TWI741794B - 積體光學晶片 - Google Patents

積體光學晶片 Download PDF

Info

Publication number
TWI741794B
TWI741794B TW109132169A TW109132169A TWI741794B TW I741794 B TWI741794 B TW I741794B TW 109132169 A TW109132169 A TW 109132169A TW 109132169 A TW109132169 A TW 109132169A TW I741794 B TWI741794 B TW I741794B
Authority
TW
Taiwan
Prior art keywords
optical
signal
mode
optically coupled
interleaver
Prior art date
Application number
TW109132169A
Other languages
English (en)
Other versions
TW202212878A (zh
Inventor
楊立啟
施秉豪
吳志忠
莊榮敏
Original Assignee
美商莫仕有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商莫仕有限公司 filed Critical 美商莫仕有限公司
Priority to TW109132169A priority Critical patent/TWI741794B/zh
Application granted granted Critical
Publication of TWI741794B publication Critical patent/TWI741794B/zh
Publication of TW202212878A publication Critical patent/TW202212878A/zh

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

本揭露提供一種積體光學晶片。積體光學晶片包括複數個連接埠、複數個偏振光束分光結構、光學偵測結構、交錯器以及調變器。連接埠用以接收複數個第一光學訊號至積體光學晶片。偏振光束分光結構用以將通過偏振光束分光結構之第一光學訊號分離為第一、第二模態光學訊號。光學偵測結構包括第一、第二分束器。交錯器用以傳送第一模態光學訊號或第二模態光學訊號至第二分束器。調變器用以傳送具有不同波長的複數個第二光學訊號至交錯器。其中,交錯器進一步依據第二光學訊號的不同波長,傳送第二光學訊號至不同的連接埠。

