TWI741841B - Wireless vibration audio conversion system and method - Google Patents

Wireless vibration audio conversion system and method Download PDF

Info

Publication number
TWI741841B
TWI741841B TW109136166A TW109136166A TWI741841B TW I741841 B TWI741841 B TW I741841B TW 109136166 A TW109136166 A TW 109136166A TW 109136166 A TW109136166 A TW 109136166A TW I741841 B TWI741841 B TW I741841B
Authority
TW
Taiwan
Prior art keywords
vibration
audio
change result
wireless
conversion
Prior art date
Application number
TW109136166A
Other languages
Chinese (zh)
Other versions
TW202218437A (en
Inventor
黃俊銘
林泰吉
Original Assignee
財團法人國家實驗研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家實驗研究院 filed Critical 財團法人國家實驗研究院
Priority to TW109136166A priority Critical patent/TWI741841B/en
Application granted granted Critical
Publication of TWI741841B publication Critical patent/TWI741841B/en
Publication of TW202218437A publication Critical patent/TW202218437A/en

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Abstract

本發明係有關一種無線振動音頻轉換系統及其方法,其藉由第一感測期間感測一喉部之一第一振動變化結果與一音頻變化結果,以進行運算並產生對應之一音頻參考資料,再依據該音頻參考資料將第二感測期間所感測到之一第二振動變化結果轉換為一音頻輸出訊號,用以輸出一聲音訊號,且該聲音訊號對應於該音頻變化結果。本發明藉此提供較為近於人聲的聲音訊號。The present invention relates to a wireless vibration audio conversion system and method, which sense a first vibration change result and an audio change result of a throat during a first sensing period to perform calculations and generate a corresponding audio reference According to the audio reference data, a second vibration change result sensed during the second sensing period is converted into an audio output signal for outputting a sound signal, and the sound signal corresponds to the audio change result. The present invention thus provides a sound signal closer to human voice.

Description

無線振動音頻轉換系統及其方法Wireless vibration audio conversion system and method

本發明係有關一種音頻轉換裝置及其方法,尤其是一種無線振動音頻轉換系統及其方法。 The invention relates to an audio conversion device and a method thereof, in particular to a wireless vibration audio conversion system and a method thereof.

收音裝置已成為現代人日常生活中最常使用的用品之一,舉凡行動通訊設備、錄音筆、具錄音功能的音樂播放裝置等,皆需要品質良好的收音裝置來達成接收外界聲音特別是指使用者所發出之語音的效果,並提出各種抗噪方式,使收到的聲音不像在空氣中傳輸聲音會造成不清晰的情況,且特別是在使用者移動期間,例如在運動、開車、激烈活動或吵雜的環境下亦不會受到影響。常見的收音裝置包括電容式收音裝置及壓電式收音裝置,而壓電式收音裝置中,大多利用一經振動產生壓電訊號之壓電材料元件貼附在人體上,以感受人體發聲時所產生之振動,並將振動所產生之壓力傳遞到壓電材料,使壓電材料元件受到外來壓力而改變電位差,因而產生電壓訊號以供進一步處理。 Radio devices have become one of the most commonly used products in modern people’s daily life. For example, mobile communication equipment, voice recorders, music players with recording functions, etc., require good-quality radio devices to receive external sounds, especially when used The effect of the voice sent by the user, and various anti-noise methods are proposed, so that the received sound is not as unclear as the sound transmitted in the air, and especially during the user's movement, such as sports, driving, intense Activities or noisy environments will not be affected. Common radio devices include capacitive radio devices and piezoelectric radio devices. In piezoelectric radio devices, most of the piezoelectric radio devices use a piezoelectric material element that generates a piezoelectric signal through vibration and is attached to the human body to feel the sound generated by the human body. The vibration, and the pressure generated by the vibration is transferred to the piezoelectric material, so that the piezoelectric material element is subjected to external pressure to change the potential difference, thereby generating a voltage signal for further processing.

傳統收音裝置採用人手握持或頸掛方式靠近使用者嘴邊,以利於空氣式麥克風接收使用者發出之語音。但是空氣傳導式收音裝置需以手持或頸掛方式靠近使用者嘴邊,導致使用者不容易騰出雙手處理事務,雖然業者進一步發展出頸掛方式收音裝置或桌上型收音裝置可讓使用者騰出雙手,但仍需常常調整收音裝置的設置位置及收音角度,且垂掛於使用者胸口的空氣傳導式收音裝置容易隨著使用者活動而左、右擺動,影響使用者活動,使用上相當不便。 The traditional radio device is held by a human hand or held by the neck close to the user's mouth to facilitate the air microphone to receive the user's voice. However, the air-conducting radio device needs to be held by the user's mouth or neck-hung, which makes it difficult for users to free up their hands to handle affairs. Although the industry has further developed neck-hung radio devices or desktop radio devices that can be used People free their hands, but still need to adjust the setting position and angle of the radio frequently, and the air-conducting radio hanging on the chest of the user easily swings to the left and right with the user’s activities, which affects the user’s activities. It is quite inconvenient.

再者,為克服上述空氣傳導式收音裝置的問題,因而發展出喉嚨振動式收音裝置,主要是將收音裝置配置於使用者喉嚨,而使收音裝置經由使用者說話時喉腔產生的振動接收聲音,以作為運算裝置之語音輸入源,然而振動 收音仍會有語音接收不清楚的情況,因而發展出進一步喉嚨收音的喉部收音裝置。然而,喉嚨收音裝置在聲音收集上仍然會出現語音不清楚的情況,原因在於喉音並非自喉嚨發出而是傳導至口部發出,因此音量會較小,再者,喉音的聲音訊號與喉嚨的振動訊號為不同型態的訊號,不易補償。 Furthermore, in order to overcome the problems of the above-mentioned air conduction type sound-receiving device, a throat vibration type sound-receiving device was developed. The sound-receiving device is mainly arranged in the user's throat, so that the sound-receiving device receives sound through the vibration generated by the throat cavity when the user speaks. , As the voice input source of the computing device, but the vibration There will still be situations where the voice reception is still unclear, so a throat radio device has been developed to further pick up the throat. However, the throat radio device still has unclear voices in the sound collection. The reason is that the throat sound is not emitted from the throat but transmitted to the mouth, so the volume will be low. Furthermore, the voice signal of the throat sound is related to the throat. The vibration signal of is a different type of signal, which is not easy to compensate.

基於上述之問題,本發明提供一種無線振動音頻轉換系統及其方法,其藉由運算裝置將第一感測期間內的一第一振動變化結果與一音頻變化結果產生一音頻參考資料,再依據該音頻參考資料將第二感測期間的一第二振動變化結果轉換成一音頻輸出訊號,藉此提供接近人聲的音頻輸出訊號。 Based on the above-mentioned problems, the present invention provides a wireless vibration audio conversion system and method thereof, which generates an audio reference data based on a first vibration change result and an audio change result in a first sensing period by a computing device, and then The audio reference material converts a second vibration change result during the second sensing period into an audio output signal, thereby providing an audio output signal close to human voice.

