TWI740773B - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
TWI740773B
TWI740773B TW110103006A TW110103006A TWI740773B TW I740773 B TWI740773 B TW I740773B TW 110103006 A TW110103006 A TW 110103006A TW 110103006 A TW110103006 A TW 110103006A TW I740773 B TWI740773 B TW I740773B
Authority
TW
Taiwan
Prior art keywords
refresh
signal
control unit
block
frequency
Prior art date
Application number
TW110103006A
Other languages
Chinese (zh)
Other versions
TW202230356A (en
Inventor
佐佐木純一
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110103006A priority Critical patent/TWI740773B/en
Application granted granted Critical
Publication of TWI740773B publication Critical patent/TWI740773B/en
Publication of TW202230356A publication Critical patent/TW202230356A/en

Links

Images

Landscapes

  • Dram (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

A semiconductor memory device is provided, which can suppress the increase in power consumption, and avoid data damage due to the row hammer problem. The semiconductor memory device includes a controlling part 10. The controlling part 10 controls an interval of a refresh operation of a memory. The higher a frequency of a read or write access request for the memory during a determined period is, the shorter the controlling part 10 controls the interval of the refresh operation of the memory.

Description

半導體記憶裝置Semiconductor memory device

本發明關於半導體記憶裝置。The present invention relates to semiconductor memory devices.

半導體記憶裝置中的DRAM(Dynamic Random Access Memory,動態隨機存取記憶體),是一種揮發性記憶體,藉由將電荷蓄積在電容器來記憶資訊,一旦沒有供給電源,記憶的資訊將會遺失。由於蓄積在電容器的電荷經過一定時間之後就會放電,因此DRAM需要定期充電,這樣的記憶保持操作稱為刷新(Refresh)。DRAM (Dynamic Random Access Memory) in semiconductor memory devices is a type of volatile memory that stores information by accumulating charges in capacitors. Once power is not supplied, the stored information will be lost. Since the charge accumulated in the capacitor is discharged after a certain period of time, the DRAM needs to be charged periodically. Such a memory retention operation is called refresh.

然而,在執行刷新的期間,若對同一列(Row)位址的多次讀取及/或寫入要求太集中,則有可能會發生列鎚擊(Row Hammer)問題。所謂的列鎚擊問題,是在一定時間內對同一列位址的多次存取太集中時,物理上與該列位址相鄰的列位址,所對應的資料位元的電荷因為放電而引起資料破壞的問題。However, during the refresh period, if multiple read and/or write requests for the same row address are too concentrated, a row hammer problem may occur. The so-called row hammering problem is that when multiple accesses to the same row address are too concentrated within a certain period of time, the row address physically adjacent to the row address has the charge of the corresponding data bit due to discharge And cause the problem of data destruction.

為了解決關於列鎚擊的問題,舉例來說,有人考慮過將記憶體的刷新間隔設定成更短。然而,在這種情況下,刷新會變得以很短的間隔頻繁執行,因此半導體記憶裝置的耗電有增加之虞。In order to solve the problem of column hammering, for example, some people have considered setting the refresh interval of the memory to be shorter. However, in this case, refreshing will become frequently performed at short intervals, so the power consumption of the semiconductor memory device may increase.

本發明的目的在於提供一種半導體記憶裝置,能夠抑制耗電增加,同時避免列鎚擊問題造成的資料破壞。The object of the present invention is to provide a semiconductor memory device that can suppress the increase in power consumption while avoiding data damage caused by the row hammering problem.

本發明提供一種半導體記憶裝置,包含:控制部,控制記憶體的刷新操作的間隔;若既定期間內對該記憶體的讀取或寫入存取要求的頻率越高,則控制該記憶體的刷新操作的間隔變得越短。The present invention provides a semiconductor memory device, including: a control unit, which controls the interval of refresh operations of the memory; The interval of refresh operations becomes shorter.

依照本發明的半導體記憶裝置,能夠抑制耗電增加,同時避免列鎚擊問題造成的資料破壞。According to the semiconductor memory device of the present invention, the increase in power consumption can be suppressed, and data damage caused by the row hammering problem can be avoided at the same time.

以下,針對關於本發明的實施例的半導體記憶裝置,參照附上的圖式詳細說明。但是,該實施例為示意的範例,本發明並不以此為限。Hereinafter, the semiconductor memory device related to the embodiment of the present invention will be described in detail with reference to the attached drawings. However, this embodiment is an illustrative example, and the present invention is not limited to this.

第1圖為一方塊圖,表示關於本發明的第1實施例的半導體記憶裝置的構成例。半導體記憶裝置包含:控制部10以及記憶體20。控制部10以及記憶體20的各個,可以用專用的硬體設備或是邏輯電路來構成。FIG. 1 is a block diagram showing a configuration example of the semiconductor memory device according to the first embodiment of the present invention. The semiconductor memory device includes a control unit 10 and a memory 20. Each of the control unit 10 and the memory 20 can be constituted by dedicated hardware devices or logic circuits.

在一實施例中,半導體記憶裝置可以是以內部控制刷新操作的方式構成的pSRAM(pseudo-Static Random Access Memory,虛擬靜態隨機存取記憶體)。在既有的DRAM中,一般具有專用的電路,藉由登錄干擾字元線位址,或是以追加的刷新操作來回復資料等方式解決列鎚擊問題。然而,與既有的DRAM比較起來,由於pSRAM正朝著小型化的方向前進,因此難有設置此種專用電路的空間。而在pSRAM設置這樣的專用電路時,亦會有pSRAM的成本高昂之虞。因此,當本發明應用在pSRAM時,可不需要設置這樣的專用電路,抑制耗電增加,同時避免列鎚擊問題造成的資料破壞。In an embodiment, the semiconductor memory device may be a pSRAM (pseudo-Static Random Access Memory, virtual static random access memory) constructed by internally controlling the refresh operation. In the existing DRAM, there is generally a dedicated circuit to solve the row hammering problem by registering the address of the disturbing word line or recovering the data with an additional refresh operation. However, compared with existing DRAM, pSRAM is moving towards miniaturization, so it is difficult to have space for such a dedicated circuit. When such a dedicated circuit is installed in the pSRAM, the cost of the pSRAM may also be high. Therefore, when the present invention is applied to pSRAM, there is no need to provide such a dedicated circuit, which can suppress the increase in power consumption and avoid data damage caused by the column hammering problem.

請參照第1圖,控制部10控制記憶體20的刷新操作的間隔。在一實施例中,若既定期間內對記憶體20的讀取或寫入存取要求的頻率越高,則控制部10控制記憶體20的刷新操作的間隔變得越短。在另一實施例中,若既定期間內對記憶體20的讀取或寫入存取要求的頻率越高,則控制部10也可以控制刷新要求(本實施例中,為後面描述的刷新訊號REF)的間隔變得越短,該刷新要求是為了執行記憶體20的刷新操作,而每隔一段時間所產生的。藉此,若既定期間內對記憶體20的讀取或寫入存取要求的頻率越高,則能夠以更短的間隔產生刷新要求。因此,能夠頻繁地執行記憶體20的刷新操作,且能夠避免列鎚擊問題造成的資料破壞。另外,針對控制部10的詳細構成,將於後面描述。Please refer to FIG. 1, the control unit 10 controls the interval of the refresh operation of the memory 20. In one embodiment, if the frequency of read or write access requests to the memory 20 within a predetermined period is higher, the interval at which the control unit 10 controls the refresh operation of the memory 20 becomes shorter. In another embodiment, if the frequency of the read or write access request to the memory 20 within a predetermined period is higher, the control unit 10 may also control the refresh request (in this embodiment, the refresh signal described later is The shorter the interval of REF) becomes, the refresh request is generated at regular intervals in order to perform the refresh operation of the memory 20. In this way, if the frequency of the read or write access request to the memory 20 in a predetermined period is higher, the refresh request can be generated at a shorter interval. Therefore, the refresh operation of the memory 20 can be performed frequently, and data damage caused by the row hammering problem can be avoided. In addition, the detailed configuration of the control unit 10 will be described later.