Description

積體光學晶片
本揭露實施例係有關於一種積體光學晶片,特別是關於一種將雙工(Duplex)架構以及單纖雙向(BiDi)架構整合為單一泛用型(universal)晶片的積體光學晶片。
在現代高速通訊網路中,例如在雲端中心與使用者端等節點上,一般設置有光收發器(transceiver)於電子通訊設備。透過使用光纖和光收發器之應用,兼具有高頻寬、長距離、低損耗、無串訊干擾等特色的資訊傳輸方式得以被實現。
在一般光收發器的結構中,其可具有電/光訊號轉換的光發射模組,將電訊號型態的資料轉換為相對應之光訊號,藉由光纖為傳輸媒界而傳遞資料;另一模組則是光/電訊號轉換的光接收模組,將接收自光纖之光訊號轉換為電訊號型態。進一步而言,在部分應用模式中,可基於單一光纖進行雙向(Bidirectional)資料傳輸,而部分應用模式則是使用兩個光纖分別進行資料的上傳與下載之雙工(Duplex)的功能。然而,此兩種應用模式係分別使用不同的光收發器,亦即各自為獨立的應用,因此當面臨通訊傳輸設備朝向微型化、泛用化的演進過程中,若欲使用不同的光收發器來使通訊傳輸設備兼具兩種應用模式,則無論是在體積縮減、製造成本等面向上,都具有困難而不符合市場要求,從而阻礙了相關技術領域的進一步普及與拓展。
上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應做為本案之任一部分。
本揭露的實施例提供一種積體光學晶片。該積體光學晶片包括複數個連接埠、複數個偏振光束分光結構、一光學偵測結構、一交錯器以及一調變器。該些連接埠用以接收複數個第一光學訊號至該積體光學晶片。該些偏振光束分光結構光學耦接於該些連接埠,用以將通過該偏振光束分光結構之該些第一光學訊號分離為一第一模態光學訊號以及一第二模態光學訊號。該光學偵測結構包括一第一分束器以及一第二分束器分別光學耦接於該些偏振光束分光結構。該交錯器光學耦接於該第二分束器,用以傳送該第一模態光學訊號或該第二模態光學訊號至該光學偵測結構的該第二分束器。該調變器光學耦接於該交錯器,用以傳送具有不同波長的複數個第二光學訊號至該交錯器。其中,該交錯器進一步依據該些第二光學訊號的不同波長,傳送該些第二光學訊號至不同的該些連接埠。
在一些實施例中,進一步包括一光源連接埠,其光學耦接於該調變器,並用以耦接一光源。
在一些實施例中,該光源用以提供該調變器複數個具有不同波長的光,以形成該些第二光學訊號。
在一些實施例中,該些連接埠包括:一第一連接埠,其耦接於一第一光纖;一第二連接埠,其耦接於一第二光纖;一第三連接埠,其耦接於一第三光纖;以及一第四連接埠,其耦接於一第四光纖。
在一些實施例中,該第一分束器以及該第二分束器分別位於該光學偵測結構相對應的兩端,且該第一分束器光學耦接於該第一連接埠,該第二分束器進一步光學耦接於該第三連接埠以及該第四連接埠。
在一些實施例中,該第一分束器具有一分二多模干涉光耦合結構。
在一些實施例中,該第二分束器具有一分三多模干涉光耦合結構。
在一些實施例中,該些偏振光束分光結構、該光學偵測結構、該交錯器以及該調變器係由CMOS製程所製作。
在一些實施例中,該交錯器具有波長分波多工結構。
在一些實施例中,該交錯器具有厚度約為200-300 nm的矽基濾光結構。
在一些實施例中,進一步包括複數個偏振旋轉結構,其光學耦接於該些偏振光束分光結構,用以將該第一模態光學訊號旋轉為與該第二模態光學訊號具有相同的模態。
本揭露的另一實施例提供一種積體光學晶片。該積體光學晶片包括五個連接埠、複數個偏振光束分光結構、至少一光學偵測結構、一交錯器以及一調變器。五個連接埠用以耦接於四個光纖,以接收或傳送光學訊號至該積體光學晶片,以及用以耦接於一光源,以傳送該光源的光至該積體光學晶片。該些偏振光束分光結構經該些連接埠而光學耦接於該些光纖。該光學偵測結構光學耦接於該些偏振光束分光結構。該交錯器光學耦接於該光學偵測結構。該調變器光學耦接於該交錯器,以及經該連接埠光學耦接於該光源。
在一些實施例中,進一步包括複數個偏振旋轉結構,分別光學耦接於該些偏振光束分光結構。
在一些實施例中,於包括單一光學偵測結構時,該光學偵測結構包括至少二分束器,該些分束器光學耦接於該些偏振光束分光結構。
在一些實施例中,於包括複數個光學偵測結構時,該些光學偵測結構分別包括一分束器,該些分束器光學耦接於該些偏振光束分光結構。
在一些實施例中,該些分束器分別具有一分多多模干涉光耦合結構。
在一些實施例中,該些連接埠包括兩個用以耦接於光纖進行雙向傳輸。
在一些實施例中,該交錯器包括至少三個埠,分別用以接收來自該些偏振光束分光結構其中之一的光學訊號,傳送光學訊號至該光學偵測結構,以及接收來自該調變器的光學訊號。
本揭露的再一實施例提供一種積體光學晶片。該積體光學晶片包括一連接埠、一偏振光束分光結構、一交錯器以及一調變器。該連接埠耦接於一光纖進行雙向傳輸。該偏振光束分光結構光學耦接於該連接埠,其經該連接埠接收該光纖之一光學接收訊號,用以分離該光學接收訊號為一第一模態光學接收訊號以及一第二模態光學接收訊號。該交錯器具有波長分波多工結構,其光學耦接於該偏振光束分光結構,其接收該第一模態光學接收訊號或該第二模態光學接收訊號。該調變器光學耦接於該交錯器,其傳送一光學傳送訊號至該交錯器,該光學接收訊號係與該交錯器所接收的該第一模態光學傳送訊號或該第二模態光學接收訊號具有不同的波長及相同的模態。
在一些實施例中,進一步包括一偏振旋轉結構,其光學耦接於該偏振光束分光結構,用以將該第二模態光學接收訊號旋轉為與該第一模態光學接收訊號具有相同的模態。
在一些實施例中,進一步包括一光源,其光學耦接於該調變器,並用以提供該調變器複數個具有不同波長的光,以形成具有不同波長的該光學傳送訊號。
上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可做為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。
圖式所示之揭露內容的實施例或範例係以特定語言描述。應理解此非意圖限制本揭露的範圍。所述實施例的任何變化或修飾以及本案所述原理任何進一步應用,對於本揭露相關技藝中具有通常技術者而言為可正常發生。元件符號可重複於各實施例中,但即使它們具有相同的元件符號,實施例中的特徵並非必定用於另一實施例。