本發明之主要目的,提供一種無線振動音頻轉換系統及其方法,其藉由執行運算裝置內之應用程式,以將輸入至運算裝置之一第一振動變化結果與一音頻變化結果產生一音頻參考資料,進一步對一第二振動變化結果轉換成一音頻輸出訊號,以提供接近人聲的音頻輸出訊號。 The main purpose of the present invention is to provide a wireless vibration audio conversion system and method thereof, which generates an audio reference from a first vibration variation result and an audio variation result input to the computing device by executing an application program in the computing device The data is further converted into an audio output signal from a second vibration change result to provide an audio output signal close to human voice.

本發明揭示了一種具智能學習之無線振動音頻轉換方法,其先使用一收音裝置之一振動感測器感測一喉部於一第一感測期間所產生之一第一振動變化結果,並使用該收音裝置之一音頻感測器感測一口部於該第一感測期間所產生之一音頻變化結果;接續,將該第一振動變化結果與該音頻變化結果經無線傳輸至一運算裝置,該運算裝置執行一音頻與振動訊號轉換程式並將該振動變化結果與該音頻變化結果轉換至二對應特徵,以供該運算裝置執行一應用程式,而依據該二對應特徵之該音頻變化結果與該振動變化結果進行配對,因而產生對應之一音頻參考資料。由上可知,本發明可透過運算裝置依據第一振動變化結果與音頻變化結果產生對應之一音頻參考資料,以供人工智慧應用程式學習音頻振動轉換。 The present invention discloses a wireless vibration audio conversion method with intelligent learning, which first uses a vibration sensor of a radio device to sense a first vibration change result generated by a throat during a first sensing period, and Use an audio sensor of the radio device to sense an audio change result generated by a mouth during the first sensing period; continue, wirelessly transmit the first vibration change result and the audio change result to an arithmetic device The arithmetic device executes an audio and vibration signal conversion program and converts the vibration change result and the audio change result to two corresponding features, so that the arithmetic device executes an application program, and the audio change result according to the two corresponding features Pair with the result of the vibration change, thereby generating a corresponding audio reference material. It can be seen from the above that the present invention can generate a corresponding audio reference data according to the first vibration change result and the audio change result through the computing device, for the artificial intelligence application program to learn audio vibration conversion.

本發明提供一實施例,其中該應用程式包含一人工智慧演算法,該人工智慧演算法為一深度神經網路(Deep Neural Networks,DNN)。 The present invention provides an embodiment, wherein the application program includes an artificial intelligence algorithm, and the artificial intelligence algorithm is a Deep Neural Networks (DNN).

本發明提供一實施例,其中於該運算裝置執行一音頻與振動訊號轉換程式並將該振動變化結果與該音頻變化結果轉換至二對應特徵之步驟中,該運算裝置將該音頻變化結果轉換為對應之一音頻對應特徵並將該振動變化結果轉換為對應之一振動對應特徵,該音頻對應特徵與該振動對應特徵為對數功率頻譜、梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 The present invention provides an embodiment, wherein in the step of executing an audio and vibration signal conversion program by the arithmetic device and converting the vibration variation result and the audio variation result to two corresponding features, the arithmetic device converts the audio variation result into Corresponding to an audio corresponding feature and converting the vibration change result into a corresponding vibration corresponding feature. The audio corresponding feature and the vibration corresponding feature are logarithmic power spectrum, Mel-Frequency Cepstrum (MFC) or linear prediction Analyze the conversion result of the signal processing of the LPC Spectrum.

本發明提供一實施例,其中該振動感測器為一加速度感測器或一壓電式感測器。 The present invention provides an embodiment, wherein the vibration sensor is an acceleration sensor or a piezoelectric sensor.

本發明另揭示了一種具智能學習之無線振動音頻轉換系統,其包含一收音裝置與一運算裝置,而收音裝置包含一振動感測器、一音頻感測器與一第一無線傳輸單元,運算裝置設有一處理單元、一儲存單元與一第二無線傳輸單元,該振動感測器感測一喉部於一第一感測期間所產生之一第一振動變化結果並感測該喉部於一第二感測期間所產生之一第二振動變化結果;且該音頻感測器感測該口部於該第一感測期間所產生之一音頻變化結果,該第一無線傳輸單元連接該運算裝置、該振動感測器與該音頻感測器;以及運算裝置設有一處理單元、一儲存單元與一第二無線傳輸單元,該儲存單元存有一應用程式,該第二無線傳輸單元連接該第一無線傳輸單元,該處理單元執行該應用程式並經該第一無線傳輸單元與該第二無線傳輸單元接收該第一振動變化結果與該音頻變化結果,以依據該第一振動變化結果與該音頻變化結果產生一音頻參考資料。由上可知,本發明可透過運算裝置依據第一振動變化結果與音頻變化結果產生對應之一音頻參考資料,以供人工智慧應用程式學習音頻振動轉換。 The present invention also discloses a wireless vibration audio conversion system with intelligent learning, which includes a radio device and an arithmetic device, and the radio device includes a vibration sensor, an audio sensor and a first wireless transmission unit. The device is provided with a processing unit, a storage unit, and a second wireless transmission unit. The vibration sensor senses a first vibration change result generated by a throat during a first sensing period and senses the throat at A second vibration change result generated during a second sensing period; and the audio sensor senses an audio change result generated by the mouth during the first sensing period, and the first wireless transmission unit is connected to the An arithmetic device, the vibration sensor and the audio sensor; and the arithmetic device is provided with a processing unit, a storage unit and a second wireless transmission unit, the storage unit stores an application program, and the second wireless transmission unit is connected to the A first wireless transmission unit, the processing unit executes the application program and receives the first vibration change result and the audio change result via the first wireless transmission unit and the second wireless transmission unit, and based on the first vibration change result and The audio change results in an audio reference material. It can be seen from the above that the present invention can generate a corresponding audio reference data according to the first vibration change result and the audio change result through the computing device, for the artificial intelligence application program to learn audio vibration conversion.

本發明提供另一實施例,其中該應用程式包含一人工智慧演算法與一音頻振動轉換程式,該人工智慧演算法為一深度神經網路(Deep Neural Networks,DNN)。 The present invention provides another embodiment, wherein the application program includes an artificial intelligence algorithm and an audio vibration conversion program, and the artificial intelligence algorithm is a Deep Neural Networks (DNN).

本發明提供另一實施例,其中該運算裝置將該音頻變化結果轉換為對應之一音頻對應特徵並將該振動變化結果轉換為對應之一振動對應特徵, 該音頻對應特徵與該振動對應特徵為對數功率頻譜、梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 The present invention provides another embodiment, wherein the computing device converts the audio change result into a corresponding audio corresponding feature and converts the vibration change result into a corresponding vibration corresponding feature, The audio corresponding feature and the vibration corresponding feature are conversion results of logarithmic power spectrum, Mel-Frequency Cepstrum (MFC) or linear prediction analysis spectrum (LPC Spectrum) signal processing.

本發明提供另一實施例,其中該振動感測器為一加速度感測器或一壓電式感測器。 The present invention provides another embodiment, wherein the vibration sensor is an acceleration sensor or a piezoelectric sensor.