繼續參照第1圖,記憶體20是需要刷新的半導體記憶體(例如,DRAM等)。記憶體20包含:指令解碼器21、列控制部22、行控制部23、以及記憶單元陣列24。指令解碼器21解讀從外部提供的指令訊號,並產生指令控制訊號。例如,若從外部提供的指令是讀取指令時,指令解碼器21將讀取操作的觸發訊號CMDRD輸出至列控制部22以及行控制部23。另外,若從外部提供的指令是寫入指令時,指令解碼器21將寫入操作的觸發訊號CMDWR輸出至列控制部22以及行控制部23。Continuing to refer to FIG. 1, the memory 20 is a semiconductor memory (for example, DRAM, etc.) that needs to be refreshed. The memory 20 includes a command decoder 21, a column control unit 22, a row control unit 23, and a memory cell array 24. The command decoder 21 interprets the command signal provided from the outside and generates the command control signal. For example, if the instruction provided from the outside is a read instruction, the instruction decoder 21 outputs the trigger signal CMDRD of the read operation to the column control section 22 and the row control section 23. In addition, if the command provided from the outside is a write command, the command decoder 21 outputs the trigger signal CMDWR of the write operation to the column control section 22 and the row control section 23.

列控制部22根據各觸發訊號CMDRD、CMDWR或後面描述的刷新訊號REF等,控制記憶單元陣列24內的對應的記憶體陣列的致能/不致能。例如,列控制部22將用來致能列字元線的訊號WLON以及用來不致能列字元線訊號WLOFF輸出至記憶單元陣列24,進而選擇執行讀取、寫入或刷新操作的字元線。The column control unit 22 controls the enabling/disabling of the corresponding memory array in the memory cell array 24 according to the trigger signals CMDRD, CMDWR or the refresh signal REF described later. For example, the column control unit 22 outputs the signal WLON for enabling the column word line and the signal WLOFF for disabling the column word line to the memory cell array 24, and then selects the character to be read, written or refreshed. String.

另外,列控制部22將用來致能感測放大器的訊號SAEN,輸出至記憶單元陣列24以及行控制部23。In addition, the column control unit 22 outputs the signal SAEN used to enable the sense amplifier to the memory cell array 24 and the row control unit 23.

另外,列控制部22將表示要求讀取或寫入存取的訊號ACCESS、以及表示對記憶單元陣列24的讀取或寫入存取的頻率的訊號ACCFREQ,輸出至控制部10。此處,對記憶單元陣列24的讀取或寫入存取的頻率,舉例來說,可以使用設置於列控制部22的計數器(圖示省略),計數觸發訊號CMDRD、CMDWR而求出。列控制部22也可以每經過一段既定期間,就將表示該既定期間內的讀取或寫入存取的頻率(舉例來說,當頻率小於第1臨界值時為「Low」;當頻率大於等於第1臨界值且小於第2臨界值(第1臨界值<第2臨界值)時為「Middle」;當頻率大於等於第2臨界值時為「High」)的訊號ACCFREQ,輸出至控制部10。In addition, the column control unit 22 outputs a signal ACCESS indicating a request for read or write access and a signal ACCFREQ indicating the frequency of read or write access to the memory cell array 24 to the control unit 10. Here, the frequency of read or write access to the memory cell array 24, for example, can be obtained by counting the trigger signals CMDRD and CMDWR using a counter (not shown) provided in the column control section 22. The column control unit 22 may also indicate the frequency of read or write access within the predetermined period every time a predetermined period has elapsed (for example, when the frequency is less than the first threshold, it is "Low"; when the frequency is greater than The signal ACCFREQ that is equal to the first threshold and less than the second threshold (the first threshold <the second threshold) is "Middle"; when the frequency is greater than or equal to the second threshold, the signal ACCFREQ is output to the control unit 10.

另外,若從控制部10輸入高位準的刷新訊號REF,則列控制部22針對從控制部10輸出的刷新位址訊號RFA當中所示的列位址,執行刷新操作。In addition, if a high-level refresh signal REF is input from the control unit 10, the column control unit 22 performs a refresh operation for the column address shown in the refresh address signal RFA output from the control unit 10.

行控制部23基於各觸發訊號CMDRD、CMDWR等,將用來致能行位元線的訊號CLEN輸出至記憶單元陣列24。進而選擇行位元線以執行讀取或寫入存取等。The row control unit 23 outputs a signal CLEN for enabling the row bit line to the memory cell array 24 based on the trigger signals CMDRD, CMDWR, etc. Then select the row bit line to perform read or write access, etc.

另外,針對記憶單元陣列24的位址以及資料控制,同樣為眾所皆知的技術,因此在本實施例省略說明。In addition, the address and data control of the memory cell array 24 are also well-known technologies, so the description is omitted in this embodiment.

本實施例中,是以其中一例說明了指令解碼器21、列控制部22、行控制部23、以及記憶單元陣列24設置於記憶體20內的情況;然而,本發明不限於此,當記憶體20存在於半導體記憶裝置的外部時,各部21~24之中的至少1者,也可以與控制部10共同設置於半導體記憶裝置內。In this embodiment, the instruction decoder 21, the column control section 22, the row control section 23, and the memory cell array 24 are provided in the memory 20 as an example; however, the present invention is not limited to this, when the memory When the body 20 exists outside the semiconductor memory device, at least one of the respective sections 21 to 24 may be provided in the semiconductor memory device together with the control section 10.

參照第2圖,針對控制部10的構成進行說明。控制部10包含:振盪器100、計數器110、對照表120、比較器130、計時產生器140、定序器150、以及刷新位址計數器160。振盪器100以既定間隔產生刷新操作用的振盪訊號SROSC,並輸入至計數器110。With reference to Fig. 2, the configuration of the control unit 10 will be described. The control unit 10 includes an oscillator 100, a counter 110, a look-up table 120, a comparator 130, a timing generator 140, a sequencer 150, and a refresh address counter 160. The oscillator 100 generates an oscillation signal SROSC for refresh operation at a predetermined interval and inputs it to the counter 110.

計數器110計數從振盪器100輸出的振盪訊號SROSC的脈衝,並將表示脈衝的計數值的n+1(n為正整數)位元的訊號SRCNT<n:0>,輸出至比較器130以及計時產生器140。另外,若用來將計數值重設為初始值(例如0)的訊號SRRST輸入至比較器130,則計數器110將計數值重設為初始值。The counter 110 counts the pulses of the oscillation signal SROSC output from the oscillator 100, and outputs the n+1 (n is a positive integer) bit signal SRCNT<n:0> representing the count value of the pulse to the comparator 130 and timekeeping Producer 140. In addition, if the signal SRRST for resetting the count value to the initial value (for example, 0) is input to the comparator 130, the counter 110 resets the count value to the initial value.

每一次當表示既定期間內的讀取或寫入存取的頻率的訊號ACCFREQ,從列控制部22輸入時,對照表120就將表示訊號ACCFREQ對應的振盪訊號SROSC的脈衝數,並且為n+1(n為正整數)位元的訊號SRDIV<n:0>,輸出至比較器130。此處,對照表120也可以根據既定期間內的讀取或寫入存取的頻率高低,而對應不同的脈衝數。另外,對照表120也可以設計成,若既定期間內的讀取或寫入存取的頻率越低,則振盪訊號SROSC的脈衝數就變得越多。Each time the signal ACCFREQ representing the frequency of read or write access in a predetermined period is input from the column control unit 22, the comparison table 120 will indicate the number of pulses of the oscillation signal SROSC corresponding to the signal ACCFREQ, and is n+ The 1 (n is a positive integer) bit signal SRDIV<n:0> is output to the comparator 130. Here, the comparison table 120 may also correspond to different pulse numbers according to the frequency of read or write access in a predetermined period. In addition, the look-up table 120 can also be designed such that if the frequency of read or write access in a predetermined period is lower, the number of pulses of the oscillation signal SROSC becomes more.

另外,本實施例中,當訊號ACCFREQ表示低頻率(Low)時,對照表120將表示脈衝數為12的訊號SRDIV<n:0>輸出至比較器130;當訊號ACCFREQ表示中頻率(Middle)時,對照表120將表示脈衝數為6的訊號SRDIV<n:0>輸出至比較器130;當訊號ACCFREQ表示高頻率(High)時,對照表120將表示脈衝數為3的訊號SRDIV<n:0>輸出至比較器130。In addition, in this embodiment, when the signal ACCFREQ indicates a low frequency (Low), the comparison table 120 outputs the signal SRDIV<n:0> indicating that the number of pulses is 12 to the comparator 130; when the signal ACCFREQ indicates a middle frequency (Middle) When the comparison table 120 outputs the signal SRDIV<n:0> indicating the number of pulses is 6 to the comparator 130; when the signal ACCFREQ indicates high frequency (High), the comparison table 120 will indicate the signal SRDIV<n with the number of pulses 3 :0>output to the comparator 130.