應理解雖然在本文中可使用第一、第二、第三等用語描述各種元件、組件、區域、層或區段,然而,這些元件、組件、區域、層或區段應不受限於這些用語。這些用語僅用於區分一元件、組件、區域、層或區段與另一區域、層或區段。因此,以下所述之第一元件、組件、區域、層或區段可被稱為第二元件、組件、區域、層或區段,而仍不脫離本揭露發明概念之教示內容。
本揭露所使用的語詞僅用於描述特定例示實施例之目的,並非用以限制本發明概念。如本文所使用,單數形式「一」與「該」亦用以包括複數形式,除非本文中另有明確指示。應理解說明書中所使用的「包括」一詞專指所稱特徵、整數、步驟、操作、元件或組件的存在,但不排除一或多個其他特徵、整數、步驟、操作、元件、組件或其群組的存在。
圖1為本揭露的積體光學晶片1的架構示意圖。如圖所示,積體光學晶片1可包括複數個連接埠11、12、13、14,其可用以連通複數個光學路徑進出積體光學晶片1。詳細而言,在一些實施例中,積體光學晶片1包括第一連接埠11以及第二連接埠12,其分別用以接收光學訊號進入積體光學晶片1以及傳送光學訊號離開積體光學晶片1。舉例來說,第一連接埠11以及第二連接埠12可分別耦接於第一光纖91以及第二光纖92,從而分別用於接收來自第一光纖91之光學訊號,以及將光學訊號傳送至第二光纖92。第一光纖91以及第二光纖92係用於單向傳輸,其僅提供一種傳輸模式,例如僅傳輸波長為1310 nm或1550 nm的光,因此為實現積體光學晶片1得以耦接於雙條光纖並具備雙工(Duplex)的功能,在一些實施例中,本揭露可透過連接於第一連接埠11的第一光纖91接收具有波長為1310 nm的光學接收訊號1310Rx,以及透過連接於第二連接埠12的第二光纖92傳送具有波長為1310 nm的光學傳送訊號1310Tx。
本揭露在一些實施例中,積體光學晶片1可包括第三連接埠13,其耦接於一第三光纖93,用以接收第三光纖93的光學訊號,以及傳送光學訊號至相同的第三光纖93。第三光纖93係用於雙向傳輸,其特性在於使用單一的實體光纖的條件下,實現可以同時接收以及傳送光學訊號的單纖雙向(Bidirectional,BiDi)目的,並且因此需使用不同波長的光分別進行訊號的接收以及傳送,例如使用1330 nm / 1270 nm、1510 nm / 1310 nm或是850 nm / 1310 nm等組合。
舉例而言,如圖1所示,本揭露可透過連接於第三連接埠13的第三光纖93接收具有波長為1330 nm的光學接收訊號1330Rx,以及透過同樣的第三光纖93傳送具有波長為1270 nm的光學傳送訊號1270Tx。
本揭露在一些實施例中,積體光學晶片1可包括第四連接埠14,其耦接於一第四光纖94,用以接收第四光纖94的光學訊號,以及傳送光學訊號至相同的第四光纖94。第四光纖94的應用模式與前述的第三光纖93相同。由於本揭露的積體光學晶片1可應用於通訊架構中的使用者端以及伺服器端的通訊設備,因此在使用者端以及伺服器端都具備積體光學晶片1時,以使用者端到伺服器端的上行(upstream)資料傳輸模式而言,本揭露可透過前述連接於第三連接埠13的第三光纖93接收具有波長為1330 nm的光學接收訊號1330Rx,以及透過同樣的第三光纖93傳送具有波長為1270 nm的光學傳送訊號1270Tx。從而,於此相對應的,對於通訊架構中的伺服器端而言,其所接收到的光學訊號係具有波長為1270 nm,而所發出讓使用者端接收的光學訊號則應具有波長為1330 nm,因此在伺服器端到使用者端的下行(downstream)資料傳輸模式而言,本揭露需要透過耦接於第四連接埠14的第四光纖94接收具有波長為1270 nm的光學接收訊號1270Rx,以及透過同樣的第四光纖94傳送具有波長為1330 nm的光學傳送訊號1330Tx。簡言之,本揭露係利用第三連接埠13以及第四連接埠14實現傳統上係成對佈署於使用者端以及伺服器端的光學收發元件。
在一些實施例中,積體光學晶片1可包括複數個偏振光束分光(PBS)結構21、22、23,其係分別光學耦接於第一連接埠11、第三連接埠13以及第四連接埠14,用以將通過此些偏振光束分光結構21、22、23之光分離為一第一模態光學訊號以及一第二模態光學訊號。具體而言,當積體光學晶片1接收到光線後,考量以光纖為媒介的通訊架構在傳輸過程存在的偏振問題,例如光學訊號經長距離傳輸後同時存在TE(Transverse Electronic)偏振,或稱之為橫向電場模態(TE mode),以及TM(Transverse Magnetic)偏振,或稱之為橫向磁場模態(TM mode),當不同偏振光在晶片1波導傳輸時速度不同,如果設計不佳,在經過較長的波導時會導致光學訊號在被接收時的時間不同,因而產生相位差而使得誤碼率增加,因此在本揭露一些實施例中,可先將前述具有特定波長的光學接收訊號1310Rx、1330Rx以及1270Rx的橫向磁場模態和橫向電場模態分離,並將分離後的不同偏振光依循不同之光學路徑在積體光學晶片1內行進,使得不同偏振光至接收器傳輸時間一致。
在一些實施例中,積體光學晶片1可包括複數個偏振旋轉(Polarization Rotator,PR)結構31、32、33,其分別光學耦接於偏振光束分光結構21、22、23,用以將偏振光束分光結構21、22、23所分離出的第一模態光學訊號以及第二模態光學訊號的其中之一者,旋轉為兩者中的另一者。舉例而言,如圖1所示,透過第一連接埠11而接收的具有波長為1310 nm的光學接收訊號1310Rx可經由偏振光束分光結構21分離為橫向磁場模態光學接收訊號1310Rx'和橫向電場模態光學接收訊號1310Rx''(波長並未改變而省略稱呼,下同),其中橫向磁場模態光學接收訊號1310Rx'會經過偏振旋轉結構31而被旋轉為橫向電場模態光學接收訊號1310Rx'',也就是等同於被偏振光束分光結構21分離出、且未經偏振旋轉結構31處理的橫向電場模態光學接收訊號1310Rx'',以讓原本兼包含有橫向磁場模態和橫向電場模態的光學接收訊號1310Rx會在被積體光學晶片1所實際偵測到時,不同偏振光至接收器傳輸時間一致,或具有較佳的光學訊號相位。當所需要波導長度較長或不容易透過設計不同光學路徑來處理偏振問題時,即可利用偏振旋轉來優化設計。在其他的一些實施例中,偏振旋轉結構31、32、33可相反地,將光學訊號的橫向電場模態旋轉為橫向磁場模態。整體而言,本揭露的一些實施例使用偏振光束分光結構21、22、23以及偏振旋轉結構31、32、33的組合,其目的在於使光學訊號的模態能夠一致即可,不限制需要旋轉為橫向磁場模態或是橫向電場模態。