本發明揭示了一種無線振動音頻轉換方法,其先使用一振動感測器感測一喉部於一感測期間所產生之一振動變化結果;接續,將該振動變化結果經無線傳輸至一運算裝置,該運算裝置執行一音頻振動轉換程式轉換該振動變化結果至一對應特徵,以供該運算裝置執行一人工智慧應用程式,而依據預先儲存於一儲存單元之一音頻參考資料將該對應特徵之該振動變化結果轉換為具有一參考音頻音場效果特徵之一音頻映射訊號,以及該運算裝置執行該音頻振動轉換程式將該對應特徵之該音頻映射訊號轉換為一可輸出格式之一音頻輸出訊號。由上可知,本發明可透過運算裝置依據一音頻參考資料,然後在運算裝置接收到振動變化結果後,參照音頻參考資料將第二振動變化結果並搭配內插運算而轉換出接近人聲的音頻輸出訊號。 The present invention discloses a wireless vibration audio conversion method, which first uses a vibration sensor to sense a vibration change result generated by a throat during a sensing period; then, the vibration change result is wirelessly transmitted to an operation A device in which the computing device executes an audio vibration conversion program to convert the vibration change result to a corresponding feature for the computing device to execute an artificial intelligence application program, and the corresponding feature is based on an audio reference data pre-stored in a storage unit The result of the vibration change is converted into an audio mapping signal having a reference audio sound field effect feature, and the computing device executes the audio vibration conversion program to convert the audio mapping signal of the corresponding feature into an audio output in an output format Signal. It can be seen from the above that the present invention can use an arithmetic device based on an audio reference data, and then after the arithmetic device receives the vibration change result, refer to the audio reference data to convert the second vibration change result and interpolate it into an audio output close to the human voice. Signal.

本發明提供一實施例,其中該應用程式包含一人工智慧演算法與一音頻振動轉換程式,該人工智慧演算法為一深度神經網路(Deep Neural Networks,DNN)。 The present invention provides an embodiment, wherein the application program includes an artificial intelligence algorithm and an audio vibration conversion program, and the artificial intelligence algorithm is a Deep Neural Networks (DNN).

本發明提供一實施例,其中該運算裝置將該振動變化結果轉換為對應之一振動對應特徵,該振動對應特徵為一對數功率頻譜、一梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或一線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 The present invention provides an embodiment, wherein the arithmetic device converts the result of the vibration change into a corresponding vibration characteristic, and the vibration corresponding characteristic is a logarithmic power spectrum, a Mel-Frequency Cepstrum (MFC) or a line The conversion result of the signal processing of the LPC Spectrum (LPC Spectrum).

本發明提供一實施例,其中該振動感測器為一加速度感測器或一壓電式感測器。 The present invention provides an embodiment, wherein the vibration sensor is an acceleration sensor or a piezoelectric sensor.

本發明提供一實施例,其中該喉部為聲帶或喉嚨對應之體表位置。 The present invention provides an embodiment, wherein the throat is a position on the body surface corresponding to the vocal cords or the throat.

本發明另揭示了一種無線振動音頻轉換系統,其包含一收音裝置與一運算裝置,而收音裝置包含一振動感測器、一音頻感測器與一第一無線傳輸 單元,運算裝置設有一處理單元、一儲存單元與一第二無線傳輸單元,該振動感測器感測一喉部於一第一感測期間所產生之一第一振動變化結果並感測該喉部於一第二感測期間所產生之一第二振動變化結果;且該音頻感測器感測該喉部於該第一感測期間所產生之一音頻變化結果,該第一無線傳輸單元連接該運算裝置與該音頻感測器;以及運算裝置設有一處理單元、一儲存單元與一第二無線傳輸單元,該儲存單元存有一應用程式,該第二無線傳輸單元無線連接該第一無線傳輸單元,該處理單元經該第一無線傳輸單元與該第二無線傳輸單元接收該第一振動變化結果與該音頻變化結果,該運算裝置執行一音頻振動轉換程式轉換該振動變化結果至一對應特徵,該處理單元執行一人工智慧應用程式依據預先儲存於一儲存單元之一音頻參考資料將該對應特徵之該振動變化結果轉換為具有一參考音頻音場效果特徵之一音頻映射訊號,該處理單元執行該音頻振動轉換程式將該對應特徵之該音頻映射訊號轉換為一可輸出格式之一音頻輸出訊號。由上可知,本發明可透過運算裝置依據第一振動變化結果與音頻變化結果產生對應之一音頻參考資料,然後在運算裝置接收到第二振動變化結果後,參照音頻參考資料將第二振動變化結果轉換出接近人聲的音頻輸出訊號。 The present invention also discloses a wireless vibration audio conversion system, which includes a radio device and an arithmetic device, and the radio device includes a vibration sensor, an audio sensor and a first wireless transmission Unit, the arithmetic device is provided with a processing unit, a storage unit and a second wireless transmission unit. The vibration sensor senses a first vibration change result generated by a throat during a first sensing period and senses the A second vibration change result generated by the throat during a second sensing period; and the audio sensor senses an audio change result generated by the throat during the first sensing period, and the first wireless transmission The unit is connected to the arithmetic device and the audio sensor; and the arithmetic device is provided with a processing unit, a storage unit and a second wireless transmission unit, the storage unit stores an application program, and the second wireless transmission unit is wirelessly connected to the first A wireless transmission unit, the processing unit receives the first vibration change result and the audio change result via the first wireless transmission unit and the second wireless transmission unit, and the arithmetic device executes an audio vibration conversion program to convert the vibration change result to a Corresponding to the feature, the processing unit executes an artificial intelligence application to convert the vibration change result of the corresponding feature into an audio mapping signal having a reference audio sound field effect feature according to an audio reference data pre-stored in a storage unit, the The processing unit executes the audio vibration conversion program to convert the audio mapping signal of the corresponding feature into an audio output signal in an output format. It can be seen from the above that the present invention can generate an audio reference data corresponding to the first vibration change result and the audio change result through the arithmetic device, and then after the arithmetic device receives the second vibration change result, refer to the audio reference data to change the second vibration As a result, an audio output signal close to the human voice is converted.

本發明提供另一實施例,更包含一輸出裝置,其連接該運算裝置,接收並依據該可輸出格式之該音頻輸出訊號輸出一聲音訊號,該聲音訊號對應於該音頻變化結果。 The present invention provides another embodiment, further comprising an output device connected to the computing device, receiving and outputting an audio signal according to the audio output signal of the outputable format, the audio signal corresponding to the audio change result.

本發明提供另一實施例,其中該該應用程式包含一人工智慧演算法與一音頻振動轉換程式,該人工智慧演算法為一深度神經網路(Deep Neural Networks,DNN)。 The present invention provides another embodiment, wherein the application program includes an artificial intelligence algorithm and an audio vibration conversion program, and the artificial intelligence algorithm is a Deep Neural Networks (DNN).

本發明提供另一實施例,其中該運算裝置將該振動變化結果轉換為對應之一振動對應特徵,該振動對應特徵為一對數功率頻譜、一梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或一線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 The present invention provides another embodiment, wherein the arithmetic device converts the vibration change result into a corresponding vibration corresponding feature, and the vibration corresponding feature is a logarithmic power spectrum, a Mel-Frequency Cepstrum (MFC) or A conversion result of the signal processing of the LPC Spectrum.

本發明提供另一實施例,其中該振動感測器為一加速度感測器或一壓電式感測器。 The present invention provides another embodiment, wherein the vibration sensor is an acceleration sensor or a piezoelectric sensor.

