TWI743471B - 第一光子相關飛行時間感測器 - Google Patents

第一光子相關飛行時間感測器 Download PDF

Info

Publication number
TWI743471B
TWI743471B TW108113736A TW108113736A TWI743471B TW I743471 B TWI743471 B TW I743471B TW 108113736 A TW108113736 A TW 108113736A TW 108113736 A TW108113736 A TW 108113736A TW I743471 B TWI743471 B TW I743471B
Authority
TW
Taiwan
Prior art keywords
time
light
flop
flip
timing signal
Prior art date
Application number
TW108113736A
Other languages
English (en)
Other versions
TW201946403A (zh
Inventor
奧利維爾 布爾堤爾
Original Assignee
美商豪威科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商豪威科技股份有限公司 filed Critical 美商豪威科技股份有限公司
Publication of TW201946403A publication Critical patent/TW201946403A/zh
Application granted granted Critical
Publication of TWI743471B publication Critical patent/TWI743471B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • G01J2001/4466Avalanche
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/08Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本發明係關於一種第一光子相關飛行時間(TOF)感測器。該飛行時間(TOF)感測器包括一光源、複數個雪崩光電二極體,及複數個脈衝產生器。控制電路經耦接至該光源、該複數個雪崩光電二極體及該複數個脈衝產生器,且該控制電路包括當由該控制電路執行時引起該飛行時間感測器執行操作之邏輯。該等操作包括自該光源發射光,及運用該複數個雪崩光電二極體接收自一物件反射之該光。複數個脈衝係自對應於接收該光之個別雪崩光電二極體之個別脈衝產生器輸出,且一時序信號係在該複數個脈衝於時間上重疊時輸出。計算當該複數個雪崩光電二極體中之一第一雪崩光電二極體接收該光時之一時間。

