TWI742959B - 檢測設備、檢測系統及風力發電機組 - Google Patents

檢測設備、檢測系統及風力發電機組 Download PDF

Info

Publication number
TWI742959B
TWI742959B TW109143406A TW109143406A TWI742959B TW I742959 B TWI742959 B TW I742959B TW 109143406 A TW109143406 A TW 109143406A TW 109143406 A TW109143406 A TW 109143406A TW I742959 B TWI742959 B TW I742959B
Authority
TW
Taiwan
Prior art keywords
sound information
real
microelectromechanical
detection
microphone
Prior art date
Application number
TW109143406A
Other languages
English (en)
Other versions
TW202223235A (zh
Inventor
吳文中
王昭男
蔡進發
施韋廷
莊芃鍇
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW109143406A priority Critical patent/TWI742959B/zh
Application granted granted Critical
Publication of TWI742959B publication Critical patent/TWI742959B/zh
Publication of TW202223235A publication Critical patent/TW202223235A/zh

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

本發明揭露一種檢測設備、檢測系統及風力發電機組。檢測設備用以偵測風力發電機的葉片是否受損。檢測設備包含處理裝置及指向性麥克風裝置。指向性麥克風裝置用以擷取風力發電機運轉時,葉片於目標頻段中的聲音並產生即時聲音資訊。指向性麥克風裝置包含第一微機電麥克風及三個第二微機電麥克風。第一微機電麥克風與任一第二微機電麥克風具有相同的預定距離。預定距離為目標頻段的下限頻率對應的波長的二分之奇數倍或目標頻段的上限頻率對應的波長的二分之奇數倍。處理裝置能將即時聲音資訊與儲存模組中的基準聲音資訊進行比對並據以產生檢測結果資訊。