若表示振盪訊號SROSC的脈衝數的訊號SRCNT<n:0>從計數器110輸入時,則比較器130將振盪訊號SROSC的脈衝數(例如第3圖的訊號SRCNT<n:0>+1的值)、以及從對照表120輸入的訊號SRDIV<n:0>進行比較。然後,當振盪訊號SROSC的脈衝數與訊號SRDIV<n:0>的值一致時,比較器130將訊號SRRST輸出至計數器110。If the signal SRCNT<n:0> representing the number of pulses of the oscillation signal SROSC is input from the counter 110, the comparator 130 will calculate the number of pulses of the oscillation signal SROSC (for example, the value of the signal SRCNT<n:0>+1 in Figure 3) ), and the signal SRDIV<n:0> input from the comparison table 120 for comparison. Then, when the number of pulses of the oscillation signal SROSC is consistent with the value of the signal SRDIV<n:0>, the comparator 130 outputs the signal SRRST to the counter 110.

當從計數器110輸出的訊號SRCNT<n:0>的值為0時,計時產生器140將高位準的刷新觸發訊號SRTRG輸出至定序器150。When the value of the signal SRCNT<n:0> output from the counter 110 is 0, the timing generator 140 outputs the high-level refresh trigger signal SRTRG to the sequencer 150.

若從計時產生器140輸入高位準的刷新觸發訊號SRTRG時,定序器150將高位準的刷新訊號REF輸出至刷新位址計數器160以及列控制部22。另外,舉例來說,若表示要求讀取或寫入存取的訊號ACCESS、以及高位準的刷新觸發訊號SRTRG,幾乎在同一個時間點輸入時,則定序器150也可以執行各訊號ACCESS、SRTRG之間的仲裁(調停),並調整刷新訊號REF的輸出時間點。If the high-level refresh trigger signal SRTRG is input from the timing generator 140, the sequencer 150 outputs the high-level refresh signal REF to the refresh address counter 160 and the column control unit 22. In addition, for example, if the signal ACCESS that requires read or write access and the high-level refresh trigger signal SRTRG are input at almost the same time point, the sequencer 150 can also execute the signals ACCESS and SRTRG. Arbitration (mediation) between the two, and adjust the output time point of the refresh signal REF.

刷新位址計數器160將表示成為刷新操作的對象的列位址的訊號RFA,輸出至列控制部22。另外,每一次執行刷新操作(亦即,高位準的刷新訊號REF從定序器150輸入)時,刷新位址計數器160都會遞增成為刷新操作的對象的列位址。舉例來說,也可以在刷新訊號REF的脈衝下降時,刷新位址計數器160遞增列位址。The refresh address counter 160 outputs a signal RFA indicating the column address that is the target of the refresh operation to the column control unit 22. In addition, each time a refresh operation is performed (that is, a high-level refresh signal REF is input from the sequencer 150), the refresh address counter 160 increments the column address that becomes the target of the refresh operation. For example, when the pulse of the refresh signal REF falls, the refresh address counter 160 may increment the column address.

第3圖為一時序圖,表示本實施例的半導體記憶裝置內的各部訊號的電壓推移。在時刻t1,當表示既定期間內的讀取或寫入存取為低頻率(Low)的訊號ACCFREQ輸入至對照表120時,對照表120將對應的脈衝數(例如此處為12)的訊號SRDIV<n:0>,輸出至比較器130。另外,由於訊號SRCNT<n:0>的值為0,因此計時產生器140將高位準的刷新觸發訊號SRTRG輸出至定序器150。接著,定序器150將高位準的刷新訊號REF輸出至刷新位址計數器160以及列控制部22。藉此,針對訊號RFA所示的列位址(圖例中為「0」)執行刷新操作。接著,在刷新訊號REF的脈衝下降之後的時刻t2,刷新位址計數器160遞增訊號RFA所示的列位址(圖例中,從「0」遞增至「1」)。FIG. 3 is a timing chart showing the voltage transitions of various signals in the semiconductor memory device of this embodiment. At time t1, when the signal ACCFREQ indicating that the read or write access in a predetermined period is low frequency (Low) is input to the comparison table 120, the comparison table 120 will signal the corresponding pulse number (for example, 12 here). SRDIV<n:0> is output to the comparator 130. In addition, since the value of the signal SRCNT<n:0> is 0, the timing generator 140 outputs the high-level refresh trigger signal SRTRG to the sequencer 150. Then, the sequencer 150 outputs the high-level refresh signal REF to the refresh address counter 160 and the column control unit 22. In this way, the refresh operation is performed on the column address ("0" in the illustration) indicated by the signal RFA. Then, at time t2 after the pulse of the refresh signal REF falls, the refresh address counter 160 increments the column address indicated by the signal RFA (in the example, it increments from "0" to "1").

像這樣,當既定期間內的讀取或寫入存取的頻率為低頻率(Low)時,由振盪器100產生的振盪訊號SROSC的脈衝數每到達12,就產生1個刷新訊號REF。In this way, when the frequency of the read or write access in a predetermined period is Low, every time the number of pulses of the oscillation signal SROSC generated by the oscillator 100 reaches 12, a refresh signal REF is generated.

接著,在時刻t3,當表示既定期間內的讀取或寫入存取為高頻率(High)的訊號ACCFREQ輸入至對照表120時,對照表120將對應的脈衝數(例如此處為3)的訊號SRDIV<n:0>,輸出至比較器130。另外,計時產生器140將高位準的刷新觸發訊號SRTRG輸出至定序器150。接著,定序器150將高位準的刷新訊號REF輸出至刷新位址計數器160以及列控制部22。藉此,針對訊號RFA所示的列位址(圖例中為「1」)執行刷新操作。接著,當刷新訊號REF的脈衝下降時,刷新位址計數器160遞增訊號RFA所示的列位址(圖例中,從「1」遞增至「2」)。Next, at time t3, when the signal ACCFREQ indicating that the read or write access in a predetermined period is high frequency (High) is input to the comparison table 120, the comparison table 120 will correspond to the number of pulses (for example, 3 here) The signal SRDIV<n:0> is output to the comparator 130. In addition, the timing generator 140 outputs the high-level refresh trigger signal SRTRG to the sequencer 150. Then, the sequencer 150 outputs the high-level refresh signal REF to the refresh address counter 160 and the column control unit 22. In this way, a refresh operation is performed for the column address ("1" in the illustration) indicated by the signal RFA. Then, when the pulse of the refresh signal REF falls, the refresh address counter 160 increments the column address indicated by the signal RFA (in the example, it increments from "1" to "2").

另外,當表示振盪訊號SROSC的脈衝數為3個的訊號SRCNT<n:0>從計數器110輸入時,由於振盪訊號SROSC的脈衝數與訊號SRDIV<n:0>的值一致,因此比較器130將訊號SRRST輸出至計數器110。此時,計數器110將振盪訊號SROSC的脈衝的計數值重設為初始值。In addition, when the signal SRCNT<n:0> indicating that the number of pulses of the oscillation signal SROSC is 3 is input from the counter 110, since the number of pulses of the oscillation signal SROSC is consistent with the value of the signal SRDIV<n:0>, the comparator 130 The signal SRRST is output to the counter 110. At this time, the counter 110 resets the count value of the pulse of the oscillation signal SROSC to the initial value.

然後,在時刻t4以及t5,藉由高位準的刷新訊號REF輸出至刷新位址計數器160以及列控制部22,而分別對訊號RFA所示的列位址(圖例中,分別為「2」以及「3」)執行刷新操作。Then, at time t4 and t5, the high-level refresh signal REF is output to the refresh address counter 160 and the column control section 22, and the column addresses indicated by the signal RFA (in the example, “2” and “2” and 「3」) Perform refresh operation.

像這樣,當既定期間內的讀取或寫入存取的頻率為高頻率(High)時,由振盪器100產生的振盪訊號SROSC的脈衝數每到達3,就產生1個刷新訊號REF。In this way, when the frequency of read or write access in a predetermined period is High, every time the number of pulses of the oscillation signal SROSC generated by the oscillator 100 reaches 3, a refresh signal REF is generated.

