sintering, a charged irregular geometric pore structure is formed on the surface of the particles. The material of the particles includes silicon, silicon oxide, metal, metal oxide, carbon, graphite or their composite materials.

在本發明的一實施例中,熱處理燒結是在溫度200℃至1200℃下進行0.1小時至100小時。In an embodiment of the present invention, the heat treatment sintering is performed at a temperature of 200° C. to 1200° C. for 0.1 hour to 100 hours.

在本發明的一實施例中,碳源包括含金屬離子的碳氫化合物、含金屬離子的碳氫氧化合物或其組合。In an embodiment of the present invention, the carbon source includes a metal ion-containing hydrocarbon, a metal ion-containing carbohydrate, or a combination thereof.

在本發明的一實施例中,碳源包括鹼化蔗糖、纖維素、鹼化酚醛樹脂、瀝青、膠油煤炭或其組合。In an embodiment of the present invention, the carbon source includes alkalized sucrose, cellulose, alkalized phenolic resin, pitch, gum oil coal, or a combination thereof.

在本發明的一實施例中,溶劑包括水、甲醇、乙醇、異丙醇、丙酮、丁酮、四氫呋喃、苯類、甲苯、醋酸脂或其組合。In an embodiment of the present invention, the solvent includes water, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, tetrahydrofuran, benzene, toluene, acetate or a combination thereof.

在本發明的一實施例中,帶電不規則幾何孔洞結構使粒子的原始表面積增加2倍至50倍。In an embodiment of the present invention, the charged irregular geometric pore structure increases the original surface area of the particles by 2 to 50 times.

基於上述,本發明提供一種電極材料及其製備方法,將粒子、碳源與溶劑混合之後,透過高溫燒結在粒子表面產生帶電不規則幾何孔洞結構,帶電不規則幾何孔洞結構可使粒子的原始表面積增加,藉以有效地增強與黏著劑的吸附效果,進而改善電池效能。Based on the above, the present invention provides an electrode material and a preparation method thereof. After particles, a carbon source, and a solvent are mixed, a charged irregular geometric pore structure is generated on the surface of the particle through high temperature sintering. The charged irregular geometric pore structure can make the original surface area of the particle Increase, so as to effectively enhance the adsorption effect with the adhesive, thereby improving battery performance.

在本文中,由「一數值至另一數值」表示的範圍,是一種避免在說明書中一一列舉該範圍中的所有數值的概要性表示方式。因此,某一特定數值範圍的記載,涵蓋該數值範圍內的任意數值以及由該數值範圍內的任意數值界定出的較小數值範圍,如同在說明書中明文寫出該任意數值和該較小數值範圍一樣。In this article, the range represented by "a value to another value" is a general way to avoid listing all the values in the range one by one in the specification. Therefore, the record of a specific numerical range covers any numerical value in the numerical range and the smaller numerical range defined by any numerical value in the numerical range, as if the arbitrary numerical value and the smaller numerical value are clearly written in the specification The scope is the same.

下文列舉實施例並配合所附圖式來進行詳細地說明,但所提供之實施例並非用以限制本發明所涵蓋的範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。The following examples are listed in conjunction with the accompanying drawings for detailed description, but the provided examples are not intended to limit the scope of the present invention. In addition, the drawings are for illustrative purposes only, and are not drawn in accordance with the original dimensions.

圖1是依照本發明的一實施例的一種電極材料的示意圖。圖2是依照本發明的一實施例的一種電極材料與黏著劑吸附的示意圖。Fig. 1 is a schematic diagram of an electrode material according to an embodiment of the present invention. FIG. 2 is a schematic diagram of adsorption of an electrode material and an adhesive according to an embodiment of the present invention.

