TWI743588B - 電子裝置與生物辨識的特徵獲得方法 - Google Patents

電子裝置與生物辨識的特徵獲得方法 Download PDF

Info

Publication number
TWI743588B
TWI743588B TW108140599A TW108140599A TWI743588B TW I743588 B TWI743588 B TW I743588B TW 108140599 A TW108140599 A TW 108140599A TW 108140599 A TW108140599 A TW 108140599A TW I743588 B TWI743588 B TW I743588B
Authority
TW
Taiwan
Prior art keywords
processor
feature points
matching data
data
feature
Prior art date
Application number
TW108140599A
Other languages
English (en)
Other versions
TW202119271A (zh
Inventor
廖建富
Original Assignee
緯創資通股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 緯創資通股份有限公司 filed Critical 緯創資通股份有限公司
Priority to TW108140599A priority Critical patent/TWI743588B/zh
Priority to CN201911139533.7A priority patent/CN112784657B/zh
Priority to US16/747,476 priority patent/US11120245B2/en
Priority to EP20157965.3A priority patent/EP3819818A1/en
Publication of TW202119271A publication Critical patent/TW202119271A/zh
Application granted granted Critical
Publication of TWI743588B publication Critical patent/TWI743588B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3226Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
    • H04L9/3231Biological data, e.g. fingerprint, voice or retina

Abstract

電子裝置與生物辨識的特徵獲得方法。所述方法包括:獲得包括多種生物特徵的影像;獲得所述影像中該些生物特徵的多個特徵點;將該影像分割為多個子影像,並獲得每一個子影像中的一區域;以及從每一個子影像中的區域中的第二特徵點中識別用於執行生物辨識操作的第三特徵點。