Description

第一光子相關飛行時間感測器
本發明大體上係關於光學感測器。詳言之,本發明之實例係關於飛行時間感測器。
隨著三維(3D)應用程式之普及性在諸如成像、電影、遊戲、電腦、使用者介面、面部辨識、物件辨識、擴增實境等領域持續增長,對3D相機之關注日益增加。創建3D影像之典型被動方式為使用多個相機擷取立體影像或多個影像。使用立體影像,影像中之物件可經三角形化以創建3D影像。此三角化技術之一個缺點為難以使用小裝置創建3D影像,此係因為在每一相機之間必須存在最小間隔距離以便創建三維影像。另外,此技術係複雜的且因此需要顯著電腦處理功率以便即時地創建3D影像。
對於要求即時地擷取3D影像之應用,有時使用基於飛行時間量測之主動深度成像系統。飛行時間相機通常採用引導物件處之光之光源、偵測自物件反射之光之感測器,以及基於光往返於物件所花費之往返時間計算至物件之距離之處理單元。
擷取3D影像之持續挑戰係將飛行時間相機之所要效能參數與系統之實體大小及功率約束條件進行平衡。舉例而言,意在用於對附近 物件及遠處物件進行成像之飛行時間系統之功率要求可顯著不同。此等挑戰被外在參數(例如,相機之所要框速率、深度解析度及橫向解析度)及內在參數(例如,感測器之量子效率、填充因數、抖動及雜訊)進一步複雜化。
100:飛行時間系統/飛行時間感測器
102:光源
104:經發射光
108:圖
110:反射光
116:透鏡
120:複數個像素
122:第一像素
126:控制器
130:物件
200:直方圖
300A:邏輯/邏輯圖
300B:邏輯時序/時序圖
300C:時序圖
301A:脈衝產生器
301B:脈衝產生器
301D:脈衝產生器
303A:NAND閘
303B:NAND閘
305:NOR閘
400:邏輯
403:AND閘
405A:第一D正反器
405B:第三D正反器
407A:第二D正反器
407B:第四D正反器
409A:時數轉換器(TDC)
409B:時數轉換器(TDC)
411:數位核心
413:校準測試結構
500:實例方法
501:區塊
503:區塊
505:區塊
507:區塊
509:區塊
511:區塊
flens:焦距
L:距離
t1:最後一個光子之到達時間(上升邊緣)
t2:第一光子之經生成脈衝之下降邊緣
TWIN:間隔
參考以下圖式描述本發明之非限制性且非窮盡性的實例,其中除非另外規定,否則在各視圖通篇中相同的附圖標記指代相同的部分。
圖1為根據本發明之教示之展示飛行時間(TOF)感測器之一個實例之圖。
圖2說明來自並非圖1之感測器之實例飛行時間感測器之飛行時間資料。
圖3A至圖3B展示根據本發明之教示之可實施於圖1之飛行時間感測器中之邏輯及邏輯時序之實例。
圖4描繪根據本發明之教示之可包括在圖1之飛行時間感測器中之額外邏輯之實例。
圖5說明根據本發明之教示之計算飛行時間之實例方法。
對應的參考標號在圖式之若干視圖通篇中指示對應的組件。熟習此項技術者應瞭解,圖中之元件僅為簡單及清晰起見而進行說明,但不一定按比例繪製。舉例而言,圖中之一些元件之尺寸可能相對於其他元件加以放大以有助於改良對本發明之各種實施例之理解。並且,通常未描繪在商業可行之實施例中有用或必需之常見但眾所周知之元件,以 便促進本發明之此等各種實施例之遮擋較少之視圖。
本文中描述用於第一光子相關飛行時間感測器之設備及方法之實例。在以下描述中,陳述眾多具體細節以提供對實例之透徹理解。然而,熟習相關技術者將認識到,可在沒有該等具體細節中之一或多者之情況下或使用其他方法、組件、材料等實踐本文中所描述之技術。在其他情況下,未展示或詳細描述眾所周知之結構、材料或操作以免使某些態樣混淆。
在本說明書通篇中參考「一個實例」或「一個實施例」意味著結合實例描述之特定特徵、結構或特性包括於本發明之至少一個實例中。因此,在本說明書通篇中在各種位置中出現短語「在一個實例中」或「在一個實施例中」未必都係指同一個實例。此外,在一或多個實例中,特定特徵、結構或特性可以任何合適方式組合。
單光子雪崩光電二極體(SPAD)為光電二極體,其在其雪崩點周圍偏壓以吸收且偵測單光子。當SPAD在蓋革模式(Geiger mode)中適當地偏壓時(其中反向電壓高於雪崩擊穿值),其等待電荷進入其內部電場且觸發雪崩。每一雪崩都會生成脈衝。由於SPAD具有<100ps之內抖動,因此SPAD可用於具有高精確度之時間量測。
通常,飛行時間影像感測器藉由發射光(例如,光之相關脈衝,其可來自如雷射二極體之單色光源等等)而起作用。光脈衝由影像感測器或相機反射且接收。光子自系統行進至物件且返回至系統之飛行時間經量測且用於判定距離。參見例如圖1及用於飛行時間系統之一個實例之相關聯論述。
與入射光之吸收無關之自由電荷載流子有時可在經偏壓半導體材料(例如,矽、鍺等)中生成。此等載流子可被稱作「暗計數率」(DCR)之速率隨機地生成。類似地,背景光光子亦可在曝光期間在任何時間(隨機地)被吸收。背景光光子出現率取決於照明度(泊松分佈)而或多或少為隨機的且對於相同背景照明下之像素應不同。當自系統中之光源發射之光之返回脈衝擊中感測器時,同步光光子出現。因此,此並非隨機的且對於接收同一信號之像素應為類似的。
藉由在大量框上對N個SPAD之群組之所有輸入求和,可獲得用於同質場景之資料的直方圖(參見例如圖2)。然而,背景光及/或DCR亦會在隨機時間引起SPAD擊穿,其在完整集成週期內或多或少同等地分佈。使用用於飛行時間(TOF)距離量測之SPAD通常意指處理歸因於背景光及DCR之許多資料。在一些SPAD飛行時間感測器中,裝置可採用大量框來構建直方圖(參見例如圖2),且區分返回信號與背景及DCR。然而,此需要儲存及處理資料,且對直方圖進行篩選以在所有資料當中找到信號峰值。此等步驟可能需要許多儲存及處理功率。此外,藉由對填充有雜訊之直方圖進行平均化,有可能計算出用於返回信號的錯誤估計。