1:無線振動音頻轉換系統 1: Wireless vibration audio conversion system

10:收音裝置 10: Radio device

12:振動感測器 12: Vibration sensor

14:音頻感測器 14: Audio sensor

16:第一無線傳輸單元 16: The first wireless transmission unit

20:運算裝置 20: Computing device

22:處理單元 22: processing unit

24:儲存單元 24: storage unit

26:第二無線傳輸單元 26: The second wireless transmission unit

30:輸出單元 30: output unit

AI:人工智慧演算法 AI: artificial intelligence algorithm

DNN:深度神經網路 DNN: Deep Neural Network

FV1:第一振動特徵 F V1 : First vibration characteristic

FV2:第二振動特徵 F V2 : Second vibration feature

IFT:反傅立葉轉換模組 IFT: Inverse Fourier Transformation Module

M:口部 M: Mouth

OUT:輸出訊號 OUT: output signal

P:應用程式 P: Application

P1:音頻振動轉換程式 P1: Audio vibration conversion program

P2:人工智慧模組 P2: Artificial Intelligence Module

Pd1:第一感測期間 Pd1: During the first sensing period

Pd2:第二感測期間 Pd2: the second sensing period

RAM:儲存單元 RAM: storage unit

REF:音頻參考資料 REF: Audio reference material

ST:傅立葉轉換模組 ST: Fourier transform module

SV1:第一振動變化結果 S V1 : The first vibration change result

SV2:第二振動變化結果 S V2 : Second vibration change result

SW:音頻變化結果 S W : Audio change result

T:喉部 T: Throat

U:使用者 U: User

V1:振動 V1: Vibration

V2:振動 V2: Vibration

VF1:第一振動對應特徵 VF1: Corresponding characteristics of the first vibration

VF2:第二振動對應特徵 VF2: Corresponding characteristics of the second vibration

W:聲音 W: sound

WF:音頻對應特徵 WF: Audio corresponding features

WI:音頻映射訊號 WI: Audio mapping signal

WO:音頻輸出訊號 WO: Audio output signal

WT:音訊轉換模組 WT: Audio conversion module

S10-S50:步驟 S10-S50: steps

第一圖:其為本發明之一實施例之流程圖;第二A圖:其為本發明之一實施例之同步感測音頻與振動之示意圖;第二B圖:其為本發明之一實施例之運算音頻參考資料之示意圖;第三圖:其為本發明之另一實施例之流程圖;第四A圖:其為本發明之另一實施例之感測振動之示意圖;第四B圖:其為本發明之另一實施例之振動轉換音頻之示意圖;以及第四C圖:其為本發明之另一實施例之音頻輸出之示意圖。 Figure 1: It is a flowchart of an embodiment of the present invention; Figure A: It is a schematic diagram of synchronously sensing audio and vibration in an embodiment of the present invention; Figure B: It is one of the present invention The schematic diagram of calculating the audio reference data of the embodiment; the third figure: it is a flowchart of another embodiment of the present invention; the fourth figure A: it is the schematic diagram of sensing vibration of another embodiment of the present invention; Figure B: It is a schematic diagram of vibration-converted audio according to another embodiment of the present invention; and Figure C: It is a schematic diagram of audio output according to another embodiment of the present invention.

為使 貴審查委本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合說明,說明如後:有鑑於現有振動收音機制造成無法確實提供較佳品質之輸出訊號的問題,據此,本發明遂提出一種無線振動音頻轉換系統及其方法,以解決現有技術所造成之無法確實提供較佳品質之輸出訊號的問題。 In order for your review committee to have a further understanding and understanding of the features of the present invention and the effects achieved, the examples and accompanying descriptions are provided here. The description is as follows: In view of the fact that the existing vibrating radios are not manufactured to provide better quality output. According to the signal problem, the present invention proposes a wireless vibration audio conversion system and method to solve the problem that the prior art cannot provide a better quality output signal.

以下,將進一步說明本發明揭示一種無線振動音頻轉換系統及其方法所包含之特性、所搭配之結構:首先,請參閱第一圖,其為本發明之一實施例之流程圖。如圖所示,本發明之無線振動音頻轉換方法,其步驟包含:步驟S10:使用一收音裝置之一振動感測器於一第一感測期間感測一喉部並產生一第一振動變化結果,並使用該收音裝置之一音頻感測器於該第一感測期間感測一口部並產生一音頻變化結果; 步驟S20:無線傳輸該第一振動變化結果與該音頻變化結果至一運算裝置;步驟S25:運算裝置執行音頻與振動訊號轉換程式並將振動變化結果與音頻變化結果轉換至對應特徵;以及步驟S30:該運算裝置執行一應用程式依據該音頻變化結果比對該第一振動變化結果,產生對應之一音頻參考資料。 Hereinafter, the characteristics and structure of a wireless vibration audio conversion system and method disclosed in the present invention will be further explained: First, please refer to the first figure, which is a flowchart of an embodiment of the present invention. As shown in the figure, the steps of the wireless vibration audio conversion method of the present invention include: Step S10: Use a vibration sensor of a radio device to sense a throat during a first sensing period and generate a first vibration change As a result, using an audio sensor of the radio device to sense a mouth during the first sensing period and generate an audio change result; Step S20: Wirelessly transmit the first vibration change result and the audio change result to an arithmetic device; Step S25: The arithmetic device executes an audio and vibration signal conversion program and converts the vibration change result and the audio change result to corresponding features; and Step S30 : The computing device executes an application program based on the audio change result to compare the first vibration change result to generate a corresponding audio reference data.

請參閱第二A圖至第二B圖,其為本發明之一實施例之第一感測期間同步感測音頻與振動之示意圖、運算音頻參考資料之示意圖。如圖所示,本發明之無線振動音頻轉換系統1,其包含一收音裝置10與一運算裝置20,收音裝置10內設有一振動感測器12、一音頻感測器14與一第一無線傳輸單元16,運算裝置20設有一處理單元22、一儲存單元24與一第二無線傳輸單元26,儲存單元24儲存一應用程式P,第一無線傳輸單元16連接第二無線傳輸單元26。 Please refer to Figures 2A to 2B, which are schematic diagrams of synchronously sensing audio and vibration during the first sensing period and a schematic diagram of computing audio reference data in an embodiment of the present invention. As shown in the figure, the wireless vibration audio conversion system 1 of the present invention includes a radio device 10 and an arithmetic device 20. The radio device 10 is provided with a vibration sensor 12, an audio sensor 14 and a first wireless device. The transmission unit 16 and the computing device 20 are provided with a processing unit 22, a storage unit 24 and a second wireless transmission unit 26. The storage unit 24 stores an application program P. The first wireless transmission unit 16 is connected to the second wireless transmission unit 26.