請參照圖1,本發明的電極材料包括粒子10以及配置於粒子10表面上的帶電不規則幾何孔洞結構孔洞20,帶電不規則幾何孔洞結構20例如是帶正電,但本發明並不以此為限。更詳細而言,帶電不規則幾何孔洞結構20的主體例如是由碳及部分金屬離子組成,而電荷主要來自於碳源中的金屬離子。粒子10的材料可包括矽(包括純矽或改質矽,改質矽可經矽烷或分散劑表面修飾)、矽氧化物、金屬、金屬氧化物、碳、石墨或其複合材料,金屬或金屬氧化物可包括鹼金屬(Li/Na/K)、鹼土金屬(Mg/Ca/Sr/Ba)或過渡金屬(Ti/Zr/Ta/Cr/W/Mn/Co/Fe/Ni/Cu/Al/Sn/Ge/Ag)。更詳細而言,分散劑主要可包括矽烷類物質,矽烷物質的一端較佳例如是具有親矽性質,更容易與矽表面進行接著,另一端例如是具備親水性或疏水性(視溶液親疏水性質而定),可以分散在溶液中。在本實施例中,粒子10的材料例如是矽,且粒子10與帶電不規則幾何孔洞結構20之間例如可存在矽氧化物層12(SiOx , 其中X=0.1至2),矽氧化物層12的厚度例如是0.1nm至100nm,但本發明並不以此為限。粒子10的粒徑例如是1 nm至100 μm,而帶電不規則幾何孔洞結構20可使粒子10的原始表面積增加約2倍至50倍。1, the electrode material of the present invention includes particles 10 and charged irregular geometric hole structure holes 20 arranged on the surface of the particles 10. The charged irregular geometric hole structure 20 is, for example, positively charged, but the present invention does not use this Is limited. In more detail, the main body of the charged irregular geometric hole structure 20 is, for example, composed of carbon and some metal ions, and the charge mainly comes from the metal ions in the carbon source. The material of the particles 10 may include silicon (including pure silicon or modified silicon, which can be surface-modified with silane or a dispersant), silicon oxide, metal, metal oxide, carbon, graphite or their composite materials, metal or metal Oxides can include alkali metals (Li/Na/K), alkaline earth metals (Mg/Ca/Sr/Ba) or transition metals (Ti/Zr/Ta/Cr/W/Mn/Co/Fe/Ni/Cu/Al /Sn/Ge/Ag). In more detail, the dispersant can mainly include silane-based substances. One end of the silane substance is preferably silicophilic, which makes it easier to bond with the silicon surface, and the other end is hydrophilic or hydrophobic (depending on the solution’s affinity for hydrophobicity). Depending on the nature), it can be dispersed in the solution. In this embodiment, the material of the particles 10 is, for example, silicon, and there may be a silicon oxide layer 12 (SiO x , where X=0.1 to 2) between the particles 10 and the charged irregular geometric hole structure 20, for example, silicon oxide The thickness of the layer 12 is, for example, 0.1 nm to 100 nm, but the present invention is not limited to this. The particle size of the particle 10 is, for example, 1 nm to 100 μm, and the charged irregular geometric pore structure 20 can increase the original surface area of the particle 10 by about 2 to 50 times.

本發明也提出一種電極材料的製備方法,用以製造圖1的電極材料,製備方法包括:將粒子與碳源及溶劑混合,其中粒子與碳源及溶劑的混合比例例如是1:0.01至10:0.1至9,經熱處理燒結後,在粒子的表面上形成帶電不規則幾何孔洞結構。更詳細而言,熱處理燒結例如是在溫度200℃至1200℃下進行0.1小時至100小時。碳源可包括含金屬離子(Li/Na/K/Mg/Ca/Sr/Ba/Ti/V/Cr/Mn/Fe/Co/Ni/Cu/Zn/Al/Si/Ge/Ag)的碳氫化合物、含金屬離子的碳氫氧化合物或其組合,碳源也可包括鹼化蔗糖、纖維素、鹼化酚醛樹脂、瀝青、膠油煤炭或其組合。溶劑可包括水、甲醇、乙醇、異丙醇、丙酮、丁酮、四氫呋喃、苯類、甲苯、醋酸脂或其組合。The present invention also provides a preparation method of an electrode material for manufacturing the electrode material of FIG. 1. The preparation method includes: mixing particles with a carbon source and a solvent, wherein the mixing ratio of the particles, the carbon source and the solvent is, for example, 1:0.01 to 10 : 0.1 to 9, after heat treatment and sintering, a charged irregular geometric pore structure is formed on the surface of the particles. In more detail, the heat treatment sintering is performed at a temperature of 200° C. to 1200° C. for 0.1 hour to 100 hours, for example. The carbon source may include carbon containing metal ions (Li/Na/K/Mg/Ca/Sr/Ba/Ti/V/Cr/Mn/Fe/Co/Ni/Cu/Zn/Al/Si/Ge/Ag) Hydrogen compounds, metal ion-containing carbon hydroxides, or combinations thereof. The carbon source may also include alkalized sucrose, cellulose, alkalized phenol resin, pitch, gum oil coal, or a combination thereof. The solvent may include water, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, tetrahydrofuran, benzene, toluene, acetate, or a combination thereof.