因此,此處提議計算重疊(相關)脈衝(回應於SPAD接收到光子而生成)以便縮減誤差,及計算飛行時間及後續距離量測所需之處理功率。此係藉由輸出用於相關脈衝之時序信號來達成。另外,本發明進一步計算反射光脈衝中之第一光子被接收的時間及反射光脈衝中之最後一個光子被接受的時間。此可係藉由量測時序信號之上升邊緣及下降邊緣來達成。若已知用於第一光子及最後一個光子的時序,則該系統可量測相關性(第一光子與最後一個光子之間的時間)。此指示目標之反射率,且為LiDAR 應用中所期望的。
圖1為根據本發明之教示之展示飛行時間系統100之一個實例的方塊圖。飛行時間系統100包括光源102、透鏡116、複數個像素120(包括第一像素122)及控制器126(其包括控制電路、記憶體等)。控制器126經耦接至光源102及複數個像素120(包括第一像素122)。複數個像素120經定位於距透鏡116之焦距flens處。如實例中所展示,光源102及透鏡116經定位於距物件130之距離L處。應瞭解,圖1並非按比例說明,且在一個實例中焦距flens基本上小於透鏡116與物件130之間的距離L。因此,應瞭解,出於本發明之目的,距離L與距離L+焦距flens出於根據本發明之教示之飛行時間量測的目的係基本上相等的。如所說明,複數個像素120及控制器126經表示為單獨組件。然而,應瞭解,複數個像素120及控制器126均可被整合至同一經堆疊晶片感測器上,且亦可包括時數轉換器(或複數個時數轉換器,其中四個或多於四個SPAD之每一像素與複數個時數轉換器中之對應時數轉換器相關聯)。在其他實例中,複數個像素120及控制器126可經整合至非堆疊式平坦感測器上。亦應瞭解,每一像素(或甚至每一SPAD)可具有用於儲存數位位元或信號以用於對偵測到之光子進行計數之對應的記憶體。
飛行時間系統100可為3D相機,其運用複數個像素120基於飛行時間量測計算待成像之場景(例如,物件130)之影像深度資訊。複數個像素120中之每一像素判定用於物件130之對應部分之深度資訊,使得可生成物件130之3D影像。藉由量測光自光源102傳播至物件130且返回至飛行時間系統100之往返時間來判定深度資訊。如所說明,光源102(例如,垂直空腔表面發射雷射器)經組態以歷經距離L將光104發射至物件 130。經發射光104接著作為反射光110自物件130反射,反射光中之一些朝向飛行時間系統100傳播距離L且作為影像光入射至複數個像素120上。複數個像素120中之每一像素(例如,第一像素122)包括光電偵測器(例如,一或多個單光子雪崩二極體)以偵測影像光且將該影像光轉換成電信號(例如,影像電荷)。
如所描繪之實例中所展示,用於經發射光104之脈衝自光源102傳播至物件130且返回至複數個像素120之往返時間可用於使用以下等式(1)及(2)中之以下關係來判定距離L:
Figure 108113736-A0305-02-0008-1
Figure 108113736-A0305-02-0008-2
其中c為光速,其大約等於3×108m/s,且TTOF對應於往返時間,其為光之脈衝往返於如圖1中所展示之物件所花費之時間量。因此,一旦已知往返時間,則可計算距離L且其隨後用於判定物件130之深度資訊。控制器126耦接至複數個像素120(包括第一像素122)及光源102,且包括在被執行時引起飛行時間系統100執行用於判定往返時間之操作之邏輯。
如所展示,個別像素(例如,第一像素122)可包含耦接至猝熄電路(例如,電阻器R(Q))之SPAD,且模數電壓轉換器(在當前實例中表示為反相器)耦接在SPAD與猝熄電路之間。如圖108中所展示,當接收到光子時,較大電壓降(例如,V(OUT))出現在SPAD中,但接著電壓經由猝熄電路返回至穩態電壓。數位波形回應於出現在二極體中之雪崩擊穿而自模數轉換器輸出。
在一些實例中,飛行時間感測器100包括在手持型裝置(例如,行動電話、平板電腦、相機等)中,該手持型裝置具有大小及至少部 分地基於裝置之大小而判定之功率約束。替代地或另外,飛行時間系統100可具有具體的所要裝置參數,諸如框速率、深度解析度、橫向解析度等。在一些實例中,飛行時間感測器100包括在LiDAR系統中。
圖2說明展示來自並非圖1之感測器之實例飛行時間感測器之所有光子之總和之直方圖200。如圖2中所展示且如上文所描述,藉由在大量框上對N個SPAD之群組之所有輸入進行求和,可獲得資料之直方圖200。所描繪之實例表示來自100個框上之四個SPAD之資料。如所展示,返回光信號在對應於區間90之時間出現。背景光及/或DCR在隨機時間引起觸發,其自0至100個區間在完整整合週期內或多或少同等地分佈。因此,如所說明,使用用於飛行時間距離量測之SPAD通常意指處理歸因於背景光及DCR之許多資料,此係由於系統需要採用大量框以構建直方圖200且將返回信號與背景光及DCR進行區分。此需要許多儲存及處理功率。如下文所描述,根據本發明之教示之實例提供可與圖1中之系統一起使用之架構,以便避免儲存大量的資料作為直方圖,並且亦縮減計算飛行時間量測所需之處理功率。
圖3A展示根據本發明之教示之可實施於圖1之飛行時間感測器中之邏輯300A及邏輯時序300B之一個實例。所描繪之邏輯300A及邏輯時序300B使得飛行時間資料之分區不必要且因此減少用於系統之所需儲存及處理,因為不會生成直方圖資料(如圖2中所描繪之直方圖資料)。藉由使用光子到達時間相關性,該系統能夠抑制背景雜訊及DCR資料之量。應瞭解,此處且其他地方展示之「邏輯」可以硬體、軟體或兩者之組合實施。