接著,在時刻t6,當表示既定期間內的讀取或寫入存取為中頻率(Middle)的訊號ACCFREQ輸入至對照表120時,對照表120將對應的脈衝數(例如此處為6)的訊號SRDIV<n:0>,輸出至比較器130。另外,計時產生器140將高位準的刷新觸發訊號SRTRG輸出至定序器150。接著,定序器150將高位準的刷新訊號REF輸出至刷新位址計數器160以及列控制部22。藉此,針對訊號RFA所示的列位址(圖例中為「4」)執行刷新操作。接著,當刷新訊號REF的脈衝下降時,刷新位址計數器160遞增訊號RFA所示的列位址(圖例中,從「4」遞增至「5」)。Next, at time t6, when the signal ACCFREQ indicating that the read or write access in a predetermined period is a middle frequency (Middle) is input to the comparison table 120, the comparison table 120 sets the corresponding pulse number (for example, 6 here) The signal SRDIV<n:0> is output to the comparator 130. In addition, the timing generator 140 outputs the high-level refresh trigger signal SRTRG to the sequencer 150. Then, the sequencer 150 outputs the high-level refresh signal REF to the refresh address counter 160 and the column control unit 22. In this way, a refresh operation is performed for the column address ("4" in the illustration) indicated by the signal RFA. Then, when the pulse of the refresh signal REF falls, the refresh address counter 160 increments the column address indicated by the signal RFA (in the illustration, it increments from "4" to "5").

另外,當表示振盪訊號SROSC的脈衝數為6個的訊號SRCNT<n:0>從計數器110輸入時,由於振盪訊號SROSC的脈衝數與訊號SRDIV<n:0>的值一致,因此比較器130將訊號SRRST輸出至計數器110。此時,計數器110將振盪訊號SROSC的脈衝的計數值重設為初始值。In addition, when the signal SRCNT<n:0> indicating that the number of pulses of the oscillation signal SROSC is 6 is input from the counter 110, since the number of pulses of the oscillation signal SROSC is consistent with the value of the signal SRDIV<n:0>, the comparator 130 The signal SRRST is output to the counter 110. At this time, the counter 110 resets the count value of the pulse of the oscillation signal SROSC to the initial value.

然後,在時刻t7,藉由高位準的刷新訊號REF輸出至刷新位址計數器160以及列控制部22,而對訊號RFA所示的列位址(圖例中為「5」)執行刷新操作。Then, at time t7, the high-level refresh signal REF is output to the refresh address counter 160 and the column control section 22, and the column address indicated by the signal RFA ("5" in the illustration) is refreshed.

像這樣,當既定期間內的讀取或寫入存取的頻率為中頻率(Middle)時,由振盪器100產生的振盪訊號SROSC的脈衝數每到達6,就產生1個刷新訊號REF。In this way, when the frequency of read or write access in a predetermined period is the middle frequency (Middle), every time the number of pulses of the oscillation signal SROSC generated by the oscillator 100 reaches 6, a refresh signal REF is generated.

另外,本實施例中,以其中一例說明了訊號SRCNT<n:0>的值為初始值(例如此處為0)時,執行刷新操作的情況;然而,本發明不限於此。舉例來說,也可以在訊號SRCNT<n:0>的值為0以外的其他值時執行刷新操作。In addition, in this embodiment, one example is used to illustrate the case of performing a refresh operation when the value of the signal SRCNT<n:0> is an initial value (for example, 0 here); however, the present invention is not limited to this. For example, the refresh operation can also be performed when the value of the signal SRCNT<n:0> is other than 0.

如上所述,本實施例中,若既定期間內對記憶體的讀取或寫入存取要求的頻率越高,則能夠以更短的間隔產生刷新要求(此處為刷新訊號REF)。As described above, in this embodiment, if the frequency of read or write access requests to the memory in a predetermined period is higher, the refresh request (here, the refresh signal REF) can be generated at a shorter interval.

如上所述,依照本實施例的半導體記憶裝置,舉例來說,在既定期間內頻繁地要求讀取或寫入存取時,能夠相應於此頻繁地執行記憶體20的刷新操作。藉此,能夠避免列鎚擊問題造成的資料破壞。另一方面,若既定期間內讀取或寫入存取要求的頻率越低,則能夠以比較長的間隔執行記憶體20的刷新操作,因此,與刷新操作經常以短間隔執行的情況比較起來,能夠減低刷新操作執行的次數。藉此,能夠抑制半導體記憶裝置的耗電增加。As described above, according to the semiconductor memory device of this embodiment, for example, when a read or write access is frequently requested within a predetermined period, the refresh operation of the memory 20 can be frequently performed accordingly. In this way, the data damage caused by the row hammering problem can be avoided. On the other hand, if the frequency of read or write access requests in a predetermined period is lower, the refresh operation of the memory 20 can be performed at a relatively long interval. Therefore, compared with the case where the refresh operation is often performed at a short interval , Which can reduce the number of refresh operations performed. Thereby, it is possible to suppress an increase in power consumption of the semiconductor memory device.

以下,針對本發明的第2實施例進行說明。本實施例的半導體記憶裝置,與第1實施例的不同點在於:若既定期間內對記憶體20的讀取或寫入存取要求的頻率越高,則控制部10針對刷新要求,控制所執行的刷新操作的次數增加,該刷新要求是為了執行記憶體20的刷新操作,而每隔一段時間所產生的。以下,針對與第1實施例不同的構成進行說明。Hereinafter, the second embodiment of the present invention will be described. The semiconductor memory device of this embodiment is different from the first embodiment in that if the frequency of read or write access requests to the memory 20 within a predetermined period of time is higher, the control unit 10 controls all the devices in response to the refresh request. The number of refresh operations performed increases, and the refresh request is generated at regular intervals in order to perform the refresh operation of the memory 20. Hereinafter, a configuration different from the first embodiment will be described.

第4圖表示關於第2實施例的控制部10的構成例。本實施例中,控制部10包含:振盪器100、計時產生器140、定序器150、刷新位址計數器160、計數器170、刷新跳過控制部180、以及刷新跳過部190。此處,振盪器100、定序器150以及刷新位址計數器160的構成,與上述的第1實施例相同。Fig. 4 shows a configuration example of the control unit 10 related to the second embodiment. In this embodiment, the control unit 10 includes an oscillator 100, a timing generator 140, a sequencer 150, a refresh address counter 160, a counter 170, a refresh skip control unit 180, and a refresh skip unit 190. Here, the configurations of the oscillator 100, the sequencer 150, and the refresh address counter 160 are the same as those of the first embodiment described above.

本實施例中,每一次當振盪訊號SROSC從振盪器100輸入時,計時產生器140也可以將與振盪訊號SROSC相同脈衝的刷新要求訊號SRREQ,輸出至計數器170以及刷新跳過部190。In this embodiment, every time the oscillation signal SROSC is input from the oscillator 100, the timing generator 140 can also output the refresh request signal SRREQ with the same pulse as the oscillation signal SROSC to the counter 170 and the refresh skip unit 190.

計數器170計數從計時產生器140輸出的刷新要求訊號SRREQ的脈衝,並將表示脈衝的計數值的n+1(n為正整數)位元的訊號SRREQCNT<n:0>,輸出至刷新跳過控制部180。另外,當用來把計數值重設為初始值(例如0)的訊號(圖示省略)從刷新跳過控制部180輸入時,計數器170也可以將計數值重設為初始值。The counter 170 counts the pulses of the refresh request signal SRREQ output from the timing generator 140, and outputs the n+1 (n is a positive integer) bit signal SRREQCNT<n:0> representing the count value of the pulse to the refresh skip Control unit 180. In addition, when a signal (not shown) for resetting the count value to the initial value (for example, 0) is input from the refresh skip control unit 180, the counter 170 may also reset the count value to the initial value.

若初始值的訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180將高位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。另外,每一次當訊號SRREQCNT<n:0>所示的刷新要求訊號SRREQ的脈衝數,到達從列控制部22輸入的訊號ACCFREQ所示的存取頻率對應的脈衝數時,刷新跳過控制部180也可以把用來將計數值重設為初始值的訊號(圖示省略),輸出至計數器170。此處,訊號ACCFREQ所示的存取頻率對應的脈衝數,也可以與上述的對照表120一樣,設定為既定期間內的讀取或寫入存取的頻率越低,則脈衝數就變得越多。If the initial value signal SRREQCNT<n:0> is input from the counter 170, the refresh skip control unit 180 outputs the high-level refresh skip signal REFSKIP to the refresh skip unit 190. In addition, each time the number of pulses of the refresh request signal SRREQ indicated by the signal SRREQCNT<n:0> reaches the number of pulses corresponding to the access frequency indicated by the signal ACCFREQ input from the column control section 22, the refresh skip control section 180 can also output a signal (not shown) for resetting the count value to the initial value to the counter 170. Here, the number of pulses corresponding to the access frequency indicated by the signal ACCFREQ can also be set like the above-mentioned comparison table 120. The lower the frequency of read or write access in a predetermined period, the number of pulses becomes more.