於步驟S10中,如第二A圖所示,一使用者U配戴收音裝置10於一喉部T,配戴方式為吊掛、頸束帶或頸部套環,使用者U於發聲時喉部T對應產生振動V1,並經傳導至口部M而發出聲音W,收音裝置10上的振動感測器12於一第一感測期間Pd1感測喉部T所產生振動V1之一第一振動變化結果SV1,同一時間,該收音裝置10之該音頻感測器14於該第一感測期間Pd1感測到來自於該口部M所發出之聲音W,而對應產生一音頻變化結果SW。接續於步驟S20中,如第二A圖所示,收音裝置10透過第一無線傳輸單元16連接第二無線傳輸單元26所形成之無線傳輸介面(例如:藍芽(Bluetooth)、無線區域網路(WIFI)、蜂巢網路(ZigBee)、LoRa長距離傳輸技術),而將該第一振動變化結果SV1與該音頻變化結果SW傳送至該運算裝置20,特別是由該處理單元22將該第一振動變化結果SV1與該音頻變化結果SW暫時儲存於該儲存單元24中。 In step S10, as shown in Fig. 2A, a user U wears the radio device 10 on a throat T in the form of hanging, neck strap or neck loop. When the user U makes a sound The throat T generates a vibration V1 correspondingly, and is transmitted to the mouth M to emit a sound W. The vibration sensor 12 on the radio device 10 senses the vibration V1 generated by the throat T during a first sensing period Pd1. A vibration change result S V1 . At the same time, the audio sensor 14 of the radio device 10 senses the sound W from the mouth M during the first sensing period Pd1, and accordingly generates an audio change The result is S W. In step S20, as shown in Figure 2A, the radio device 10 is connected to the wireless transmission interface formed by the second wireless transmission unit 26 through the first wireless transmission unit 16 (for example: Bluetooth, wireless local area network) (WIFI), cellular network (ZigBee), LoRa long-distance transmission technology), and transmit the first vibration change result S V1 and the audio change result S W to the computing device 20, especially the processing unit 22 The first vibration change result S V1 and the audio change result SW are temporarily stored in the storage unit 24.

於步驟S25中,如第二B圖所示,該運算裝置20藉由該處理單元22讀取在該儲存單元24中的該應用程式P用以運算該第一振動變化結果SV1與該音頻變化結果SW,以產生一音頻參考資料REF,其中該應用程式P包含一音頻振動轉換程式P1與一人工智慧模組P2,該音頻振動轉換程式P1包含一傅立葉轉換模 組ST與一音訊轉換模組WT,傅立葉轉換模組ST為運行傅立葉轉換函式(Fourier Transform),以將該第一振動變化結果SV1轉換為一第一振動對應特徵VF1,該音訊轉換模組WT轉換該音頻變化結果SW為一音頻對應特徵,本實施例之該音頻對應特徵WF與該第一振動對應特徵VF1為對數功率頻譜(Log-Power Spectrum,LPS),除此之外,該音頻對應特徵WF與該第一振動對應特徵VF1更可為梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 In step S25, as shown in FIG. 2B, the computing device 20 reads the application program P in the storage unit 24 through the processing unit 22 to compute the first vibration change result S V1 and the audio frequency Change the result S W to generate an audio reference data REF, where the application P includes an audio vibration conversion program P1 and an artificial intelligence module P2, and the audio vibration conversion program P1 includes a Fourier conversion module ST and an audio conversion Module WT, Fourier transform module ST is to run Fourier transform function (Fourier Transform) to transform the first vibration change result S V1 into a first vibration corresponding characteristic VF1, the audio conversion module WT converts the audio change The result S W is an audio corresponding feature. The audio corresponding feature WF and the first vibration corresponding feature VF1 of this embodiment are Log-Power Spectrum (LPS). In addition, the audio corresponding feature WF is related to The first vibration corresponding characteristic VF1 may be a conversion result of signal processing of Mel-Frequency Cepstrum (MFC) or LPC Spectrum (LPC Spectrum).

於步驟S30中,如第二B圖所示,該人工智慧模組P2運行至少一人工智慧演算法AI,例如:該人工智慧演算法AI為一深度神經網路DNN(Deep Neural Networks,DNN),基於同一格式下,讓該人工智慧演算法AI學習該音頻對應特徵WF與該第一振動對應特徵VF1對照的情況,亦即該音頻對應特徵WF與該第一振動對應特徵VF1兩者之間的權重關係,因而產生對應之該音頻參考資料REF,即利用該音頻對應特徵WF與該第一振動對應特徵VF1兩者之間的權重關係作為該音頻參考資料REF。 In step S30, as shown in Figure 2B, the artificial intelligence module P2 runs at least one artificial intelligence algorithm AI, for example: the artificial intelligence algorithm AI is a deep neural network DNN (Deep Neural Networks, DNN) Based on the same format, let the artificial intelligence algorithm AI learn the comparison between the audio corresponding feature WF and the first vibration corresponding feature VF1, that is, between the audio corresponding feature WF and the first vibration corresponding feature VF1 Therefore, the corresponding audio reference material REF is generated, that is, the weight relationship between the audio corresponding feature WF and the first vibration corresponding feature VF1 is used as the audio reference material REF.

以上所述為具智能學習之無線振動音頻轉換方法,即透過運算裝置執行人工智慧應用程式,以藉由人工智慧演算法學習該音頻對應特徵與該第一振動對應特徵的對應權重關係,因而作為人工智慧演算法轉換振動變化結果為音頻輸出資料的權重參考。以下實施例為無線振動音頻轉換方法,即藉由人工智慧演算法參照學習到的音頻參考資料,以將所接收到振動變化結果轉換為對應音頻輸出訊號,以下為詳細說明:請參閱第三圖,其為本發明之另一實施例之流程圖。如圖所示,本發明之無線振動音頻轉換方法,其步驟包含:步驟S40:使用該振動感測器於一第二感測期間感測該喉部並產生一第二振動變化結果;步驟S42:無線傳輸該第二振動變化結果至該運算裝置;步驟S45:運算裝置執行音頻與振動訊號轉換程式並將振動變化結果轉換至對應特徵;以及 步驟S50:該運算裝置執行該應用程式而依據預先儲存於一儲存單元之該音頻參考資料將該第二振動變化結果轉換為具有參考音頻音場效果之一音頻輸出訊號。 The above is the wireless vibration audio conversion method with intelligent learning, that is, the artificial intelligence application is executed through the computing device, and the corresponding weight relationship between the audio corresponding feature and the first vibration corresponding feature is learned by the artificial intelligence algorithm. The artificial intelligence algorithm converts the vibration change result into the weight reference of the audio output data. The following embodiment is a wireless vibration audio conversion method, that is, the learned audio reference data is referred to by an artificial intelligence algorithm to convert the received vibration change result into the corresponding audio output signal. The following is a detailed description: please refer to the third figure , Which is a flowchart of another embodiment of the present invention. As shown in the figure, the steps of the wireless vibration audio conversion method of the present invention include: Step S40: Use the vibration sensor to sense the throat during a second sensing period and generate a second vibration change result; Step S42 : Wirelessly transmit the second vibration change result to the computing device; step S45: the computing device executes the audio and vibration signal conversion program and converts the vibration change result to the corresponding feature; and Step S50: The computing device executes the application program and converts the second vibration change result into an audio output signal with a reference audio sound field effect according to the audio reference data pre-stored in a storage unit.