Description

電子裝置與生物辨識的特徵獲得方法
本發明是有關於一種電子裝置與特徵獲得方法,且特別是有關於一種電子裝置與生物辨識的特徵獲得方法。
生物辨識(Biometrics)是運用生物特徵通常具有唯一、可測量、遺傳或是終身不變等特性,藉助現代計算機技術進步,進行安全、可靠、準確的身份驗證,進而實現自動化、智能化管理等應用。目前最為常見的生物辨識技術有:指紋辨識、人臉辨識、掌紋辨識、語音(或聲紋)辨識以及靜脈辨識等。以下以目前的指紋辨識技術以及指靜脈辨識技術進行說明。
[指紋辨識]
一般來說,指紋辨識的原理是先使用指紋的總體特徵(例如,紋形、三角點等)進行分類,再用局部特徵(例如,位置、方向等)來進行身份辨識。指紋辨識主要有四個步驟:(1) 讀取指紋影像、提取特徵、保存資料和比對。
指紋採集的方式可以分為以下四種:光學式、電容式、生物射頻式和超音波式。光學式的歷史最悠久、使用最廣泛,通常是將手指放在光學鏡片上,經由內置的NIR照射,將其投射在互補式金氧半導體(Complementary Metal-Oxide-Semiconductor,CMOS),或感光耦合元件(Charge-Coupled Device,CCD)吸收形成影像,最後將影像轉換成數位化,以供不同的指紋演算法處理。
此外,指紋辨識容易受檢驗者狀態或環境影響,例如有些人的指紋特徵很少、長期勞動磨損導致難以成像、手指脫皮、手指髒污、氣溫太低…等,最大的風險則是容易留下痕跡,讓有心人複製指紋膜,騙過辨識設備。
[指靜脈辨識]
指靜脈辨識原理是利用NIR照射手指,讓靜脈中流動的血紅蛋白吸收,且讓未被吸收的NIR進入傳感器,得到清晰的靜脈血管影像。在經過演算法處理後,會形成特定的靜脈模板。醫學上已證實每人的靜脈血管影像均不同,故可將靜脈模板視為獨特的生物特徵。
指靜脈辨識包括四個主要階段:影像採集、預處理、特徵提取、特徵匹配。採集設備區分為NIR光源與影像傳感器位於同側的反射式,以及位於兩側的直射式。預處理是指去除影像噪音。特徵提取包括紋路、紋理、細節點和透過學習獲得的特徵。特徵匹配則是比對已儲存的資料。
然而,指靜脈辨識的缺陷是它可能隨著年齡和生理變化而改變,永久性尚未得到證實。此外,採集指靜脈的設備不易小型化,設計相對複雜,製造成本偏高。
特別是,在先前技術中通常是使用單一的生物特徵(例如,單使用指紋或單使用指靜脈)進行辨識,而較少提及同時使用多種生物特徵(例如,同時使用指紋以及指靜脈)進行辨識。
因此,本發明提供一種電子裝置以及生物辨識的特徵獲得方法,可以整合同時使用多種生物特徵(例如,指紋以及指靜脈)進行辨識,進而提升生物辨識的準確性以及便利性。
本發明提出一種電子裝置,包括:輸入電路以及耦接至輸入電路的處理器。所述輸入電路獲得包括一使用者的多種生物特徵的一影像。所述處理器獲得所述影像中所述多種生物特徵的多個特徵點。所述處理器將所述影像分割為多個子影像,並獲得每一所述多個子影像中的一區域,其中每一所述多個子影像包括所述多個特徵點中的多個第一特徵點,所述多個第一特徵點中分佈在所述區域中的多個第二特徵點的密度高於所述區域所屬的子影像中其他的區域的密度。所述處理器從每一所述多個子影像中的所述區域的所述多個第二特徵點中識別用於執行一生物辨識操作的多個第三特徵點。
本發明提出一種生物辨識的特徵獲得方法,用於一電子裝置,所述電子裝置包括一輸入電路以及一處理器,所述方法包括:藉由所述輸入電路獲得包括一使用者的多種生物特徵的一影像;藉由所述處理器獲得所述影像中所述多種生物特徵的多個特徵點;藉由所述處理器將所述影像分割為多個子影像,並獲得每一所述多個子影像中的一區域,其中每一所述多個子影像包括所述多個特徵點中的多個第一特徵點,所述多個第一特徵點中分佈在所述區域中的多個第二特徵點的密度高於所述區域所屬的子影像中其他的區域的密度;以及藉由所述處理器從每一所述多個子影像中的所述區域的所述多個第二特徵點中識別用於執行一生物辨識操作的多個第三特徵點。
基於上述,本發明提供一種電子裝置以及生物辨識的特徵獲得方法,可以整合同時使用多種生物特徵(例如,指紋以及指靜脈)進行辨識,進而提升生物辨識的準確性以及便利性。特別是,本發明可以利用NIR光學原理取得手指影像並利用演算法取得用於辨識的最佳生物特徵以進行多模態的辨識,最終提高生物特徵的保全、異地備援與辨識。在應用面來說,可以加強公司或企業在員工門禁與差勤管理;或者可以提供開發用的API,利用USB連結其他裝置形成物聯網,同時結合生物辨識、存取管理與資訊運用等開發應用系統,藉此進入其他如金融、保全等服務業務以增加利潤。
圖1是依照本發明的一實施例所繪示的電子裝置的示意圖。
請參照圖1,電子裝置100包括處理器101、輸入電路103、邏輯控制器105、演算法處理模組107、電機電路109、電源電路111、提示燈113以及儲存電路115~117。
處理器101可以是微控制器(Micro Controller Unit,MCU)或整合中央處理器(Central Processing Unit,CPU)、RAM、ROM以及I/O的記憶與運算功能的處理器。
輸入電路103可以包括手指傳感器和採集控制電路,並用以按照預設的採集參數,負責採集指紋影像,並將影像資料傳輸至演算法處理模組107。
邏輯控制器105可以是複雜可程式邏輯裝置(Complex Programmable Logic Device,CPLD),負責對輸入電路103所採集的影像進行存取以及影像預處理,並傳輸給演算法處理模組107。
演算法處理模組107可以是數位訊號處理器(Digital Signal Processor,DSP),用於實作本發明的演算法。演算法處理模組107主要功能是接收邏輯控制器105傳來的影像、對影像進行處理後作出影像識別的最終結論,以及管理儲存電路115~117與處理器101之間的通訊。
電機電路109負責接收處理器101的指示訊號以決定電子裝置100的鎖的開或關。
電源電路111用以供應電子裝置100整體的電源。
提示燈113可以是 LED指示燈等。
儲存電路115可以是電子裝置100外部的快閃記憶體(flash memory)並用於保存特徵資料庫和DSP的啟動程式,通常存放於安全隔離區域並加密保護。儲存電路115並非直接保存用於生物辨識的影像,而是保存對應於影像的字符,且在儲存與擷取時皆必須經過加密處理。儲存電路117可以是電子裝置100外部的同步動態隨機存取記憶體(Synchronous Dynamic Random-Access Memory, SDRAM)並用於儲存臨時比對的影像和一些變量。
特別是,本發明的電子裝置100是利用近紅外線NIR(Near-Infrared Ray)光學原理,取得同時包括手指的指紋與指靜脈的影像進行分析。
例如,圖2是依照本發明的一實施例所繪示的採集同時具有指紋與指靜脈的影像的示意圖。
請參照圖2,假設使用者可以將手指200放置於電子裝置100的一感測區域(未繪示),並且手指200在被提示燈113照射後,經由輸入電路103吸收,進而同時取得手指200的指紋20和指靜脈21的影像。特別是,雖然圖2沒有繪示,但在本實施例中,指紋20和指靜脈21會被整合至單一的影像中。之後,可以對所獲得的影像再轉換成數位化資訊,提供後續演算法的處理。
需說明的是,對一手指面的指紋來說,通常可抓出60到125個特徵點。若再同時考量指靜脈的特徵點,將很容易造成「維度災難」。因此,本發明提出一種生物辨識的特徵獲得方法,可以從同一影像中的指紋與指靜脈的特徵點找出用於生物辨識的特徵點,而此些特徵點的數量為較少且不會降低生物辨識的準確度。以下分別詳述生物辨識的特徵獲得方法的五個主要步驟。