當低位準的刷新跳過訊號REFSKIP從刷新跳過控制部180輸入時,刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成低位準的刷新觸發訊號SRTRG,並輸出至定序器150。另外,當高位準的刷新跳過訊號REFSKIP從刷新跳過控制部180輸入時,刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成高位準的刷新觸發訊號SRTRG,並輸出至定序器150。When the low-level refresh skip signal REFSKIP is input from the refresh skip control unit 180, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into a low-level refresh trigger signal SRTRG, and outputs it to Sequencer 150. In addition, when the high-level refresh skip signal REFSKIP is input from the refresh skip control unit 180, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into the high-level refresh trigger signal SRTRG, and Output to the sequencer 150.

第5圖為一時序圖,表示本實施例的半導體記憶裝置內的各部訊號的電壓推移。在時刻t11,若輸入表示既定期間內的讀取或寫入存取為低頻率(Low)的訊號ACCFREQ,則當初始值的訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180將高位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。另外,由於高位準的刷新跳過訊號REFSKIP從刷新跳過控制部180輸入,因此刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成高位準的刷新觸發訊號SRTRG,並輸出至定序器150。另外,定序器150將高位準的刷新訊號REF輸出至刷新位址計數器160以及控制部22。藉此,針對訊號RFA所示的列位址(圖例中為「0」)執行刷新操作。另外,當刷新訊號REF的脈衝下降時,刷新位址計數器160遞增訊號RFA所示的列位址(圖例中,從「0」遞增至「1」)。FIG. 5 is a timing chart showing the voltage transitions of various signals in the semiconductor memory device of this embodiment. At time t11, if the input signal ACCFREQ indicating that the read or write access in a predetermined period is low frequency (Low), when the initial value signal SRREQCNT<n:0> is input from the counter 170, refresh skip control The unit 180 outputs the high-level refresh skip signal REFSKIP to the refresh skip unit 190. In addition, since the high-level refresh skip signal REFSKIP is input from the refresh skip control unit 180, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into the high-level refresh trigger signal SRTRG, and Output to the sequencer 150. In addition, the sequencer 150 outputs the high-level refresh signal REF to the refresh address counter 160 and the control unit 22. In this way, the refresh operation is performed on the column address ("0" in the illustration) indicated by the signal RFA. In addition, when the pulse of the refresh signal REF falls, the refresh address counter 160 increments the column address indicated by the signal RFA (in the illustration, it increments from "0" to "1").

像這樣,若既定期間內的讀取或寫入存取為低頻率(Low)時,則每產生既定個數(圖例中為12個)的刷新要求訊號SRREQ,就產生1個刷新訊號REF(亦即,執行1次刷新操作)。In this way, if the read or write access in a predetermined period is low frequency (Low), every time a predetermined number (12 in the example) of refresh request signals SRREQ is generated, a refresh signal REF( That is, one refresh operation is performed).

接著,在時刻t12,若輸入表示既定期間內的讀取或寫入存取為高頻率(High)的訊號ACCFREQ,則當初始值的訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180將高位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。另外,刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成高位準的刷新觸發訊號SRTRG,並輸出至定序器150。另外,定序器150將高位準的刷新訊號REF輸出至刷新位址計數器160以及控制部22。藉此,針對訊號RFA所示的列位址(圖例中為「1」)執行刷新操作。另外,當刷新訊號REF的脈衝下降時,刷新位址計數器160遞增訊號RFA所示的列位址(圖例中,從「1」遞增至「2」)。Next, at time t12, if the input signal ACCFREQ indicating that the read or write access in the predetermined period is high frequency (High), when the initial value signal SRREQCNT<n:0> is input from the counter 170, the refresh jumps The control unit 180 outputs the high-level refresh skip signal REFSKIP to the refresh skip unit 190. In addition, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into a high-level refresh trigger signal SRTRG, and outputs it to the sequencer 150. In addition, the sequencer 150 outputs the high-level refresh signal REF to the refresh address counter 160 and the control unit 22. In this way, a refresh operation is performed for the column address ("1" in the illustration) indicated by the signal RFA. In addition, when the pulse of the refresh signal REF falls, the refresh address counter 160 increments the column address indicated by the signal RFA (in the example, it increments from "1" to "2").

另外,當訊號SRREQCNT<n:0>所示的刷新要求訊號SRREQ的脈衝數,到達從列控制部22輸入的訊號ACCFREQ所示的存取頻率對應的脈衝數(圖例中為3個)時,刷新跳過控制部180把用來將計數值重設為初始值的訊號(圖示省略),輸出至計數器170。此時,計數器170將刷新要求訊號SRREQ的脈衝的計數值,重設為初始值。In addition, when the number of pulses of the refresh request signal SRREQ indicated by the signal SRREQCNT<n:0> reaches the number of pulses corresponding to the access frequency indicated by the signal ACCFREQ input from the column control unit 22 (3 in the example), The refresh skip control unit 180 outputs a signal (not shown) for resetting the count value to the initial value to the counter 170. At this time, the counter 170 resets the count value of the pulse of the refresh request signal SRREQ to the initial value.

然後,在時刻t13以及t14,藉由高位準的刷新訊號REF輸出至刷新位址計數器160以及列控制部22,而分別對訊號RFA所示的列位址(圖例中,分別為「2」以及「3」)執行刷新操作。Then, at time t13 and t14, the high-level refresh signal REF is output to the refresh address counter 160 and the column control section 22, and the column addresses indicated by the signal RFA (in the example, “2” and “2” and 「3」) Perform refresh operation.

像這樣,若既定期間內的讀取或寫入存取為高頻率(High)時,則每產生既定個數(圖例中為3個)的刷新要求訊號SRREQ,就產生1個刷新訊號REF(亦即,執行1次刷新操作)。In this way, if the read or write access in a predetermined period is high frequency (High), each time a predetermined number of refresh request signals SRREQ (3 in the illustration) are generated, a refresh signal REF( That is, one refresh operation is performed).

接著,在時刻t15,若輸入表示既定期間內的讀取或寫入存取為中頻率(Middle)的訊號ACCFREQ,則當初始值的訊號RREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180將高位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。另外,刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成高位準的刷新觸發訊號SRTRG,並輸出至定序器150。另外,定序器150將高位準的刷新訊號REF輸出至刷新位址計數器160以及控制部22。藉此,針對訊號RFA所示的列位址(圖例中為「4」)執行刷新操作。另外,當刷新訊號REF的脈衝下降時,刷新位址計數器160遞增訊號RFA所示的列位址(圖例中,從「4」遞增至「5」)。Next, at time t15, if the input signal ACCFREQ indicating that the read or write access in a predetermined period is a middle frequency (Middle), when the initial value signal RREQCNT<n:0> is input from the counter 170, the refresh jumps The control unit 180 outputs the high-level refresh skip signal REFSKIP to the refresh skip unit 190. In addition, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into a high-level refresh trigger signal SRTRG, and outputs it to the sequencer 150. In addition, the sequencer 150 outputs the high-level refresh signal REF to the refresh address counter 160 and the control unit 22. In this way, a refresh operation is performed for the column address ("4" in the illustration) indicated by the signal RFA. In addition, when the pulse of the refresh signal REF falls, the refresh address counter 160 increments the column address indicated by the signal RFA (in the illustration, it increments from "4" to "5").

另外,當訊號SRREQCNT<n:0>所示的刷新要求訊號SRREQ的脈衝數,到達從列控制部22輸入的訊號ACCFREQ所示的存取頻率對應的脈衝數(圖例中為6個)時,刷新跳過控制部180把用來將計數值重設為初始值的訊號(圖示省略),輸出至計數器170。此時,計數器170將刷新要求訊號SRREQ的脈衝的計數值,重設為初始值。In addition, when the number of pulses of the refresh request signal SRREQ indicated by the signal SRREQCNT<n:0> reaches the number of pulses corresponding to the access frequency indicated by the signal ACCFREQ input from the column control unit 22 (6 in the illustration), The refresh skip control unit 180 outputs a signal (not shown) for resetting the count value to the initial value to the counter 170. At this time, the counter 170 resets the count value of the pulse of the refresh request signal SRREQ to the initial value.

然後,在時刻t16,藉由高位準的刷新訊號REF輸出至刷新位址計數器160以及列控制部22,而對訊號RFA所示的列位址(圖例中為「5」)執行刷新操作。Then, at time t16, the high-level refresh signal REF is output to the refresh address counter 160 and the column control section 22, and the column address indicated by the signal RFA ("5" in the illustration) is refreshed.