在一些實施例中,積體光學晶片1可包括一光學偵測(Photodetector,PD)結構40,用以偵測進入到積體光學晶片1的光學訊號。在一些實施例中,光學偵測結構40包括一第一分束器41,其光學耦接於偏振光束分光結構21,以及包括一第二分束器42,其光學耦接於偏振光束分光結構22、23。在上述實施例中,第一分束器41以及第二分束器42是用以接收經由偏振光束分光結構21、22、23分離後的偏振光。並且如前述實施例所揭示的,部分分離後的偏振光會進一步被偏振旋轉結構31、32、33所旋轉,因此在一些實施例中,第一分束器41以及第二分束器42所接收的光學訊號分別具有同一偏振性質,例如皆是橫向電場模態或皆是橫向磁場模態。
在一些實施例中,第一分束器41以及第二分束器42分別位於光學偵測結構40相對應的兩端,或是視光學偵測結構40的具體結構特徵,而位於光學偵測結構40相異的兩個偵測端。
在一些實施例中,第一分束器41具有一分二多模干涉光耦合結構(1x2 Multimode interference,1x2 MMI),其係將來自偏振光束分光結構21的橫向電場模態光學接收訊號1310Rx''以及經過偏振旋轉結構31而自橫向磁場模態光學接收訊號1310Rx'被旋轉產生的橫向電場模態光學接收訊號1310Rx''重新耦合為具有波長為1310 nm的光學接收訊號1310Rx,此耦合後的具有波長為1310 nm的光學接收訊號1310Rx因為包含所有不同的偏振光,因此降低損耗,具有較高的強度,或可為具有較佳的訊號品質。在一些實施例中,第一分束器41是用以實現積體光學晶片1接收前述第一光纖的訊號的功能,為本發明包含雙工(Duplex)架構的具體特徵之一。
上述第一分束器41以及光學偵測結構40是雙工(Duplex)架構當中用以接收光學訊號的路徑,而與之不同地,第二分束器42則是用以實現積體光學晶片1接收前述第三、第四光纖的訊號的功能,為本發明兼包含單纖雙向(BiDi)架構的具體特徵之一。在一些實施例中,第二分束器42具有一分三多模干涉光耦合結構(1x3 Multimode interference,1x3 MMI)。在上行資料傳輸模式中,第二分束器42可將來自偏振光束分光結構22的橫向電場模態光學接收訊號1330Rx'',以及經過偏振旋轉結構32而自橫向磁場模態光學接收訊號1330Rx'被旋轉產生的橫向電場模態光學接收訊號1330Rx'',重新耦合為具有波長為1330 nm的光學接收訊號1330Rx。在下行資料傳輸模式中,第二分束器42可將來自偏振光束分光結構23的橫向電場模態光學接收訊號1270Rx'',以及經過偏振旋轉結構33而自橫向磁場模態光學接收訊號1270Rx'被旋轉產生的橫向電場模態光學接收訊號1270Rx'',重新耦合為具有波長為1270 nm的光學接收訊號1270Rx。在上述實施例中,此些耦合後的具有特定波長的光學接收訊號1330Rx、1270Rx因為包含所有不同的偏振光,因此具有較高的強度,或可謂具有較佳的訊號品質。
在一些實施例中,第一分束器41以及第二分束器42可分別具有一分多多模干涉光耦合結構(例如1xN MMI、1xM MMI,其中N為大於2的自然數,M為大於3的自然數),此係基於本揭露的積體光學晶片1可進一步擴張所使用的連接埠數量,因此接收更多的光學訊號,並且可依實際所使用的波長而將更多的橫向電場模態光學訊號或橫向磁場模態光學訊號耦合至單一的分束器,藉此集中於被光學偵測結構40所偵測。
在前述實施例中,積體光學晶片1可包括單一的光學偵測結構40;而於另一些實施例中,積體光學晶片1可包括複數個光學偵測結構40,例如可包括用兩個分別具有前述第一分束器41以及第二分束器42的光學偵測結構40,分別用以偵測雙工(Duplex)架構以及單纖雙向(BiDi)架構的光學訊號。
如圖1的架構所示,在一些實施例中,經偏振光束分光結構22所分離出的橫向電場模態光學接收訊號1330Rx''以及經偏振光束分光結構23所分離出的橫向電場模態光學接收訊號1270Rx''係共用第二分束器42的其中一個光耦合路徑,此係透過光學耦接於第二分束器42的一交錯器(interleaver,ITL)50所實現。在一些實施例中,交錯器50具有波長分波多工(WDM)結構,其可將包括有不同波長的光學訊號分離,或是基於光的可逆性,其可將不同波長的光學訊號耦合至特定的光學路徑,以實現本揭露在兼具單纖雙向(BiDi)架構的具體特徵中,能夠滿足上行資料傳輸模式以及下行資料傳輸模式的管理。在一些實施例中,交錯器50是二分二交錯器(2x2 interleaver),其一端具有雙埠,分別光學耦接於偏振光束分光結構22、23,用以接收上行資料傳輸模式以及下行資料傳輸模式的光學訊號,或是傳送光學訊號至偏振光束分光結構22、23;交錯器50的另一端亦具有雙埠,分別用以傳送光學訊號至光學偵測結構40的第二分束器42,以及接收本揭露的積體光學晶片1所要對外傳輸資料的光學訊號(積體光學晶片1對外發送的光學訊號係說明如後)。
在一些實施例中,具有波長分波多工結構的交錯器50包括矽基濾光結構,例如可使具有特定波長的光學訊號通過,並反射具有另一特定波長的光學訊號,以及具有可逆工作的特徵。由於本揭露係將光學元件經CMOS製程整合於單一晶片,而元件薄化、微型化的設計除了可讓積體光學晶片對於光學訊號的讀取以及產生具備更佳的速度,在一些實施例中,由於交錯器50的矽基濾光結構所採用波導結構為業界較通用的厚度(200~300 nm),故此矽基濾光結構對於光學訊號的偏振態樣較為敏感,因此本揭露使用光束分光結構係針對相同偏振光設計以達到較好得分光效果或減少損耗,以確保光學訊號的接收品質。