Description

檢測設備、檢測系統及風力發電機組
本發明涉及一種檢測設備、檢測系統及風力發電機組,特別是一種用來檢測風力發電機的葉片的是否受損的檢測設備及檢測系統,以及包含所述檢測設備的風力發電機組。
現有常見的風力發電機的葉片的檢查方式,大多是相關人員先將停止風力發電機作動,再通過相關機械設備,將相關人員吊掛至鄰近葉片的地方,最後,以人工目視或是配合相關工具的方式,對每一個葉片進行檢查。此種檢查方式,不但費時、費工,且對於相關人員來說也相對危險。
本發明公開一種檢測設備、檢測系統及風力發電機組,主要用以改善傳統利用人力方式,檢查風力發電機的葉片所帶來的各種問題。
本發明的其中一實施例公開一種檢測設備,其用以檢測一風力發電機的多個葉片是否受損,檢測設備包含:至少一指向性麥克風裝置及一處理裝置。指向性麥克風裝置用以固定設置於風力發電機的一塔柱,指向性麥克風裝置用以擷取風力發電機運轉時,多個葉片於一目標頻段中的聲音並對應產生一即時聲音資訊,指向性麥克風裝置包含:一電路板、一第一微機電麥克風及至少三個第二微機電麥克風。第一微機電麥克風設置於電路板。三個第二微機電麥克風設置於電路板,三個第二微機電麥克風位於以第一微機電麥克風為圓心,且以一預定距離為半徑所繪出的一虛擬圓形路徑上,而任一個第二微機電麥克風與第一微機電麥克風的距離為預定距離;目 標頻段介於一下限頻率至一上限頻率,預定距離為下限頻率對應的波長的二分之奇數倍或上限頻率對應的波長的二分之奇數倍。處理裝置包含一處理模組及一儲存模組,處理模組能接收即時聲音資訊,儲存模組儲存多筆基準聲音資訊;當處理模組接收即時聲音資訊時,處理模組能執行一分析程序,以將即時聲音資訊與至少一筆基準聲音資訊進行比對,並據以產生一檢測結果資訊;處理裝置能將檢測結果資訊傳遞至一外部電子裝置,外部電子裝置能顯示檢測結果資訊,以供使用者瞭解風力發電機的多個葉片是否損壞。其中,處理裝置能依據一預定週期,定期地控制指向性麥克風裝置作動,以使指向性麥克風裝置定期地產生及時聲音資訊,而處理裝置將定期地傳遞檢測結果資訊至外部電子裝置。
本發明的其中一實施例公開一種檢測系統,其用以設置於一離岸風力發電場,離岸風力發電場包含多台風力發電機,檢測系統包含:一通訊塔及多個檢測設備。通訊塔通過至少一電纜與一岸上通訊系統連接。多個檢測設備分別用以檢測一風力發電機的多個葉片是否受損,各個檢測設備包含:至少一指向性麥克風裝置及一處理裝置。指向性麥克風裝置用以固定設置於風力發電機的一塔柱,指向性麥克風裝置用以擷取風力發電機運轉時,多個葉片於一目標頻段中的聲音並對應產生一即時聲音資訊,指向性麥克風裝置包含:一電路板、一第一微機電麥克風及至少三個第二微機電麥克風。第一微機電麥克風設置於電路板。三個第二微機電麥克風設置於電路板;三個第二微機電麥克風位於以第一微機電麥克風為圓心,且以一預定距離為半徑所繪出的一虛擬圓形路徑上,而任一個第二微機電麥克風與第一微機電麥克風的距離為預定距離;目標頻段介於一下限頻率至一上限頻率,預定距離為下限頻率對應的波長的二分之奇數倍或上限頻率對應的波長的二分之奇數倍。處理裝置包含一處理模組及一儲存模組,處理模組能接收即時聲音資訊,儲存模組儲存多筆基準聲音資訊;當處理模組接收即時聲音資 訊時,處理模組能執行一分析程序,以將即時聲音資訊與至少一筆基準聲音資訊進行比對,並據以產生一檢測結果資訊;處理裝置能將檢測結果資訊傳遞至通訊塔。其中,當通訊塔接收來自多個檢測設備傳遞的多筆檢測結果資訊時,通訊塔將通過電纜將多筆檢測結果資訊傳遞至岸上通訊系統連接。
本發明的其中一實施例公開一種風力發電機組,其包含:一風力發電機及一檢測設備。風力發電機包含:一塔柱、一主機及多個葉片。主機設置於塔柱的頂端。多個葉片與主機相連接。檢測設備用以檢測多個葉片是否受損,檢測設備包含:至少一指向性麥克風裝置及一處理裝置。指向性麥克風裝置固定設置於塔柱,指向性麥克風裝置用以擷取風力發電機運轉時,多個葉片於一目標頻段中的聲音並對應產生一即時聲音資訊,指向性麥克風裝置包含:一電路板、一第一微機電麥克風及至少三個第二微機電麥克風。第一微機電麥克風設置於電路板。三個第二微機電麥克風設置於電路板;三個第二微機電麥克風位於以第一微機電麥克風為圓心,且以一預定距離為半徑所繪出的一虛擬圓形路徑上,而任一個第二微機電麥克風與第一微機電麥克風的距離為預定距離;目標頻段介於一下限頻率至一上限頻率,預定距離為下限頻率對應的波長的二分之奇數倍或上限頻率對應的波長的二分之奇數倍。處理裝置包含一處理模組及一儲存模組,處理模組能接收即時聲音資訊,儲存模組儲存多筆基準聲音資訊;當處理模組接收即時聲音資訊時,處理模組能執行一分析程序,以將即時聲音資訊與至少一筆基準聲音資訊進行比對,並據以產生一檢測結果資訊;處理裝置能將檢測結果資訊傳遞至一外部電子裝置,外部電子裝置能顯示檢測結果資訊,以供使用者瞭解多個葉片是否損壞。其中,處理裝置能依據一預定週期,定期地控制指向性麥克風裝置作動,使指向性麥克風裝置定期地產生即時聲音資訊,而處理裝置將定期地傳遞檢測結果資訊至外部電子裝置。
綜上所述,本發明的檢測設備及檢測系統,在檢測過程中,基本上無需人力的參與,且風力發電機無需停機,而本發明的檢測設備及檢測系統可以解決傳統利用人工方式對葉片進行檢查所帶來的費時、費工、對相關人員的操作危險等問題。本發明風力發電機組通過檢測設備的設計,可以自動地定期對葉片進行檢測,於檢測過程中,風力發電機無需停機,且基本上無需人力的參與。
為能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,但是此等說明與附圖僅用來說明本發明,而非對本發明的保護範圍作任何的限制。
A:風力發電機組
1:風力發電機
11:塔柱
12:主機
13:葉片
2:檢測設備
21:指向性麥克風裝置
21A:即時聲音資訊
211:電路板
212:第一微機電麥克風
213:第二微機電麥克風
22:處理裝置
221:處理模組
221A:檢測結果資訊
222:儲存模組
2221:基準聲音資訊
223:通訊模組
224:輸入介面
23:風向偵測裝置
231:即時風向資訊
24:風速偵測裝置
241:即時風速資訊
B:外部電子裝置
B1:即時風向資訊
B2:即時風速資訊
C:外部輸入裝置
D:遠端裝置
D1:控制訊號
E:檢測系統
E1:通訊塔
E2:檢測設備
Z1:預定距離
Z2:第二預定距離
P:虛擬圓形路徑
圖1為本發明的檢測設備的其中一實施例的方塊示意圖。
圖2為本發明的檢測設備安裝於風力發電機的示意圖。
圖3為本發明的檢測設備的指向性麥克風裝置的電路板、第一微機電麥克風及第二微機電麥克風的示意圖。