請參照圖2,透過帶電不規則幾何孔洞結構20,可使黏著劑30深入粒子10的結構,進而利用黏著劑30電荷不均勻的特性與帶電不規則幾何孔洞結構20的錨點效應大幅提升黏著劑30與粒子10的附著力,亦可利用黏著劑30的機械強度與韌性達到保護矽碳材料膨脹問題的作用,進而改善矽碳材料的電池壽命。在本實施例中,黏著劑30例如是負極黏著劑,可包括丁苯橡膠(Styrene-Butadiene Rubber,SBR)、聚丙烯酸(Poly(acrylic acid),PAA)、聚醯亞胺(Polyimide,PI)、酚醛樹脂(Phenolic resins,PR)或聚丙烯腈(Polyacrylonitrile,PN)。Please refer to FIG. 2, through the charged irregular geometric hole structure 20, the adhesive 30 can be penetrated into the structure of the particle 10, and the non-uniform charge characteristics of the adhesive 30 and the anchor point effect of the charged irregular geometric hole structure 20 can greatly improve the adhesion. The adhesion between the agent 30 and the particles 10 can also use the mechanical strength and toughness of the adhesive 30 to protect the silicon-carbon material from swelling problems, thereby improving the battery life of the silicon-carbon material. In this embodiment, the adhesive 30 is, for example, a negative electrode adhesive, which may include Styrene-Butadiene Rubber (SBR), Poly(acrylic acid) (PAA), Polyimide (PI) , Phenolic resins (PR) or Polyacrylonitrile (PN).

圖3是依照本發明的一實施例的粒子未經處理的原始形貌之掃描式電子顯微鏡(Scanning Electron Microscope,SEM)圖像。圖4是依照本發明的一實施例的形成有帶電不規則幾何孔洞結構的粒子之掃描式電子顯微鏡(Scanning Electron Microscope,SEM)圖像。FIG. 3 is a scanning electron microscope (Scanning Electron Microscope, SEM) image of an unprocessed original morphology of particles according to an embodiment of the present invention. 4 is a scanning electron microscope (Scanning Electron Microscope, SEM) image of a particle formed with a charged irregular geometric hole structure according to an embodiment of the present invention.

請參照圖3,在進行本發明的電極材料的製備方法之前,未經處理的粒子表面平滑。請參照圖4,進行本發明的電極材料的製備方法之後,粒子表面上配置帶電不規則幾何孔洞結構孔洞。在圖4所示的實施例中,例如是取一定比例的改質矽粉、石墨、鹼化蔗糖以混合成均勻溶液,乾燥成型後,進行高溫800℃熱處理燒結2小時而得。Referring to FIG. 3, before the preparation method of the electrode material of the present invention, the surface of the untreated particles is smooth. Please refer to FIG. 4, after the preparation method of the electrode material of the present invention is carried out, the surface of the particles is configured with holes with a charged irregular geometric hole structure. In the embodiment shown in FIG. 4, for example, a certain proportion of modified silicon powder, graphite, and alkalized sucrose are mixed to form a uniform solution, dried and molded, and then heat-treated at a high temperature of 800° C. and sintered for 2 hours.

