TWI742223B - Electron beam system and method, and scanning electron microscope - Google Patents

Electron beam system and method, and scanning electron microscope Download PDF

Info

Publication number
TWI742223B
TWI742223B TW107100861A TW107100861A TWI742223B TW I742223 B TWI742223 B TW I742223B TW 107100861 A TW107100861 A TW 107100861A TW 107100861 A TW107100861 A TW 107100861A TW I742223 B TWI742223 B TW I742223B
Authority
TW
Taiwan
Prior art keywords
electron beam
lens array
limiting aperture
electron
source
Prior art date
Application number
TW107100861A
Other languages
Chinese (zh)
Other versions
TW201832265A (en
Inventor
艾倫 D 布魯迪
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/587,720 external-priority patent/US10242839B2/en
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW201832265A publication Critical patent/TW201832265A/en
Application granted granted Critical
Publication of TWI742223B publication Critical patent/TWI742223B/en

Links

Images

Abstract

Performance of a multi-electron-beam system can be improved by reducing Coulomb effects in the illumination path of a multi-beam inspection system. A beam-limiting aperture with multiple holes can be positioned between an electron beam source and a multi-lens array, such as in a field-free region. The beam-limiting aperture is configured to reduce Coulomb interactions between the electron beam source and the multi-lens array. An electron beam system with the beam-limiting aperture can be used in a scanning electron microscope.

Description

電子束系統及方法,以及掃描電子顯微鏡 Electron beam system and method, and scanning electron microscope

本發明係關於電子束系統。 The present invention relates to an electron beam system.

先前電子束檢驗系統藉由一肖特基熱場電子發射器產生一電子束。發射器周圍係一抑制器電極,該抑制器電極抑制來自發射器之柄之不想要熱電子進入至初級射束中。提取器電極上之一電壓判定尖端之頂點處之電場。尖端處之場判定可自尖端提取之電流量。提取器之後之一第二電極或陽極通常用於將射束加速至所要能量。來自發射器之電流分佈擴展至數度。在一電子束檢驗系統中,小於1度之小的源接受角可需要高解析度。在一掃描電子顯微鏡(SEM)中,一噴射孔徑通常用於阻擋未使用電子。位於柱下面更遠處之一第二孔徑可充當一光瞳孔徑,該光瞳孔徑設定物鏡之一數值孔徑(NA)。此一設計仍具有庫侖效應之問題。 Previous electron beam inspection systems used a Schottky thermal field electron emitter to generate an electron beam. Around the transmitter is a suppressor electrode, which suppresses unwanted hot electrons from the handle of the transmitter from entering the primary beam. A voltage on the extractor electrode determines the electric field at the apex of the tip. The field at the tip determines the amount of current that can be drawn from the tip. A second electrode or anode after the extractor is usually used to accelerate the beam to the desired energy. The current distribution from the transmitter extends to several degrees. In an electron beam inspection system, a small source acceptance angle of less than 1 degree may require high resolution. In a scanning electron microscope (SEM), a jet aperture is usually used to block unused electrons. A second aperture located farther under the column can serve as a pupil aperture, which sets a numerical aperture (NA) of the objective lens. This design still has the problem of Coulomb effect.

因此,需要的係一經改良電子束系統。 Therefore, what is needed is an improved electron beam system.

在一第一實施例中,提供一種電子束系統。該電子束系統包括:一電子束源;一多透鏡陣列;及一射束限制孔徑,其界定複數個孔。該射束限制孔徑安置於該電子束源與該多透鏡陣列之間。該射束限制孔徑經組態 以減少該電子束源與該多透鏡陣列之間的庫侖交互作用。該射束限制孔徑可係由矽、一金屬或一金屬合金製作。該電子束源可包含一發射器、抑制器及提取器。 In a first embodiment, an electron beam system is provided. The electron beam system includes: an electron beam source; a multi-lens array; and a beam limiting aperture, which defines a plurality of holes. The beam limiting aperture is arranged between the electron beam source and the multi-lens array. The beam limiting aperture is configured In order to reduce the Coulomb interaction between the electron beam source and the multi-lens array. The beam limiting aperture can be made of silicon, a metal or a metal alloy. The electron beam source may include an emitter, suppressor and extractor.

該射束限制孔徑可安置於該電子束源與該多透鏡陣列之間的具有小於1V/mm之一場之一位置處。舉例而言,該電子束源與該多透鏡陣列之間的該位置可係無場的。 The beam limiting aperture can be arranged at a position between the electron beam source and the multi-lens array with a field less than 1V/mm. For example, the position between the electron beam source and the multi-lens array can be fieldless.

該射束限制孔徑可界定該等孔中之至少6個孔。該射束限制孔徑可將該等孔界定為各自具有自1μm至100μm之一直徑。舉例而言,該等孔中之每一者之該直徑可係50μm。該射束限制孔徑可將該等孔界定為具有自2μm至100μm之一間距。舉例而言,該間距可係100μm。該射束限制孔徑可將該等孔界定為各自係圓形的。該等孔可以一多邊形配置安置於該射束限制孔徑中。 The beam limiting aperture can define at least 6 holes among the holes. The beam limiting aperture may define the apertures to each have a diameter from 1 μm to 100 μm. For example, the diameter of each of the holes may be 50 μm. The beam limiting aperture can define the apertures as having a pitch from 2 μm to 100 μm. For example, the pitch can be 100 μm. The beam limiting aperture can define the apertures to be each circular. The holes may be arranged in the beam limiting aperture in a polygonal configuration.

一掃描電子顯微鏡可包括第一實施例之設計變化形式或實例中之任何者之電子束系統。 A scanning electron microscope may include the electron beam system of any of the design variants or the examples of the first embodiment.