圖4~6為本發明的檢測設備的指向性麥克風裝置的電路板、第一微機電麥克風及第二微機電麥克風的不同實施例的示意圖。
圖7為本發明的檢測設備的其中一實施例的方塊示意圖。
圖8為本發明的檢測設備的其中一實施例的方塊示意圖。
圖9為本發明的檢測設備的其中一實施例的方塊示意圖。
圖10為本發明的檢測設備的其中一實施例的方塊示意圖。
圖11為本發明的檢測設備的其中一實施例的方塊示意圖。
圖12為本發明的檢測系統的示意圖。
於以下說明中,如有指出請參閱特定圖式或是如特定圖式所示,其僅是用以強調於後續說明中,所述及的相關內容大部份出現於該特定圖式中,但不限制該後續說明中僅可參考所述特定圖式。
請一併參閱圖1至圖3,本發明的檢測設備2用以檢測一風力發電機1的多個葉片13是否受損。檢測設備2包含:四個指向性麥克風裝置21及一處理裝置22。關於指向性麥克風裝置21的數量不以四個為限,其可依據需求增減,例如檢測設備2也可以是包含3個、6個或8個指向性麥克風裝置21。處理裝置22電性連接各個指向性麥克風裝置21。
四個指向性麥克風裝置21用以固定設置於風力發電機1的一塔柱11的四個不同方向(例如是東、西、南、北)。在實際應用中,各個指向性麥克風裝置21可以是以各種方式固定於塔柱11上,於此不加以限制。各個指向性麥克風裝置21用以擷取風力發電機1運轉時,多個葉片13於一目標頻段中的聲音並對應產生一即時聲音資訊21A;也就是說,當風力發電機1運轉時,會產生各種頻段的聲音,而指向性麥克風裝置21僅擷取目標頻段的聲音。
各個指向性麥克風裝置21包含:一電路板211、一第一微機電(MEMS)麥克風212及三個第二微機電(MEMS)麥克風213。第一微機電麥克風212及各個第二微機電麥克風213可以是完全相同的全向性微機電麥克風。第一微機電麥克風212設置於電路板211,且第一微機電麥克風212大致位於電路板211的中央。三個第二微機電麥克風213設置於電路板211,且第一微機電麥克風212與任一個第二微機電麥克風213的距離為相同的一預定距離Z1;也就是說,三個第二微機電麥克風213位於以第一微機電麥克風212為圓心並以所述預定距離Z1為半徑所繪出的一虛擬圓形路徑P上。
所述目標頻段介於一下限頻率至一上限頻率之間,所述預定距離Z1為下限頻率對應的波長的二分之奇數倍或上限頻率對應的波長的 二分之奇數倍。較佳地,所述預定距離Z1不但是下限頻率對應的波長的二分之奇數倍,所述預定距離Z1也是上限頻率對應的波長的二分之奇數倍。
舉例來說,所述目標頻段的下限頻率可以是4kHz,假設聲音速度為343公尺/秒,依據波速公式λ=v/f,可知聲音在4kHz頻段的波長λ=343/4000=0.08575m,而所述預定距離Z1則可以是1/2倍波長λ=0.08575m*1/2=42.875mm。相同地,假設聲音速度為343公尺/秒,依據波速公式λ=v/f,可知聲音在12kHz頻段的波長λ=343/12000=0.02853m,而所述預定距離Z1則可以是3/2倍波長λ=0.02853m*3/2=42.875mm。
關於目標頻段的下限頻及上限頻率的選擇,可以是依據風力發電機的種類、葉片的種類、風力發電機所設位置的平均風速等因素決定。在實際實施中,在決定目標頻段的下限頻率及上限頻率時,可以是先利用相關收音裝置(例如指向性麥克風裝置21),擷取葉片已經受損的風力發電機運轉時葉片所產生的聲音,再通過統計分析,判斷該風力發電機在葉片受損至必須更換的程度時,於哪一個頻段會產生異常的音訊。舉例來說,台灣沿海地區所設置的風力發電機,在葉片受損至必須更換的程度時,葉片運轉時將會產生4kHz~12kHz的高頻音訊,因此,本發明的檢測設備2應用來檢測台灣沿海地區所設的風力發電機的葉片是否受損時,相關人員可以是將目標頻段的下限頻率及上限頻率分別訂為4kHz及12kHz。
在實際應用中,任兩個第二微機電麥克風213彼此間具有一第二預定距離Z2,任兩個第二預定距離Z2彼此相同,且第二預定距離Z2可以是為預定距離Z1的
Figure 109143406-A0305-02-0009-1
倍。也就是說,三個第二微機電麥克風213彼此相互連線後將可以對應形成一正三角形,而第一微機電麥克風212則位於所述正三角形的正中心。舉例來說,若所述預定距離Z1為42.875mm,則任兩個第二微機電麥克風213彼此間的第二預定距離Z2則可以是74.262mm。較佳的,各個指向性麥克風裝置21所包含的所有第二微機電麥克風213是平均地分布設 置於虛擬圓形路徑P上,而任一個第二微機電麥克風213與相鄰的第二微機電麥克風213具有相同的最短直線距離。在各個指向性麥克風裝置21具有三個第二微機電麥克風213的實施例中,所述最短直線距離即為所述第二預定距離Z2。
依上所述,通過使第一微機電麥克風212設置於電路板211,且第一微機電麥克風212大致位於電路板211的正中央,第一微機電麥克風212與任一個第二微機電麥克風213的距離為相同的預定距離Z1,及任兩個第二微機電麥克風213彼此間具相同的第二預定距離Z2等設計,配合束波成型技術可以讓第一微機電麥克風212及三個第二微機電麥克風213於目標頻段的下限頻率及上限頻率分別形成特定的束波場型,而指向性麥克風裝置21於目標頻段中,指向性麥克風裝置21在電路板211的法線方向的收音效果,將優於在其他方向的收音效果。
請復參圖1,處理裝置22包含一處理模組221、一儲存模組222及一通訊模組223。處理模組221電性連接儲存模組222及通訊模組223。儲存模組222儲存多筆基準聲音資訊2221。處理模組221例如是各式微處理器,儲存模組222例如是記憶體、記憶卡等。通訊模組223例如是各式無線或是有線的傳輸模組,例如WI-FI®模組、BLUETOOTH®、LoRa®模組等,通訊模組223能與指向性麥克風裝置21通訊連接,而通訊模組223能接收指向性麥克風裝置21傳遞的即時聲音資訊21A,且通訊模組223能將其所接收的即時聲音資訊21A傳遞至處理模組221。於本實施例中,是以指向性麥克風裝置21與通訊模組223無線地通訊連接,以傳遞即時聲音資訊21A為例,但兩者的資訊傳遞方式不以此為限,在不同實施例中,指向性麥克風裝置21也可以是通過有線的方式,與處理裝置22相連接,並透過有線的方式傳遞即時聲音資訊21A。
當處理模組221接收即時聲音資訊21A時,處理模組221能執行一分析程序,以將即時聲音資訊21A與儲存模組222中的至少一筆基準聲音資訊2221進行比對,並據以產生一檢測結果資訊221A。在實際應用中,處理模組221可以是依據需求,設計為將即時聲音資訊21A與儲存模組222儲存的每一筆基準聲音資訊2221進行比對,或者,將即時聲音資訊21A與儲存模組222儲存的部分的基準聲音資訊2221進行比對。