[步驟一:影像分割]
在步驟一中,輸入電路103可以藉由圖2的方式獲得包括一使用者的指紋與指靜脈的影像。處理器101會對此影像進行預處理與二值化處理。特別是,本發明並不用於限定預處理的內容。之後,處理器101會對經二值化處理後的影像利用數學形態學運算以獲得該影像中的多個特徵點。在此,數學形態學(Mathematical Morphology)運算是建立在數學集合理論上的影像分析法,原理是透過一個可依需求做大小、形狀變化的結構元素(Structure Element),在整個原始影像區域內平移偵測。數學形態學運算的基本運算包括:侵蝕(Erosion)、膨脹(Dilation)、開運算(Opening)、閉運算(Closing)。進階的運算則有可進行形狀偵測的交離轉換、可找出形狀邊緣的輪廓萃取、可從影像提取感興趣的特徵與形狀的擷取連通元件、可將輸入影像的形狀縮小但不失原有形狀的細線化、可找出形狀中心線,用骨架代表物體形狀的骨架抽取…等。
[步驟二:特徵提取]
在完成前述步驟一後,處理器101會對不同的指紋、指靜脈的特徵進行分類,並標記每一個特徵點所屬的類別於經二值化處理後的影像中。前述的指紋的特徵主要有紋形、模式區、核心點、三角點和紋數、節點、終結點和分歧點,其他還有孤立點、環點、短紋等。指靜脈的特徵有紋理的結構、端點,交叉點等,處理器101會將這些特徵分別標註在經二值化處理後的影像中。
[步驟三:特徵選擇]
在步驟三中,處理器101會將前述步驟二處理後的影像分割為多個子影像,並獲得每一個子影像中的一特定區域。特別是,分佈在每一個子影像中的多個特徵點可以稱為「第一特徵點」。而在一個子影像的特定區域中,分佈在此特定區域中的特徵點(亦稱為,第二特徵點)的密度會高於該子影像中其他的區域的密度。在本實施例中,上述的方法是藉由粒子群優化(Particle Swarm Optimization,PSO)演算法來獲得每一個子影像中的特定區域。
更詳細來說,粒子群移動演算法PSO是以「鳥群覓食」為概念所發展,其具有易實現、精度高、收斂快等優點。在每一次反覆運算中,粒子根據自己及其他粒子的飛行經驗來調整飛行速度,朝向粒子群中最多食物(即,最多特徵點)的位置飛行,重覆運算至收斂,最終取得最佳解(即,最具有最多特徵點的區域)。在PSO的公式中,各符號定義如下:
i:代表粒子(某分割區塊)。
t:代表重覆運算的次數。
w:代表權重值,需自行設定。一般較常設定在0.8 > w > 1.2,因為較能達到全域搜尋(global search)與區域搜尋(local search)平衡之狀況。
c1:代表區域解相關係數,需自行設定。一般較常設定在2,但未必要等於2,此係數設太大時容易變成區域搜尋(local search)。
c2 : 代表全域解相關係數,需自行設定,一般較常設定在2,但未必要等於2,此係數設太大時容易變成全域搜尋(global search)。
pi : pi = (pi1 , pi2 , …, pid )是粒子 i 在搜索空間中所經過的各維度最佳位置,即粒子 i 的局域最佳解(local solution)。
pg : pg = (pg1 , pg2 ,…, pgd )是整個粒子群在搜索空間中所經過各維度的最佳位置,也就是整個粒子群的全域最佳解(global solution)。
rand():是 [-1,1] 間的亂數。因為pi 與pg 都可能為正值,也可能為負值,此時速度會是一定向(意即,只會負值越來越大,或只會正值越來越大),轉向機會並不高,故較建議將其設計成產生 [-1, 1] 間之浮點亂數。
基此,粒子i在第j維度空間的速度和位置更新公式如下:
[速度]
Figure 02_image002
Figure 02_image004
[位置]
Figure 02_image006
所有問題在做PSO時會先把解空間定義出來,但是在做位置更新時,卻可能發生逾界情形。因此,必須對該粒子之解空間進行調整,再給該粒子一個隨機位置(xid _min, xid _max)分別代表粒子i在第d維度的最小值與最大值之位置,需依研究的問題自行設定,沒有建議值。
Figure 02_image008
Figure 02_image010
另外也必須對粒子各維度之速度加以限制,且不會讓速度生成為負值。vid _max代表粒子i在第d維度的最大速度,其需依研究的問題自行設定,沒有建議值。
Figure 02_image012
Figure 02_image014
結合數學形態學與PSO演算法,將使得指紋、指靜脈特徵的選取變得非常類似人類的視覺方式。圖3是依照本發明的一實施例所繪示的生物辨識的特徵獲得方法的示意圖。請參照圖3,圖3用於描述步驟一至步驟三。影像300是包括指紋以及指靜脈的影像。處理器101可以將影像300切割為M*N的二維區塊矩陣以獲得多個子影像(例如,方格),而此些子影像是在執行數學形態學演算法後的二元影像300上。在圖3的影像300的每個子影像中的每一圓圈代表在步驟二中所標註且提取的特徵點。以子影像SIMG為例,子影像SIMG的四個角落的位置分別為X11 _min、X11 _max、X12 _min、X12 _max。假設在PSO的執行過程中,X1 括號內數字代表第幾次的循環(例如,X1 (0)~X1 (8)),每次的循環會判斷該位置是否有特徵點,有則予以記錄下來。在重覆運算至收斂後,可以找到子影像SIMG中的特定區域R1,此特定區域R1在子影像SIMG中的特徵點的密度為最高。而在子影像SIMG中特定區域R1以外的特徵點FP1會被捨棄。需說明的是,雖然圖3是以子影像SIMG為範例進行說明,但此過程亦會對影像300中其他的子影像執行,進而找到每一個子影像內具有最多的特徵點特定區域,而此特定區域中的特徵點可以作為手指特徵的最優集合。
在步驟三之後,處理器101會從每一個子影像的特定區域的特徵點(即,每個子影像中的第二特徵點)中識別用於執行生物辨識操作的多個特徵點(亦稱為,第三特徵點)。而找出此些第三特徵點的方式可以由步驟四與步驟五來執行。
[步驟四:收集樣本]
在此步驟四中,處理器101可以對其他的手指影像(例如,其他的手指樣本)中重覆前述步驟一至步驟三以得到多個最優集合,此些集合包括其他的手指影像中用於執行生物辨識操作的特徵點(亦稱為,第四特徵點)。處理器101會前述的第二特徵點與第四特徵點中選擇重複出現次數高於一門檻值(亦稱為,第一門檻值)的特徵點作為用於執行生物辨識操作的第三特徵點。也就是說,在此步驟中,處理器101會從所有影像的最優集合,選取出現次數較多的特徵點以形成模型的最佳特徵集。
[步驟五:特徵再選擇]
在步驟五中,處理器101會判斷前述步驟四所找出的最佳特徵集中的第三特徵點的數量是否大於一門檻值(亦稱為,第二門檻值)。當第三特徵點的數量大於第二門檻值時,處理器101會從第三特徵點中選擇多個特徵點(亦稱為,第五特徵點)以根據此些第五特徵點執行生物辨識操作。特別是,第五特徵點的數量會小於第三特徵點,且根據此些第五特徵點執行生物辨識操作所能達到的辨識率會非小於根據前述第三特徵點執行生物辨識操作所達到的辨識率。在本實施例中,可使用循序向後選擇法(Sequential Forward Selection,SFS)來找出辨識能力最好的特徵點。然而需注意的是,假設步驟四執行完後所獲得的第三特徵點的數量不會過多,則可以省略此步驟。