一第二實施例中提供一種方法。該方法包括:產生一電子束;提取該電子束;將該電子束引導穿過界定複數個孔之一射束限制孔徑;及將該電子束引導穿過相對於該電子束之一投影方向位於該射束限制孔徑下游之一多透鏡陣列。該射束限制孔徑經組態以減少該電子束源與該多透鏡陣列之間的庫侖交互作用。 A method is provided in a second embodiment. The method includes: generating an electron beam; extracting the electron beam; guiding the electron beam through a beam limiting aperture that defines a plurality of holes; The beam restricts a multi-lens array downstream of the aperture. The beam limiting aperture is configured to reduce Coulomb interaction between the electron beam source and the multi-lens array.

該電子束位於在該電子束通過該射束限制孔徑時具有小於1V/mm之一場的一區域中。舉例而言,該區域可係一無場區域。 The electron beam is located in a region having a field of less than 1 V/mm when the electron beam passes through the beam limiting aperture. For example, the area can be a field-free area.

通過該多透鏡陣列之該電子束可被聚焦成50nm之一直徑。 The electron beam passing through the multi-lens array can be focused to a diameter of 50 nm.

一第三實施例中提供一種系統。該系統包括一電子束源,其經組態 以產生一電子束;一多透鏡陣列,其位於一晶圓之上游;一射束限制孔徑,其界定複數個孔;及一偵測器,其經組態以偵測來自自該晶圓之一表面返回之該電子束之電子。該射束限制孔徑安置於該電子束源與該多透鏡陣列之間。該射束限制孔徑經組態以減少該電子束源與該多透鏡陣列之間的庫侖交互作用。 A third embodiment provides a system. The system includes an electron beam source, which is configured To generate an electron beam; a multi-lens array located upstream of a wafer; a beam limiting aperture, which defines a plurality of holes; and a detector, which is configured to detect from the wafer The electrons of the electron beam returning from a surface. The beam limiting aperture is arranged between the electron beam source and the multi-lens array. The beam limiting aperture is configured to reduce Coulomb interaction between the electron beam source and the multi-lens array.

該射束限制孔徑可安置於該電子束源與該多透鏡陣列之間的具有小於1V/mm之一場之一位置處。舉例而言,該電子束源與該多透鏡陣列之間的該位置可係無場的。 The beam limiting aperture can be arranged at a position between the electron beam source and the multi-lens array with a field less than 1V/mm. For example, the position between the electron beam source and the multi-lens array can be fieldless.

100:電子束系統 100: electron beam system

101:電子束源 101: Electron beam source

102:提取器 102: Extractor

103:射束限制孔徑 103: beam limiting aperture

104:多透鏡陣列 104: Multi-lens array

105:孔 105: hole

106:陽極 106: anode

107:電子束 107: electron beam

108:細射束 108: thin beam

109:發射器 109: Launcher

110:抑制器 110: Suppressor

111:磁性透鏡 111: Magnetic lens

112:磁極片 112: Magnetic pole piece

113:線圈 113: Coil

114:元件 114: component

200:系統 200: System

201:電子光學柱/電子柱 201: Electron optical column/electronic column

202:電子束源 202: electron beam source

203:元件 203: Components

204:晶圓 204: Wafer

205:元件 205: component

206:偵測器 206: Detector

207:電腦子系統 207: Computer Subsystem

A-A:線 A-A: line

為較全面理解本發明之性質及目標,應參考結合附圖做出之以下詳細說明,在圖式中。 In order to fully understand the nature and objectives of the present invention, reference should be made to the following detailed description in conjunction with the accompanying drawings, in the drawings.

圖1係根據本發明之一電子束系統之一實施例之一方塊圖;圖2係一第一電子束直方圖;圖3係一第二電子束直方圖;圖4係一第三電子束直方圖;圖5係一第四電子束直方圖;圖6係一第五電子束直方圖;圖7係根據本發明之一系統之一實施例;且圖8係根據本發明之一方法之一流程圖; Fig. 1 is a block diagram of an embodiment of an electron beam system according to the present invention; Fig. 2 is a first electron beam histogram; Fig. 3 is a second electron beam histogram; Fig. 4 is a third electron beam Histogram; Fig. 5 is a fourth electron beam histogram; Fig. 6 is a fifth electron beam histogram; Fig. 7 is an embodiment of a system according to the present invention; and Fig. 8 is a method according to the present invention A flow chart;

儘管將就特定實施例而言闡述所主張之標的物,但包含不提供本文中所陳述之全部益處及特徵之實施例之其他實施例亦在本發明之範疇內。可在不背離本發明之範疇之情況下做出各種結構、邏輯、程序步驟及電子 改變。因此,本發明之範疇僅參考隨附申請專利範圍來定義。 Although the claimed subject matter will be described in terms of specific embodiments, other embodiments including embodiments that do not provide all the benefits and features stated herein are also within the scope of the present invention. Various structures, logics, program steps and electronics can be made without departing from the scope of the present invention Change. Therefore, the scope of the present invention is only defined with reference to the scope of the attached patent application.

本文中所揭示之實施例藉由減少一多射束檢驗系統之照明路徑中之庫侖效應來改良一多電子束系統之效能。一射束限制孔徑(BLA)可用於阻擋來自連續下游之未使用電子,諸如以防止充電及/或氣體離子化。BLA可幫助減少庫侖效應。隨著電子行進穿過一電子光學柱,電子如由庫侖定律所闡述彼此交互作用,此乃因電子係帶電粒子。電子柱中之電子之數目與電子在電子柱花費之時間長度之累積效應判定庫侖效應之量值。將一BLA引入電子源附近之射束路徑中能夠移除電子,因此在大多數電子路徑中電子光學柱中存在較少電子。由於存在較少電子,因此可減少庫侖效應之量值。 The embodiments disclosed herein improve the performance of a multi-beam system by reducing the Coulomb effect in the illumination path of a multi-beam inspection system. A beam limiting aperture (BLA) can be used to block unused electrons from continuous downstream, such as to prevent charging and/or gas ionization. BLA can help reduce the Coulomb effect. As electrons travel through an electron optical column, the electrons interact with each other as described by Coulomb's law. This is because the electrons are charged particles. The cumulative effect of the number of electrons in the electron column and the length of time the electrons spend in the electron column determines the magnitude of the Coulomb effect. Introducing a BLA into the beam path near the electron source can remove electrons, so there are fewer electrons in the electron optical column in most electron paths. Since there are fewer electrons, the magnitude of the Coulomb effect can be reduced.