每一筆基準聲音資訊2221是對應為多個正常(無需維修或更換)的葉片13在某一風速範圍下運作時,指向性麥克風裝置21所對應產生的即時聲音資訊21A。舉例來說,儲存模組222可儲存有三筆基準聲音資訊2221,其可以是指向性麥克風裝置21在多個正常(無需維修或更換)的葉片13於風速為4~6公尺/秒、6~8公尺/秒及8~10公尺/秒的情況下運轉時,所分別產生的即時聲音資訊21A。關於儲存模組222內儲存的基準聲音資訊2221的數量,可以是依據風力發電機所處位置的風速狀態及風力發電機的葉片最大可承受的風速等進行設計。
當處理模組221產生檢測結果資訊221A後,處理模組221可以通過通訊模組223,將檢測結果資訊221A傳遞至一外部電子裝置B,外部電子裝置B接收檢測結果資訊221A後,使用者則能通過外部電子裝置B觀看所述檢測結果資訊221A,據以瞭解風力發電機1的多個葉片13是否損壞。於此所述的外部電子裝置B,是指非檢測設備2所包含的電子裝置,舉例來說,外部電子裝置B可以是智慧型手機、平板電腦等,而相關人員即可通過螢幕觀看檢測結果資訊221A,據以瞭解多個葉片13是否損壞。在不同的實施例中,外部電子裝置B也可以是伺服器,而使用者則可以是通過電腦、智慧型手機、平板電腦等連接至伺服器,以觀看、讀取所述檢測結果資訊221A,據以瞭解多個葉片13是否損壞。
在實際應用中,處理模組221將所述即時聲音資訊21A及所述基準聲音資訊2221進行比對時,可以是先對即時聲音資訊21A進行短短時距傅立葉變換(short-time Fourier transform),以得到該即時聲音資訊21A對應的一時頻頻譜(time-frequency spectrum),再將該時頻頻譜對時間積分以得到一邊際頻譜(marginal spectrum),接著,利用即時聲音資訊21A所對應的邊際頻譜所包含的記錄資料,與基準聲音資訊2221所對應的邊際頻譜所包含的記錄資料進行比對,據以計算出即時聲音資訊21A所包含的各個記錄點的振幅與基準聲音資訊2221所包含的相對應的記錄點的振幅的一差距;若是即時聲音資訊21A有超過一預定百分比(例如70%)的記錄點所對應的該差距,都超過一預定閥值,則處理模組221將判斷此即時聲音資訊21A所錄製的多個葉片已經損壞而必須更換,而處理模組221將於檢測結果資訊221A寫入相關記錄;當使用者通過相關的外部電子裝置讀取該檢測結果資訊221A時,使用者即可瞭解該葉片已經損壞必須被更換。其中,邊際頻譜提供了每一個頻率值所貢獻的一總強度或總能源(total amplitude or energy)。在不同的實施例中,處理模組221也可以是對即時聲音資訊21A進行小波轉換(wavelet transform)或是希爾伯特-黃轉換(Hilbert-Huang transform),以得到即時聲音資訊21A對應的該時頻頻譜(time-frequency spectrum)。
本發明的檢測設備2在具體的應用中,處理裝置22可以是依據一預定週期(例如每天、每12個小時等),定期地控制指向性麥克風裝置21作動,以使指向性麥克風裝置21定期地錄製運轉中的葉片的聲音,並定期地產生即時聲音資訊21A。相對地,處理模組221將會定期地接收指向性麥克風裝置21傳遞的即時聲音資訊21A並執行分析程序,而定期地產生相對應的檢測結果資訊221A。處理模組221例如可以是將每一筆檢測結果資訊221A即時地通過通訊模組223傳遞至外部電子裝置B,或者,處理模組221可以是將檢測結果資訊221A儲存於儲存模組222中,並於預設的時間,將多筆儲存模組 222一次性地傳遞至外部電子裝置B;又或者,處理模組221可以是在判斷風力發電機1的多個葉片13已經發生損壞的情況,才傳遞相對應的檢測結果資訊221A至外部電子裝置B。
依上所述,相關人員在安裝本發明的檢測設備2時,只要使指向性麥克風裝置21的電路板211的法線方向朝向葉片13末端,如此,指向性麥克風裝置21將可以最大程度地收集到多個葉片13運轉時產生的聲音。具體來說,若是將全向性麥克風裝置及所述指向性麥克風裝置21,先後設置於塔柱的同一位置,並先後對運轉中的多個葉片13進行收音,則全向性麥克風裝置除了會擷取到多個葉片13運轉時產生的聲音外,還將會大量地擷取來自四面八方的環境音,反之,指向性麥克風裝置21則是會擷取到大量的多個葉片13運轉時產生的聲音及少量的環境音。是以,若是以全向性麥克風裝置對運轉中的多個葉片13進行聲音擷取,則處理裝置22於後續分析程序中,將需要通過大量且複雜的計算(例如要通過多次的濾波),才可以正確地判斷出葉片13是否損壞,反之,利用指向性麥克風裝置21進行聲音擷取,處理裝置22於後續分析程序中,將可以相對快速地判斷出葉片13是否損壞。
如圖4至圖6所示,在不同的實施例中,指向性麥克風裝置21也可以是包含四個、五個或六個第二微機電麥克風213,但不論第二微機電麥克風213的數量為何,任一個第二微機電麥克風213與第一微機電麥克風212彼此間的距離是所述預定距離Z1,且任兩個第二微機電麥克風213彼此間的距離是所述第二預定距離Z2。也就是說,無論指向性麥克風裝置21包含的第二微機電麥克風213的數量為何,任一個第二微機電麥克風213都是位在以第一微機電麥克風212為圓心,並以預定距離Z1為半徑,所繪示出的虛擬圓形路徑P。較佳的,各個指向性麥克風裝置21所包含的所有第二微機電麥克風213是平均地分布設置於虛擬圓形路徑P上,而任一個第二微機電麥克風213與相鄰的第二微機電麥克風213具有相同的最短直線距離(即對應為所 述第二預定距離)。換句話說,四個第二微機電麥克風213是對應位於一正方形的四個頂點,而五個第二微機電麥克風213則是對應位於一正五邊形的五個頂點,六個第二微機電麥克風213則是對應位於一正六邊形的六個頂點,亦即,各個指向性麥克風裝置21所包含的N個第二微機電麥克風213是對應位於一正N邊形的N個頂點。
請參閱圖7,其為本發明的檢測設備的其中一實施例的方塊示意圖。本實施例與前述實施例最大不同之處在於:檢測設備2還可以包含一風向偵測裝置23及一風速偵測裝置24中的至少一個。風向偵測裝置23及風速偵測裝置24分別電性連接處理裝置22。處理裝置22能週期性地控制四個指向性麥克風裝置21、風向偵測裝置23及風速偵測裝置24一同作動。
風向偵測裝置23用以偵測檢測設備2所在位置的即時風向,並據以產生一即時風向資訊231,且風向偵測裝置23可以是以有線或是無線的方式傳遞即時風向資訊231至處理模組221。處理模組221接收風向偵測裝置23所傳遞的即時風向資訊231後,處理模組221能依據即時風向資訊231,決定於分析程序中,將四個指向性麥克風裝置21所產生的四筆即時聲音資訊21A中的哪幾筆,與至少一筆基準聲音資訊2221進行比對。風向偵測裝置23的設置位置及其數量,皆可以依據需求變化,於此不加以限制。