圖5是依照本發明的一實施例的電極材料性能曲線圖。將本發明的電極材料使用習知方式製成釦式電池後(圖5中的「修飾後粉體」),與未以本發明製備方法修飾之粉體進行比較(圖5中的「原生粉體」,亦即,粒子上並未配置有帶電不規則幾何孔洞結構)。如圖5所示,相較於圖5中的「原生粉體」,圖5中使用本發明電極材料的「修飾後粉體」壽命表現可以大幅提升。Fig. 5 is a graph showing the performance of an electrode material according to an embodiment of the present invention. After the electrode material of the present invention is made into a button cell using a conventional method ("modified powder" in Figure 5), compare it with a powder not modified by the preparation method of the present invention ("primary powder" in Figure 5) "Body", that is, the particle is not equipped with a charged irregular geometric hole structure). As shown in FIG. 5, compared with the "primary powder" in FIG. 5, the life performance of the "modified powder" using the electrode material of the present invention in FIG. 5 can be greatly improved.

綜上所述,本發明提供一種電極材料及其製備方法,將粒子、碳源與溶劑混合之後,透過高溫燒結在粒子表面產生帶電不規則幾何孔洞結構,帶電不規則幾何孔洞結構可使粒子的原始表面積增加並使黏著劑深入粒子結構,進而利用黏著劑電荷不均勻的特性與帶電不規則幾何孔洞結構的錨點效應大幅提升黏著劑與粒子的附著力,亦可利用黏著劑的機械強度與韌性達到保護矽碳材料膨脹問題的作用,進而改善矽碳材料的電池壽命。In summary, the present invention provides an electrode material and a preparation method thereof. After particles, a carbon source and a solvent are mixed, a charged irregular geometric pore structure is generated on the surface of the particle through high temperature sintering. The original surface area is increased and the adhesive penetrates into the particle structure, and the non-uniform charge of the adhesive and the anchor effect of the charged irregular geometric pore structure greatly improve the adhesion between the adhesive and the particle. The mechanical strength and the adhesive can also be used. Toughness can protect the silicon-carbon material from swelling problems, thereby improving the battery life of the silicon-carbon material.

10:粒子 12:矽氧化物層 20:帶電不規則幾何孔洞結構 30:黏著劑10: particles 12: Silicon oxide layer 20: Charged irregular geometric hole structure 30: Adhesive

圖1是依照本發明的一實施例的一種電極材料的示意圖。 圖2是依照本發明的一實施例的一種電極材料與黏著劑吸附的示意圖。 圖3是依照本發明的一實施例的粒子未經處理的原始形貌之掃描式電子顯微鏡(Scanning Electron Microscope,SEM)圖像。 圖4是依照本發明的一實施例的形成有帶電不規則幾何孔洞結構的粒子之掃描式電子顯微鏡(Scanning Electron Microscope,SEM)圖像。 圖5是依照本發明的一實施例的電極材料性能曲線圖。Fig. 1 is a schematic diagram of an electrode material according to an embodiment of the present invention. FIG. 2 is a schematic diagram of adsorption of an electrode material and an adhesive according to an embodiment of the present invention. FIG. 3 is a scanning electron microscope (Scanning Electron Microscope, SEM) image of an unprocessed original morphology of particles according to an embodiment of the present invention. 4 is a scanning electron microscope (Scanning Electron Microscope, SEM) image of a particle formed with a charged irregular geometric hole structure according to an embodiment of the present invention. Fig. 5 is a graph showing the performance of an electrode material according to an embodiment of the present invention.

10:粒子 10: particles

12:矽氧化物層 12: Silicon oxide layer

20:帶電不規則幾何孔洞結構 20: Charged irregular geometric hole structure

30:黏著劑 30: Adhesive

Claims (9)