圖1係一電子束系統100之一實施例之一示意圖。電子束系統100包含一電子束源101、一射束限制孔徑(BLA)103及一多透鏡陣列(MLA)104。電子束源101可包含一發射器109、抑制器110及提取器102。 FIG. 1 is a schematic diagram of an embodiment of an electron beam system 100. The electron beam system 100 includes an electron beam source 101, a beam limiting aperture (BLA) 103 and a multi-lens array (MLA) 104. The electron beam source 101 may include an emitter 109, a suppressor 110, and an extractor 102.

BLA 103可接近電子束源101定位以減少空間電荷效應。在一例項中,在一無電場區域中,BLA 103儘可能地接近於提取器102。BLA 103可稍微低於處於接地電位下之一陽極106。 The BLA 103 can be positioned close to the electron beam source 101 to reduce space charge effects. In one example, the BLA 103 is as close to the extractor 102 as possible in an electric field-free area. The BLA 103 may be slightly lower than one of the anodes 106 at ground potential.

BLA 103可由矽、一金屬、一金屬合金或提供可接受功率及/或熱耗散之另一材料製作。BLA 103之材料可抵抗由熱導致之熔融或失真。BLA 103可連接至陽極106。BLA 103可具有自2μm至25μm之一厚度,儘管其他尺寸亦係可能的。 BLA 103 can be made of silicon, a metal, a metal alloy, or another material that provides acceptable power and/or heat dissipation. The material of BLA 103 can resist melting or distortion caused by heat. The BLA 103 may be connected to the anode 106. The BLA 103 can have a thickness from 2 μm to 25 μm, although other sizes are also possible.

BLA 103可稱作一「胡椒瓶型(pepper pot)」BLA。圖1中之BLA 103界定穿過BLA 103之多個孔105。BLA 103可包含自1個孔105至2,000個或3,000個孔103,包含其之間之所有範圍及值。在一例項中,BLA 103 界定6個或7個孔105。BLA 103中可包含或多或少個孔105。 BLA 103 can be called a "pepper pot" BLA. The BLA 103 in FIG. 1 defines a plurality of holes 105 passing through the BLA 103. The BLA 103 may include from 1 hole 105 to 2,000 or 3,000 holes 103, including all ranges and values in between. In one case, BLA 103 6 or 7 holes 105 are defined. More or less holes 105 may be included in the BLA 103.

每一孔105可具有自1μm至100μm之一直徑,包含至0.5μm之所有值及其之間的範圍。在一例項中,每一孔105具有50μm之一直徑。在另一例項中,每一孔105具有自1μm至10μm之一直徑,包含至0.5μm之所有值及其之間的範圍。孔105可相對於電子束之大小稍微過大使得照明過度填充MLA 104之光瞳孔徑。BLA 103亦可充當阻擋部分電子束之一屏蔽物。 Each hole 105 may have a diameter ranging from 1 μm to 100 μm, including all values up to 0.5 μm and ranges therebetween. In one example, each hole 105 has a diameter of 50 μm. In another example, each hole 105 has a diameter from 1 μm to 10 μm, inclusive of all values up to 0.5 μm and ranges therebetween. The aperture 105 may be slightly too large relative to the size of the electron beam so that the illumination overfills the pupil aperture of the MLA 104. The BLA 103 can also serve as a shield to block part of the electron beam.

孔105可位於BLA 103中以具有自2μm至100μm之一間距,包含至0.5μm之所有值及其之間的範圍。在一例項中,BLA 103中之孔105之間距係100μm。 The holes 105 may be located in the BLA 103 to have a pitch from 2 μm to 100 μm, inclusive of all values up to 0.5 μm and ranges therebetween. In one example, the distance between the holes 105 in the BLA 103 is 100 μm.

圖1之插圖(其未按圖1之其餘部分之比例繪製)係沿著線A-A截取之BLA 103之一前視圖之一實例。孔105中之每一者可係圓形、多邊形或其他形狀。6個孔105配置成一多邊形圖案(用一虛線所展示)。 The illustration of Fig. 1 (which is not drawn to the scale of the rest of Fig. 1) is an example of a front view of the BLA 103 taken along the line A-A. Each of the holes 105 may be circular, polygonal, or other shapes. The six holes 105 are arranged in a polygonal pattern (shown by a dashed line).

在另一例項中,BLA 103以一多邊形配置界定7個孔105。在又一例項中,BLA 103界定大約1,000個孔105。在用於檢驗之一BLA 103之一實例中,BLA 103包含331個孔105。 In another example, the BLA 103 defines 7 holes 105 in a polygonal configuration. In yet another example, BLA 103 defines approximately 1,000 holes 105. In one example of the BLA 103 used for inspection, the BLA 103 contains 331 holes 105.

以一多邊形圖案配置BLA 103中之孔105可係有益地,此乃因孔105將以接近一圓形之一方式配置。用於一電子束檢驗系統之電子光學器件可旋轉對稱。為最佳化宏觀電子透鏡中之區域,可期望接近一圓形之一圖案。 It can be beneficial to arrange the holes 105 in the BLA 103 in a polygonal pattern because the holes 105 will be arranged in a manner close to a circle. Electro-optical devices used in an electron beam inspection system can be rotationally symmetrical. To optimize the area in the macroscopic electronic lens, it is desirable to have a pattern close to a circle.