像這樣,若既定期間內的讀取或寫入存取為中頻率(Middle)時,則每產生既定個數(圖例中為6個)的刷新要求訊號SRREQ,就產生1個刷新訊號REF(亦即,執行1次刷新操作)。In this way, if the read or write access in a predetermined period is at the middle frequency (Middle), each time a predetermined number of refresh request signals SRREQ (6 in the example) are generated, a refresh signal REF( That is, one refresh operation is performed).

另外,本實施例中,以其中一例說明了訊號SRCNT<n:0>的值為初始值(例如此處為0)時,執行刷新操作的情況;然而,本發明不限於此。舉例來說,也可以在訊號SRCNT<n:0>的值為0以外的其他值時執行刷新操作。In addition, in this embodiment, one example is used to illustrate the case of performing a refresh operation when the value of the signal SRCNT<n:0> is an initial value (for example, 0 here); however, the present invention is not limited to this. For example, the refresh operation can also be performed when the value of the signal SRCNT<n:0> is other than 0.

如上所述,依照關於本實施例的半導體記憶裝置,若既定期間內對記憶體的讀取或寫入存取要求的頻率越高,則能夠針對每隔一段時間所產生的刷新要求訊號SRREQ,增加所執行的刷新操作的次數(亦即,增加刷新操作的執行次數)。藉此,能夠頻繁地執行記憶體的刷新操作,且能夠避免列鎚擊問題造成的資料破壞。As described above, according to the semiconductor memory device of this embodiment, if the frequency of read or write access requests to the memory within a predetermined period is higher, the refresh request signal SRREQ generated at regular intervals can be addressed. Increase the number of refresh operations performed (that is, increase the number of refresh operations performed). Thereby, the refresh operation of the memory can be performed frequently, and the data damage caused by the row hammering problem can be avoided.

以下,針對本發明的第3實施例進行說明。本實施例的半導體記憶裝置,與上述的各實施例的不同點在於:控制部20針對連續的列位址的複數個區塊的每一個,分別控制刷新操作的間隔。以下,針對與上述的各實施例不同的構成進行說明。Hereinafter, the third embodiment of the present invention will be described. The semiconductor memory device of this embodiment is different from the foregoing embodiments in that the control unit 20 controls the refresh operation interval for each of the plurality of blocks of consecutive column addresses. Hereinafter, the configuration different from the above-mentioned respective embodiments will be described.

本實施例中,半導體記憶裝置包含複數個(例如此處為4個)區塊,每一個區塊都分別包含刷新位址計數器,該刷新位址計數器根據刷新要求,指定刷新操作執行的位址。另外,控制部10針對複數個區塊的每一個區塊,控制由該複數個區塊的每一個區塊所對應的刷新位址計數器指定的列位址所對應的刷新操作執行。藉此,對複數個區塊之中的任何區塊執行刷新操作時,都能夠使用刷新位址計數器,輕易地指定刷新操作執行的列位址。另外,複數個區塊當中,每一個區塊連續的列位址的個數可以相同,也可以不同。In this embodiment, the semiconductor memory device includes a plurality of (for example, 4 here) blocks, and each block includes a refresh address counter. The refresh address counter specifies the address at which the refresh operation is performed according to the refresh request. . In addition, the control unit 10 controls the execution of the refresh operation corresponding to the column address specified by the refresh address counter corresponding to each block of the plurality of blocks for each block of the plurality of blocks. In this way, when performing a refresh operation on any of the plurality of blocks, the refresh address counter can be used to easily specify the column address for the refresh operation. In addition, among the plurality of blocks, the number of consecutive column addresses in each block may be the same or different.

第6圖表示關於第3實施例的控制部10的構成例。本實施例中,控制部10包含:振盪器100、計時產生器140、定序器150、刷新位址計數器160、刷新位址計數器161、162、163、164,分別設置於複數個區塊(圖例中,為區塊0~區塊3,一共4個區塊)當中的每一個區塊、刷新跳過控制部180、以及刷新跳過部190。此處,振盪器100、計時產生器140、定序器150、計數器170、以及刷新跳過部190的構成,與上述的第2實施例相同。Fig. 6 shows a configuration example of the control unit 10 related to the third embodiment. In this embodiment, the control unit 10 includes: an oscillator 100, a timing generator 140, a sequencer 150, a refresh address counter 160, and refresh address counters 161, 162, 163, and 164, which are respectively arranged in a plurality of blocks ( In the illustration, each of the blocks (block 0 to block 3, a total of 4 blocks), the refresh skip control unit 180, and the refresh skip unit 190. Here, the configurations of the oscillator 100, the timing generator 140, the sequencer 150, the counter 170, and the refresh skip unit 190 are the same as in the second embodiment described above.

本實施例中,刷新位址計數器160也可以設計成從計時產生器140輸入刷新要求訊號SRREQ。在這種情況下,刷新位址計數器160也可以計數刷新要求訊號SRREQ的脈衝數,使得在既定計數範圍(例如0~3)內循環。另外,舉例來說,在每一次從第0號開始計數到既定編號(例如第3號)的刷新要求訊號SRREQ的脈衝上升邊緣時,刷新位址計數器160也可以將用來把成為刷新操作的對象的區塊切換到其他區塊的訊號RFA(BLOCK),輸出至刷新跳過控制部180。另外,刷新位址計數器160在輸出訊號RFA(BLOCK)的期間,把從定序器150輸入的刷新訊號REF,輸出至各區塊的刷新位址計數器161~164之中,由該訊號RFA(BLOCK)指定的區塊(例如區塊0)對應的刷新位址計數器(例如,刷新位址計數器161)。In this embodiment, the refresh address counter 160 can also be designed to input the refresh request signal SRREQ from the timing generator 140. In this case, the refresh address counter 160 can also count the number of pulses of the refresh request signal SRREQ so as to cycle within a predetermined counting range (for example, 0-3). In addition, for example, every time the rising edge of the pulse of the refresh request signal SRREQ starting from No. 0 to a predetermined number (for example, No. 3) is counted, the refresh address counter 160 can also be used to change the number to the refresh operation. The target block is switched to the signal RFA (BLOCK) of other blocks, and is output to the refresh skip control unit 180. In addition, the refresh address counter 160 outputs the refresh signal REF input from the sequencer 150 to the refresh address counters 161 to 164 of each block during the period when the signal RFA (BLOCK) is output, and the signal RFA ( The refresh address counter (for example, refresh address counter 161) corresponding to the block (for example, block 0) designated by BLOCK).

區塊0的刷新位址計數器161將表示成為刷新操作的對象的區塊0內的列位址的訊號RFA BLK0,輸出至列控制部22。另外,每次針對區塊0執行刷新操作時,刷新位址計數器161就遞增成為刷新操作的對象的區塊0內的列位址。區塊1的刷新位址計數器162將表示成為刷新操作的對象的區塊1內的列位址的訊號RFA BLK1,輸出至列控制部22。另外,每次針對區塊1執行刷新操作時,刷新位址計數器162就遞增成為刷新操作的對象的區塊1內的列位址。區塊2的刷新位址計數器163將表示成為刷新操作的對象的區塊2內的列位址的訊號RFA BLK2,輸出至列控制部22。另外,每次針對區塊2執行刷新操作時,刷新位址計數器163就遞增成為刷新操作的對象的區塊2內的列位址。區塊3的刷新位址計數器164將表示成為刷新操作的對象的區塊3內的列位址的訊號RFA BLK3,輸出至列控制部22。另外,每次針對區塊3執行刷新操作時,刷新位址計數器164就遞增成為刷新操作的對象的區塊3內的列位址。The refresh address counter 161 of the block 0 outputs the signal RFA BLK0 indicating the column address in the block 0 that is the target of the refresh operation to the column control unit 22. In addition, each time a refresh operation is performed for block 0, the refresh address counter 161 increments the column address in block 0 that is the target of the refresh operation. The refresh address counter 162 of the block 1 outputs the signal RFA BLK1 indicating the column address in the block 1 that is the target of the refresh operation to the column control unit 22. In addition, each time a refresh operation is performed for block 1, the refresh address counter 162 increments the column address in block 1 that is the target of the refresh operation. The refresh address counter 163 of the block 2 outputs the signal RFA BLK2 indicating the column address in the block 2 that is the target of the refresh operation to the column control unit 22. In addition, each time a refresh operation is performed for block 2, the refresh address counter 163 increments the column address in block 2 that is the target of the refresh operation. The refresh address counter 164 of the block 3 outputs the signal RFA BLK3 indicating the column address in the block 3 that is the target of the refresh operation to the column control unit 22. In addition, each time a refresh operation is performed on block 3, the refresh address counter 164 increments the column address in block 3 that is the target of the refresh operation.