SFS的執行步驟依序如下:(1)使用最近鄰居法則和「一次挑一個」的辨識率預估法;(2)第一個挑選的特徵必定是辨識率最高的特徵;(3)下一個挑選的特徵必定是和原本已選取的特徵合併後,辨識率最高的一個;(4)重複步驟(3),直到所挑出的特徵點符合前述第五特徵點的定義。
SFS演算法舉例如下,在此假設在表一到表六的範例中,指紋特徵點為F1、F3、F5、F7、F9、F11且指靜脈特徵點為F2、F4、F6、F8、F10、F12。假設同時使用指紋特徵點F1、F3、F5、F7、F9、F11以及指靜脈特徵點F2、F4、F6、F8、F10、F12執行生物辨識可達到的辨識率為97.8%。
首先,處理器101會選擇一個特徵點,此特徵點在執行生物辨識時的辨識率為最好。在表一的範例中,處理器101會挑選出特徵點F7為第五特徵點。
特徵點 辨識率 特徵點 辨識率 特徵點 辨識率
F1 57.9% F5 50.0% F9 48.9%
F2 56.2% F6 60.1% F10 64.0%
F3 37.6% F7 69.7% F11 56.2%
F4 39.3% F8 35.4% F12 58.4%
表一
之後,請參照表二,處理器101會計算根據包含特徵點F7的兩個特徵點所執行的生物辨識的辨識率,進而得知根據特徵點F7、F10此兩個特徵點所能達到的辨識率為最佳,因此處理器101會挑選特徵點F10加入第五特徵點中。
特徵點 辨識率 特徵點 辨識率 特徵點 辨識率
F7,F1 89.3% F7,F5 87.6% F7,F9 75.8%
F7,F2 74.2% F7,F6 71.3% F7,F10 92.7%
F7,F3 73.6%     F7,F11 86.5%
F7,F4 77.5% F7,F8 73.0% F7,F12 77.5%
表二
之後,請參照表三,處理器101會計算根據包含特徵點F7、F10的三個特徵點所執行的生物辨識的辨識率,進而得知根據特徵點F7、F10、F12此三個特徵點所能達到的辨識率為最佳,因此處理器101會挑選特徵點F12加入第五特徵點中。
特徵點 辨識率 特徵點 辨識率 特徵點 辨識率
F7,F10,F1 94.4% F7,F10,F5 93.3% F7,F10,F9 91.6%
F7,F10,F2 93.3% F7,F10,F6 92.7%    
F7,F10,F3 93.8%     F7,F10,F11 92.7%
F7,F10,F4 89.3% F7,F10,F8 92.7% F7,F10,F12 96.6%
表三
之後,請參照表四,類似於前述表二與表三的方式,處理器101會挑選特徵點F11加入第五特徵點中。
特徵點 辨識率 特徵點 辨識率 特徵點 辨識率
F7,F10,F12,F1 94.9% F7,F10,F12,F5 95.5% F7,F10,F12,F9 93.8%
F7,F10,F12,F2 94.9% F7,F10,F12,F6 94.9%    
F7,F10,F12,F3 94.4%     F7,F10,F12,F11 96.6%
F7,F10,F12,F4 93.3% F7,F10,F12,F8 94.9%    
表四
之後,請參照表五,類似於前述表二至表四的方式,處理器101會挑選特徵點F1加入第五特徵點中。
特徵點 辨識率 特徵點 辨識率 特徵點 辨識率
F7,F10,F12,F11,F1 97.2% F7,F10,F12,F11,F5 94.9% F7,F10,F12,F11,F9 94.9%
F7,F10,F12,F11,F2 96.6% F7,F10,F12,F11,F6 93.8%    
F7,F10,F12,F11,F3 94.4%        
F7,F10,F12,F11,F4 95.5% F7,F10,F12,F11,F8 93.3%    
表五
之後,請參照表六,類似於前述表二至表五的方式,處理器101會挑選特徵點F5加入第五特徵點中。
特徵點 辨識率 特徵點 辨識率 特徵點 辨識率
    F7,F10,F12,F11,F1,F5 97.8% F7,F10,F12,F11,F1,F9 96.6%
F7,F10,F12,F11,F1,F2 97.2% F7,F10,F12,F11,F1,F6 96.6%    
F7,F10,F12,F11,F1,F3 97.2%        
F7,F10,F12,F11,F1,F4 96.6% F7,F10,F12,F1F1,F1,F8 97.2%    
表六
特別是,由於目前第五特徵點為特徵點F7、F10、F12、F11、F1、F5,且此些特徵點所能達到的辨識率(即,97.8%)和使用所有的特徵點(即,特徵點F1~F12)所能達到的辨識率相等,因此處理器101只需要使用特徵點F7、F10、F12、F11、F1、F5所組成的特徵集執行生物識別即可。
基於上述方式,本發明的生物辨識的特徵獲得方法可以從具有多種生物特徵的影像中找到少量的特徵點進行生物辨識,且此些特徵點所能達到的辨識率不會小於使用該影像中所有的特徵點進行辨識的辨識率。
此外,本發明還提出兩種使用加/解密方法的生物辨識流程。以下以分別以「第一加密生物辨識方法」與「第二加密生物辨識方法」詳述。
[第一加密生物辨識方法]
在第一加密生物辨識方法的實施例中,主要是基於非對稱式加密的方法。非對稱式加密方法例如是RSA演算法。RSA演算法是基於一個十分簡單的數論事實:將兩個大因數相乘十分容易,但想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰,即俗稱的公鑰(public key)。而對應於此公鑰的私鑰(private key)可以用於對使用該公鑰加密的密文進行解密。RSA演算法的詳細運作方式可以由習知技術所得知,在此不再贅述。
本發明的第一加密生物辨識方法主要可以分為註冊階段與辨識階段,其中註冊階段包括下述步驟(a)~(b)且辨識階段包括下述步驟(c)~(d)。
步驟(a):在註冊階段時,為避免中間人攻擊問題,可以由憑證人(例如,公正第三方單位)產生兩組的公私鑰。例如,第一公鑰、對應於第一公鑰的第一私鑰、第二公鑰以及對應於第二公鑰的第二私鑰。其中,第一私鑰用於對使用第一公鑰加密的密文進行解密,第二私鑰用於對使用第二公鑰加密的密文進行解密。在本實施例中,第一公鑰與第一私鑰是用來對指紋資料進行加解密,第二公鑰與第二私鑰是用來對指靜脈資料進行加解密。處理器101可以獲得前述的兩組公私鑰(例如,經由通訊電路)。
步驟(b):延續前述步驟(a)的註冊階段,在每次對某人手指採樣時,處理器101可以將指紋的特徵點和指靜脈的特徵點的數值資料同時且分別存放在儲存電路115中不同的安全隔離區域。在本實施例中,處理器101會將前述方式找出的第三特徵點中屬於指紋(亦稱為,第一類生物特徵)的特徵點儲存至儲存電路115中對應於指靜脈的儲存區域(亦稱為,第二儲存區域)。此外,處理器101會將前述方式找出的第三特徵點中屬於指靜脈(亦稱為,第二類生物特徵)的特徵點儲存至儲存電路115中對應於指紋的儲存區域(亦稱為,第一儲存區域)。以下表七為例,指紋的儲存區域R1用於儲存指靜脈資料。類似地,指靜脈的儲存區域R2用於儲存指紋資料。藉由將指靜脈資料儲存在指紋的儲存區域R1以及將指紋資料儲存在指靜脈的儲存區域R2可以用於欺騙攻擊者,藉此提高資料儲存的安全性。
指紋的儲存區域R1 指靜脈的儲存區域R2
第二私鑰 第一私鑰
左姆指指靜脈特徵集(T1_1) 左姆指指紋特徵集(T2_1)
左食指指靜脈特徵集(T1_2) 左食指指紋特徵集(T2_2)