具體來說,風力發電機1的多個葉片13是會隨時面向迎風面,因此,檢測設備2的四個指向性麥克風裝置21在對多個葉片13進行收音作業時,多個葉片13可能僅位於其中一個或是其中兩個指向性麥克風裝置21所涵蓋收音範圍之中。也就是說,通訊模組223收到的四筆即時聲音資訊21A中,可能有其中一筆或是其中兩筆是相對沒有分析價值。
因此,處理模組221在接收四筆即時聲音資訊21A及即時風向資訊231時,處理模組221可以是先通過即時風向資訊231,判斷多個葉片13當下是鄰近於哪一個或是哪兩個指向性麥克風裝置21,而後,處理模組221 則是僅對相對應的兩個即時聲音資訊21A進行分析程序,如此,處理模組221將可以不對所有的即時聲音資訊21A進行分析程序,而處理模組221將可以相對快速地產生檢測結果資訊221A。
需說明的是,假設四個指向性麥克風裝置21設置於塔柱11的東、南、西、北四個方向,當處理模組221依據即時風向資訊231,判斷當下是吹東南風,則處理模組221可以是對設置於塔柱11的東方及設置於塔柱11的南方的兩個指向性麥克風裝置21所產生的即時聲音資訊21A進行分析程序。在實際實施中,處理模組221可以是將不需進行分析程序的兩筆即時聲音資訊21A儲存於儲存模組222中,以利日後查閱。
風速偵測裝置24用以偵測指向性麥克風裝置21所在位置的即時風速,並據以產生一即時風速資訊241,且風速偵測裝置24能傳遞即時風速資訊241至處理模組221。如前述實施例的說明,每一筆基準聲音資訊2221對應為多個正常(無需維修或更換)的葉片13在某一風速範圍下運作時,指向性麥克風裝置21所對應產生的即時聲音資訊21A。
當處理模組221接收即時風速資訊241及即時聲音資訊21A時,處理模組221將可以依據即時風速資訊241判斷當下的風速,據以決定於分析程序中,需使即時聲音資訊21A與哪一筆基準聲音資訊2221進行比對,而處理模組221將無需使即時聲音資訊21A與每一筆基準聲音資訊2221逐一地進行比對,如此,處理模組221將可以相對快速地產生檢測結果資訊221A。關於風速偵測裝置24的設置位置及其數量,於此不加以限制。
舉例來說,假設儲存模組222儲存有三筆基準聲音資訊2221,其分別定義為一第一基準聲音資訊、一第二基準聲音資訊及一第三基準聲音資訊。第一基準聲音資訊、第二基準聲音資訊及第三基準聲音資訊是指向性麥克風裝置21在多個正常(無需維修或更換)的葉片13於風速為4~6公尺/秒、6~8公尺/秒及8~10公尺/秒的情況下運轉時,所分別產生的即時聲音 資訊21A。當處理模組221接收即時聲音資訊21A及即時風速資訊241,且處理模組221依據即時風速資訊241,判斷當下的風速是9公尺/秒,則處理模組221執行分析程序時,可以使即時聲音資訊21A僅與第三基準聲音資訊2221進行比對,而處理模組221不會將即時聲音資訊21A與第一基準聲音資訊及第二基準聲音資訊進行比對。在不同的實施例中,若處理模組221依據即時風速資訊241,判斷當下的風速為8公尺/秒,則處理模組221於分析程序中,可以是使即時聲音資訊21A先後與第二基準聲音資訊及第三基準聲音資訊進行比對,但不使即時聲音資訊21A與第一基準聲音資訊進行比對。
依上所述,在檢測設備2未包含風向偵測裝置23及風速偵測裝置24,檢測設備2包含四個指向性麥克風裝置21,且儲存模組222中儲存有三筆基準聲音資訊2221的實施例中,處理模組221將會使每一筆即時聲音資訊21A與每一筆基準聲音資訊2221進行比對,而處理模組221將執行12次分析程序。相對地,若檢測設備2包含風向偵測裝置23及風速偵測裝置24,則處理模組221最少僅需要使其中一筆即時聲音資訊21A與其中一筆基準聲音資訊2221進行比對。是以,在檢測設備2包含有風向偵測裝置23及風速偵測裝置24的實施例中,處理模組221將可相對快速地產生檢測結果資訊221A。
請參閱圖8,其為本發明的檢測設備的其中一實施例的方塊示意圖。本實施例與前述實施例最大不同之處在於:處理裝置22的通訊模組223可以是接收一外部電子裝置B傳遞的一即時風向資訊B1及一即時風速資訊B2。所述外部電子裝置B是指非檢測設備2所包含的電子裝置,例如是風力發電機1、遠端伺服器等。本實施例所指的即時風向資訊B1及即時風速資訊B2,與前述實施例所指的即時風向資訊231及即時風速資訊241相同,於此不再贅述。
請參閱圖9,其為本發明的檢測設備2的其中一實施例的方塊示意圖。本實施例與前述實施例最大不同之處在於:處理裝置22還包含一輸 入介面224,輸入介面224用以提供一外部輸入裝置C與處理模組221連接,而使外部輸入裝置C能傳遞多筆基準聲音資訊2221至處理模組221,處理裝置22則能將外部輸入裝置C所傳遞的多筆基準聲音資訊2221儲存於儲存模組222。所述輸入介面224例如是各式連接埠,其可依據需求設計,於此不加以限制。外部輸入裝置C例如是各式電腦、燒錄器等。於此所指的外部輸入裝置C是指非檢測設備2所包含的裝置。舉例來說,輸入介面224可以是USB連接埠,外部輸入裝置C可以是電腦,使用者可以通過相關的連接線,使電腦與處理裝置22連線,而後,使用者即可通過操作電腦,以將多筆基準聲音資訊2221儲存至處理裝置22的儲存模組222中。
在實際應用中,處理模組221可以是將外部輸入裝置C傳遞的多筆基準聲音資訊2221,新增至原本儲存於儲存模組222中,且不刪除原本儲存於儲存模組222中的所有基準聲音資訊2221,或者,處理裝置22可以是將外部輸入裝置C傳遞的多筆基準聲音資訊2221取代原本儲存於儲存模組222中的所有基準聲音資訊2221,又或者,處理裝置22可以是將外部輸入裝置C傳遞的部分基準聲音資訊2221取代原本儲存於儲存模組222中的部分基準聲音資訊2221,並使部分基準聲音資訊2221新增至原本儲存於儲存模組222中。
如前述說明,每一筆基準聲音資訊2221是對應於多個正常(無需維修或更換)的葉片13,在某一風速範圍下,運作時的即時聲音資訊。因此,若是風力發電機1所處位置的最高風速,因為各種因素發生改變時,若儲存模組222中所儲存的多筆基準聲音資訊2221沒有對應更新,則可能發生處理模組221誤判多個葉片13的狀態的問題(例如多個葉片13已經明顯損壞,但處理模組221仍判斷葉片13為正常)。