在一些實施例中,積體光學晶片1包括一光源連接埠15,用以連通一光源95。光源95可為雷射二極體(Laser Diode,LD)或發光二極體,用以從積體光學晶片1的外部提供特定波長的光(例如:雷射光)至積體光學晶片1的內部。如前所述,本揭露可透過第二光纖92傳送具有波長為1310 nm的光學傳送訊號1310Tx、透過第三光纖93傳送具有波長為1270 nm的光學傳送訊號1270Tx或是透過第四光纖94傳送具有波長為1330 nm的光學傳送訊號1330Tx,而此些光學訊號即是由光源95所產生的特定波長雷射光,例如波長為1310 nm、1270 nm或1330 nm的雷射光,並在進一步經過調變而攜帶資訊。
在一些實施例中,積體光學晶片1包括一調變器60,其可為馬赫任德調變器(Mach-Zehnder Modulator,MZM),其一端係光學耦接於光源連接埠15,其另一端則可光學耦接於交錯器50。由於本揭露的積體光學晶片1兼具單纖雙向(BiDi)架構,於上行資料傳輸模式以及下行資料傳輸模式會使用不同的波長的光學訊號,在一些實施例中,自調變器60提供至交錯器50的光學訊號會於交錯器50被切換至正確的連接埠。舉例而言,調變器60傳送至交錯器50的具有波長為1270 nm的光學傳送訊號1270Tx會被交錯器50引導至第三連接埠13,而調變器60傳送至交錯器50的具有波長為1330 nm的光學傳送訊號1330Tx則會被交錯器50引導至第四連接埠14。又於一些實施例中,調變器60係進一步光學耦接於第二連接埠12,以將調變後的具有波長為1310 nm的光學傳送訊號1310Tx直接透過第二連接埠12傳送出積體光學晶片1,以作為雙工(Duplex)架構當中用以傳送訊號的光學路徑。
本揭露的積體光學晶片1係屬互補式金屬氧化物半導體(CMOS)晶片,即係透過CMOS製程而將前述的偏振光束分光結構、光學偵測結構、交錯器以及調變器等結構或元件整合於單一晶片(one chip)當中,為一種矽基積體光學晶片(Silicon Photonic Integrated Circuit Chip,Si-PIC Chip),並且藉由晶片的五個連接埠,即四個用以耦接於光纖的連接埠以及一個用以耦接於雷射光源的連接埠,而得以實現光學訊號的接收以及傳送功能。從另一方面而言,本揭露的積體光學晶片1係兼有應用雙工(Duplex)架構以及單纖雙向(BiDi)架構,即只需將單一晶片安裝於使用者端或伺服器端,就可同時實現兩種通訊架構的應用,不僅是適用於使用雙條光纖進行單向傳輸的場合,也適用於使用單條光纖進行雙向傳輸的場合,並且可視其所安裝的端點位置來決定使用何個連接埠耦接光纖,不但降低了光纖通訊網路的布線成本、提升布線靈活性,於製造面而言,也不須為不同功能或是不同架構製作不同的積體光學晶片,顯著降低了生產成本。
圖2A係揭示本揭露一些實施例在單纖雙向(BiDi)架構中,接收以及傳送光學訊號的示意圖。如圖所示,對於耦接於第三連接埠13的第三光纖93而言,積體光學晶片所接收的具有波長為1330 nm的光學接收訊號1330Rx會經偏振光束分光結構22分離為橫向磁場模態光學接收訊號1330Rx'和橫向電場模態光學接收訊號1330Rx'',而調變器60則可經光源連接埠15而將雷射光源調變為攜帶資訊的橫向電場模態光學傳送訊號1270Tx'',其即與利用偏振光束分光結構22所分離出的橫向電場模態光學接收訊號1330Rx''具有不同的波長及相同的模態。從而,具有波長分波多工結構的交錯器50則可接收來自偏振光束分光結構22的橫向電場模態光學接收訊號1330Rx''以及來自調變器60的橫向電場模態光學傳送訊號1270Tx'',以及進一步將兩者耦合為共用光學路徑的光學訊號,讓橫向電場模態光學傳送訊號1270Tx''通過交錯器50以及偏振光束分光結構22之間的光學耦合路徑,再經由第三連接埠13離開積體光學晶片而進入第三光纖93。因此,在一些實施例中,本揭露的積體光學晶片的交錯器50係至少包括三個埠:其一埠用以接收來自偏振光束分光結構的光學訊號,以處理光學訊號的上行(例如橫向電場模態光學傳送訊號1270Tx'')以及下行(例如橫向電場模態光學接收訊號1330Rx'')的耦合;一埠將光學訊號的下行進一步傳送至光學偵測結構;以及一埠接收來自調變器60用以上行的光學訊號。
如圖2B所示,在一些實施例中,可進一步包括偏振旋轉結構32,其光學耦接於偏振光束分光結構12,用以將橫向磁場模態光學接收訊號1330Rx'旋轉為橫向電場模態光學接收訊號1330Rx'',即係將偏振光束分光結構12所分離出的兩種偏振光學訊號調整為具有相同的模態。而與圖2A、圖2B所相對應的,如圖2C、圖2D所示,在一些實施例中,也得以調整為具有另一種相同的模態,例如調變器60係提供橫向磁場模態光學傳送訊號1270Tx'至交錯器50,以及偏振旋轉結構32係將橫向電場模態光學接收訊號1330Rx''旋轉為橫向磁場模態光學接收訊號1330Rx'。
圖3係揭示本揭露一些實施例在單纖雙向(BiDi)架構中,透過可產生不同波長雷射光的光源95,以提供不同波長的光學訊號供積體光學晶片發送至相對應的光纖。如圖所示,在一些實施例中,光源95係耦接於光源連接埠15,並經此途徑提供具有單一模態的雷射光至調變器60。在一些實施例中,光源係提供具有波長為1270 nm的橫向電場模態雷射光1270''以及具有波長為1330 nm的橫向電場模態雷射光1330''至調變器60。在一些實施例中,雷射光經調變後,可為具有上述特定波長的攜帶資訊的橫向電場模態光學傳送訊號1270Tx''以及橫向電場模態光學傳送訊號1330Tx'',於傳送至交錯器50後,再經由耦合離開積體光學晶片,被發送至耦接於積體光學晶片的相對應的光纖。
圖4A以及圖4B係揭示本揭露一些實施例在單纖雙向(BiDi)架構中,可適用於上行資料傳輸模式(圖4A)以及下行資料傳輸模式(圖4B)。在一些實施例中,光源95可提供具有不同波長的雷射光1270以及1330,並經調變器60調變為具有上述特定波長的橫向電場模態光學傳送訊號1270Tx''以及1330Tx''後,傳送至交錯器50,再於利用交錯器50所具有的矽基濾光結構的波長分波多工結構,自動將橫向電場模態光學傳送訊號1270Tx''以及1330Tx''分別引導至光學路徑上的偏振光束分光結構22以及23,再經由第三連接埠13以及第四連接埠14,離開積體光學晶片而分別進入第三光纖93以及第四光纖94。整體而言,本揭露的一技術特徵在於交錯器50具有自動將具有不同波長的光學訊號導引至不同光學路徑的功能,因此可讓本揭露的積體光學晶片可同時實現對應第三、第四光纖的上行資料傳輸模式以及下行資料傳輸模式。在一些實施例中,光源95所提供的具有不同波長的雷射光可透過切換光源95而實現,因此可以輕易切換第三、第四光纖的上行資料傳輸模式以及下行資料傳輸模式。