本實施例中,若初始值的訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180將高位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。另外,每一次當訊號SRREQCNT<n:0>所示的刷新要求訊號SRREQ的脈衝數,到達從刷新位址計數器160輸入的訊號RFA(BLOCK)所示的區塊所對應的存取頻率(從列控制部22輸入的訊號ACCFREQ所示)所對應的脈衝數時,刷新跳過控制部180也可以把用來將計數值重設為初始值的訊號(圖示省略),輸出至計數器170。此處,訊號ACCFREQ也可以針對複數個區塊0~3,分別表示既定期間內的讀取或寫入存取要求的頻率。In this embodiment, if the initial value signal SRREQCNT<n:0> is input from the counter 170, the refresh skip control unit 180 outputs the high-level refresh skip signal REFSKIP to the refresh skip unit 190. In addition, each time the pulse number of the refresh request signal SRREQ shown by the signal SRREQCNT<n:0> reaches the access frequency corresponding to the block shown by the signal RFA(BLOCK) input from the refresh address counter 160 (from When the number of pulses corresponding to the signal ACCFREQ input by the column control unit 22 is shown, the refresh skip control unit 180 may also output a signal (not shown) for resetting the count value to the initial value to the counter 170. Here, the signal ACCFREQ can also target a plurality of blocks 0 to 3, respectively representing the frequency of read or write access requests within a predetermined period.

第7圖為一時序圖,表示本實施例的半導體記憶裝置內的各部訊號的電壓推移。此處以其中一例說明下列的情況:針對區塊0的存取頻率(ACCFREQ(BLK0))為低頻率(Low);針對區塊3的存取頻率(ACCFREQ(BLK3))為低頻率(Low);針對區塊1的存取頻率(ACCFREQ(BLK1))為中頻率(Middle);針對區塊2的存取頻率(ACCFREQ(BLK2))為高頻率(High)。FIG. 7 is a timing chart showing the voltage transitions of various signals in the semiconductor memory device of this embodiment. Here is one example to illustrate the following situations: the access frequency for block 0 (ACCFREQ(BLK0)) is low frequency (Low); the access frequency for block 3 (ACCFREQ(BLK3)) is low frequency (Low) ; The access frequency for block 1 (ACCFREQ (BLK1)) is the middle frequency (Middle); the access frequency for block 2 (ACCFREQ (BLK2)) is the high frequency (High).

另外,此處如第7圖所示,以其中一例說明下列的情況:若針對區塊的存取為低頻率(Low)時,則每4個刷新要求訊號SRREQ產生1個刷新訊號REF;若針對區塊的存取為中頻率(Middle)時,則每4個刷新要求訊號SRREQ產生2個刷新訊號REF;若針對區塊的存取為高頻率(High)時,則每4個刷新要求訊號SRREQ產生4個刷新訊號REF。In addition, as shown in Figure 7, one example is used to illustrate the following situation: if the access to the block is Low, then one refresh signal REF is generated for every four refresh request signals SRREQ; if When the access to the block is Middle, 2 refresh signals REF are generated for every 4 refresh request signals SRREQ; if the access to the block is High, then every 4 refresh requests The signal SRREQ generates 4 refresh signals REF.

在時刻t21,刷新位址計數器160把用來指定區塊0作為刷新操作的對象的訊號RFA(BLOCK),輸出至刷新跳過控制部180。刷新跳過控制部180基於從刷新位址計數器160輸入的訊號RFA(BLOCK)、以及從列控制部22輸入的訊號ACCFREQ,判別存取為低頻率的區塊0被指定為刷新操作的對象。At time t21, the refresh address counter 160 outputs the signal RFA (BLOCK) used to designate block 0 as the target of the refresh operation to the refresh skip control unit 180. The refresh skip control unit 180 determines, based on the signal RFA (BLOCK) input from the refresh address counter 160 and the signal ACCFREQ input from the column control unit 22, that block 0 whose access is low frequency is designated as the target of the refresh operation.

此處,當初始值的訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180也可以將高位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。另外,當初始值以外的值的訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180也可以將低位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。Here, when the initial value signal SRREQCNT<n:0> is input from the counter 170, the refresh skip control unit 180 may also output the high-level refresh skip signal REFSKIP to the refresh skip unit 190. In addition, when the signal SRREQCNT<n:0> with a value other than the initial value is input from the counter 170, the refresh skip control unit 180 may also output the low-level refresh skip signal REFSKIP to the refresh skip unit 190.

藉此,當初始值的訊號SRREQCNT<n:0>輸入至刷新跳過控制部180時,針對訊號RFA BLK0所示的列位址(圖例中為「0」)執行刷新操作。另外,當刷新訊號REF的脈衝下降時,區塊0的刷新位址計數器161遞增訊號RFA BLK0所示的列位址(圖例中,從「0」遞增至「1」)。Thereby, when the signal SRREQCNT<n:0> of the initial value is input to the refresh skip control unit 180, the refresh operation is performed for the column address ("0" in the illustration) indicated by the signal RFA BLK0. In addition, when the pulse of the refresh signal REF falls, the refresh address counter 161 of the block 0 increments the column address indicated by the signal RFA BLK0 (in the example, it increments from "0" to "1").

像這樣,針對既定期間內的讀取或寫入存取為低頻率(Low)的區塊0,產生1個刷新訊號REF(亦即,執行1次刷新操作)。In this way, one refresh signal REF is generated (that is, one refresh operation is performed) for block 0 whose read or write access is low in a predetermined period.

接著,在時刻t22,當刷新位址計數器160每接收到既定個數的刷新訊號REF時(例如此處為4個),刷新位址計數器160會把計數值加1,並把用來指定區塊1作為刷新操作的對象的訊號RFA(BLOCK),輸出至刷新跳過控制部180。刷新跳過控制部180基於從刷新位址計數器160輸入的訊號RFA(BLOCK)、以及從列控制部22輸入的訊號ACCFREQ,判別存取為中頻率的區塊1被指定為刷新操作的對象。Then, at time t22, when the refresh address counter 160 receives a predetermined number of refresh signals REF (for example, 4 here), the refresh address counter 160 will increment the count value by 1, and use it to specify the area. The block 1 is output to the refresh skip control unit 180 as the signal RFA (BLOCK) that is the target of the refresh operation. The refresh skip control unit 180 determines that the block 1 whose access is the medium frequency is designated as the target of the refresh operation based on the signal RFA (BLOCK) input from the refresh address counter 160 and the signal ACCFREQ input from the column control unit 22.

此處,初始值的訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180也可以將高位準的刷新跳過REFSKIP,輸出至刷新跳過部190。另外,初始值以外的既定值(例如此處為2)的訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180也可以將高位準的刷新跳過REFSKIP,輸出至刷新跳過部190。Here, when the signal SRREQCNT<n:0> of the initial value is input from the counter 170, the refresh skip control unit 180 may also skip the high-level refresh skip REFSKIP and output it to the refresh skip unit 190. In addition, when the signal SRREQCNT<n:0> of a predetermined value other than the initial value (for example, 2 here) is input from the counter 170, the refresh skip control unit 180 may also skip the high-level refresh skip REFSKIP and output it to the refresh skip过部190。 过部190.

藉此,當初始值的訊號SRREQCNT<n:0>輸入至刷新跳過控制部180時,針對訊號RFA BLK1所示的列位址(圖例中為「0」)執行刷新操作。此時,當刷新訊號REF的脈衝下降時,區塊1的刷新位址計數器162遞增訊號RFA BLK1所示的列位址(圖例中,從「0」遞增至「1」)。Thereby, when the signal SRREQCNT<n:0> of the initial value is input to the refresh skip control unit 180, the refresh operation is performed for the column address (“0” in the illustration) indicated by the signal RFA BLK1. At this time, when the pulse of the refresh signal REF falls, the refresh address counter 162 of the block 1 increments the column address indicated by the signal RFA BLK1 (in the example, it increments from "0" to "1").

另外,當初始值以外的既定值(例如此處為2)的訊號SRREQCNT<n:0>輸入至刷新跳過控制部180時,針對訊號RFA BLK1所示的列位址(圖例中為「1」)執行刷新操作。當刷新訊號REF的脈衝下降時,區塊1的刷新位址計數器162遞增訊號RFA BLK1所示的列位址(圖例中,從「1」遞增至「2」)。In addition, when a signal SRREQCNT<n:0> of a predetermined value other than the initial value (for example, 2 here) is input to the refresh skip control unit 180, the column address shown by the signal RFA BLK1 (in the example, "1 ") Perform refresh operation. When the pulse of the refresh signal REF falls, the refresh address counter 162 of the block 1 increments the column address indicated by the signal RFA BLK1 (in the example, it increments from "1" to "2").