舉例來說,假設儲存模組222內預存有三筆基準聲音資訊2221,分別定義為第一基準聲音資訊、第二基準聲音資訊及第三基準聲音資 訊。第一基準聲音資訊、第二基準聲音資訊及第三基準聲音資訊為指向性麥克風裝置21在多個正常的葉片13於風速為4~6公尺/秒、6~8公尺/秒及8~10公尺/秒的情況下運轉時所分別擷取的即時聲音資訊21A。在此例子中,若多個葉片13在風速12公尺/秒的情況下運轉時,處理模組221將會使當下產生的即時聲音資訊21A與第三基準聲音資訊2221進行比對,如此,可能發生判斷錯誤的問題。
為了避免發生上述問題,相關人員在觀測到風力發電機1所處的位置,頻繁地出現風速高於10公尺/秒的風時,相關人員即可利用外部輸入裝置C,通過輸入介面224將新的一筆基準聲音資訊2221傳遞至處理裝置22,以使處理模組221將新的一筆基準聲音資訊2221儲存於儲存模組222中。在實際應用中,相關人員例如可以是通過各種方式(例如是實地錄製、利用機器學習模型模擬等),生成新的一筆基準聲音資訊2221。
請參閱圖10,其為本發明的檢測設備2的其中一實施例的方塊示意圖。本實施例與前述實施例最大不同之處在於:通訊模組223能接收一外部電子裝置B傳遞的多筆基準聲音資訊2221,處理模組221能將通訊模組223接收的多筆基準聲音資訊2221儲存於儲存模組222,處理模組221還能選擇性地刪除原本已經儲存於儲存模組222中的至少一筆基準聲音資訊2221。所述外部電子裝置B例如是遠端伺服器、電腦、智慧型手機、平板電腦等。
依上所述,本發明的檢測設備2的儲存模組222中所儲存的多筆基準聲音資訊2221,可以是使用者利用外部輸入裝置C配合處理裝置22的輸入介面224輸入,或者,可以是使用者利用外部電子裝置B以無線通訊的方式傳遞至處理模組221。簡單來說,本發明的檢測設備2在不同的實施例中,可以提供使用者以有線或是無線的方式,將多筆基準聲音資訊2221傳遞至處理裝置22。
通過輸入介面224或是通訊模組223能接收外部電子裝置B傳遞的多筆基準聲音資訊2221的設計,相關人員在不同地區安裝本發明的檢測設備2時,可以是依據風力發電機的型號、風力發電機所處位置的平均風速等資料,於雲端資料庫中查找相對應的基準聲音資訊2221,再通過所述外部輸入裝置C或外部電子裝置B將基準聲音資訊2221傳遞至處理裝置22。
請參閱圖11,其為本發明的檢測設備2的其中一實施例的方塊示意圖。本實施例與前述實施例最大不同之處在於:通訊模組223能通訊連接一遠端裝置D(例如是各式伺服器等),而通訊模組223能接收遠端裝置D傳遞的一控制訊號D1。當處理模組221接收通訊模組223傳遞的控制訊號D1時,處理模組221能依據控制訊號D1,控制指向性麥克風裝置21作動,且處理模組221能將相對應的檢測結果資訊221A通過通訊模組223回傳至遠端裝置D。
具體來說,相關人員可以通過操作遠端裝置D,或是,連線至所述遠端裝置D,以通過所述遠端裝置D傳遞控制訊號D1至檢測設備2,而使檢測設備2即時地對正在運轉中的多個葉片13進行檢測,並回傳即時產生的所述檢測結果資訊221A,而相關人員即可即時地依據接收到的檢測結果資訊221A,判斷多個葉片13的損壞程度,並據以決定是否停止風力發電機1運作等。
也就是說,本實施例所舉的檢測設備2,通過通訊模組223能接收遠端裝置D傳遞的控制訊號D1等設計,可以讓相關人員依據需求,在處理裝置22原本已經排定對多個葉片13進行檢測的時間點之外,通過遠端裝置D即時地控制檢測設備2對正在運轉中的多個葉片13進行單一次或是多次的檢測。
舉例來說,相關人員可以是在颱風過境後,通過遠端裝置D控制檢測設備2,對正在運轉中的多個葉片13進行檢測,而相關人員則可以 藉此判斷,在颱風過境後多個葉片13是否已經受損,或是,多個葉片13的受損程度,而相關人員則能即時地做出是否使風力發電機1停止運作的決定。
請復參圖2,其顯示為本發明的風力發電機組的示意圖。本發明的風力發電機組A包含一風力發電機1及四個檢測設備2。風力發電機1包含一塔柱11、一主機12及多個葉片13。主機12設置於塔柱11的頂端。多個葉片13與主機12相連接。四個檢測設備2設置於塔柱11的四個不同方向。風力發電機組A所包含的檢測設備2的數量可以依據需求增減,不以四個為限。本實施例所指的檢測設備2與前述各實施例所指的檢測設備2相同,於此不再贅述。
值得一提的是,本發明的檢測設備2在具體實施時,檢測設備2運作所需的電力來源,可以是來自太陽能板、風力發電機1及可充電的電池等,於此不加以限制。也就是說,檢測設備2可以是包含有太陽能板、可充電的電池中的至少一個,而太陽能板、可充電的電池能提供檢測設備2運作所需的電力。另外,檢測設備2的指向性麥克風裝置21及處理裝置22所分別包含的外殼,可以是具有防塵、防水等封裝設計,藉此可提升指向性麥克風裝置21及處理裝置22的使用壽命。當然,檢測設備2也可以是具有相關的防盜設計,於此不加以限制。
請參閱圖12,其顯示為本發明的檢測系統的示意圖。本發明的檢測系統E用以設置於一離岸風力發電場,離岸風力發電場包含多台風力發電機1,檢測系統E包含:一通訊塔E1及多個檢測設備E2。通訊塔E1通過至少一電纜與一岸上通訊系統連接。多個檢測設備E2分別用以檢測一台風力發電機1的多個葉片13是否受損。本實施例所指的檢測設備E2與前述實施例所述檢測設備2大致相同,於此不再贅述。本實施例的檢測設備E2與前述檢測設備2不同之處在於:各個檢測設備E2的處理裝置,會將其所產生的檢測結果資訊傳遞至通訊塔E1。通訊塔E1接收來自多個檢測設備E2傳遞的多 筆檢測結果資訊時,通訊塔E1將通過電纜將多筆檢測結果資訊傳遞至岸上通訊系統。
依上所述,本發明的檢測系統E所包含的各個檢測設備E2,不會以將其所產生的檢測結果資訊,直接以無線傳輸的方式傳遞至位於陸地上的相關電子裝置,而各個檢測設備E2是將其所產生的多個檢測結果資訊,傳遞至通訊塔E1,通訊塔E1再通過海底電纜將多筆檢測結果資訊傳遞至岸上通訊系統。
一般來說,離岸風力發電廠通常是位在遠離陸地的位置,因此,檢測設備E2難以直接通過無線傳輸的方式,將其產生的檢測結果資訊傳送至位於陸地上的相關電子設備,縱使,檢測設備E2能以無線傳輸的方式,將檢測結果資訊傳遞至位於陸地上的相關電子設備,其傳遞速度仍遠不及利用海底電纜傳遞的速度。是以,本發明的檢測系統E通過通訊塔E1的設計,可以使檢測設備E2所產生的檢測結果資訊,以相對快速的速度傳遞至岸上通訊系統。
以上所述僅為本發明的較佳可行實施例,非因此侷限本發明的專利範圍,故舉凡運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的保護範圍內。
2:檢測設備
21:指向性麥克風裝置
21A:即時聲音資訊
22:處理裝置
221:處理模組
221A:檢測結果資訊
222:儲存模組
2221:基準聲音資訊
223:通訊模組