圖5係揭示本揭露一些實施例的雙工(Duplex)架構運作。在一些實施例中,係利用積體光學晶片進行對波長為1310 nm的光學訊號進行接收以及傳送,具有波長為1310 nm的光學接收訊號1310Rx接收時的偏振處理方式不再贅述,而關於具有波長為1310 nm的光學傳送訊號1310Tx的傳送,如圖所示,光源95可提供適用雙工(Duplex)架構的特定波長的雷射光,例如具有波長為1310 nm的雷射光1310,並經調變器60調變為具有波長為1310 nm的橫向電場模態光學傳送訊號1310Tx''後,不須經過前述單纖雙向(BiDi)架構實施例的交錯器,而是可直接經由第二連接埠12離開積體光學晶片而進入第二光纖92。
前述內容概述數項實施例之結構,使得熟習此項技術者可更佳地理解本揭露之態樣。熟習此項技術者應瞭解,其等可容易地使用本揭露作為用於設計或修改其他製程及結構之一基礎以實行本文中介紹之實施例之相同目的及/或達成相同優點。熟習此項技術者亦應瞭解,此等等效構造不背離本揭露之精神及範疇,且其等可在不背離本揭露之精神及範疇之情況下在本文中作出各種改變、置換及更改。
1:積體光學晶片 11:第一連接埠 12:第二連接埠 13:第三連接埠 14:第四連接埠 15:光源連接埠 21:偏振光束分光結構 22:偏振光束分光結構 23:偏振光束分光結構 31:偏振旋轉結構 32:偏振旋轉結構 33:偏振旋轉結構 40:光學偵測結構 41:第一分束器 42:第二分束器 50:交錯器 60:調變器 91:第一光纖 92:第二光纖 93:第三光纖 94:第四光纖 95:光源 1310:具有波長為1310 nm的雷射光 1310Rx:具有波長為1310 nm的光學接收訊號 1310Rx':具有波長為1310 nm的橫向磁場模態光學接收訊號 1310Rx'':具有波長為1310 nm的橫向電場模態光學接收訊號 1310Tx:具有波長為1310 nm的光學傳送訊號 1270:具有波長為1270 nm的雷射光 1270'':具有波長為1270 nm的橫向電場模態雷射光 1270Rx:具有波長為1270 nm的光學接收訊號 1270Rx':具有波長為1270 nm的橫向磁場模態光學接收訊號 1270Rx'':具有波長為1270 nm的橫向電場模態光學接收訊號 1270Tx:具有波長為1270 nm的光學傳送訊號 1270Tx':具有波長為1270 nm的橫向磁場模態光學傳送訊號 1270 Tx'':具有波長為1270 nm的橫向電場模態光學傳送訊號 1330:具有波長為1330 nm的雷射光 1330'':具有波長為1330 nm的橫向電場模態雷射光 1330Rx:具有波長為1330 nm的光學接收訊號 1330Rx':具有波長為1330 nm的橫向磁場模態光學接收訊號 1330Rx'':具有波長為1330 nm的橫向電場模態光學接收訊號 1330Tx:具有波長為1330 nm的光學傳送訊號 1330Tx'':具有波長為1330 nm的橫向電場模態光學傳送訊號
參閱詳細說明與申請專利範圍結合考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。
圖1係根據本揭露實施例的積體光學晶片的架構示意圖。
圖2A係根據本揭露實施例之積體光學晶片的架構部分示意圖,用以展示部分單纖雙向(BiDi)架構。
圖2B係根據本揭露實施例之積體光學晶片的架構部分示意圖,用以展示包括偏振旋轉結構的部分單纖雙向(BiDi)架構。
圖2C係根據本揭露實施例之積體光學晶片的架構部分示意圖,用以展示部分單纖雙向(BiDi)架構,並以橫向磁場模態為主要的偏振模式。
圖2D係根據本揭露實施例之積體光學晶片的架構部分示意圖,用以展示包括偏振旋轉結構的部分單纖雙向(BiDi)架構,並以橫向磁場模態為主要的偏振模式。
圖3係根據本揭露實施例之積體光學晶片的架構部分示意圖,用以展示單纖雙向(BiDi)架構中,光源可以提供不同波長的雷射光。
圖4A係根據本揭露實施例之積體光學晶片的架構部分示意圖,用以展示單纖雙向(BiDi)架構中的上行資料傳輸模式。
圖4B係根據本揭露實施例之積體光學晶片的架構部分示意圖,用以展示單纖雙向(BiDi)架構中的下行資料傳輸模式。
圖5係根據本揭露實施例之積體光學晶片的架構部分示意圖,用以展示雙工(Duplex)架構運作。
1:積體光學晶片
11:第一連接埠
12:第二連接埠
13:第三連接埠
14:第四連接埠
15:光源連接埠
21:偏振光束分光結構
22:偏振光束分光結構
23:偏振光束分光結構
31:偏振旋轉結構
32:偏振旋轉結構
33:偏振旋轉結構
40:光學偵測結構
41:第一分束器
42:第二分束器
50:交錯器
60:調變器
91:第一光纖
92:第二光纖
93:第三光纖
94:第四光纖
95:光源
1310Rx:具有波長為1310nm的光學接收訊號
1310Rx':具有波長為1310nm的橫向磁場模態光學接收訊號
1310Rx":具有波長為1310nm的橫向電場模態光學接收訊號
1310Tx:具有波長為1310nm的光學傳送訊號
1270Rx:具有波長為1270nm的光學接收訊號
1270Rx':具有波長為1270nm的橫向磁場模態光學接收訊號
1270Rx":具有波長為1270nm的橫向電場模態光學接收訊號
1270Tx:具有波長為1270nm的光學傳送訊號
1330Rx:具有波長為1330nm的光學接收訊號
1330Rx':具有波長為1330nm的橫向磁場模態光學接收訊號
1330Rx":具有波長為1330nm的橫向電場模態光學接收訊號
1330Tx:具有波長為1330nm的光學傳送訊號