如邏輯圖300A中所展示,每一SPAD(例如,SPAD 1至4) 耦接至各別脈衝產生器301A至301D。如所展示,來自SPAD之每一雪崩事件由脈衝產生器301A至301D接收,且該等脈衝產生器輸出具有具體寬度(TWIN)之脈衝。該等脈衝接著由兩個NAND閘303A及303B接收,且NAND閘303A及303B之輸出由NOR閘305接收。因此,該系統接著僅處理來自脈衝產生器之輸出之重疊:有效地對所有輸入進行AND閘控(熟習此項技術者將瞭解AND(A,B,C,D)=NOR[NAND(A,B),NAND(C,D)])。因此所有SPAD輸出僅在來自脈衝產生器之脈衝在時間上重疊之情況下發出脈衝。藉此,該系統僅接受在TWIN間隔內(且因此相關)之脈衝。該系統亦可接受限制較少之組合。4輸入邏輯圖有可能具有用於重疊輸入脈衝之數目之可變臨限值。一般技術者將瞭解,邏輯圖300A僅為一個實例邏輯圖,且存在可達成相同或類似結果之許多等效電路。此外,該圖使用四個SPAD,且對於具有多於四個SPAD之架構,將需要驗證額外組合,此需要額外邏輯。
時序圖300B中描繪邏輯300A之操作,其中發射光脈衝(例如,來自IR雷射器),且經接收光脈衝入射至感測器上。在當前狀況下,重疊脈衝之偵測的臨限值已經設定為二。因此,該系統將僅在兩個輸入之任一組合於TWIN間隔內相關的情況下進行處理。如所展示,SPAD 1(例如,歸因於雜散光或DCR)隨機地擊穿,與經接收光脈衝何時擊中相機無關。SPAD 2歸因於來自經接收光脈衝之光子而擊穿(從而產生「相關脈衝」中之一者)。SPAD 3亦歸因於來自經接收光脈衝之光子而擊穿。如同SPAD 1,SPAD 4隨機地擊穿(例如,歸因於雜散光或DCR),但不在接收到光脈衝時。不管個別SPAD何時或為什麼擊穿,其各別脈衝產生器(例如,脈衝產生器301A至301D)將輸出電氣脈衝。因為在所描繪之實例中, SPAD 2及3於間隔TWIN內(在時間上)緊密在一起擊穿,所以由其各別脈衝產生器發射的脈衝在一時間段內重疊。因此,「所有SPAD輸出」(例如,NOR閘305)發出時序信號(例如,AND(PULSE 2,PULSE 3))。由於其他脈衝(脈衝1及4)並不在同一時間窗內出現,因此不會因此等脈衝輸出任何內容。因此,該系統將僅當複數個SPAD在短TWIN時間窗內擊穿時(例如,當光脈衝由感測器系統接收時)輸出時序信號。因此不需要分區或過度處理,此係由於該系統僅在接收到實際反射光脈衝時記錄光脈衝。換言之,僅有已在間隔TWIN內觸發/擊穿之SPAD輸出的資料將由一或多個時數轉換器(TDC)處理。
在所描繪之實例中,使用四個SPAD之叢集。此四個SPAD之叢集可形成單一像素以與一或多個TDC一起使用。然而,熟習此項技術者將瞭解,根據本發明之教示,任何數目之SPAD可與一或多個TDC一起使用(例如,每一TDC六個SPAD,每一TDC八個SPAD等)。在一晶片中,將存在SPAD之許多叢集。舉例而言,在一些飛行時間感測器中,可存在(320×240)個SPAD,且2×2個SPAD之叢集可形成像素。因此,該系統具有160×120=19200個像素。
圖3B描繪類似於圖3A中之時序圖300B的時序圖300C。然而,圖3B展示電路之時序,該電路具有均在一起經閘控的六個SPAD(不僅僅是四個)。在所描繪之實例中,需要三個SPAD均在TWIN之時間間隔內啟動,以生成時序信號。並且,時序圖300C已經標註以更好地說明時序信號的上升邊緣及下降邊緣可用於計算運用SPAD接收第一光子之時間及運用SPAD接收最後一個光子之時間的方式。應瞭解,根據本發明之教示,此資訊可用於計算反射率。
如所展示,t1為最後一個光子之到達時間(上升邊緣),其引起產生時序信號;t2為第一光子之經生成脈衝的下降邊緣,其引起時序信號結束。因此,t2-TWIN為第一光子之到達時間。因此,已知第一光子及最後一個光子擊中六像素系統的到達時間,該到達時間在TWIN內與3次的出現次數相關。若該系統僅量測ALL_SPAD_OUT之上升邊緣,則其僅量測最後一個光子之到達時間(其可為適用的)。然而,在一些實例中,第一脈衝到達時間可為較佳的。藉由量測下降邊緣且知曉TWIN(參見(例如)在圖4中校準測試結構413),該系統可獲取第一光子之到達時間。可藉由自最後一個光子之到達時間減去第一光子之到達時間來計算該相關性(亦即,單個TWIN中之第一光子與最後一個光子之間的時間)。此可指示目標之反射率,且為LiDAR應用中高度期望的。
圖4描繪根據本發明之教示之可包括在圖1之飛行時間感測器中之額外邏輯400。如所描繪,可存在任何數目之AND閘403(參見例如圖3),其回應於SPAD擊穿及藉由複數個脈衝產生器之後續脈衝生成(例如,所描繪之脈衝0至脈衝N)而輸出時序信號(「CORR_OUT」)。AND閘403耦接至兩個時數轉換器(TDC)409A及409B。AND閘403亦耦接至第一D正反器405A、第二D正反器407A、第三D正反器405B及第四D正反器407B。一或多個反相器在第一D正反器405A與AND閘403之間。第二D正反器407A耦接至第一D正反器405A以接收鎖定信號。類似地,第四D正反器407B耦接至第三D正反器405B以接收鎖定信號。應瞭解,一旦讀出有效的時序信號,則所描繪之邏輯可鎖定(例如,不輸出任何更多飛行時間量測),亦即使額外時序信號自AND閘403輸出。此使得系統需要最小儲存(因為每一TDC 409A及409B僅計算一次飛行時間量測)。一旦第一D 正反器405A、第二D正反器407A、第三D正反器405B及第四D正反器407B接收到重設信號,則可執行後續飛行時間量測。在一些實例中,邏輯400可在感測器中重複自身多次,且每一TDC 409A或409B具有24位元或更少(例如,12位元)之儲存。