Claims (22)

  1. 一種檢測設備,其用以檢測一風力發電機的多個葉片是否受損,所述檢測設備包含:至少一指向性麥克風裝置,其用以固定設置於所述風力發電機的一塔柱,所述指向性麥克風裝置用以擷取所述風力發電機運轉時,多個所述葉片於一目標頻段中的聲音並對應產生一即時聲音資訊,所述指向性麥克風裝置包含:一電路板;一第一微機電麥克風,其設置於所述電路板;至少三個第二微機電麥克風,其設置於所述電路板;三個所述第二微機電麥克風位於以所述第一微機電麥克風為圓心,且以一預定距離為半徑所繪成的一虛擬圓形路徑上,而任一個所述第二微機電麥克風與所述第一微機電麥克風的距離為所述預定距離;所述目標頻段介於一下限頻率至一上限頻率,所述預定距離為所述下限頻率對應的波長的二分之奇數倍或所述上限頻率對應的波長的二分之奇數倍;一處理裝置,其包含一處理模組及一儲存模組,所述處理模組能接收所述即時聲音資訊,所述儲存模組儲存多筆基準聲音資訊;當所述處理模組接收所述即時聲音資訊時,所述處理模組能執行一分析程序,以將所述即時聲音資訊與至少一筆所述基準聲音資訊進行比對,並據以產生一檢測結果資訊;所述處理裝置能將所述檢測結果資訊傳遞至一外部電子裝置,而使用者則能通過所述外部電子裝置觀看所述檢測結果資訊,以瞭解所述風力發電機的多個所述葉片是否損壞; 其中,所述處理裝置能依據一預定週期,定期地控制所述指向性麥克風裝置作動,以使所述指向性麥克風裝置定期地產生所述即時聲音資訊。
  2. 如請求項1所述的檢測設備,其中,所述指向性麥克風裝置包含三個所述第二微機電麥克風,任兩個所述第二微機電麥克風彼此間具有一第二預定距離,任兩個所述第二預定距離彼此相同,所述第二預定距離為所述預定距離的
    Figure 109143406-A0305-02-0025-2
    倍。
  3. 如請求項1所述的檢測設備,其中,所述指向性麥克風裝置包含三個所述第二微機電麥克風,且所述下限頻率為4kHz,所述上限頻率為12kHz,所述預定距離為所述下限頻率對應的波長的1/2倍的奇數倍或所述上限頻率對應的波長的3/2倍的奇數倍。
  4. 如請求項1所述的檢測設備,其中,所述指向性麥克風裝置所包含的所有所述第二微機電麥克風是平均地分布設置於所述虛擬圓形路徑上,而任一個所述第二微機電麥克風與相鄰的所述第二微機電麥克風具有相同的最短直線距離。
  5. 如請求項1所述的檢測設備,其中,所述第一微機電麥克風及各個所述第二微機電麥克風為相同的微機電麥克風;所述檢測設備具有四個所述指向性麥克風裝置,四個所述指向性麥克風裝置用以設置於所述風力發電機的所述塔柱的四個不同方向。
  6. 如請求項5所述的檢測設備,其中,所述檢測設備還包含至少一風向偵測裝置;所述風向偵測裝置用以偵測所述檢測設備所在位置的即時風向,並據以產生一即時風向資訊; 所述處理模組能接收所述風向偵測裝置所傳遞的所述即時風向資訊,且所述處理模組能依據所述即時風向資訊,以決定於所述分析程序中,將四個所述指向性麥克風裝置所產生的四筆所述即時聲音資訊中的哪幾筆,與至少一筆所述基準聲音資訊比對。
  7. 如請求項5所述的檢測設備,其中,所述處理裝置還包含一通訊模組,所述通訊模組電性連接所述處理模組,所述通訊模組能接收一外部電子裝置傳遞的一即時風向資訊;所述處理模組能依據所述即時風向資訊,以決定於所述分析程序中,將四個所述指向性麥克風裝置所產生的四筆所述即時聲音資訊中的哪幾筆,與至少一筆所述基準聲音資訊比對。
  8. 如請求項1所述的檢測設備,其中,所述檢測設備還包含至少一風速偵測裝置;所述風速偵測裝置用以偵測所述指向性麥克風裝置所在位置的即時風速,並據以產生一即時風速資訊;所述處理裝置能依據所述即時風速資訊,以決定於所述分析程序中,使所述即時聲音資訊與哪一筆所述基準聲音資訊進行比對。
  9. 如請求項1所述的檢測設備,其中,所述處理裝置還包含一通訊模組,所述通訊模組電性連接所述處理模組,所述通訊模組能接收一外部電子裝置傳遞的一即時風速資訊;所述處理裝置能依據所述即時風速資訊,以決定於所述分析程序中,使所述即時聲音資訊與哪一筆所述基準聲音資訊進行比對。
  10. 如請求項1所述的檢測設備,其中,所述檢測設備包含一輸入裝置,所述輸入裝置電性連接所述處理裝置,所述輸 入裝置能依據使用者的操作而對應產生多筆所述基準聲音資訊,且所述輸入裝置能將多筆所述基準聲音資訊傳遞至所述處理裝置,所述處理模組則能將多筆所述基準聲音資訊儲存於所述儲存模組,且所述處理模組還能選擇性地刪除原本已經儲存於所述儲存模組中的至少一筆所述基準聲音資訊。
  11. 如請求項1所述的檢測設備,其中,所述處理裝置能接收一外部電子裝置傳遞的多筆基準聲音資訊,所述處理模組能將所述外部電子裝置傳遞的多筆所述基準聲音資訊新增於所述儲存模組,且所述處理模組還能選擇性地刪除原本已經儲存於所述儲存模組中的至少一筆所述基準聲音資訊。
  12. 如請求項1所述的檢測設備,其中,所述處理裝置包含一通訊模組,所述通訊模組能通訊連接一遠端裝置,所述通訊模組能接收所述遠端裝置傳遞的一控制訊號;當所述處理模組接收所述通訊模組傳遞的所述控制訊號時,所述處理模組能依據所述控制訊號,控制所述指向性麥克風裝置作動,且所述處理模組能將相對應的所述檢測結果資訊通過所述通訊模組回傳至所述遠端裝置。
  13. 一種檢測系統,其用以設置於一離岸風力發電場,所述離岸風力發電場包含多台風力發電機,所述檢測系統包含:一通訊塔,其通過至少一電纜與一岸上通訊系統連接;多個檢測設備,其分別用以檢測一風力發電機的多個葉片是否受損,各個所述檢測設備包含:至少一指向性麥克風裝置,其用以固定設置於所述風力發電機的一塔柱,所述指向性麥克風裝置用以擷取所述風力發電機運轉時,多個所述葉片於一目標頻段中的聲 音並對應產生一即時聲音資訊,所述指向性麥克風裝置包含:一電路板;一第一微機電麥克風,其設置於所述電路板;至少三個第二微機電麥克風,其設置於所述電路板;三個所述第二微機電麥克風位於以所述第一微機電麥克風為圓心,且以一預定距離為半徑所繪出的一虛擬圓形路徑上,而任一個所述第二微機電麥克風與所述第一微機電麥克風的距離為所述預定距離;所述目標頻段介於一下限頻率至一上限頻率,所述預定距離為所述下限頻率對應的波長的二分之奇數倍或所述上限頻率對應的波長的二分之奇數倍;一處理裝置,其包含一處理模組及一儲存模組,所述處理模組能接收所述即時聲音資訊,所述儲存模組儲存多筆基準聲音資訊;當所述處理模組接收所述即時聲音資訊時,所述處理模組能執行一分析程序,以將所述即時聲音資訊與至少一筆所述基準聲音資訊進行比對,並據以產生一檢測結果資訊;所述處理裝置能將所述檢測結果資訊傳遞至所述通訊塔;其中,當所述通訊塔接收來自多個所述檢測設備傳遞的多筆所述檢測結果資訊時,所述通訊塔將通過所述電纜將多筆所述檢測結果資訊傳遞至所述岸上通訊系統。
  14. 如請求項13所述的檢測系統,其中,各個所述指向性麥克風裝置包含三個所述第二微機電麥克風,任兩個所述第二微機電麥克風彼此間具有一第二預定距離,任兩個所述第二預定距離彼此相同,所述第二預定距離為所述預定距離的
    Figure 109143406-A0305-02-0028-3
    倍。
  15. 如請求項14所述的檢測系統,其中,各個所述指向性麥克風裝置包含三個所述第二微機電麥克風,且所述下限頻率為4kHz,所述上限頻率為12kHz,所述預定距離為所述下限頻率對應的波長的1/2倍的奇數倍或所述上限頻率對應的波長的3/2倍的奇數倍。
  16. 如請求項13所述的檢測系統,其中,所述指向性麥克風裝置所包含的所有所述第二微機電麥克風是平均分布地設置於所述虛擬圓形路徑上,而任一個所述第二微機電麥克風與相鄰的所述第二微機電麥克風具有相同的最短直線距離。
  17. 如請求項13所述的檢測系統,其中,各個所述第一微機電麥克風及各個所述第二微機電麥克風為相同的微機電麥克風;各個所述檢測設備具有四個所述指向性麥克風裝置,各個所述檢測設備的四個所述指向性麥克風裝置用以設置於其中一個所述風力發電機的所述塔柱的四個不同方向。
  18. 一種風力發電機組,其包含:一風力發電機,其包含:一塔柱;一主機,其設置於所述塔柱的頂端;多個葉片,其與所述主機相連接;一檢測設備,用以檢測多個所述葉片是否受損,所述檢測設備包含:至少一指向性麥克風裝置,其固定設置於所述塔柱,所述指向性麥克風裝置用以擷取所述風力發電機運轉時,多個所述葉片於一目標頻段中的聲音並對應產生一即時聲音資訊,所述指向性麥克風裝置包含:一電路板; 一第一微機電麥克風,其設置於所述電路板;至少三個第二微機電麥克風,其設置於所述電路板;三個所述第二微機電麥克風位於以所述第一微機電麥克風為圓心,且以一預定距離為半徑所繪成的一虛擬圓形路徑上,而任一個所述第二微機電麥克風與所述第一微機電麥克風的距離為所述預定距離;所述目標頻段介於一下限頻率至一上限頻率,所述預定距離為所述下限頻率對應的波長的二分之奇數倍或所述上限頻率對應的波長的二分之奇數倍;一處理裝置,其包含一處理模組及一儲存模組,所述處理模組能接收所述即時聲音資訊,所述儲存模組儲存多筆基準聲音資訊;當所述處理模組接收所述即時聲音資訊時,所述處理模組能執行一分析程序,以將所述即時聲音資訊與至少一筆所述基準聲音資訊進行比對,並據以產生一檢測結果資訊;所述處理裝置能將所述檢測結果資訊傳遞至一外部電子裝置,而使用者則能通過所述外部電子裝置觀看所述檢測結果資訊,以瞭解所述風力發電機的多個所述葉片是否損壞;其中,所述處理裝置能依據一預定週期,定期地控制所述指向性麥克風裝置作動,以使所述指向性麥克風定期地產生所述即時聲音資訊。
  19. 如請求項18所述的風力發電機組,其中,各個所述指向性麥克風裝置包含三個所述第二微機電麥克風,任兩個所述第二微機電麥克風彼此間具有一第二預定距離,任兩個所述第二預定距離彼此相同,所述第二預定距離為所述預定距離的
    Figure 109143406-A0305-02-0030-4
    倍。
  20. 如請求項18所述的風力發電機組,其中,各個所述指向性 麥克風裝置包含三個所述第二微機電麥克風,且所述下限頻率為4kHz,所述上限頻率為12kHz,所述預定距離為所述下限頻率對應的波長的1/2倍的奇數倍或所述上限頻率對應的波長的3/2倍的奇數倍。
  21. 如請求項20所述的風力發電機組,其中,各個所述第一微機電麥克風及各個所述第二微機電麥克風為相同的微機電麥克風;所述檢測設備具有四個所述指向性麥克風裝置,四個所述指向性麥克風裝置設置於所述塔柱的四個不同方向。
  22. 如請求項18所述的風力發電機組,其中,各個所述指向性麥克風裝置所包含的所有所述第二微機電麥克風是平均分布地設置於所述虛擬圓形路徑上,而任一個所述第二微機電麥克風與相鄰的所述第二微機電麥克風具有相同的最短直線距離。
TW109143406A 2020-12-09 2020-12-09 檢測設備、檢測系統及風力發電機組 TWI742959B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109143406A TWI742959B (zh) 2020-12-09 2020-12-09 檢測設備、檢測系統及風力發電機組