隨著由電子束源101產生之一電子束107通過BLA 103之孔105,該電子束107被BLA 103轉變為複數個細射束108。每一孔105產生一個細射束108。每一細射束108可以大約50nm之直徑離開BLA 103。電子束系統 100之設計可提供彼此分散開之多個小的細射束108。電子束107之一其餘部分由BLA 103阻擋。 As an electron beam 107 generated by the electron beam source 101 passes through the hole 105 of the BLA 103, the electron beam 107 is converted into a plurality of thin beams 108 by the BLA 103. Each hole 105 generates a thin beam 108. Each beamlet 108 may leave the BLA 103 with a diameter of approximately 50 nm. Electron beam system The design of 100 can provide a plurality of small beams 108 that are dispersed from each other. One of the remaining parts of the electron beam 107 is blocked by the BLA 103.

MLA 104包含一2D透鏡陣列。MLA 104中之一個別透鏡沿著彼特定透鏡之光軸或第三軸可具有多個孔。在一例項中,存在MLA 104之透鏡中之孔與BLA 103中之孔105之一對一映射。 The MLA 104 includes a 2D lens array. An individual lens in the MLA 104 may have a plurality of holes along the optical axis or the third axis of that particular lens. In one example, there is a one-to-one mapping between the hole in the lens of the MLA 104 and one of the holes 105 in the BLA 103.

藉由對MLA 104進行投光照明而產生一多射束系統,該多射束系統可係靜電的。藉由跨越MLA 104之一孔徑放置一電場來形成一靜電透鏡。每一個別透鏡在虛擬源平面處形成電子束源101之一影像,該影像然後被縮小至一晶圓上。為對MLA 104進行照明,可需要來自源之一大照明角。舉例而言,此照明角可高達兩度,儘管其他值亦係可能的。 A multi-beam system is created by projecting and illuminating the MLA 104, which can be electrostatic. An electrostatic lens is formed by placing an electric field across an aperture of the MLA 104. Each individual lens forms an image of the electron beam source 101 at the virtual source plane, which is then reduced to a wafer. To illuminate the MLA 104, a large illumination angle from one of the sources may be required. For example, this illumination angle can be as high as two degrees, although other values are also possible.

BLA 103位於電子束源101與MLA 104之間。BLA 103可位於電子束源101與MLA 104之間、在小於1V/mm或無場之一區域或位置中,此意指可存在孔105之最小透鏡效應或甚至無透鏡效應。因此,BLA 103可不聚焦細射束108。無場可意指0V/mm,但可係在其下不會發生一透鏡效應的接近0V/mm之其他值。將BLA 103定位於電子束源101與MLA 104之間可減少此區域中之庫侖交互作用。如此一來,BLA 103可不充當一光學組件,此降低公差要求。在一實例中,遞送至一晶圓之電子束電流在自大約3nm至10nm之一解析度下可係雙倍的、三倍的或四倍的。 The BLA 103 is located between the electron beam source 101 and the MLA 104. The BLA 103 may be located between the electron beam source 101 and the MLA 104 in an area or position less than 1V/mm or no field, which means that there may be a minimum lens effect of the hole 105 or even no lens effect. Therefore, the BLA 103 may not focus the beamlet 108. No field can mean 0V/mm, but can be other values close to 0V/mm under which a lens effect will not occur. Positioning the BLA 103 between the electron beam source 101 and the MLA 104 can reduce the Coulomb interaction in this area. In this way, the BLA 103 may not act as an optical component, which reduces the tolerance requirements. In one example, the electron beam current delivered to a wafer can be doubled, tripled, or quadrupled at a resolution from about 3 nm to 10 nm.

電子交互作用及庫侖交互作用可導致問題。舉例而言,此等交互作用可增加由色像差或色散導致之模糊。可能無法校正橫向模糊。BLA 103經組態以減少電子束源101與MLA 104之間的庫侖交互作用。細射束108之分離可藉由減少串擾來進一步改良效能。 Electronic interaction and Coulomb interaction can cause problems. For example, these interactions can increase blurring caused by chromatic aberration or dispersion. It may not be possible to correct horizontal blur. The BLA 103 is configured to reduce the Coulomb interaction between the electron beam source 101 and the MLA 104. The separation of the thin beam 108 can further improve performance by reducing crosstalk.

在一例項中,發射器109在-VE下操作,提取器102在-Vext下操作,抑 制器110在-VS(例如,-VE-1000V)下操作,且陽極在0V下操作。亦可將一電壓施加至MLA 104。舉例而言,-VE係自6000V至30,000V且-Vext係-VE加上自3000V至7000V。 In an item, the transmitter 109 at -V E operation, the extractor 102 operating at -V ext, suppressor 110 operates in the -V S (e.g., -V E -1000V), and the anode operated at 0V . A voltage can also be applied to the MLA 104. For example, -V E from line to 6000V and 30,000V -V ext lines -V E plus from 3000V to 7000V.

相對於電子束或細射束108之方向位於MLA 104下游的係具有至少一個線圈113及磁極片112之一磁性透鏡111。元件114調整軌跡、焦點及/或細射束108之大小。 A magnetic lens 111 located downstream of the MLA 104 with respect to the direction of the electron beam or the thin beam 108 has at least one coil 113 and a magnetic lens 111 of the pole piece 112. The element 114 adjusts the trajectory, focus, and/or size of the beamlet 108.

舉例而言,電子束系統100可用於一SEM或其他裝置。 For example, the electron beam system 100 can be used in an SEM or other devices.

圖2至圖6係依據蒙特卡羅(Monte Carlo)之模擬電子束直方圖。圖3展示BLA上游之一250μm電子束。圖4展示BLA下游之電子束。圖5展示MLA上游之電子束。圖6展示MLA下游之電子束。圖7展示電子束之一中間影像。如本文中所揭示,使用BLA會減少庫侖模糊,如由圖3至圖7中之模擬所展示。與在無BLA之情況下之49nm相比,中心電子束模糊自D2080=31nm減少。總電流自在無BLA之情況下之16.1nA減少至在有BLA之情況下之6.3nA。如此等模擬中所見,BLA可提供經改良效能,該經改良效能係在無BLA之情況下之一系統之兩倍好。 Figures 2 to 6 are simulated electron beam histograms based on Monte Carlo. Figure 3 shows a 250μm electron beam upstream of the BLA. Figure 4 shows the electron beam downstream of the BLA. Figure 5 shows the electron beam upstream of the MLA. Figure 6 shows the electron beam downstream of the MLA. Figure 7 shows an intermediate image of the electron beam. As disclosed in this article, the use of BLA reduces Coulomb blur, as shown by the simulations in Figs. 3-7. Compared with 49nm in the absence of BLA, the central electron beam blur is reduced from D2080=31nm. The total current is reduced from 16.1nA without BLA to 6.3nA with BLA. As seen in such simulations, BLA can provide improved performance that is twice as good as a system without BLA.