一種電極材料,包括:粒子,所述粒子的材料包括矽、矽氧化物、金屬、金屬氧化物、碳、石墨或其複合材料;以及帶電不規則幾何孔洞結構,配置於所述粒子的表面上,所述帶電不規則幾何孔洞結構使所述粒子的原始表面積增加2倍至50倍。 An electrode material comprising: particles, the material of the particles includes silicon, silicon oxide, metal, metal oxide, carbon, graphite or their composite materials; and a charged irregular geometric pore structure, arranged on the surface of the particle , The charged irregular geometric pore structure increases the original surface area of the particles by 2 times to 50 times. 如申請專利範圍第1項所述的電極材料,其中所述粒子的粒徑為1nm至100μm。 The electrode material according to the first item of the scope of patent application, wherein the particle size of the particles is 1 nm to 100 μm. 如申請專利範圍第1項所述的電極材料,其中所述金屬或所述金屬氧化物包括鹼金屬、鹼土金屬或過渡金屬。 The electrode material according to the first item of the scope of patent application, wherein the metal or the metal oxide includes an alkali metal, an alkaline earth metal or a transition metal. 一種電極材料的製備方法,包括:將粒子與碳源及溶劑混合,經熱處理燒結後,在所述粒子的表面上形成帶電不規則幾何孔洞結構,其中所述粒子的材料包括矽、矽氧化物、金屬、金屬氧化物、碳、石墨或其複合材料。 A preparation method of electrode material includes: mixing particles with a carbon source and a solvent, and sintering through heat treatment to form a charged irregular geometric pore structure on the surface of the particles, wherein the material of the particles includes silicon and silicon oxide , Metals, metal oxides, carbon, graphite or their composite materials. 如申請專利範圍第4項所述的電極材料的製備方法,其中熱處理燒結是在溫度200℃至1200℃下進行0.1小時至100小時。 The method for preparing the electrode material as described in item 4 of the scope of patent application, wherein the heat treatment sintering is performed at a temperature of 200°C to 1200°C for 0.1 hour to 100 hours. 如申請專利範圍第4項所述的電極材料的製備方法,其中所述碳源包括含金屬離子的碳氫化合物、含金屬離子的碳氫氧化合物或其組合。 The method for preparing an electrode material as described in item 4 of the scope of patent application, wherein the carbon source includes a metal ion-containing hydrocarbon, a metal ion-containing carbohydrate, or a combination thereof. 如申請專利範圍第4項所述的電極材料的製備方法,其中所述碳源包括鹼化蔗糖、纖維素、鹼化酚醛樹脂、瀝青、膠油煤炭或其組合。 The method for preparing an electrode material as described in item 4 of the scope of patent application, wherein the carbon source includes alkalized sucrose, cellulose, alkalized phenolic resin, pitch, gum oil coal, or a combination thereof. 如申請專利範圍第4項所述的電極材料的製備方法,其中所述溶劑包括水、甲醇、乙醇、異丙醇、丙酮、丁酮、四氫呋喃、苯類、甲苯、醋酸脂或其組合。 According to the preparation method of the electrode material described in item 4 of the scope of patent application, the solvent includes water, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, tetrahydrofuran, benzene, toluene, acetate, or a combination thereof. 如申請專利範圍第4項所述的電極材料的製備方法,其中所述帶電不規則幾何孔洞結構使所述粒子的原始表面積增加2倍至50倍。 According to the method for preparing the electrode material described in item 4 of the scope of patent application, the charged irregular geometric pore structure increases the original surface area of the particles by 2 to 50 times.
TW109120712A 2019-07-16 2020-06-19 Electrode material and preparation method thereof TWI743847B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/930,307 US20210020909A1 (en) 2019-07-16 2020-07-15 Electrode material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962874961P 2019-07-16 2019-07-16
US62/874,961 2019-07-16

Publications (2)

Publication Number Publication Date
TW202105802A TW202105802A (en) 2021-02-01
TWI743847B true TWI743847B (en) 2021-10-21

Family

ID=75745161

Family Applications (3)

Application Number Title Priority Date Filing Date
TW109120712A TWI743847B (en) 2019-07-16 2020-06-19 Electrode material and preparation method thereof
TW109120757A TWI719913B (en) 2019-07-16 2020-06-19 Positive and negative electrode material and preparation method thereof
TW109121037A TWI749605B (en) 2019-07-16 2020-06-22 Lithium ion battery silicon carbon electrode material and preparation method thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW109120757A TWI719913B (en) 2019-07-16 2020-06-19 Positive and negative electrode material and preparation method thereof
TW109121037A TWI749605B (en) 2019-07-16 2020-06-22 Lithium ion battery silicon carbon electrode material and preparation method thereof