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109143406A TWI742959B (zh) 2020-12-09 2020-12-09 檢測設備、檢測系統及風力發電機組

Publications (2)

Publication Number Publication Date
TWI742959B true TWI742959B (zh) 2021-10-11
TW202223235A TW202223235A (zh) 2022-06-16

Family

ID=80782590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143406A TWI742959B (zh) 2020-12-09 2020-12-09 檢測設備、檢測系統及風力發電機組

Country Status (1)

Country Link
TW (1) TWI742959B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201700699A (zh) * 2015-05-26 2017-01-01 漢高股份有限公司 光固化黏著劑組成物、其製備方法及其用途
TW201712566A (zh) * 2015-08-26 2017-04-01 渥班資產公司 從風力發電機及風電廠傳輸資料至控制中心
CN109763944A (zh) * 2019-01-28 2019-05-17 中国海洋大学 一种海上风机叶片故障非接触式监测系统及监测方法
CN111306008A (zh) * 2019-12-31 2020-06-19 远景智能国际私人投资有限公司 风机叶片的检测方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201700699A (zh) * 2015-05-26 2017-01-01 漢高股份有限公司 光固化黏著劑組成物、其製備方法及其用途
TW201712566A (zh) * 2015-08-26 2017-04-01 渥班資產公司 從風力發電機及風電廠傳輸資料至控制中心
CN109763944A (zh) * 2019-01-28 2019-05-17 中国海洋大学 一种海上风机叶片故障非接触式监测系统及监测方法
CN111306008A (zh) * 2019-12-31 2020-06-19 远景智能国际私人投资有限公司 风机叶片的检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
TW202223235A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
JP7199608B2 (ja) 風力タービン翼を検査するための方法および装置、ならびにそれらの機器および記憶媒体
US8041540B2 (en) System, device, and method for acoustic and visual monitoring of a wind turbine
CN110985310B (zh) 基于声传感器阵列的风力发电机叶片故障监测方法与设备
CN102494894A (zh) 风力发电机组音频监测和故障诊断系统及其方法
CN113298134B (zh) 一种基于bpnn的风机叶片远程非接触健康监测系统和方法
CN203323790U (zh) 传感器采集控制系统
CN111306010B (zh) 风机叶片雷击损伤检测方法及系统
ES2685815T3 (es) Controlador de un sistema de energía eólica
CN104101652A (zh) 一种基于音频信号的风电叶片损伤监测方法及监测系统
US20220074896A1 (en) Apparatus and Method of Detecting Anomalies in an Acoustic Signal
CN112727710A (zh) 一种基于音频信号的风场落雷密度统计方法及系统
CN112710465A (zh) 基于雷达回波特征和随机森林的风电机叶片故障分类方法
Papasalouros et al. Acoustic Emission Monitoring of Composite Blade of NM48/750 NEG-MICON Wind Turbine.
CN114183312A (zh) 一种风电机组叶片状态的监测系统及方法
TWI742959B (zh) 檢測設備、檢測系統及風力發電機組
Sánchez et al. Wind Turbines Acoustic Inspections performed with UAV and sound frequency domain analysis
CN220979768U (zh) 一种海上风电机组叶片故障诊断系统
CN111453619A (zh) 一种自适应的岸桥运行机构智能监测与状态评估系统
CN204832111U (zh) 一种风场运行中的风力发电机叶片检测装置
EP4180658A1 (en) Optimal position for wind turbine blade sound signal collection and selection method therefor
CN116337210A (zh) 一种建筑施工作业的噪声评估系统
Tcherniak et al. Active vibration-based SHM system: demonstration on an operating Vestas V27 wind turbine
CN206114105U (zh) 一种基于单目视觉分析方法的输电线路舞动监测装置
CN113658603A (zh) 一种基于音频的皮带运输机托辊智能故障诊断方法
CN102122453A (zh) 电子干扰吊舱的仿真系统和方法