右食指指靜脈特徵集(T1_7) 右食指指紋特徵集(T2_7)
右小指指靜脈特徵集(T1_10) 右小指指紋特徵集(T2_10)
表七
步驟(c):當一使用者要進行辨識時,使用者可以操作其所使用的電子裝置(例如,不同於電子裝置100的電子裝置),藉由本發明的生物辨識的特徵獲得方法獲得用於辨識的指紋特徵點與指靜脈特徵點。該使用者的電子裝置可以使用第一公鑰加密指紋特徵點以產生第一已加密資料,並且使用第二公鑰加密指靜脈特徵點以產生第二已加密資料,之後將此些已加密資料(即,第一已加密資料與第二已加密資料)傳送給電子裝置100。
當處理器101獲得由一通訊電路(未繪示)接收的前述已加密資料後,處理器101會使用第一私鑰解密前述的第一已加密資料以獲得待驗證的指紋特徵點(在此稱為,第一待驗證特徵點)。類似地,處理器101會使用第二私鑰解密前述的第二已加密資料以獲得待驗證的指靜脈特徵點(在此稱為,第二待驗證特徵點)。處理器101會使用第一待驗證特徵點以及第二待驗證特徵點執行生物辨識操作。
步驟(d):在進行生物辨識時,處理器101會根據第一待驗證特徵點從指靜脈的儲存區域R2中獲得相似度最高的匹配資料(亦稱為,第一匹配資料)。處理器101會根據第二待驗證特徵點從指紋的儲存區域R1中獲得相似度最高的匹配資料(亦稱為,第二匹配資料)。接著,處理器101會判斷第一匹配資料以及第二匹配資料是否達到預設的正規化標準。換句話說,處理器101會判斷第一匹配資料與第一待驗證特徵點的相似度是否大於一門檻値,且處理器101會判斷第二匹配資料與第二待驗證特徵點的相似度是否大於該門檻値。
當第一匹配資料以及第二匹配資料的至少其中之一沒有達到預設的正規化標準時,處理器101會判斷前述的多個已加密資料(即,第一、第二已加密資料)沒有通過驗證。反之,當第一匹配資料以及第二匹配資料皆達到預設的正規化標準(即,大於前述門檻值)時,處理器101會判斷第一匹配資料的索引是否相同於第二匹配資料的索引。如表七所示,由於同一隻手指的指紋資料與指靜脈資料是儲存在同一列,且同一列會由一索引表示(未繪示),故此步驟是用來判斷第一匹配資料與第二匹配資料是否屬於同一隻手指。
當第一匹配資料的索引相同於第二匹配資料的索引時,處理器101會判斷前述的多個已加密資料通過驗證。當第一匹配資料的索引不相同於第二匹配資料的索引時,處理器會判斷前述的多個已加密資料沒有通過驗證。
圖4是依照本發明的一實施例所繪示的第一加密生物辨識方法的註冊階段的示意圖。
請參照圖4,在步驟S401中,中間憑證人可以產生第一公鑰、第一私鑰、第二公鑰以及第二私鑰。之後,在步驟S403a與S403b中,處理器101可以透過通訊電路取得第二私鑰與第一私鑰。假設一使用者欲使用遠端註冊,則在步驟S405a中,該使用者的電子裝置可以用第二公鑰對欲註冊的指靜脈資料進行加密,並傳送給電子裝置100。類似地,在步驟S405b中,該使用者的電子裝置可以用第一公鑰對欲註冊的指紋資料進行加密,並傳送給電子裝置100。之後,處理器101會在步驟S407a中使用第一私鑰對步驟S405a中的密文進行解密以獲得一指靜脈資料,最後在步驟S409a中將此指靜脈資料儲存到指紋的儲存區域R1中。此外,處理器101還會在步驟S407b中使用第一私鑰對步驟S405b中的密文進行解密以獲得一指紋資料,最後在步驟S409b中將此指紋資料儲存到指靜脈的儲存區域R2中。
圖5是依照本發明的一實施例所繪示的第一加密生物辨識方法的辨識階段的示意圖。
請參照圖5,假設一使用者欲遠端使用生物辨識,在步驟S501a中,該使用者的電子裝置可以用第二公鑰對欲辨識的指靜脈資料進行加密,並傳送給電子裝置100。類似地,在步驟S501b中,該使用者的電子裝置可以用第一公鑰對欲辨識的指紋資料進行加密,並傳送給電子裝置100。
之後,處理器101會在步驟S503a中使用第二私鑰對步驟S501a中的密文進行解密以獲得待驗證的指靜脈資料。之後在步驟S505a中處理器101會根據該待驗證的指靜脈資料從儲存區域R1中獲得第二匹配資料。
類似地,處理器101會在步驟S503b中使用第一私鑰對步驟S501b中的密文進行解密以獲得待驗證的指紋資料。之後在步驟S505b中處理器101會根據該待驗證的指紋資料從儲存區域R2中獲得第一匹配資料。
在步驟S507中,處理器101會判斷第一匹配資料以及第二匹配資料是否達到預設的正規化標準。當第一匹配資料以及第二匹配資料的至少其中之一沒有達到預設的正規化標準時,處理器101會執行步驟S513以判斷沒有通過驗證。反之,當第一匹配資料以及第二匹配資料皆達到預設的正規化標準時,在步驟S509中處理器101會判斷第一匹配資料的索引是否相同於第二匹配資料的索引。
當第一匹配資料的索引相同於第二匹配資料的索引時,在步驟S511中,處理器101會判斷通過驗證。當第一匹配資料的索引不相同於第二匹配資料的索引時,處理器101會判斷沒有通過驗證。
特別是,以下以一實用情境來描述第一加密生物辨識方法的運作。
為加速找出特定使用者的公、私鑰,以及達成異地備援與辨識之目的,本發明提出建立「鍵值-資料對」的雜湊表(Hash Table)。透過適當的雜湊函數將關鍵碼值(如,員工工號、銀行戶頭)加以編碼加密,資料的內容則儲存公、私鑰所在的位置(裝置ID),若經雜湊函數選擇後的列發生碰撞(collision)問題(即,兩筆資料存進相同列),可用碰撞解決的演算法(例如,鏈(Chaining)(即使用鏈結串列(link list)方式串連「Hashing到相同bucket」的資料)、或開放定址(Open Addressing)(即使用Probing Method來尋找Table中「空的bucket」存放資料))等辦法加以解決。
圖6是依照本發明的一實施例所繪示的異地備援與辨識的註冊階段示意圖。
請參照圖6,假設某新進員工C1,在位於甲地的分公司D1進行報到註冊。在步驟S601中,甲地的裝置會先將員工C1的工號和所在地傳到總公司P1,總公司P1(亦為公正人)收到前述訊息後將員工C1的工號予以雜湊(亦稱為,第一雜湊值),然後產生員工C1的公、私鑰,最後在雜湊表T1中生成一個列存放這些資料。
在步驟S603中,總公司P1將第一雜湊值,員工C1的公、私鑰傳回給員工C1在分公司D1所使用的裝置。
在步驟S605中,在分公司D1的裝置會先雜湊員工C1的工號進行比對。若在步驟S605產生的雜湊後工號相同於前述的第一雜湊值,便開始進行先前描述的生物辨識的特徵獲得方法與第一加密生物辨識方法的註冊過程。特別是,此時的註冊過程不需要經過公鑰加密與私鑰解密。在此,分公司D1的裝置會生成雜湊表T1中的一個列、員工C1的雜湊後工號、員工C1的公鑰、員工C1的私鑰及員工C1的手指特徵等資料。
在步驟S607中,分公司D1的裝置會將員工C1的雜湊後工號與經過員工C1的公鑰加密的註冊手指特徵,傳回總公司P1。
之後,總公司P1可以透過員工C1的雜湊後工號快速找到其雜湊表T1中對應的列,再取用員工C1的私鑰將手指特徵解密,最後存放回總公司P1的雜湊表T1中。需注意的是,此時的註冊階段需要經過公鑰加密與私鑰解密。
經由上述方式,最終在分公司D1的裝置與總公司P1的裝置都會有員工C1的相關資料,藉此達成異地備援的目的。此外,圖6中員工C2的註冊方式可以類似於上述員工C1的註冊方式,故在此不再贅述。
圖7是依照本發明的一實施例所繪示的異地備援與辨識的辨識階段示意圖。
請參照圖7,假設員工C1平時在甲地的分公司D1工作,因此員工C1會在甲地使用分公司D1的裝置進行辨識,過程只要將其工號進行雜湊,然後進雜湊表T2搜尋,便能快速找到員工C1的註冊手指特徵。特別是,此辨識階段便不需要經過公鑰加密與私鑰解密。