於步驟S40中,如第四A圖所示,該收音裝置10之該振動感測器12在第二感測期間Pd2感測來自該喉頭T之振動V2,因而取得一第二振動變化結果SV2,並於步驟S42中,如第四A圖所示,經由該第一無線傳輸單元16與該第二無線傳輸單元26所構建之無線傳輸介面,將該第二振動變化結果SV2傳送至該運算裝置20,進一步地,該處理單元22將該運算裝置20所接收到的該第二振動變化結果SV2儲存在該儲存單元24。 In step S40, as shown in FIG. 4A, the vibration sensor 12 of the radio device 10 senses the vibration V2 from the throat T during the second sensing period Pd2, thereby obtaining a second vibration change result S V2 , and in step S42, as shown in Figure 4A, the second vibration change result S V2 is transmitted to the wireless transmission interface constructed by the first wireless transmission unit 16 and the second wireless transmission unit 26 The computing device 20, further, the processing unit 22 stores the second vibration change result S V2 received by the computing device 20 in the storage unit 24.

於步驟S45中,如第四B圖所示,該處理單元22讀取並執行該儲存單元24所儲存之該應用程式P,且另讀取該第二振動變化結果SV2,以在應用程式P中將該第二振動變化結果SV2進行運算,其中該處理單元22所執行之該人工智慧演算法AI為讀入經該傅立葉轉換模組所轉換的該第二振動變化結果SV2,以將該第二振動變化結果SV2轉換為對應特徵,即一第二振動對應特徵VF2,本實施例之該第二振動對應特徵VF2為一對數功率頻譜(Log-Power Spectrum,LPS),除此之外,該第二振動對應特徵VF2更可為一梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或一線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。然後於步驟S50中,如第四B圖所示,該處理單元22依據該人工智慧演算法AI與預先儲存於該處理單元22對應之儲存單元RAM中的該音頻參考資料REF,例如:儲存於記憶體中,將該第二振動變化結果SV2轉換為一音頻映射訊號WI,並透過一反傅立葉轉換模組IFT將該音頻映射訊號WI轉換為可輸出格式之一音頻輸出訊號WO,以供後續輸出至一輸出裝置30,例如:揚聲器或耳機,如第四C圖所示,可輸出格式之該音頻輸出訊號WO由運算裝置20輸出至輸出單元30,因而輸出近於人聲的輸出訊號OUT。 In step S45, as shown in FIG. 4B, the processing unit 22 reads and executes the application program P stored in the storage unit 24, and also reads the second vibration change result S V2 to use the application program The second vibration change result S V2 is calculated in P, where the artificial intelligence algorithm AI executed by the processing unit 22 is to read the second vibration change result S V2 converted by the Fourier transform module to Convert the second vibration change result S V2 into a corresponding feature, that is, a second vibration corresponding feature VF2. The second vibration corresponding feature VF2 of this embodiment is a log-power spectrum (Log-Power Spectrum, LPS), except for this In addition, the second vibration corresponding feature VF2 can be a conversion result of a Mel-Frequency Cepstrum (MFC) or a linear predictive analysis spectrum (LPC Spectrum) signal processing. Then in step S50, as shown in FIG. 4B, the processing unit 22 according to the artificial intelligence algorithm AI and the audio reference data REF pre-stored in the storage unit RAM corresponding to the processing unit 22, for example: stored in In the memory, the second vibration change result S V2 is converted into an audio mapping signal WI, and the audio mapping signal WI is converted into an audio output signal WO of an output format through an inverse Fourier transform module IFT for Subsequent output to an output device 30, such as speakers or earphones. As shown in Figure 4C, the audio output signal WO in an output format is output from the computing device 20 to the output unit 30, thus outputting an output signal OUT close to human voice. .

藉此,本發明提供之該音頻輸出訊號WO為對應於步驟S10中所擷取之該音頻變化結果SW,也就是說本發明藉由該運算裝置將步驟S10中所獲得之該第一振動變化結果SV1與該音頻變化結果SW,以運算出可供該運算裝置20作 為參照依據之該音頻參考資料,因而用於轉換接續所獲得之該第二振動變化結果SV2為該音頻輸出訊號WO,且該音頻輸出訊號WO為近於人聲的輸出訊號OUT,因此在喉部振動訊號轉換為音源訊號之應用上可提供較不易失真之音源訊號。 Thereby, the audio output signal WO provided by the present invention corresponds to the audio change result S W captured in step S10, that is to say, the present invention uses the arithmetic device to convert the first vibration obtained in step S10 The change result S V1 and the audio change result S W are calculated to obtain the audio reference data for the computing device 20 as a reference basis, so that the second vibration change result S V2 obtained by the connection is converted into the audio output The signal WO, and the audio output signal WO is an output signal OUT close to the human voice, so it can provide an audio signal that is less susceptible to distortion in the application of converting the throat vibration signal into an audio signal.

綜上所述,本發明之無線振動音頻轉換系統及其方法,其提供運算裝置將收音裝置於第一感測期間所感測之第一振動變化結果與音頻變化結果進行運算,因而產出對應之音頻參考資料,藉此讓運算裝置學習,因而接續在第二感測期間所感測之第二振動變化結果即可轉換為對應音頻變化結果之音頻輸出訊號,因而可提供接近人聲之輸出訊號。 In summary, the wireless vibration audio conversion system and method of the present invention provide a computing device for computing the first vibration change result and the audio change result sensed by the radio device during the first sensing period, thereby generating the corresponding The audio reference data allows the computing device to learn, so that the second vibration change result sensed during the second sensing period can be converted into an audio output signal corresponding to the audio change result, thereby providing an output signal close to human voice.

故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。 Therefore, the present invention is truly novel, progressive, and available for industrial use. It should meet the patent application requirements of China's patent law. Undoubtedly, I filed an invention patent application in accordance with the law. I pray that the Bureau will grant the patent as soon as possible.

惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。 However, the above are only the preferred embodiments of the present invention, and are not used to limit the scope of implementation of the present invention. For example, the shapes, structures, features and spirits described in the scope of the patent application of the present invention are equally changed and modified. , Should be included in the scope of patent application of the present invention.

S40-S50:步驟 S40-S50: steps

Claims (17)