Claims (21)

  1. 一種積體光學晶片,其包括: 複數個連接埠,用以接收複數個第一光學訊號至該積體光學晶片; 複數個偏振光束分光結構,其光學耦接於該些連接埠,用以將通過該偏振光束分光結構之該些第一光學訊號分離為一第一模態光學訊號以及一第二模態光學訊號; 一光學偵測結構,其包括一第一分束器以及一第二分束器分別光學耦接於該些偏振光束分光結構; 一交錯器,其光學耦接於該第二分束器,用以傳送該第一模態光學訊號或該第二模態光學訊號至該光學偵測結構的該第二分束器;以及 一調變器,其光學耦接於該交錯器,用以傳送具有不同波長的複數個第二光學訊號至該交錯器; 其中,該交錯器進一步依據該些第二光學訊號的不同波長,傳送該些第二光學訊號至不同的該些連接埠。
  2. 如請求項1所述的積體光學晶片,其進一步包括一光源連接埠,其光學耦接於該調變器,並用以耦接一光源。
  3. 如請求項2所述的積體光學晶片,其中該光源用以提供該調變器複數個具有不同波長的光,以形成該些第二光學訊號。
  4. 如請求項1所述的積體光學晶片,其中該些連接埠包括: 一第一連接埠,其耦接於一第一光纖; 一第二連接埠,其耦接於一第二光纖; 一第三連接埠,其耦接於一第三光纖;以及 一第四連接埠,其耦接於一第四光纖。
  5. 如請求項4所述的積體光學晶片,其中該第一分束器以及該第二分束器分別位於該光學偵測結構相對應的兩端,且該第一分束器光學耦接於該第一連接埠,該第二分束器進一步光學耦接於該第三連接埠以及該第四連接埠。
  6. 如請求項5所述的積體光學晶片,其中該第一分束器具有一分二多模干涉光耦合結構。
  7. 如請求項5所述的積體光學晶片,其中該第二分束器具有一分三多模干涉光耦合結構。
  8. 如請求項5所述的積體光學晶片,其中其中該些偏振光束分光結構、該光學偵測結構、該交錯器以及該調變器係由CMOS製程所製作。
  9. 如請求項1所述的積體光學晶片,其中該交錯器具有波長分波多工結構。
  10. 如請求項9所述的積體光學晶片,其中該交錯器具有厚度約為200-300 nm的矽基濾光結構。
  11. 如請求項1所述的積體光學晶片,其進一步包括複數個偏振旋轉結構,其光學耦接於該些偏振光束分光結構,用以將該第一模態光學訊號旋轉為與該第二模態光學訊號具有相同的模態。
  12. 一種積體光學晶片,其包括: 五個連接埠,用以耦接於四個光纖,以接收或傳送光學訊號至該積體光學晶片,以及用以耦接於一光源,以傳送該光源的光至該積體光學晶片; 複數個偏振光束分光結構,其經該些連接埠而光學耦接於該些光纖; 至少一光學偵測結構,其光學耦接於該些偏振光束分光結構; 一交錯器,其光學耦接於該光學偵測結構;以及 一調變器,其光學耦接於該交錯器,以及經該連接埠光學耦接於該光源。
  13. 如請求項12所述的積體光學晶片,其進一步包括複數個偏振旋轉結構,分別光學耦接於該些偏振光束分光結構。
  14. 如請求項12所述的積體光學晶片,其中於包括單一光學偵測結構時,該光學偵測結構包括至少二分束器,該些分束器光學耦接於該些偏振光束分光結構。
  15. 如請求項12所述的積體光學晶片,其中於包括複數個光學偵測結構時,該些光學偵測結構分別包括一分束器,該些分束器光學耦接於該些偏振光束分光結構。
  16. 如請求項14或15所述的積體光學晶片,其中該些分束器分別具有一分多多模干涉光耦合結構。
  17. 如請求項12所述的積體光學晶片,其中該些連接埠包括兩個用以耦接於光纖進行雙向傳輸。
  18. 如請求項17所述的積體光學晶片,其中該交錯器包括至少三個埠,分別用以接收來自該些偏振光束分光結構其中之一的光學訊號,傳送光學訊號至該光學偵測結構,以及接收來自該調變器的光學訊號。
  19. 一種積體光學晶片,其包括: 一連接埠,其耦接於一光纖進行雙向傳輸; 一偏振光束分光結構,其光學耦接於該連接埠,其經該連接埠接收該光纖之一光學接收訊號,用以分離該光學接收訊號為一第一模態光學接收訊號以及一第二模態光學接收訊號; 一交錯器,其具有波長分波多工結構,其光學耦接於該偏振光束分光結構,其接收該第一模態光學接收訊號或該第二模態光學接收訊號;以及 一調變器,其光學耦接於該交錯器,其傳送一光學傳送訊號至該交錯器,該光學傳送訊號係與該交錯器所接收的該第一模態光學傳送訊號或該第二模態光學接收訊號具有不同的波長及相同的模態。
  20. 如請求項19所述的積體光學晶片,其進一步包括一偏振旋轉結構,其光學耦接於該偏振光束分光結構,用以將該第二模態光學接收訊號旋轉為與該第一模態光學接收訊號具有相同的模態。
  21. 如請求項19所述的積體光學晶片,其進一步包括一光源,其光學耦接於該調變器,並用以提供該調變器複數個具有不同波長的光,以形成具有不同波長的該光學傳送訊號。
TW109132169A 2020-09-17 2020-09-17 積體光學晶片 TWI741794B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109132169A TWI741794B (zh) 2020-09-17 2020-09-17 積體光學晶片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109132169A TWI741794B (zh) 2020-09-17 2020-09-17 積體光學晶片