反之,若有一天員工C1到乙地分公司D2時,因為分公司D2的雜湊表T3並沒有員工C1的相關資料,此時執行過程如下:
在步驟S701中,分公司D2的裝置會先將員工C1的工號予以雜湊,然後進雜湊表T3搜尋。此時會發現雜湊表T2中並沒有員工C1的資料。
在步驟S703中,分公司D2的裝置將員工C1的雜湊後工號,傳送給總公司P1。
在步驟S705中,總公司P1的裝置透過員工C1的雜湊後工號,在總公司P1的雜湊表T1中找到儲存員工C1的資料的列。
在步驟S707中,總公司P1的裝置將員工C1的雜湊後工號、員工C1的公鑰、員工C1的所在分公司回傳給分公司D2的裝置。
在步驟S709中,分公司D2的裝置利用所取得的員工C1的公鑰加密員工C1待辨識的手指特徵,然後再與員工C1的雜湊後工號,傳給分公司D1的裝置。
在步驟S711中,分公司D1的裝置收到的員工C1的雜湊後工號後,會搜尋雜湊表T2以找到員工C1的私鑰。之後將所收到以員工C1的公鑰加密的待辨識的手指特徵予以解密以進行辨識。特別是,本實施例所執行的辨識階段需要經過公鑰加密與私鑰解密。
基於上述方式,雖然員工C1在分公司D2的裝置沒有留存其資料,但仍然可以用上述的過程,與總公司的裝置做連結,達成異地辨識的目的。
[第二加密生物辨識方法]
在本發明的第二加密生物辨識方法是基於柵欄加密演算法。圖8是依照本發明的一實施例所繪示的第二加密生物辨識方法的註冊階段示意圖。請參照圖8,假設在使用者採樣時會在步驟S801a獲得前述第三特徵點中的指紋特徵點,並且在步驟S801b獲得前述第三特徵點中的指靜脈特徵點。之後在步驟S803中,處理器101將指紋特徵點與指靜脈特徵點交叉合併以產生一合併後資料。之後在步驟S805中對合併後資料執行柵欄加密演算法以獲得第一加密後資料,並在步驟S807中將此第一加密後資料儲存至儲存電路115中。
以下以一範例描述上述流程。假設在步驟S801a所獲得的指紋特徵點為(84, 101, 73)且在步驟S801b所獲得指靜脈特徵點為(104, 39, 501),則所產生的合併後資料為(84, 104, 101, 39, 73, 501)。若以一連串的數字表示合併後資料可以表示為「841041013973501」,而此數值會被用來執行柵欄加密演算法。
需說明的是,柵欄加密演算法就是把要加密的明文分成N個一組,然後把每組的第N個字符組合,最後再將組合後的字符連接起來。以N=2為例。以前述合併後資料「841041013973501」為例,可以取位在奇數位置的數值產生第一組數值,此第一組數值為「81403751」。此外,可以取位在偶數位置的數值產生第二組數值,此第二組數值為「4011930」。在將第一組數值與第二組數值串接起來後,可以獲得值為「814037514011930」的加密後資料,而此加密後資料會被儲存至儲存電路115中。
圖9是依照本發明的一實施例所繪示的第二加密生物辨識方法的辨識階段的示意圖。請參照圖9,在步驟S901a與步驟S901b中,處理器101分別獲得待驗證的指紋特徵點(亦稱為,第三待驗證特徵點)以及待驗證的指靜脈特徵點(亦稱為,第四待驗證特徵點)。而在步驟S903中,處理器101會存取儲存電路115,並在步驟S905中對加密後資料進行解密以獲得解密後資料。在步驟S907中,處理器101會根據前述的第三待驗證特徵點以及前述的第四待驗證特徵點比對步驟S905產生的解密後資料以獲得相似度最高的指紋特徵點(在此稱為,第三匹配資料)以及指靜脈特徵點(在此稱為,第四匹配資料)。之後在步驟S909中,處理器101會判斷此第三匹配資料的索引是否相同於第四匹配資料的索引,藉此判斷兩者是否屬於相同的手指。
當第三匹配資料的索引不相同於第四匹配資料的索引時,處理器101會執行步驟S915以判斷沒有通過生物辨識操作。
當第三匹配資料的索引相同於第四匹配資料的索引時,處理器101會執行步驟S911以判斷第三匹配資料以及所述第四匹配資料是否達到預設的正規化標準。正規化標準的意義類似於前述的實施例,在此不再贅述。
當第三匹配資料以及第四匹配資料的至少其中之一沒有達到預設的正規化標準時,處理器會執行步驟S915以判斷沒有通過生物辨識操作。當第三匹配資料以及第四匹配資料皆達到預設的正規化標準時,處理器101會判斷通過生物辨識操作。
圖10是依照本發明的一實施例所繪示的生物辨識的特徵獲得方法的流程圖。請參照圖10,在步驟S1001中,輸入電路103獲得包括一使用者的多種生物特徵的影像。在步驟S1003中,處理器101獲得該影像中的多種生物特徵的多個特徵點。在步驟S1005中,處理器101將該影像分割為多個子影像,並獲得每一個子影像中的一區域。其中,每一個子影像包括前述多個特徵點中的多個第一特徵點,且第一特徵點中分佈在該區域中的多個第二特徵點的密度會高於該區域所屬的子影像中其他的區域的密度。在步驟S1007中,處理器101會從每一個子影像中位於所找出的區域中的第二特徵點中識別用於執行生物辨識操作的第三特徵點。
綜上所述,本發明提供一種電子裝置以及生物辨識的特徵獲得方法,可以整合同時使用多種生物特徵(例如,指紋以及指靜脈)進行辨識,進而提升生物辨識的準確性以及便利性。特別是,本發明可以利用NIR光學原理取得手指影像並利用演算法取得用於辨識的最佳生物特徵以進行多模態的辨識,最終提高生物特徵的保全、異地備援與辨識。在應用面來說,可以加強公司或企業在員工門禁與差勤管理;或者可以提供開發用的API,利用USB連結其他裝置形成物聯網,同時結合生物辨識、存取管理與資訊運用等開發應用系統,藉此進入其他如金融、保全等服務業務以增加利潤。
100:電子裝置 101:處理器 103:輸入電路 105:邏輯控制器 107:演算法處理模組 109:電機電路 111:電源電路 113:提示燈 115、117:儲存電路 安全隔離區域 200:手指 20:指紋 21:指靜脈 300:影像 FP、FP1:特徵點 SIMG:子影像 R1:區域 X11 _min、X11 _max、X12 _min、X12 _max:位置 X1 (0)~X1 (8):循環 S401、S403a、S403b、S405a、S405b、S407a、S407b、S409a、S409b、S501a、S501b、S503a、S503b、S505a、S505b、S507~S513、S601~S607、S701~S711、S801a、S801b、S803~S807、S901a、S901b、S903~S915、S1001~S1007:步驟 C1、C2:員工 D1、D2:分公司 P1:總公司 T1~T3:雜湊表
圖1是依照本發明的一實施例所繪示的電子裝置的示意圖。 圖2是依照本發明的一實施例所繪示的採集同時具有指紋與指靜脈的影像的示意圖。 圖3是依照本發明的一實施例所繪示的生物辨識的特徵獲得方法的示意圖。 圖4是依照本發明的一實施例所繪示的第一加密生物辨識方法的註冊階段的示意圖。 圖5是依照本發明的一實施例所繪示的第一加密生物辨識方法的辨識階段的示意圖。 圖6是依照本發明的一實施例所繪示的異地備援與辨識的註冊階段示意圖。 圖7是依照本發明的一實施例所繪示的異地備援與辨識的辨識階段示意圖。 圖8是依照本發明的一實施例所繪示的第二加密生物辨識方法的註冊階段示意圖。 圖9是依照本發明的一實施例所繪示的第二加密生物辨識方法的辨識階段的示意圖。 圖10是依照本發明的一實施例所繪示的生物辨識的特徵獲得方法的流程圖。
S1001~S1007:步驟