一種具智能學習之無線振動音頻轉換方法,其步驟包含:使用一收音裝置之一振動感測器於一第一感測期間感測一喉部並產生一振動變化結果,並使用該收音裝置之一音頻感測器於該感測期間感測一口部並產生一音頻變化結果;無線傳輸該振動變化結果與該音頻變化結果至一運算裝置;該運算裝置執行一音頻與振動訊號轉換程式並將該振動變化結果與該音頻變化結果轉換至二對應特徵;以及該運算裝置執行一人工智慧程式依據該二對應特徵之該音頻變化結果與該第一振動變化結果進行配對,產生對應之一音頻參考資料。 A wireless vibration audio conversion method with intelligent learning, the steps include: using a vibration sensor of a radio device to sense a throat during a first sensing period and generate a vibration change result, and using the radio device An audio sensor senses a mouth during the sensing period and generates an audio change result; wirelessly transmits the vibration change result and the audio change result to an arithmetic device; the arithmetic device executes an audio and vibration signal conversion program and The vibration change result and the audio change result are converted to two corresponding characteristics; and the computing device executes an artificial intelligence program to pair the audio change result of the two corresponding characteristics with the first vibration change result to generate a corresponding audio reference material. 如請求項1所述的無線振動音頻轉換方法,其中該人工智慧程式包含一人工智慧演算法,該人工智慧演算法為一深度神經網路(Deep Neural Networks,DNN)。 The wireless vibration audio conversion method according to claim 1, wherein the artificial intelligence program includes an artificial intelligence algorithm, and the artificial intelligence algorithm is a Deep Neural Networks (DNN). 如請求項1所述的無線振動音頻轉換方法,其中於該運算裝置執行該音頻與振動訊號轉換程式並將該振動變化結果與該音頻變化結果轉換至二對應特徵之步驟中,該運算裝置將該音頻變化結果轉換為對應該對應特徵之一音頻對應特徵並將該振動變化結果轉換為對應之一振動對應特徵,該音頻對應特徵與該振動對應特徵為對數功率頻譜、梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 The wireless vibration audio conversion method according to claim 1, wherein in the step of executing the audio and vibration signal conversion program by the computing device and converting the vibration change result and the audio change result to two corresponding features, the computing device will The audio change result is converted into an audio corresponding feature corresponding to the corresponding feature and the vibration change result is converted into a corresponding vibration corresponding feature. The audio corresponding feature and the vibration corresponding feature are logarithmic power spectrum and Mel cepstrum (Mel cepstrum). -Frequency Cepstrum (MFC) or linear predictive analysis spectrum (LPC Spectrum) signal processing conversion results. 如請求項1所述的無線振動音頻轉換方法,其中該振動感測器為一加速度感測器或一壓電式感測器。 The wireless vibration audio conversion method according to claim 1, wherein the vibration sensor is an acceleration sensor or a piezoelectric sensor. 一種具智能學習之無線振動音頻轉換系統,其包含:一收音裝置,其包含: 一振動感測器,感測一喉部於一感測期間所產生之一振動變化結果;一音頻感測器,感測一口部於該感測期間所產生之一音頻變化結果;以及一第一無線傳輸單元,連接該振動感測器與該音頻感測器;一運算裝置,其包含:一第二無線傳輸單元,無線連接該第一無線傳輸單元;一處理單元,電性連接該第一無線傳輸單元;以及一儲存單元,存有一人工智慧應用程式與一音頻振動轉換程式,該處理單元經該第一無線傳輸單元與該第二無線傳輸單元接收該振動變化結果與該音頻變化結果,並執行該音頻振動轉換程式將該振動變化結果與該音頻變化結果轉換至二對應特徵,以依據該二對應特徵之該第一振動變化結果與該音頻變化結果產生一音頻參考資料。 A wireless vibration audio conversion system with intelligent learning, which includes: a radio device, which includes: A vibration sensor that senses a vibration change result of a throat during a sensing period; an audio sensor that senses an audio change result of a mouth during the sensing period; and a first A wireless transmission unit, connected to the vibration sensor and the audio sensor; an arithmetic device, including: a second wireless transmission unit, wirelessly connected to the first wireless transmission unit; a processing unit, electrically connected to the first wireless transmission unit A wireless transmission unit; and a storage unit storing an artificial intelligence application program and an audio vibration conversion program, the processing unit receives the vibration change result and the audio change result via the first wireless transmission unit and the second wireless transmission unit , And execute the audio vibration conversion program to convert the vibration change result and the audio change result to two corresponding characteristics, so as to generate an audio reference data according to the first vibration change result and the audio change result of the two corresponding characteristics. 如請求項5所述的無線振動音頻轉換系統,其中該應用程式包含一人工智慧演算法,該人工智慧演算法為一深度神經網路(Deep Neural Networks,DNN)。 The wireless vibration audio conversion system according to claim 5, wherein the application includes an artificial intelligence algorithm, and the artificial intelligence algorithm is a Deep Neural Networks (DNN). 如請求項5所述的無線振動音頻轉換系統,其中該處理單元依據該音頻變化結果轉換為對應之一音頻對應特徵並將該振動變化結果轉換為對應之一振動對應特徵,該音頻對應特徵與該振動對應特徵為對數功率頻譜、梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 The wireless vibration audio conversion system according to claim 5, wherein the processing unit converts the result of the audio change into a corresponding audio feature and converts the result of the vibration change into a corresponding vibration feature, and the audio corresponding feature is The corresponding characteristic of the vibration is the conversion result of the signal processing of the logarithmic power spectrum, Mel-Frequency Cepstrum (MFC) or linear prediction analysis spectrum (LPC Spectrum). 如請求項5所述的無線振動音頻轉換系統,其中該振動感測器為一加速度感測器或一壓電式感測器。 The wireless vibration audio conversion system according to claim 5, wherein the vibration sensor is an acceleration sensor or a piezoelectric sensor. 一種無線振動音頻轉換方法,其步驟包含: 使用一振動感測器於一感測期間直接感測一喉部並產生一振動變化結果;無線傳輸該振動變化結果至一運算裝置;該運算裝置執行一音頻振動轉換程式轉換該振動變化結果至一對應特徵;該運算裝置執行一人工智慧應用程式而依據預先儲存於一儲存單元之一音頻參考資料將該對應特徵之該振動變化結果轉換為具有一參考音頻音場效果特徵之一音頻映射訊號;以及該運算裝置執行該音頻振動轉換程式將該對應特徵之該音頻映射訊號反向轉換為一可輸出格式之一音頻輸出訊號。 A wireless vibration audio conversion method, the steps include: Use a vibration sensor to directly sense a throat during a sensing period and generate a vibration change result; wirelessly transmit the vibration change result to an arithmetic device; the arithmetic device executes an audio vibration conversion program to convert the vibration change result to A corresponding feature; the computing device executes an artificial intelligence application program and converts the vibration change result of the corresponding feature into an audio mapping signal with a reference audio sound field effect feature according to an audio reference data pre-stored in a storage unit And the computing device executes the audio vibration conversion program to reversely convert the corresponding feature of the audio mapping signal into an audio output signal in an output format. 如請求項9所述的無線振動音頻轉換方法,其中該應用程式包含一人工智慧演算法與一音頻振動轉換程式,該人工智慧演算法為一深度神經網路(Deep Neural Networks,DNN)。 The wireless vibration audio conversion method according to claim 9, wherein the application program includes an artificial intelligence algorithm and an audio vibration conversion program, and the artificial intelligence algorithm is a Deep Neural Networks (DNN). 如請求項9所述的無線振動音頻轉換方法,其中於該運算裝置執行一音頻振動轉換程式轉換該振動變化結果至一對應特徵之步驟中,該處理單元將該振動變化結果轉換為對應之一振動對應特徵,該振動對應特徵為一對數功率頻譜、一梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或一線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 The wireless vibration audio conversion method according to claim 9, wherein in the step of converting the vibration change result to a corresponding feature when the arithmetic device executes an audio vibration conversion program, the processing unit converts the vibration change result into a corresponding one Vibration corresponding feature, the vibration corresponding feature is a conversion result of a logarithmic power spectrum, a Mel-Frequency Cepstrum (MFC) or a linear predictive analysis spectrum (LPC Spectrum) signal processing. 如請求項9所述的無線振動音頻轉換方法,其中該振動感測器為一加速度感測器或一壓電式感測器。 The wireless vibration audio conversion method according to claim 9, wherein the vibration sensor is an acceleration sensor or a piezoelectric sensor. 一種無線振動音頻轉換系統,其包含:一收音裝置,其包含:一振動感測器,感測一喉部於一感測期間所產生之一振動變化結果;以及一第一無線傳輸單元,連接該振動感測器;一運算裝置,其包含: 一第二無線傳輸單元,無線連接該第一無線傳輸單元;一處理單元,電性連接該第二無線傳輸單元;以及一儲存單元,存有一人工智慧應用程式與一音頻振動轉換程式,該處理單元經該第一無線傳輸單元與該第二無線傳輸單元接收該振動變化結果並執行該音頻振動轉換程式將該振動變化結果轉換至一對應特徵,該處理單元執行該人工智慧應用程式依據預先儲存於一儲存單元之一音頻參考資料將該對應特徵之該振動變化結果轉換為具有一參考音頻音場效果特徵之一音頻映射訊號,該處理單元執行該音頻振動轉換程式將該對應特徵之該音頻映射訊號轉換為一可輸出格式之一音頻輸出訊號。 A wireless vibration audio conversion system, which includes: a radio device, which includes: a vibration sensor that senses a vibration change result of a throat during a sensing period; and a first wireless transmission unit connected to The vibration sensor; an arithmetic device, which includes: A second wireless transmission unit, wirelessly connected to the first wireless transmission unit; a processing unit, electrically connected to the second wireless transmission unit; and a storage unit, storing an artificial intelligence application program and an audio vibration conversion program, the processing The unit receives the vibration change result via the first wireless transmission unit and the second wireless transmission unit and executes the audio vibration conversion program to convert the vibration change result to a corresponding feature. The processing unit executes the artificial intelligence application according to pre-stored An audio reference data in a storage unit converts the vibration change result of the corresponding feature into an audio mapping signal having a reference audio sound field effect feature, and the processing unit executes the audio vibration conversion program to convert the audio of the corresponding feature The mapping signal is converted into an audio output signal in an output format. 如請求項13所述的無線振動音頻轉換系統,更包含一輸出裝置,其連接該運算裝置,接收並依據該可輸出格式之該音頻輸出訊號輸出一聲音訊號。 The wireless vibration audio conversion system according to claim 13, further comprising an output device connected to the computing device, receiving and outputting an audio signal according to the audio output signal in the outputable format. 如請求項13所述的無線振動音頻轉換系統,其中該應用程式包含一人工智慧演算法與一音頻振動轉換程式,該人工智慧演算法為一深度神經網路(Deep Neural Networks,DNN)。 The wireless vibration audio conversion system according to claim 13, wherein the application program includes an artificial intelligence algorithm and an audio vibration conversion program, and the artificial intelligence algorithm is a Deep Neural Networks (DNN). 如請求項13所述的無線振動音頻轉換系統,其中該處理單元將該振動變化結果轉換為對應之一振動對應特徵,該振動對應特徵為一對數功率頻譜、一梅爾倒頻譜(Mel-Frequency Cepstrum,MFC)或一線性預測分析頻譜(LPC Spectrum)之訊號處理之轉換結果。 The wireless vibration audio conversion system according to claim 13, wherein the processing unit converts the vibration change result into a corresponding vibration characteristic, and the vibration corresponding characteristic is a logarithmic power spectrum and a Mel-Frequency frequency spectrum (Mel-Frequency Cepstrum, MFC) or a linear predictive analysis spectrum (LPC Spectrum) signal processing conversion results. 如請求項13所述的無線振動音頻轉換系統,其中該振動感測器為一加速度感測器或一壓電式感測器。 The wireless vibration audio conversion system according to claim 13, wherein the vibration sensor is an acceleration sensor or a piezoelectric sensor.
TW109136166A 2020-10-19 2020-10-19 Wireless vibration audio conversion system and method TWI741841B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109136166A TWI741841B (en) 2020-10-19 2020-10-19 Wireless vibration audio conversion system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109136166A TWI741841B (en) 2020-10-19 2020-10-19 Wireless vibration audio conversion system and method