Country Status (1)

Country Link
TW (3) TWI743847B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483447B (en) * 2012-04-19 2015-05-01 Umicore Nv Positively charged silicon for lithium-ion batteries
CN106920940A (en) * 2013-05-23 2017-07-04 奈克松有限公司 For the siliceous active material and its manufacture method of the surface treatment of electrochemical cell
US20170222219A1 (en) * 2016-01-28 2017-08-03 Dong Sun Ordered nano-porous carbon coating on silicon or silicon/graphene composites as lithium ion battery anode materials
US20190123339A1 (en) * 2017-10-19 2019-04-25 Sila Nanotechnologies, Inc. Anode electrode composition of li-ion battery cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618678B2 (en) * 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
CN103036106A (en) * 2011-09-30 2013-04-10 鸿富锦精密工业(武汉)有限公司 Connector plug and connector socket
KR20170044360A (en) * 2015-10-15 2017-04-25 지에스에너지 주식회사 Anode active material for secondary battery and preparation method thereof
US10629899B1 (en) * 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483447B (en) * 2012-04-19 2015-05-01 Umicore Nv Positively charged silicon for lithium-ion batteries
CN106920940A (en) * 2013-05-23 2017-07-04 奈克松有限公司 For the siliceous active material and its manufacture method of the surface treatment of electrochemical cell
US20170222219A1 (en) * 2016-01-28 2017-08-03 Dong Sun Ordered nano-porous carbon coating on silicon or silicon/graphene composites as lithium ion battery anode materials
US20190123339A1 (en) * 2017-10-19 2019-04-25 Sila Nanotechnologies, Inc. Anode electrode composition of li-ion battery cell

Also Published As

Publication number Publication date
TWI749605B (en) 2021-12-11
TW202105810A (en) 2021-02-01
TWI719913B (en) 2021-02-21
TW202105808A (en) 2021-02-01
TW202105802A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
TWI407620B (en) Energy storage composite particle, battery anode material and battery
KR101919470B1 (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
JP4197859B2 (en) Lithium secondary battery electrode material and lithium secondary battery using the same
KR102250814B1 (en) Carbon-coated composites containing graphenes, silicon nanoparticles, and carbon nanotubes for lithium secondary battery anode, and preparation method of the same
WO2023273726A1 (en) Negative electrode material, preparation method therefor, and lithium ion battery
WO2019019410A1 (en) Modified lithium-free anode, method for preparing same, and lithium-ion battery comprising same
CN109742391B (en) High-nickel lithium ion battery, battery positive electrode material and preparation method thereof
JP2018125077A (en) Negative electrode for lithium ion secondary battery
KR101348547B1 (en) Surface coated lithium titanate powder and fabricating method thereof
CN114824238B (en) Preparation method and application of high specific capacity silicon-carbon anode material functionalized based on polyethyleneimine and polydopamine copolymer
WO2022016374A1 (en) Composite material, preparation method therefor, and negative electrode
WO2022174598A1 (en) Silicon-carbon composite negative electrode material and preparation method therefor, and lithium ion battery
CN108550800B (en) Composite electrode and battery
TWI331817B (en) Cathode of lithium ion battery, method for manufacturing the same and lithium ion battery using the cathode
CN115458715A (en) Silicon-carbon negative electrode material, preparation method thereof and lithium ion battery
CN113871574A (en) Lithium ion battery negative plate and preparation method and application thereof
CN110571406B (en) Preparation method of carbon material cathode for lithium ion battery
TWI743847B (en) Electrode material and preparation method thereof
JP2016027557A (en) Method for manufacturing negative electrode material for lithium ion secondary battery
US20210020905A1 (en) Lithium ion battery silicon carbon electrode material and preparation method thereof
US20210020909A1 (en) Electrode material and preparation method thereof
KR102474101B1 (en) Metal oxide/porous carbon film for lithium-sulfur battery and manufacturing method thereof
KR102580193B1 (en) Method for manufacturing anode active material for lead-acid battery using MXene
KR102325749B1 (en) Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
CN117038851B (en) Porous negative electrode and preparation method and application thereof