本文中所闡述之實施例可包含一系統或可在該系統中執行,諸如圖7之系統200。系統200包含包括至少一能量源及一偵測器之一輸出獲取子系統。輸出獲取子系統可係一基於電子束之輸出獲取子系統。舉例而言,在一項實施例中,被引導至晶圓204之能量包含電子,且自晶圓204所偵測之能量包含電子。以此方式,能量源可係一電子束源202,該電子束源可包含如本文中所揭示一電子束系統或與該電子束系統耦合。在圖7中所展示之一項此類實施例中,輸出獲取子系統包含耦合至電腦子系統207之電子光學柱201。 The embodiments described herein may include or may be implemented in a system, such as the system 200 of FIG. 7. The system 200 includes an output acquisition subsystem including at least one energy source and a detector. The output acquisition subsystem may be an output acquisition subsystem based on electron beams. For example, in one embodiment, the energy directed to the wafer 204 includes electrons, and the energy detected from the wafer 204 includes electrons. In this way, the energy source may be an electron beam source 202, which may include or be coupled to an electron beam system as disclosed herein. In one such embodiment shown in FIG. 7, the output acquisition subsystem includes an electronic optical column 201 coupled to a computer subsystem 207.

亦如圖7中所展示,電子光學柱201包含電子束源202,該電子束源經組態以產生藉由一或多個元件203聚焦至晶圓204之電子。電子束源202可包含一發射器且一或多個元件203可包含(舉例而言)一槍透鏡、一陽極、一BLA、一MLA、一閘閥、一射束電流選擇孔徑、一物鏡及/或一掃描子系統。電子柱201可包含此項技術中已知的任何其他適合元件。雖然僅圖解說明一個電子束源202,但系統200可包含多個電子束源202。 As also shown in FIG. 7, the electron optical column 201 includes an electron beam source 202 that is configured to generate electrons that are focused on the wafer 204 by one or more elements 203. The electron beam source 202 may include an emitter and one or more elements 203 may include, for example, a gun lens, an anode, a BLA, an MLA, a gate valve, a beam current selection aperture, an objective lens, and/ Or a scanning subsystem. The electron column 201 may include any other suitable elements known in the art. Although only one electron beam source 202 is illustrated, the system 200 may include multiple electron beam sources 202.

自晶圓204返回之電子(例如,次級電子)可藉由一或多個元件205而聚焦至偵測器206。一或多個元件205可包含(舉例而言)一掃描子系統,該掃描子系統可係包含於元件203中之相同掃描子系統。電子柱201可包含此項技術中已知之任何其他適合元件。 The electrons (eg, secondary electrons) returned from the wafer 204 can be focused to the detector 206 by one or more elements 205. The one or more elements 205 may include, for example, a scanning subsystem, which may be the same scanning subsystem included in the element 203. The electron column 201 may include any other suitable elements known in the art.

儘管在圖7中電子柱201展示為經組態使得電子以一傾斜入射角導引至晶圓204且以另一傾斜角自晶圓散射,但應理解電子束可以任何適合角度導引至晶圓及自該晶圓散射。另外,基於電子束之輸出獲取子系統可經組態以使用多個模式來產生晶圓204之影像(例如,以不同照明角度、收集角度等)。基於電子束之輸出獲取子系統之多個模式可在輸出獲取子系統之任何影像產生參數上不同。 Although the electron column 201 is shown in FIG. 7 as being configured so that electrons are guided to the wafer 204 at an oblique angle of incidence and scattered from the wafer at another oblique angle, it should be understood that the electron beam can be guided to the wafer at any suitable angle. The circle is scattered from the wafer. In addition, the electron beam-based output acquisition subsystem can be configured to use multiple modes to generate images of the wafer 204 (for example, with different illumination angles, collection angles, etc.). The multiple modes of the output acquisition subsystem based on the electron beam can be different in any image generation parameters of the output acquisition subsystem.

電腦子系統207可與偵測器206電子通信。偵測器206可偵測自晶圓204之表面返回之電子藉此形成晶圓204之電子束影像。電子束影像可包含任何適合電子束影像。電腦子系統207可經組態以使用偵測器206之輸出及/或電子束影像來執行其他功能或額外步驟。 The computer subsystem 207 can electronically communicate with the detector 206. The detector 206 can detect electrons returning from the surface of the wafer 204 to form an electron beam image of the wafer 204. The electron beam image can include any suitable electron beam image. The computer subsystem 207 can be configured to use the output of the detector 206 and/or the electron beam image to perform other functions or additional steps.

應注意,本文中提供圖7以大體圖解說明一基於電子束之輸出獲取子系統之一組態。可變更本文中所闡述之基於電子束之輸出獲取子系統組態以最佳化輸出獲取子系統之效能,如在設計一商業輸出獲取系統時通常所 執行。另外,可使用一現有系統來實施本文中所闡述之系統(例如,藉由將本文中所闡述之功能性添加至一現有系統)。對於某些此種系統,可提供本文中所闡述之方法作為系統之選用功能性(例如,除系統之其他功能性之外)。 It should be noted that FIG. 7 is provided herein to roughly illustrate a configuration of an electron beam-based output acquisition subsystem. The configuration of the electron beam-based output acquisition subsystem described in this article can be changed to optimize the performance of the output acquisition subsystem, as is usually done when designing a commercial output acquisition system implement. In addition, an existing system can be used to implement the system described in this article (for example, by adding the functionality described in this article to an existing system). For some of these systems, the methods described in this article can be provided as optional functionality of the system (for example, in addition to other functionality of the system).