Publications (2)

Publication Number Publication Date
TWI741841B true TWI741841B (en) 2021-10-01
TW202218437A TW202218437A (en) 2022-05-01

Family

ID=80782340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109136166A TWI741841B (en) 2020-10-19 2020-10-19 Wireless vibration audio conversion system and method

Country Status (1)

Country Link
TW (1) TWI741841B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM392511U (en) * 2010-06-28 2010-11-11 Shih-Chi Peng Vibrating conductive microphone device
TWM492015U (en) * 2014-07-30 2014-12-11 Wen-Tsung Sun Electronic phonation prothesis
TWI465227B (en) * 2013-06-04 2014-12-21
CN204600793U (en) * 2015-04-15 2015-09-02 张云高 A kind of pronunciation tube of assisting pronunciation at holistic nursing care and patients with laryngocarcinoma after operation
TWM518968U (en) * 2015-09-21 2016-03-21 xiao-han Chen Imitated glottis trachea device
TW202029187A (en) * 2019-01-16 2020-08-01 美商Ts聲音科技有限公司 Computer-aided conversion test system and method for generating intelligible speech

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM392511U (en) * 2010-06-28 2010-11-11 Shih-Chi Peng Vibrating conductive microphone device
TWI465227B (en) * 2013-06-04 2014-12-21
TWM492015U (en) * 2014-07-30 2014-12-11 Wen-Tsung Sun Electronic phonation prothesis
CN204600793U (en) * 2015-04-15 2015-09-02 张云高 A kind of pronunciation tube of assisting pronunciation at holistic nursing care and patients with laryngocarcinoma after operation
TWM518968U (en) * 2015-09-21 2016-03-21 xiao-han Chen Imitated glottis trachea device
TW202029187A (en) * 2019-01-16 2020-08-01 美商Ts聲音科技有限公司 Computer-aided conversion test system and method for generating intelligible speech

Also Published As

Publication number Publication date
TW202218437A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
JP6858699B2 (en) A control device for an earphone or a media player that communicates with the earphone, and its control method
CN112544090B (en) Audio circuit
CN111836178A (en) Hearing device comprising a keyword detector and a self-voice detector and/or transmitter
WO2018201688A1 (en) Microphone, vocal training apparatus comprising microphone and vocal analyzer, vocal training method, and non-transitory tangible computer-readable storage medium
KR20160095141A (en) Controlling a speech recognition process of a computing device
CN109937579A (en) In-Ear active noise reduction earphone
US20110200213A1 (en) Hearing aid with an accelerometer-based user input
US11290802B1 (en) Voice detection using hearable devices
US20230290333A1 (en) Hearing apparatus with bone conduction sensor
US10602274B2 (en) Audio input/output device
US20230044509A1 (en) Hearing device comprising a feedback control system
CN110837353B (en) Method of compensating in-ear audio signal, electronic device, and recording medium
WO2020079918A1 (en) Information processing device and information processing method
TWI741841B (en) Wireless vibration audio conversion system and method
JP3233390U (en) Notification device and wearable device
US11363386B1 (en) System for converting vibration to voice frequency wirelessly
US20240078991A1 (en) Acoustic devices and methods for determining transfer functions thereof
WO2022147905A1 (en) Method for optimizing work state of bone conduction headphones
JP5391374B2 (en) Microphone device
US11699428B2 (en) Method for converting vibration to voice frequency wirelessly
WO2008062782A1 (en) Speech estimation system, speech estimation method, and speech estimation program
CN115996349A (en) Hearing device comprising a feedback control system
WO2022198538A1 (en) Active noise reduction audio device, and method for active noise reduction
JP2021022883A (en) Voice amplifier and program
CN112738691A (en) Intelligent pickup with encoder