藉由具有連續k個微型框之方案,裝置確保在所有微型框之後的所有像素之有效返回信號。如前所述,一旦有效信號到達,TDC 409A、409B將鎖定,且若剩餘的微型框出現第二有效時序信號,則將阻止TDC 409A、409B改寫。應瞭解,該系統可重複許多微型框且在所有微型框之後一次讀出所有資料。每一微型框將包括SPAD重設及光脈衝發射,且接著包括曝光。由於鎖定TDC 409A及409B,如前所述,因此不需要累積額外內部資料。該系統亦節省功率,此係由於TDC 409A及409B不執行針對其他冗餘資料或背景光子之計算。
在所描繪之實例中,TDC 409A及409B亦耦接至數位核心411,其可計算第一光子之到達時間、最後一個光子之到達時間及相關性(其可用於計算目標之反射率)。數位核心411可包括微控制器等等,且可具有記憶體,諸如RAM、ROM等等。如上文所陳述,為了執行所有此等計算,系統可能必須知道自脈衝產生器輸出之實際脈衝寬度。因此,校準測試結構413耦接至數位核心411且對該系統進行校準以知道TWIN之真實值。
圖5說明根據本發明之教示之計算飛行時間之實例方法500。熟習此項技術者將瞭解,方法500中之區塊501至509可按任何次序且甚至並行地發生。此外,根據本發明之教示,區塊可添加至方法500或自方法500移除。
區塊501展示自經構造以發射光之光源(例如,具有正確帶隙之二極體)發射光。在一些實例中,運用雷射發射器發射光,該光可為可見的(例如,紅色雷射、綠色雷射或藍色雷射)或可為不可見的(例如,紅外雷射或紫外雷射)。在其他實例中,可採用非雷射二極體。在一些實例中,控制電路(例如,含有上文所描述之邏輯之具體處理器、通用處理器等等)耦接至光源以控制光源且以在操作期間預定義或判定之間隔發射光脈衝(取決於環境光條件,自光源發射之光脈衝之類型及頻率可改變)。
區塊503說明運用複數個雪崩光電二極體接收自物件反射之光脈衝,該複數個雪崩光電二極體經構造以接收光(例如,應用於光電二極體之正確偏壓電壓,且光電二極體包括具有適當帶隙之半導體)。自物件反射之個別光子可引起複數個雪崩光電二極體擊穿。此可引起二極體中之類比電壓降。接著可運用耦接至複數個雪崩光電二極體之猝熄電路來猝熄該電壓降。該猝熄可使雪崩光電二極體之內部電壓返回至基線電平。
區塊505展示回應於運用複數個雪崩光電二極體接收到光而自耦接至複數個雪崩光電二極體中之個別雪崩光電二極體之個別脈衝產生器輸出複數個脈衝。輸出脈衝之個別脈衝產生器耦接至接收光之個別雪崩光電二極體。個別脈衝產生器之一個實例可為反相器,且當橫跨雪崩光電二極體之電壓降達至某一臨限值時,反相器輸出數位信號。數位信號之寬度可回應於類比信號高於(或低於)反相器之臨限值之時間量(參見例如圖1)。在其他實例中,其他電路可用於生成具有預定固定脈衝寬度之脈衝。應瞭解,脈衝寬度可經預程式化至裝置中或可根據使用調整(例如,由使用者,自動取決於光條件等等)。
區塊507說明回應於輸出複數個脈衝,當複數個脈衝在時 間上重疊時自控制電路輸出時序信號。舉例而言,像素中之若干雪崩光電二極體可在大致同一時間接收光子(及擊穿),其各別個別脈衝產生器可輸出脈衝,且該等脈衝在時間上重疊。因此,控制電路接著將在該等脈衝在時間上重疊之時間段期間輸出時序信號(參見例如圖3時序圖300B「所有SPAD輸出」)。因此,在一些實例中,時序信號具有等於或小於自複數個脈衝產生器輸出之複數個脈衝之固定脈衝持續時間之持續時間。
在一些實例中,輸出時序信號可包括運用耦接至複數個脈衝產生器之AND閘接收複數個脈衝,且AND閘輸出時序信號。應瞭解,複數個AND閘可包括耦接至一或多個NOR閘之複數個NAND閘,或其他等效/類似邏輯結構。
區塊509展示回應於時序信號,計算當複數個雪崩光電二極體中之第一雪崩光電二極體接收光時之時間。應瞭解,時序信號具有上升邊緣及下降邊緣,且複數個脈衝具有固定脈衝持續時間。因此,藉由自出現時序信號之下降邊緣之時間減去固定脈衝持續時間計算當第一雪崩光電二極體接收光時之時間。
區塊511描繪使用當第一雪崩光電二極體接收光時之時間計算飛行時間。在一些實例中,亦可能計算複數個光電二極體中之最後一個雪崩光電二極體接收光之時間。此係因為時序信號之上升邊緣係在最後一個雪崩光電二極體擊穿時。雖然在一些實例中較佳的可能為計算接收第一光子而非最後一個光子之時間,但在其他實例中,計算兩個時間可為適用的。若該系統使用兩個邊緣(此可能需要兩個TDC,參見例如圖4),則該系統可量測相關性(單個TWIN中之第一光子與最後一個光子之間的時間)且此指示目標之反射率且在LiDAR應用中為所期望的。換言之,該系統可計 算第一雪崩光電二極體接收光之時間與最後一個雪崩光電二極體接收光之時間之間的時間差,作為量測反射率之方式。
如上文所陳述,在一些實例中,計算飛行時間包括使用經耦接以接收時序信號且包括在控制電路中之第一時數轉換器(TDC)及第二TDC。另外,控制電路可包括第一D正反器及第二D正反器,該第二D正反器耦接至第一D正反器以自該第一D正反器接收鎖定信號。且第二D正反器耦接至第一TDC。類似地,第四D正反器可耦接至第三D正反器以自第三D正反器接收鎖定信號。且第四D正反器耦接至第二TDC。
對本發明之所說明實例之以上描述(包括摘要中所描述之內容)並不意圖為窮盡性的或將本發明限制於所揭示之精確形式。雖然本文中出於說明性目的描述了本發明之具體實例,但在本發明之範疇內,各種修改係可能的,如熟習相關技術者將認識到。
可鑒於以上詳細描述對本發明作出此等修改。所附申請專利範圍中使用之術語不應解釋為將本發明限於本說明書中揭示之具體實例。確切而言,本發明之範疇應完全由所附申請專利範圍判定,應根據申請專利範圍解釋之已確立之原則來解釋所附申請專利範圍。
500‧‧‧實例方法
501‧‧‧區塊
503‧‧‧區塊
505‧‧‧區塊
507‧‧‧區塊
509‧‧‧區塊
511‧‧‧區塊