在一項實施例中,該系統200係一檢驗系統。舉例而言,本文中所闡述之電子束輸出獲取子系統可組態為檢驗系統。在另一實施例中,系統200係一缺陷再檢測系統。舉例而言,本文中所闡述之電子束輸出獲取子系統可組態為缺陷再檢測系統。在又一實施例中,系統200係一計量系統。舉例而言,本文中所闡述之電子束輸出獲取子系統可組態為計量系統。特定而言,可修改本文中所闡述且圖7中所展示之系統200之實施例之一或多個參數以取決於將使用該等參數之應用而提供不同成像能力。在一項此種實例中,圖7中所展示之系統200可經組態以在其將用於缺陷再檢測或計量而非用於檢驗之情況下具有一較高解析度。換言之,圖7中所展示之系統200之實施例闡述一系統200之某些一般及各種組態,可以若干種方式來修整系統200以產生具有或多或少適合用於不同應用之不同成像能力之輸出獲取子系統。 In one embodiment, the system 200 is an inspection system. For example, the electron beam output acquisition subsystem described in this article can be configured as an inspection system. In another embodiment, the system 200 is a defect re-inspection system. For example, the electron beam output acquisition subsystem described in this article can be configured as a defect re-detection system. In another embodiment, the system 200 is a metering system. For example, the electron beam output acquisition subsystem described in this article can be configured as a metering system. In particular, one or more of the parameters of the embodiment of the system 200 described herein and shown in FIG. 7 can be modified to provide different imaging capabilities depending on the application in which the parameters will be used. In one such example, the system 200 shown in FIG. 7 can be configured to have a higher resolution if it will be used for defect re-detection or metering rather than for inspection. In other words, the embodiment of the system 200 shown in FIG. 7 illustrates some general and various configurations of a system 200. The system 200 can be tailored in several ways to produce different imaging capabilities that are more or less suitable for different applications. The output acquisition subsystem.

特定而言,本文中所闡述之實施例可安裝於一電腦節點或電腦叢集上,該電腦節點或電腦叢集係一輸出獲取子系統之一組件或耦合至該輸出獲取子系統,諸如一電子束檢驗器或缺陷再檢測工具、一遮罩檢驗器、一虛擬檢驗器或其他裝置。以此方式,本文中所闡述之實施例可產生可用於包含(但不限於)晶圓檢驗、遮罩檢驗、電子束檢驗及再檢測、計量或其他應用之各種應用之輸出。可基於將產生輸出之試樣如上文所闡述來修改圖7中所展示之系統200之特性。 In particular, the embodiments described herein can be installed on a computer node or computer cluster that is a component of an output acquisition subsystem or is coupled to the output acquisition subsystem, such as an electron beam Checker or defect re-inspection tool, a mask checker, a virtual checker or other device. In this way, the embodiments described herein can generate outputs that can be used in various applications including (but not limited to) wafer inspection, mask inspection, electron beam inspection and re-inspection, metrology, or other applications. The characteristics of the system 200 shown in FIG. 7 can be modified as described above based on the sample that will produce the output.

圖8係一方法300之一流程圖。一電子束經產生301、經提取302、被引導穿過一BLA 303且被引導穿過相對於電子束之一投影方向位於BLA下游的一MLA 304。BLA界定多個孔。BLA經組態以減少電子束源與多透鏡陣列之間的庫侖交互作用。電子束可位於在電子束通過BLA時小於1V/mm之一區域或一無場區域中。通過MLA之電子束可被聚焦成(舉例而言)50nm之一直徑。 FIG. 8 is a flowchart of a method 300. An electron beam is generated 301, extracted 302, guided through a BLA 303, and guided through an MLA 304 downstream of the BLA with respect to a projection direction of the electron beam. BLA defines multiple holes. The BLA is configured to reduce the Coulomb interaction between the electron beam source and the multi-lens array. The electron beam may be located in an area less than 1V/mm or a field-free area when the electron beam passes through the BLA. The electron beam passing through the MLA can be focused to a diameter of, for example, 50 nm.

可如本文中所闡述執行該方法之步驟中之每一者。該方法亦可包含可由本文中所闡述之控制器及/或電腦子系統或系統執行之任何其他步驟。該等步驟可由一或多個電腦系統執行,該一或多個電腦系統可根據本文中所闡述之實施例中之任何者而經組態。另外,可藉由本文中所闡述之系統實施例中之任何者來執行上文所闡述之方法。 Each of the steps of the method can be performed as set forth herein. The method may also include any other steps that can be executed by the controller and/or computer subsystem or system described herein. These steps can be performed by one or more computer systems, which can be configured according to any of the embodiments described herein. In addition, the method described above can be executed by any of the system embodiments described herein.

儘管已關於一或多項特定實施例闡述本發明,但應理解可在不背離本發明之範疇之情況下做出本發明之其他實施例。因此,認為本發明僅受隨附申請專利範圍及其合理闡釋限制。 Although the invention has been described with respect to one or more specific embodiments, it should be understood that other embodiments of the invention can be made without departing from the scope of the invention. Therefore, it is believed that the present invention is only limited by the scope of the attached patent application and its reasonable interpretation.