Claims (20)

  1. 一種電子裝置,包括:一輸入電路;以及一處理器,耦接至所述輸入電路,其中所述輸入電路獲得包括一使用者的多種生物特徵的一影像,所述處理器獲得所述影像中所述多種生物特徵的多個特徵點,所述處理器將所述影像分割為多個子影像,並獲得每一所述多個子影像中的一區域,其中每一所述多個子影像包括所述多個特徵點中的多個第一特徵點,所述多個第一特徵點中分佈在所述區域中的多個第二特徵點的密度高於所述區域所屬的子影像中其他的區域的密度,所述處理器從每一所述多個子影像中的所述區域的所述多個第二特徵點中識別用於執行一生物辨識操作的多個第三特徵點,其中在識別用於執行所述生物辨識操作的所述多個第三特徵點的運作之後,所述處理器判斷所述多個第三特徵點的數量是否大於一第二門檻值,當所述多個第三特徵點的數量大於所述第二門檻值時,所述處理器從所述多個第三特徵點中選擇多個第五特徵點以根據所述多個第五特徵點執行所述生物辨識操作。
  2. 如申請專利範圍第1項所述的電子裝置,其中在識別用於執行所述生物辨識操作的所述多個第三特徵點的運作中,所述處理器獲得其他影像中用於執行所述生物辨識操作的多 個第四特徵點,所述處理器從所述多個第二特徵點與所述多個第四特徵點中選擇重複出現次數高於一第一門檻值的特徵點作為所述多個第三特徵點。
  3. 如申請專利範圍第1項所述的電子裝置,其中所述多個第五特徵點的數量小於所述多個第三特徵點的數量,且根據所述多個第五特徵點執行所述生物辨識操作所達到的辨識率非小於根據所述多個第三特徵點執行所述生物辨識操作所達到的辨識率。
  4. 如申請專利範圍第1項所述的電子裝置,其中在獲得所述影像中所述多種生物特徵的所述多個特徵點的運作中,所述處理器對所述影像執行一預處理以及一二值化處理,所述處理器對經所述二值化處理後的所述影像執行一型態學運算以獲得所述多個特徵點,所述處理器對所述多個特徵點進行分類,並標記每一所述多個特徵點所屬的類別於經所述二值化處理後的所述影像中。
  5. 如申請專利範圍第1項所述的電子裝置,其中所述多種生物特徵包括一第一類生物特徵以及一第二類生物特徵,所述電子裝置更包括:一儲存電路,耦接至所述處理器,其中所述處理器將所述多個第三特徵點中屬於所述第一類生物特徵的特徵點儲存至所述儲存電路中對應於所述第二類生物特徵的 一第二儲存區域,並且將所述多個第三特徵點中屬於所述第二類生物特徵的特徵點儲存至所述儲存電路中對應於所述第一類生物特徵的一第一儲存區域。
  6. 如申請專利範圍第5項所述的電子裝置,更包括:一通訊電路,耦接至所述處理器,其中所述處理器獲得一第一公鑰、對應於所述第一公鑰的第一私鑰、一第二公鑰以及對應於所述第二公鑰的第二私鑰,所述處理器獲得由一通訊電路接收的多個已加密資料,其中所述多個已加密資料包括由所述第一公鑰加密的一第一已加密資料以及由所述第二公鑰加密的一第二已加密資料,所述處理器使用所述第一私鑰解密所述第一已加密資料以獲得所述第一類生物特徵的一第一待驗證特徵點,所述處理器使用所述第二私鑰解密所述第二已加密資料以獲得所述第二類生物特徵的一第二待驗證特徵點,所述處理器使用所述第一待驗證特徵點以及所述第二待驗證特徵點執行所述生物辨識操作,其中在使用所述第一待驗證特徵點以及所述第二待驗證特徵點執行所述生物辨識操作的運作中,所述處理器根據所述第一待驗證特徵點從所述第二儲存區域中獲得相似度最高的一第一匹配資料,所述處理器根據所述第二待驗證特徵點從所述第一儲存區域中獲得相似度最高的一第二匹配資料, 所述處理器判斷所述第一匹配資料的索引是否相同於所述第二匹配資料的索引,當所述第一匹配資料的索引相同於所述第二匹配資料的索引時,所述處理器判斷所述多個已加密資料通過驗證,當所述第一匹配資料的索引不相同於所述第二匹配資料的索引時,所述處理器判斷所述多個已加密資料沒有通過驗證。
  7. 如申請專利範圍第6項所述的電子裝置,其中在判斷所述第一匹配資料的索引是否相同於所述第二匹配資料的索引的運作之前,所述處理器判斷所述第一匹配資料以及所述第二匹配資料是否達到預設的正規化標準,當所述第一匹配資料以及所述第二匹配資料的至少其中之一沒有達到預設的正規化標準時,所述處理器判斷所述多個已加密資料沒有通過驗證,當所述第一匹配資料以及所述第二匹配資料皆達到預設的正規化標準時,所述處理器執行判斷所述第一匹配資料的索引是否相同於所述第二匹配資料的索引的運作。
  8. 如申請專利範圍第1項所述的電子裝置,其中所述多種生物特徵包括一第一類生物特徵以及一第二類生物特徵,所述電子裝置更包括:一儲存電路,耦接至所述處理器,其中所述處理器將所述多個第三特徵點中屬於所述第一類生物特 徵的特徵點以及所述多個第三特徵點中屬於所述第二類生物特徵的特徵點交叉合併以產生一合併後資料,對所述合併後資料執行一柵欄加密演算法以獲得一第一加密後資料,並將所述第一加密後資料儲存至所述儲存電路中。
  9. 如申請專利範圍第8項所述的電子裝置,其中所述處理器獲得所述第一類生物特徵的一第三待驗證特徵點以及所述第二類生物特徵的一第四待驗證特徵點,所述處理器將儲存在所述儲存電路中的至少一加密後資料進行解密以獲得至少一解密後資料,所述處理器根據所述第三待驗證特徵點以及所述第四待驗證特徵點比對所述解密後資料以獲得所述第一類生物特徵中相似度最高的一第三匹配資料以及所述第二類生物特徵中相似度最高的一第四匹配資料,所述處理器判斷所述第三匹配資料以及所述第四匹配資料是否達到預設的正規化標準,當所述第三匹配資料以及所述第四匹配資料的至少其中之一沒有達到預設的正規化標準時,所述處理器判斷沒有通過所述生物辨識操作,當所述第三匹配資料以及所述第四匹配資料皆達到預設的正規化標準時,所述處理器執行判斷通過所述生物辨識操作。
  10. 如申請專利範圍第9項所述的電子裝置,其中在判斷所述第三匹配資料以及所述第四匹配資料是否達到預設的正規化標準的運作之前,所述處理器判斷所述第三匹配資料的索引是否相同於所述第四匹配資料的索引,當所述第三匹配資料的索引相同於所述第四匹配資料的索引時,所述處理器執行判斷所述第三匹配資料以及所述第四匹配資料是否達到預設的正規化標準的運作,當所述第三匹配資料的索引不相同於所述第四匹配資料的索引時,所述處理器判斷沒有通過所述生物辨識操作。
  11. 一種生物辨識的特徵獲得方法,用於一電子裝置,所述電子裝置包括一輸入電路以及一處理器,所述方法包括:藉由所述輸入電路獲得包括一使用者的多種生物特徵的一影像;藉由所述處理器獲得所述影像中所述多種生物特徵的多個特徵點;藉由所述處理器將所述影像分割為多個子影像,並獲得每一所述多個子影像中的一區域,其中每一所述多個子影像包括所述多個特徵點中的多個第一特徵點,所述多個第一特徵點中分佈在所述區域中的多個第二特徵點的密度高於所述區域所屬的子影像中其他的區域的密度;以及藉由所述處理器從每一所述多個子影像中的所述區域的所述 多個第二特徵點中識別用於執行一生物辨識操作的多個第三特徵點,其中識別用於執行所述生物辨識操作的所述多個第三特徵點的步驟之後,所述方法更包括:藉由所述處理器判斷所述多個第三特徵點的數量是否大於一第二門檻值;當所述多個第三特徵點的數量大於所述第二門檻值時,所述處理器從所述多個第三特徵點中選擇多個第五特徵點以根據所述多個第五特徵點執行所述生物辨識操作。
  12. 如申請專利範圍第11項所述的生物辨識的特徵獲得方法,其中識別用於執行所述生物辨識操作的所述多個第三特徵點的步驟包括:藉由所述處理器獲得其他影像中用於執行所述生物辨識操作的多個第四特徵點;藉由所述處理器從所述多個第二特徵點與所述多個第四特徵點中選擇重複出現次數高於一第一門檻值的特徵點作為所述多個第三特徵點。
  13. 如申請專利範圍第11項所述的生物辨識的特徵獲得方法,其中所述多個第五特徵點的數量小於所述多個第三特徵點的數量,且根據所述多個第五特徵點執行所述生物辨識操作所達到的辨識率非小於根據所述多個第三特徵點執行所述生物辨識操作所達到的辨識率。
  14. 如申請專利範圍第11項所述的生物辨識的特徵獲得方法,其中獲得所述影像中所述多種生物特徵的所述多個特徵點的步驟包括:藉由所述處理器對所述影像執行一預處理以及一二值化處理;藉由所述處理器對經所述二值化處理後的所述影像執行一型態學運算以獲得所述多個特徵點;以及藉由所述處理器對所述多個特徵點進行分類,並標記每一所述多個特徵點所屬的類別於經所述二值化處理後的所述影像中。
  15. 如申請專利範圍第11項所述的生物辨識的特徵獲得方法,其中所述多種生物特徵包括一第一類生物特徵以及一第二類生物特徵,且所述電子裝置更包括一儲存電路,所述方法更包括:藉由所述處理器將所述多個第三特徵點中屬於所述第一類生物特徵的特徵點儲存至所述儲存電路中對應於所述第二類生物特徵的一第二儲存區域,並且將所述多個第三特徵點中屬於所述第二類生物特徵的特徵點儲存至所述儲存電路中對應於所述第一類生物特徵的一第一儲存區域。
  16. 如申請專利範圍第15項所述的生物辨識的特徵獲得方法,其中所述電子裝置更包括一通訊電路,所述方法更包括:藉由所述處理器獲得一第一公鑰、對應於所述第一公鑰的第一私鑰、一第二公鑰以及對應於所述第二公鑰的第二私鑰,藉由所述處理器獲得由一通訊電路接收的多個已加密資料, 其中所述多個已加密資料包括由所述第一公鑰加密的一第一已加密資料以及由所述第二公鑰加密的一第二已加密資料;藉由所述處理器使用所述第一私鑰解密所述第一已加密資料以獲得所述第一類生物特徵的一第一待驗證特徵點;藉由所述處理器使用所述第二私鑰解密所述第二已加密資料以獲得所述第二類生物特徵的一第二待驗證特徵點;以及藉由所述處理器使用所述第一待驗證特徵點以及所述第二待驗證特徵點執行所述生物辨識操作,其中使用所述第一待驗證特徵點以及所述第二待驗證特徵點執行所述生物辨識操作的步驟包括:藉由所述處理器根據所述第一待驗證特徵點從所述第二儲存區域中獲得相似度最高的一第一匹配資料;藉由所述處理器根據所述第二待驗證特徵點從所述第一儲存區域中獲得相似度最高的一第二匹配資料;藉由所述處理器判斷所述第一匹配資料的索引是否相同於所述第二匹配資料的索引;當所述第一匹配資料的索引相同於所述第二匹配資料的索引時,藉由所述處理器判斷所述多個已加密資料通過驗證;以及當所述第一匹配資料的索引不相同於所述第二匹配資料的索引時,藉由所述處理器判斷所述多個已加密資料沒有通過驗證。
  17. 如申請專利範圍第16項所述的生物辨識的特徵獲得方法,其中判斷所述第一匹配資料的索引是否相同於所述第二匹配資料的索引的步驟之前,所述方法更包括:藉由所述處理器判斷所述第一匹配資料以及所述第二匹配資料是否達到預設的正規化標準;當所述第一匹配資料以及所述第二匹配資料的至少其中之一沒有達到預設的正規化標準時,藉由所述處理器判斷所述多個已加密資料沒有通過驗證;以及當所述第一匹配資料以及所述第二匹配資料皆達到預設的正規化標準時,藉由所述處理器執行判斷所述第一匹配資料的索引是否相同於所述第二匹配資料的索引的運作。
  18. 如申請專利範圍第11項所述的生物辨識的特徵獲得方法,其中所述多種生物特徵包括一第一類生物特徵以及一第二類生物特徵,且所述電子裝置更包括一儲存電路,所述方法更包括:藉由所述處理器將所述多個第三特徵點中屬於所述第一類生物特徵的特徵點以及所述多個第三特徵點中屬於所述第二類生物特徵的特徵點交叉合併以產生一合併後資料,對所述合併後資料執行一柵欄加密演算法以獲得一第一加密後資料,並將所述第一加密後資料儲存至所述儲存電路中。
  19. 如申請專利範圍第18項所述的生物辨識的特徵獲得方法,更包括:藉由所述處理器獲得所述第一類生物特徵的一第三待驗證特 徵點以及所述第二類生物特徵的一第四待驗證特徵點;藉由所述處理器將儲存在所述儲存電路中的至少一加密後資料進行解密以獲得至少一解密後資料;藉由所述處理器根據所述第三待驗證特徵點以及所述第四待驗證特徵點比對所述解密後資料以獲得所述第一類生物特徵中相似度最高的一第三匹配資料以及所述第二類生物特徵中相似度最高的一第四匹配資料;藉由所述處理器判斷所述第三匹配資料以及所述第四匹配資料是否達到預設的正規化標準;當所述第三匹配資料以及所述第四匹配資料的至少其中之一沒有達到預設的正規化標準時,藉由所述處理器判斷沒有通過所述生物辨識操作;當所述第三匹配資料以及所述第四匹配資料皆達到預設的正規化標準時,藉由所述處理器執行判斷通過所述生物辨識操作。
  20. 如申請專利範圍第19項所述的生物辨識的特徵獲得方法,其中判斷所述第三匹配資料以及所述第四匹配資料是否達到預設的正規化標準的步驟之前,所述方法還包括:藉由所述處理器判斷所述第三匹配資料的索引是否相同於所述第四匹配資料的索引;當所述第三匹配資料的索引相同於所述第四匹配資料的索引時,藉由所述處理器執行判斷所述第三匹配資料以及所述第四匹配資料是否達到預設的正規化標準的運作;以及 當所述第三匹配資料的索引不相同於所述第四匹配資料的索引時,藉由所述處理器判斷沒有通過所述生物辨識操作。
TW108140599A 2019-11-08 2019-11-08 電子裝置與生物辨識的特徵獲得方法 TWI743588B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW108140599A TWI743588B (zh) 2019-11-08 2019-11-08 電子裝置與生物辨識的特徵獲得方法
CN201911139533.7A CN112784657B (zh) 2019-11-08 2019-11-20 电子装置与生物辨识的特征获得方法
US16/747,476 US11120245B2 (en) 2019-11-08 2020-01-20 Electronic device and method for obtaining features of biometrics
EP20157965.3A EP3819818A1 (en) 2019-11-08 2020-02-18 Electronic device and method for obtaining features of biometrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108140599A TWI743588B (zh) 2019-11-08 2019-11-08 電子裝置與生物辨識的特徵獲得方法