Publications (2)

Publication Number Publication Date
TWI741794B true TWI741794B (zh) 2021-10-01
TW202212878A TW202212878A (zh) 2022-04-01

Family

ID=80782374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132169A TWI741794B (zh) 2020-09-17 2020-09-17 積體光學晶片

Country Status (1)

Country Link
TW (1) TWI741794B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997924A (zh) * 2004-04-15 2007-07-11 英飞聂拉股份有限公司 用于wdm传输网络的无制冷且波长栅格漂移的集成光路(pic)
CN109906393A (zh) * 2016-09-01 2019-06-18 卢克斯特拉有限公司 用于光学对准硅光子使能集成电路的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997924A (zh) * 2004-04-15 2007-07-11 英飞聂拉股份有限公司 用于wdm传输网络的无制冷且波长栅格漂移的集成光路(pic)
CN109906393A (zh) * 2016-09-01 2019-06-18 卢克斯特拉有限公司 用于光学对准硅光子使能集成电路的方法和系统
EP3507630A1 (en) * 2016-09-01 2019-07-10 Luxtera, Inc. Method and system for optical alignment to a silicon photonically-enabled integrated circuit
US20200083959A1 (en) * 2016-09-01 2020-03-12 Luxtera, Inc. Method And System For Optical Alignment To A Silicon Photonically-Enabled Integrated Circuit

Also Published As

Publication number Publication date
TW202212878A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US9435961B2 (en) Stacked photonic chip coupler for SOI chip-fiber coupling
US10935820B2 (en) Method and system for integrated power combiners
US10338308B2 (en) Method and system for partial integration of wavelength division multiplexing and bi-directional solutions
US11063671B2 (en) Method and system for redundant light sources by utilizing two inputs of an integrated modulator
US10439727B2 (en) Method and system for selectable parallel optical fiber and wavelength division multiplexed operation
US20210278610A1 (en) Polarization splitter and rotator
WO2015095993A1 (zh) 一种光差分信号的发送和接收方法、装置和系统
US11201675B2 (en) Method and system for a bi-directional multi-wavelength receiver for standard single-mode fiber based on grating couplers
US12117661B2 (en) Photonic integrated circuit chip
US9442248B2 (en) Polarization beam combiner/splitter, polarization beam combining/splitting structure, light mixer, optical modulator module, and method for manufacturing polarization beam combiner/splitter
JPH11352341A (ja) 導波路型波長多重光送受信モジュール
US20040161240A1 (en) Module having two bi-directional optical transceivers
TWI741794B (zh) 積體光學晶片
JP6379258B1 (ja) 光双方向通信モジュール
KR100749492B1 (ko) 댁내 광전송 광가입자용 트리플렉서 모듈 필터
WO2024057980A1 (ja) 光集積回路及び光トランシーバ
WO2024057982A1 (ja) 光集積回路素子
US11561348B2 (en) Optical alignment systems and methods
JP2002319905A (ja) 光双方向多重伝送システムおよびそこで用いられる光モジュール