100:電子束系統 100: electron beam system

101:電子束源 101: Electron beam source

102:提取器 102: Extractor

103:射束限制孔徑 103: beam limiting aperture

104:多透鏡陣列 104: Multi-lens array

105:孔 105: hole

106:陽極 106: anode

107:電子束 107: electron beam

108:細射束 108: thin beam

109:發射器 109: Launcher

110:抑制器 110: Suppressor

111:磁性透鏡 111: Magnetic lens

112:磁極片 112: Magnetic pole piece

113:線圈 113: Coil

114:元件 114: component

A-A:線 A-A: line

Claims (20)

一種電子束系統,其包括:一電子束源;一多透鏡陣列;一射束限制孔徑,其界定複數個孔,其中該射束限制孔徑安置於該電子束源與該多透鏡陣列之間,且其中該射束限制孔徑經組態以減少該電子束源與該多透鏡陣列之間的射束模糊(beam blur);多個元件,其位於該多透鏡陣列相對於該電子束源之相對側上,其中該等元件經組態以調整來自該多透鏡陣列之細射束(beamlets)之焦距(focal length);及一磁性透鏡,其安置於該多透鏡陣列及該等元件之間。 An electron beam system, comprising: an electron beam source; a multi-lens array; a beam limiting aperture defining a plurality of holes, wherein the beam limiting aperture is arranged between the electron beam source and the multi-lens array, And wherein the beam limiting aperture is configured to reduce the beam blur between the electron beam source and the multi-lens array; a plurality of elements are located on the opposite side of the multi-lens array with respect to the electron beam source On the side, the elements are configured to adjust the focal length of the beamlets from the multi-lens array; and a magnetic lens is arranged between the multi-lens array and the elements. 如請求項1之電子束系統,其中該射束限制孔徑安置於該電子束源與該多透鏡陣列之間的具有小於1V/mm之一場之一位置處。 The electron beam system of claim 1, wherein the beam limiting aperture is arranged at a position between the electron beam source and the multi-lens array with a field less than 1V/mm. 如請求項2之電子束系統,其中該電子束源與該多透鏡陣列之間的該位置係無場的。 The electron beam system of claim 2, wherein the position between the electron beam source and the multi-lens array is fieldless. 如請求項1之電子束系統,其中該射束限制孔徑界定該等孔中之至少6個孔。 The electron beam system of claim 1, wherein the beam limiting aperture defines at least 6 holes among the holes. 如請求項1之電子束系統,其中該電子束源包含一發射器、抑制器及 提取器。 Such as the electron beam system of claim 1, wherein the electron beam source includes an emitter, a suppressor and Extractor. 如請求項1之電子束系統,其中該射束限制孔徑將該等孔界定為各自具有自1μm至100μm之一直徑。 The electron beam system of claim 1, wherein the beam limiting aperture defines the apertures to each have a diameter from 1 μm to 100 μm. 如請求項6之電子束系統,其中該等孔中之每一者之該直徑係50μm。 Such as the electron beam system of claim 6, wherein the diameter of each of the holes is 50 μm. 如請求項1之電子束系統,其中該射束限制孔徑將該等孔界定為具有自2μm至100μm之一間距。 The electron beam system of claim 1, wherein the beam limiting aperture defines the apertures as having a pitch from 2 μm to 100 μm. 如請求項8之電子束系統,其中該間距係100μm。 Such as the electron beam system of claim 8, wherein the pitch is 100 μm. 如請求項1之電子束系統,其中該射束限制孔徑係由矽、一金屬或一金屬合金製作。 Such as the electron beam system of claim 1, wherein the beam limiting aperture is made of silicon, a metal or a metal alloy. 如請求項1之電子束系統,其中該射束限制孔徑將該等孔界定為各自係圓形的。 Such as the electron beam system of claim 1, wherein the beam limiting aperture defines the holes to be circular. 如請求項1之電子束系統,其中該等孔以一多邊形配置安置於該射束限制孔徑中。 Such as the electron beam system of claim 1, wherein the holes are arranged in the beam limiting aperture in a polygonal configuration. 一種掃描電子顯微鏡,其包括如請求項1之電子束系統。 A scanning electron microscope comprising the electron beam system as claimed in claim 1. 一種電子束方法,其包括:產生一電子束;提取該電子束;將該電子束引導穿過界定複數個孔之一射束限制孔徑;將該電子束引導穿過相對於該電子束之一投影方向位於該射束限制孔徑下游之一多透鏡陣列,其中該射束限制孔徑經組態以減少電子束源與該多透鏡陣列之間的射束模糊;將該電子束引導穿過相對於該電子束之該投影方向位於該多透鏡陣列之下游之一磁性透鏡;及將該電子束引導穿過相對於該電子束之該投影方向位於該磁性透鏡之下游之多個元件,其中該等元件經組態以調整來自該磁性透鏡之細射束之焦距。 An electron beam method, comprising: generating an electron beam; extracting the electron beam; guiding the electron beam through a beam limiting aperture defining a plurality of holes; guiding the electron beam through one of the electron beams The projection direction is located in a multi-lens array downstream of the beam limiting aperture, wherein the beam limiting aperture is configured to reduce the beam blur between the electron beam source and the multi-lens array; the electron beam is guided through relative to The projection direction of the electron beam is located at a magnetic lens downstream of the multi-lens array; and the electron beam is guided through a plurality of elements located downstream of the magnetic lens with respect to the projection direction of the electron beam, wherein the The element is configured to adjust the focal length of the thin beam from the magnetic lens. 如請求項14之方法,其中該電子束位於在該電子束通過該射束限制孔徑時具有小於1V/mm之一場的一區域中。 The method of claim 14, wherein the electron beam is located in a region having a field less than 1 V/mm when the electron beam passes through the beam limiting aperture. 如請求項15之方法,其中該區域係一無場區域。 Such as the method of claim 15, wherein the area is a field-free area. 如請求項14之方法,其中通過該多透鏡陣列之該電子束被聚焦成50nm之一直徑。 The method of claim 14, wherein the electron beam passing through the multi-lens array is focused to a diameter of 50 nm. 一種電子束系統,其包括: 一電子束源,其經組態以產生一電子束;一多透鏡陣列,其位於一晶圓之上游;一射束限制孔徑,其界定複數個孔,其中該射束限制孔徑安置於該電子束源與該多透鏡陣列之間,且其中該射束限制孔徑經組態以減少該電子束源與該多透鏡陣列之間的射束模糊;多個元件,其位於該多透鏡陣列相對於該電子束源之相對側上,其中該等元件經組態以調整來自該多透鏡陣列之細射束之焦距;一磁性透鏡,其安置於該多透鏡陣列及該等元件之間;及一偵測器,其經組態以偵測來自自該晶圓之一表面返回之該電子束之電子。 An electron beam system, which includes: An electron beam source, which is configured to generate an electron beam; a multi-lens array, which is located upstream of a wafer; a beam limiting aperture, which defines a plurality of holes, wherein the beam limiting aperture is placed on the electron Between the beam source and the multi-lens array, and wherein the beam limiting aperture is configured to reduce the beam blur between the electron beam source and the multi-lens array; a plurality of elements are located relative to the multi-lens array On the opposite side of the electron beam source, the elements are configured to adjust the focal length of the thin beam from the multi-lens array; a magnetic lens arranged between the multi-lens array and the elements; and a The detector is configured to detect electrons from the electron beam returning from a surface of the wafer. 如請求項18之系統,其中該射束限制孔徑安置於該電子束源與該多透鏡陣列之間的具有小於1V/mm之一場之一位置處。 The system of claim 18, wherein the beam limiting aperture is arranged at a position between the electron beam source and the multi-lens array having a field less than 1V/mm. 如請求項19之系統,其中該電子束源與該多透鏡陣列之間的該位置係無場的。 The system of claim 19, wherein the position between the electron beam source and the multi-lens array is fieldless.
TW107100861A 2017-01-14 2018-01-10 Electron beam system and method, and scanning electron microscope TWI742223B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762446408P 2017-01-14 2017-01-14
US62/446,408 2017-01-14
US15/587,720 US10242839B2 (en) 2017-05-05 2017-05-05 Reduced Coulomb interactions in a multi-beam column
US15/587,720 2017-05-05