Claims (19)

  1. 一種飛行時間(TOF)感測器,其包含:一光源,其經構造以發射光;複數個雪崩(avalanche)光電二極體,其經構造以接收該光;複數個脈衝產生器,其中該複數個脈衝產生器中之個別脈衝產生器經電氣耦接(electrically couple)至該複數個雪崩光電二極體中之個別雪崩光電二極體;及控制電路,其經耦接至該光源、該複數個雪崩光電二極體及該複數個脈衝產生器,其中該控制電路包括當由該控制電路執行時引起該飛行時間感測器執行操作之邏輯,該等操作包括:自該光源發射該光;運用該複數個雪崩光電二極體來接收自一物件(object)反射之該光;回應於運用該複數個雪崩光電二極體接收到該光,自對應於接收該光之該等個別雪崩光電二極體之該等個別脈衝產生器輸出複數個脈衝;回應於輸出該複數個脈衝,當該複數個脈衝在時間上重疊時,輸出一時序(timing)信號;及回應於該時序信號,計算當該複數個雪崩光電二極體中之一第一雪崩光電二極體接收該光時之一時間。
  2. 如請求項1之TOF感測器,其中該時序信號具有一上升邊緣(edge)及 一下降邊緣,且其中該複數個脈衝具有一固定脈衝持續時間,且其中藉由自該時序信號之該下降邊緣出現之時間減去該固定脈衝持續時間來計算該當該第一雪崩光電二極體接收該光時之時間。
  3. 如請求項2之TOF感測器,其中該時序信號具有等於或小於自該複數個脈衝產生器輸出之該複數個脈衝之該固定脈衝持續時間之一持續時間。
  4. 如請求項1之TOF感測器,其中該控制電路進一步包括當由該控制電路執行時引起該飛行時間感測器執行操作之邏輯,該等操作包括:回應於該時序信號,計算該複數個光電二極體中之一最後一個雪崩光電二極體接收該光之時間。
  5. 如請求項4之TOF感測器,其中該控制電路進一步包括當由該控制電路執行時引起該飛行時間感測器執行操作之邏輯,該等操作包括:計算該第一雪崩光電二極體接收該光的時間與該最後一個雪崩光電二極體接收該光的時間之間的一時間差。
  6. 如請求項1之TOF感測器,其中該控制電路包括複數個AND閘以輸出該時序信號。
  7. 如請求項6之TOF感測器,其中該複數個AND閘包括經耦接至一或多個NOR閘之複數個NAND閘。
  8. 如請求項1之TOF感測器,其中該控制電路進一步包括當由該控制電路執行時引起該飛行時間感測器執行操作之邏輯,該等操作包括:運用該控制電路,使用該時序信號來計算一飛行時間。
  9. 如請求項8之TOF感測器,其中使用經耦接以接收該時序信號且經包括於該控制電路中之一第一時數轉換器(TDC)及一第二TDC來計算該飛行時間。
  10. 如請求項9之TOF感測器,其中該控制電路包括:一第一D正反器;一第二D正反器,其經耦接至該第一D正反器以自該第一D正反器接收一鎖定信號,且其中該第二D正反器經耦接至該第一TDC;一第三D正反器;及一第四D正反器,其經耦接至該第三D正反器以自該第三D正反器接收一鎖定信號,且其中該第四D正反器經耦接至該第二TDC。
  11. 一種計算飛行時間(TOF)之方法,其包含:自一光源發射光;運用複數個雪崩光電二極體來接收自一物件反射之該光;回應於運用該複數個雪崩光電二極體接收到該光,自經耦接至接收該光之個別雪崩光電二極體之個別脈衝產生器輸出複數個脈衝;回應於輸出該複數個脈衝,當該複數個脈衝在時間上重疊時輸出一時序信號,且其中該時序信號係運用控制電路生成; 回應於該時序信號,計算當該複數個雪崩光電二極體中之一第一雪崩光電二極體接收該光時之一時間;及使用該當該第一雪崩光電二極體接收該光時之時間來計算該飛行時間。
  12. 如請求項11之方法,其中該時序信號具有一上升邊緣及一下降邊緣,且其中該複數個脈衝具有一固定脈衝持續時間,且其中藉由自該時序信號之該下降邊緣出現之時間減去該固定脈衝持續時間來計算該當該第一雪崩光電二極體接收該光時之時間。
  13. 如請求項12之方法,其中該時序信號具有等於或小於自該複數個脈衝產生器輸出之該複數個脈衝之該固定脈衝持續時間之一持續時間。
  14. 如請求項11之方法,進一步包含回應於該時序信號,計算該複數個光電二極體中之一最後一個雪崩光電二極體接收該光之時間。
  15. 如請求項14之方法,進一步包含計算該第一雪崩光電二極體接收該光的時間與該最後一個雪崩光電二極體接收該光的時間之間的一時間差。
  16. 如請求項11之方法,其中該控制電路包括複數個AND閘以輸出該時序信號。
  17. 如請求項16之方法,其中該複數個AND閘包括經耦接至一或多個 NOR閘之複數個NAND閘。
  18. 如請求項11之方法,其中計算該飛行時間包括使用經耦接以接收該時序信號且經包括於該控制電路中之一第一時數轉換器(TDC)及一第二TDC。
  19. 如請求項18之方法,其中該控制電路包括:一第一D正反器;一第二D正反器,其經耦接至該第一D正反器以自該第一D正反器接收一鎖定信號,且其中該第二D正反器經耦接至該第一TDC;一第三D正反器;及一第四D正反器,其經耦接至該第三D正反器以自該第三D正反器接收一鎖定信號,且其中該第四D正反器經耦接至該第二TDC。
TW108113736A 2018-04-20 2019-04-19 第一光子相關飛行時間感測器 TWI743471B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/958,434 2018-04-20
US15/958,434 US10497738B2 (en) 2018-04-20 2018-04-20 First photon correlated time-of-flight sensor