Publications (2)

Publication Number Publication Date
TW202119271A TW202119271A (zh) 2021-05-16
TWI743588B true TWI743588B (zh) 2021-10-21

Family

ID=69726416

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108140599A TWI743588B (zh) 2019-11-08 2019-11-08 電子裝置與生物辨識的特徵獲得方法

Country Status (4)

Country Link
US (1) US11120245B2 (zh)
EP (1) EP3819818A1 (zh)
CN (1) CN112784657B (zh)
TW (1) TWI743588B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901336A (zh) * 2010-06-11 2010-12-01 哈尔滨工程大学 指纹与指静脉双模态识别决策级融合法
US20160239520A1 (en) * 2011-10-03 2016-08-18 Accenture Global Services Limited Biometric matching engine
CN106023205A (zh) * 2016-05-23 2016-10-12 杭州健培科技有限公司 基于简化粒子群优化二维最大熵阈值的医学影像分割方法
CN106936775A (zh) * 2015-12-29 2017-07-07 航天信息股份有限公司 一种基于指纹识别的认证方法及系统
TWI662177B (zh) * 2018-10-12 2019-06-11 一德金屬工業股份有限公司 具有雙解鎖識別型式的門禁管制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511684B2 (ja) 2000-05-16 2010-07-28 日本電気株式会社 バイオメトリクス本人確認サービス提供システム
US6970582B2 (en) * 2001-03-06 2005-11-29 Northrop Grumman Corporation Method and system for identity verification using multiple simultaneously scanned biometric images
US20070036400A1 (en) 2005-03-28 2007-02-15 Sanyo Electric Co., Ltd. User authentication using biometric information
KR101178855B1 (ko) * 2010-05-03 2012-09-03 남궁종 홍채 인식 시스템, 그 방법 및 이를 이용한 무선 통신 장치 보안 시스템
JP6167733B2 (ja) 2013-07-30 2017-07-26 富士通株式会社 生体特徴ベクトル抽出装置、生体特徴ベクトル抽出方法、および生体特徴ベクトル抽出プログラム
US10002285B2 (en) * 2015-09-25 2018-06-19 Qualcomm Incorporated Fast, high-accuracy, large-scale fingerprint verification system
CN105975838A (zh) 2016-06-12 2016-09-28 北京集创北方科技股份有限公司 安全芯片、生物特征识别方法和生物特征模板注册方法
TWI619093B (zh) * 2016-10-19 2018-03-21 財團法人資訊工業策進會 視覺定位裝置、方法及其電腦程式產品
KR101959892B1 (ko) * 2017-05-25 2019-07-04 크루셜텍 (주) 지문 인증 방법 및 장치
CN107229915A (zh) * 2017-05-26 2017-10-03 北京小米移动软件有限公司 生物特征识别方法、装置、设备及存储介质
US10848321B2 (en) 2017-11-03 2020-11-24 Mastercard International Incorporated Systems and methods for authenticating a user based on biometric and device data
KR101885733B1 (ko) * 2017-12-08 2018-08-06 주식회사 리턴트루 바이오 인증 장치 및 바이오 인증 장치를 이용한 사용자 인증 방법
FR3091941B1 (fr) 2019-01-22 2023-01-13 Idemia Identity & Security France Procédé de vérification d’une authentification biométrique
CN109829493A (zh) 2019-01-25 2019-05-31 黑龙江大学 基于特征混合矩阵的指纹与指静脉识别融合方法
CN110162953A (zh) * 2019-05-31 2019-08-23 Oppo(重庆)智能科技有限公司 生物识别方法及相关产品
CN110245483B (zh) * 2019-06-10 2021-04-13 Oppo广东移动通信有限公司 生物识别方法及相关产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901336A (zh) * 2010-06-11 2010-12-01 哈尔滨工程大学 指纹与指静脉双模态识别决策级融合法
US20160239520A1 (en) * 2011-10-03 2016-08-18 Accenture Global Services Limited Biometric matching engine
CN106936775A (zh) * 2015-12-29 2017-07-07 航天信息股份有限公司 一种基于指纹识别的认证方法及系统
CN106023205A (zh) * 2016-05-23 2016-10-12 杭州健培科技有限公司 基于简化粒子群优化二维最大熵阈值的医学影像分割方法
TWI662177B (zh) * 2018-10-12 2019-06-11 一德金屬工業股份有限公司 具有雙解鎖識別型式的門禁管制方法

Also Published As

Publication number Publication date
CN112784657B (zh) 2023-12-08
US20210142034A1 (en) 2021-05-13
EP3819818A1 (en) 2021-05-12
US11120245B2 (en) 2021-09-14
TW202119271A (zh) 2021-05-16
CN112784657A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
Wang et al. A fingerprint orientation model based on 2D Fourier expansion (FOMFE) and its application to singular-point detection and fingerprint indexing
CN105825176A (zh) 基于多模态非接触身份特征的识别方法
TWI767675B (zh) 隱私保護下的用戶識別方法、裝置及設備
KR20090087895A (ko) 생체인식정보의 추출과 대조를 위한 방법 및 장치
CN106709417A (zh) 一种多模态生物识别系统及其使用方法
Padmapriya et al. Real time smart car lock security system using face detection and recognition
Vishi et al. Multimodal biometric authentication using fingerprint and iris recognition in identity management
Anwar et al. Human ear recognition using SIFT features
CN111435558A (zh) 一种基于生物特征多模态图像的身份认证方法及装置
Galiyawala et al. Person retrieval in surveillance using textual query: a review
Ge et al. Deep and discriminative feature learning for fingerprint classification
TWI743588B (zh) 電子裝置與生物辨識的特徵獲得方法
Jawale et al. Ear based attendance monitoring system
Al Taee et al. A new approach for fingerprint authentication in biometric systems using BRISK algorithm
Malik Using codes in place of Fingerprints images during image processing for Criminal Information in large Databases and Data warehouses to reduce Storage, enhance efficiency and processing speed
Sukkar et al. A Real-time Face Recognition Based on MobileNetV2 Model
Solanke et al. “Biometrics—Iris recognition system” A study of promising approaches for secured authentication
Dhiman et al. An introduction to deep learning applications in biometric recognition
Sujana et al. Multi-modal Biometric System for Face and Fingerprint using Convolutional Neural Network
Meraoumia et al. An automated finger-knuckle-print identification system using jointly RBF & RFT classifiers
Sharma et al. Fingerprint matching Using Minutiae Extraction Techniques
Kadam et al. Multimodal biometric fusion
Fatima et al. Secured multimodal biometric system
Gaikwad et al. Face Authentication and Secure Auto Sharing Using Deep Learning Algorithm
Bethuna et al. FPGA based Implementation of Iris Recognition