Publications (2)

Publication Number Publication Date
TW201832265A TW201832265A (en) 2018-09-01
TWI742223B true TWI742223B (en) 2021-10-11

Family

ID=64426206

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107100861A TWI742223B (en) 2017-01-14 2018-01-10 Electron beam system and method, and scanning electron microscope

Country Status (1)

Country Link
TW (1) TWI742223B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323642B2 (en) * 2019-05-28 2023-08-08 エーエスエムエル ネザーランズ ビー.ブイ. Multiple charged particle beam system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040141169A1 (en) * 2002-10-30 2004-07-22 Wieland Marco Jan-Jaco Electron beam exposure system
US6903353B2 (en) * 2001-04-23 2005-06-07 Canon Kabushiki Kaisha Charged particle beam exposure apparatus, device manufacturing method, and charged particle beam applied apparatus
TW200525155A (en) * 2003-12-25 2005-08-01 Ebara Corp Electron beam apparatus
CN101019203A (en) * 2004-05-17 2007-08-15 迈普尔平版印刷Ip有限公司 Charged particle beam exposure system
TW201021077A (en) * 2008-10-23 2010-06-01 Hermes Microvision Inc An electron beam apparatus
US8134135B2 (en) * 2006-07-25 2012-03-13 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
TW201527745A (en) * 2013-12-02 2015-07-16 Ict積體電路測試股份有限公司 Multi-beam system for high throughput EBI
US20160336142A1 (en) * 2015-05-12 2016-11-17 Hermes Microvision Inc. Apparatus of Plural Charged-Particle Beams

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903353B2 (en) * 2001-04-23 2005-06-07 Canon Kabushiki Kaisha Charged particle beam exposure apparatus, device manufacturing method, and charged particle beam applied apparatus
US20040141169A1 (en) * 2002-10-30 2004-07-22 Wieland Marco Jan-Jaco Electron beam exposure system
TW200525155A (en) * 2003-12-25 2005-08-01 Ebara Corp Electron beam apparatus
CN101019203A (en) * 2004-05-17 2007-08-15 迈普尔平版印刷Ip有限公司 Charged particle beam exposure system
US8134135B2 (en) * 2006-07-25 2012-03-13 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
TW201021077A (en) * 2008-10-23 2010-06-01 Hermes Microvision Inc An electron beam apparatus
TW201527745A (en) * 2013-12-02 2015-07-16 Ict積體電路測試股份有限公司 Multi-beam system for high throughput EBI
US20160336142A1 (en) * 2015-05-12 2016-11-17 Hermes Microvision Inc. Apparatus of Plural Charged-Particle Beams

Also Published As

Publication number Publication date
TW201832265A (en) 2018-09-01

Similar Documents

Publication Publication Date Title
KR102214294B1 (en) Charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets
JP7329637B2 (en) Electron beam system and method
JP4484868B2 (en) Device for generating multiple beamlets
KR102566320B1 (en) Charged Particle Beam Device, Field Curvature Corrector, and Methods of Operating a Charged Particle Beam Device
JP4913599B2 (en) Charged particle extraction device and design method thereof
US8314404B2 (en) Distributed ion source acceleration column
JP2016046263A (en) Aberration correction apparatus, device including the same, and method for correcting aberration of charged particle
TWI673749B (en) High resolution charged particle beam device and method of operating the same
TWI742223B (en) Electron beam system and method, and scanning electron microscope
TWI622077B (en) Charged particle beam device, system for a charged particle beam device, and method for operating a charged particle beam device
US20110215242A1 (en) Particle beam device and method for operation of a particle beam device
US9093243B2 (en) Gun configured to generate charged particles
CN111051985B (en) Electron beam apparatus with high resolution
CN110036456B (en) Method and system for aberration correction in electron beam systems
JP2007123134A (en) Field emission type electron gun
TW202127494A (en) Charged particle beam device and method of operating a charged particle beam device
JP6947831B2 (en) Drawer electrode for electron source
TWI761656B (en) Electron beam apparatus and methods of reducing thermal induced beam drift in an electron beam
Liu et al. Analysis of multibeam's scalable column for complementary e-beam lithography (CEBL)
Mankos et al. Electron–electron interactions in cathode objective lenses
TW202205336A (en) Particle beam system with multi-source system and multi-beam particle microscope
Zhukov Achieving sub-1.6-nm resolutions of a low-voltage microscopic focused-ion-beam system not involving aberration correction