Publications (2)

Publication Number Publication Date
TW201946403A TW201946403A (zh) 2019-12-01
TWI743471B true TWI743471B (zh) 2021-10-21

Family

ID=68236525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113736A TWI743471B (zh) 2018-04-20 2019-04-19 第一光子相關飛行時間感測器

Country Status (3)

Country Link
US (2) US10497738B2 (zh)
CN (1) CN110389333B (zh)
TW (1) TWI743471B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775486B2 (en) * 2018-02-15 2020-09-15 Velodyne Lidar, Inc. Systems and methods for mitigating avalanche photodiode (APD) blinding
US10497738B2 (en) 2018-04-20 2019-12-03 Omnivision Technologies, Inc. First photon correlated time-of-flight sensor
US11029397B2 (en) * 2018-04-20 2021-06-08 Omnivision Technologies, Inc. Correlated time-of-flight sensor
JP6909929B2 (ja) * 2018-05-30 2021-07-28 株式会社ニコンビジョン 光検出装置及び方法並びに測距装置及び方法
US11644551B2 (en) * 2020-03-30 2023-05-09 Semiconductor Components Industries, Llc Lidar systems with improved time-to-digital conversion circuitry
CN111366944B (zh) * 2020-04-01 2022-06-28 浙江光珀智能科技有限公司 一种测距装置和测距方法
CN111443356B (zh) * 2020-04-15 2022-06-07 北京雷瑟瑞达科技有限公司 一种基于单光器件兼顾距离感知和成像的电路系统及设备
US20220308189A1 (en) * 2021-03-24 2022-09-29 Samsung Electronics Co., Ltd. LOW POWER LiDAR SYSTEM WITH SMART LASER INTERROGRATION
BE1029563B1 (nl) * 2021-07-05 2023-02-06 Voxelsensors Srl Pixel array met dynamische laterale en temporele resolutie
BE1029775B9 (nl) * 2021-09-21 2023-10-09 Voxelsensors Srl Persistentiefiltering bij spd arrays
CN114185057B (zh) * 2021-11-10 2024-05-17 华为技术有限公司 一种探测方法、装置和终端

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034142A1 (en) * 2004-08-13 2006-02-16 Tsukasa Ooishi Non-volatile semiconductor memory device and semiconductor memory device
US20060140044A1 (en) * 2004-12-28 2006-06-29 Tae-Jin Kang Clock signal generation apparatus for use in semiconductor memory device and its method
US20120154786A1 (en) * 2010-12-21 2012-06-21 Sick Ag Optoelectronic sensor and method for the detection and distance determination of objects
TW201312144A (zh) * 2011-07-15 2013-03-16 Softkinetic Sensors Nv 用於提供距離資訊的方法及飛行時間相機
US20130153754A1 (en) * 2011-12-20 2013-06-20 Stmicroelectronics (Grenoble 2) Sas Device having spad photodiodes for detecting an object
US20130181119A1 (en) * 2012-01-13 2013-07-18 Omnivision Technologies, Inc. Shared time of flight pixel
US20160109562A1 (en) * 2011-09-13 2016-04-21 Osi Optoelectronics, Inc. Laser Rangefinder Sensor
CN105738910A (zh) * 2014-12-31 2016-07-06 意法半导体公司 用于确定到材料卷的外表面的距离的装置以及相关方法
US20170187721A1 (en) * 2015-12-23 2017-06-29 Stmicroelectronics (Research & Development) Limited Secure communications using spad tof systems
US20180059224A1 (en) * 2016-08-26 2018-03-01 Samsung Electronics Co., Ltd. Time-of-flight (tof) image sensor using amplitude modulation for range measurement

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522395B1 (en) 1999-04-30 2003-02-18 Canesta, Inc. Noise reduction techniques suitable for three-dimensional information acquirable with CMOS-compatible image sensor ICS
JP4679498B2 (ja) * 2006-12-11 2011-04-27 富士通株式会社 アバランシェフォトダイオードのバイアス制御回路
US8278819B2 (en) * 2007-03-09 2012-10-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and display
EP2495783A1 (en) * 2011-03-01 2012-09-05 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Light-emitting device and method of manufacturing the same
CN103998949B (zh) 2012-01-10 2016-08-24 索弗特凯耐提克传感器股份有限公司 对飞行时间信号处理的改进或与之相关的改进
US8686367B2 (en) * 2012-03-01 2014-04-01 Omnivision Technologies, Inc. Circuit configuration and method for time of flight sensor
DE202013101039U1 (de) * 2013-03-11 2014-03-12 Sick Ag Optoelektronischer Sensor zur Entfernungsmessung
WO2015077614A1 (en) * 2013-11-22 2015-05-28 Schwarz Brent S Lidar scanner calibration
US9523765B2 (en) * 2014-07-14 2016-12-20 Omnivision Technologies, Inc. Pixel-level oversampling for a time of flight 3D image sensor with dual range measurements
EP3258228B1 (de) 2016-06-17 2018-05-09 Sick Ag Lichtempfänger mit lawinenphotodioden im geiger-modus und verfahren zum auslesen
KR102673812B1 (ko) * 2016-07-26 2024-06-10 삼성전자주식회사 라이다 장치 및 거리 측정 방법
US11303859B2 (en) * 2016-09-29 2022-04-12 Stmicroelectronics (Research & Development) Limited Time of flight sensing for brightness and autofocus control in image projection devices
US10291895B2 (en) 2016-10-25 2019-05-14 Omnivision Technologies, Inc. Time of flight photosensor
US10132921B2 (en) * 2016-11-02 2018-11-20 Stmicroelectronics (Research & Development) Ltd Light communications receiver and decoder with time to digital converters
DE102017101501B3 (de) * 2017-01-26 2018-01-04 Sick Ag Optoelektronischer Sensor und Verfahren zur Bestimmung der Entfernung eines Objekts in einem Überwachungsbereich
US10034111B1 (en) 2017-05-11 2018-07-24 Stmicroelectronics, Inc. TOF based gain control
CN107425847B (zh) * 2017-07-17 2020-07-14 南京邮电大学 一种基于脉冲上升沿触发的电荷转移型模拟计数读出电路
US11221400B2 (en) 2018-03-27 2022-01-11 Omnivision Technologies, Inc. Dual mode stacked photomultipliers suitable for use in long range time of flight applications
US10497738B2 (en) 2018-04-20 2019-12-03 Omnivision Technologies, Inc. First photon correlated time-of-flight sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034142A1 (en) * 2004-08-13 2006-02-16 Tsukasa Ooishi Non-volatile semiconductor memory device and semiconductor memory device
US20060140044A1 (en) * 2004-12-28 2006-06-29 Tae-Jin Kang Clock signal generation apparatus for use in semiconductor memory device and its method
US20120154786A1 (en) * 2010-12-21 2012-06-21 Sick Ag Optoelectronic sensor and method for the detection and distance determination of objects
TW201312144A (zh) * 2011-07-15 2013-03-16 Softkinetic Sensors Nv 用於提供距離資訊的方法及飛行時間相機
US20160109562A1 (en) * 2011-09-13 2016-04-21 Osi Optoelectronics, Inc. Laser Rangefinder Sensor
US20130153754A1 (en) * 2011-12-20 2013-06-20 Stmicroelectronics (Grenoble 2) Sas Device having spad photodiodes for detecting an object
US20130181119A1 (en) * 2012-01-13 2013-07-18 Omnivision Technologies, Inc. Shared time of flight pixel
CN105738910A (zh) * 2014-12-31 2016-07-06 意法半导体公司 用于确定到材料卷的外表面的距离的装置以及相关方法
US20170187721A1 (en) * 2015-12-23 2017-06-29 Stmicroelectronics (Research & Development) Limited Secure communications using spad tof systems
US20180059224A1 (en) * 2016-08-26 2018-03-01 Samsung Electronics Co., Ltd. Time-of-flight (tof) image sensor using amplitude modulation for range measurement

Also Published As

Publication number Publication date
US20190326347A1 (en) 2019-10-24
CN110389333B (zh) 2023-06-30
TW201946403A (zh) 2019-12-01
CN110389333A (zh) 2019-10-29
US20200058698A1 (en) 2020-02-20
US10497738B2 (en) 2019-12-03
US11119196B2 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
TWI743471B (zh) 第一光子相關飛行時間感測器
TWI745678B (zh) 相關的飛行時間感測器
TWI659626B (zh) 飛行時間光感測器
US10681295B2 (en) Time of flight camera with photon correlation successive approximation
US11769775B2 (en) Distance-measuring imaging device, distance measuring method of distance-measuring imaging device, and solid-state imaging device
US20230176223A1 (en) Processing system for lidar measurements
US20180246214A1 (en) Solid-state imaging device, distance measurement device, and distance measurement method
US11221400B2 (en) Dual mode stacked photomultipliers suitable for use in long range time of flight applications
KR20210080584A (ko) 디지털 픽셀
CN105409204B (zh) 用于避免像素饱和的方法
US11474215B2 (en) Neuromorphic single photon avalanche detector (SPAD) array microchip
JP6735515B2 (ja) 固体撮像装置
WO2021113001A1 (en) Configurable array of single-photon detectors
Gyongy et al. A direct time-of-flight image sensor with in-pixel surface detection and dynamic vision
WO2019050024A1 (ja) 距離測定方法および距離測定装置
US20230019246A1 (en) Time-of-flight imaging circuitry, time-of-flight imaging system, and time-of-flight imaging method
US11849229B2 (en) Image capturing apparatus having photon detection and control method therefor
Ruokamo Time-gating technique for a single-photon detection-based solid-state time-of-flight 3D range imager
Chen et al. 2D and 3D integrated image sensor with a bus-sharing mechanism
Poolad et al. Memory Conscious Machine Learning Method to Extract Time-of-Flight Data From Flash LiDARs
WO2023152016A1 (en) Time-of-flight light event detection circuitry and time-of-flight light event detection method
CN118302692A (zh) 飞行时间电路系统和飞行时间方法