像這樣,針對既定期間內的讀取或寫入存取為中頻率(Middle)的區塊1,產生2個刷新訊號REF(亦即,執行2次刷新操作)。In this way, two refresh signals REF are generated (that is, two refresh operations are performed) for block 1 where the read or write access in a predetermined period is a middle frequency (Middle).

接著,在時刻t23,當刷新位址計數器160每接收到既定個數的刷新訊號REF時(例如此處為4個),刷新位址計數器160會把計數值加1,並把用來指定區塊2作為刷新操作的對象的訊號RFA(BLOCK),輸出至刷新跳過控制部180。刷新跳過控制部180基於從刷新位址計數器160輸入的訊號RFA(BLOCK)、以及從列控制部22輸入的訊號ACCFREQ,判別存取為高頻率的區塊2被指定為刷新操作的對象。Then, at time t23, when the refresh address counter 160 receives a predetermined number of refresh signals REF (for example, 4 here), the refresh address counter 160 will increment the count value by 1, and use it to specify the area. The block 2 signal RFA (BLOCK), which is the target of the refresh operation, is output to the refresh skip control unit 180. The refresh skip control unit 180 determines, based on the signal RFA (BLOCK) input from the refresh address counter 160 and the signal ACCFREQ input from the column control unit 22, that the block 2 whose access is high frequency is designated as the target of the refresh operation.

此處,每一次當訊號SRREQCNT<n:0>從計數器170輸入時,刷新跳過控制部180也可以將高位準的刷新跳過訊號REFSKIP輸出至刷新跳過部190。Here, every time the signal SRREQCNT<n:0> is input from the counter 170, the refresh skip control unit 180 may also output the high-level refresh skip signal REFSKIP to the refresh skip unit 190.

藉此,每次當訊號SRREQCNT<n:0>輸入至刷新跳過控制部180時,就對訊號RFA BLK2所示的列位址(圖例中,為「0」、「1」、「2」、「3」)依序執行刷新操作。此時,區塊2的刷新位址計數器162,遞增訊號RFA BLK2所示的列位址(圖例中,遞增至「0」~「4」)。In this way, every time the signal SRREQCNT<n:0> is input to the refresh skip control unit 180, the column address shown by the signal RFA BLK2 (in the example, it is "0", "1", "2" , "3") to perform refresh operations in sequence. At this time, the refresh address counter 162 of block 2 increments the column address indicated by the signal RFA BLK2 (in the example, it increments to "0" to "4").

像這樣,針對既定期間內的讀取或寫入存取為高頻率(High)的區塊2,產生4個刷新訊號REF(亦即,執行4次刷新操作)。In this way, 4 refresh signals REF are generated for block 2 where the read or write access is high in a predetermined period (that is, 4 refresh operations are performed).

接著,在時刻t24,當刷新位址計數器160每接收到既定個數的刷新訊號REF時(例如此處為4個),刷新位址計數器160會把計數值加1,並把用來指定區塊3作為刷新操作的對象的訊號RFA(BLOCK),輸出至刷新跳過控制部180。刷新跳過控制部180基於從刷新位址計數器160輸入的訊號RFA(BLOCK)、以及從列控制部22輸入的訊號ACCFREQ,判別存取為低頻率的區塊3被指定為刷新操作的對象。Then, at time t24, when the refresh address counter 160 receives a predetermined number of refresh signals REF (for example, 4 here), the refresh address counter 160 will increment the count value by 1, and use it to specify the area. Block 3 is the signal RFA (BLOCK) that is the target of the refresh operation and is output to the refresh skip control unit 180. The refresh skip control unit 180 determines, based on the signal RFA (BLOCK) input from the refresh address counter 160 and the signal ACCFREQ input from the column control unit 22, that the block 3 whose access is low frequency is designated as the target of the refresh operation.

另外,針對區塊3的刷新操作的相關處理,與上述的針對區塊0的刷新操作的相關處理相同。In addition, the related processing for the refresh operation of block 3 is the same as the related processing of the refresh operation for block 0 described above.

接著,在時刻t25,當刷新位址計數器160每接收到既定個數的刷新訊號REF時(例如此處為4個),且當刷新位址計數器160之計數值達到一預定閾值時(例如此處為3),刷新位址計數器160會將計數值重置為初始值(例如此處為0),並把用來指定區塊0作為刷新操作的對象的訊號RFA(BLOCK),輸出至刷新跳過控制部180。在這種情況下,當刷新訊號REF輸入時,區塊0的刷新位址計數器161遞增訊號RFA BLK0所示的列位址(圖例中,從「1」遞增至「2」)。Then, at time t25, when the refresh address counter 160 receives a predetermined number of refresh signals REF (for example, 4 here), and when the count value of the refresh address counter 160 reaches a predetermined threshold (for example, this At 3), the refresh address counter 160 will reset the count value to the initial value (for example, 0 here), and output the signal RFA (BLOCK) used to designate block 0 as the object of the refresh operation to refresh The control unit 180 is skipped. In this case, when the refresh signal REF is input, the refresh address counter 161 of block 0 increments the column address indicated by the signal RFA BLK0 (in the example, it increments from "1" to "2").

然後,在時刻t26,當刷新位址計數器160每接收到既定個數的刷新訊號REF時(例如此處為4個),刷新位址計數器160會把計數值加1,並把用來指定區塊1作為刷新操作的對象的訊號RFA(BLOCK),輸出至刷新跳過控制部180。在這種情況下,當刷新訊號REF輸入時,區塊1的刷新位址計數器162遞增訊號RFA BLK1所示的列位址(圖例中,從「2」遞增至「4」)。Then, at time t26, when the refresh address counter 160 receives a predetermined number of refresh signals REF (for example, 4 here), the refresh address counter 160 will increment the count value by 1, and use it to specify the area. The block 1 is output to the refresh skip control unit 180 as the signal RFA (BLOCK) that is the target of the refresh operation. In this case, when the refresh signal REF is input, the refresh address counter 162 of block 1 increments the column address indicated by the signal RFA BLK1 (in the example, it increments from "2" to "4").

另外,本實施例中,以其中一例說明了當針對區塊的存取為低頻率(Low)、且訊號SRCNT<n:0>的值為初始值(例如此處為0)時、以及當針對區塊的存取為中頻率(Middle)、且訊號SRCNT<n:0>的值為初始值(例如此處為0)或是既定值(例如此處為2)時,執行刷新操作的情況;然而,本發明不限於此。舉例來說,也可以在訊號SRCNT<n:0>的值為其他任意的值時執行刷新操作。In addition, in this embodiment, one example is used to describe when the access to the block is Low and the value of the signal SRCNT<n:0> is the initial value (for example, 0 here), and when When the access to the block is in the middle frequency (Middle) and the value of the signal SRCNT<n:0> is the initial value (for example, 0 here) or a predetermined value (for example, 2 here), the refresh operation is performed Situation; however, the present invention is not limited to this. For example, the refresh operation can also be performed when the value of the signal SRCNT<n:0> is any other value.

如上所述,依照本實施例的半導體記憶裝置,可以在複數個區塊0~3之中,控制讀取或寫入存取要求的頻率高的區塊,使得刷新操作的間隔變短;並且在複數個區塊之中,控制讀取或寫入存取要求的頻率低的區塊,使得刷新操作的間隔變長。藉此,與記憶體的整體都以短間隔執行刷新操作的情況比較起來,能夠減低刷新操作的執行次數,且能進一步抑制半導體記憶裝置的耗電增加。As described above, according to the semiconductor memory device of this embodiment, it is possible to control the blocks with a high frequency of read or write access requirements among a plurality of blocks 0 to 3, so that the interval of refresh operations is shortened; and Among the plurality of blocks, the block with low frequency for controlling read or write access requests makes the interval of refresh operations longer. As a result, compared with the case where the entire memory is refreshed at short intervals, the number of refresh operations can be reduced, and the increase in power consumption of the semiconductor memory device can be further suppressed.

以下,針對上述的第3實施例的變形例進行說明。上述的第3實施例中,以其中一例說明了刷新位址計數器161~164分別設置於複數個區塊0~3的情況;然而,本發明並不限於此。舉例來說,控制部10也可以在不使用刷新位址計數器161~164的情況下,對複數個區塊的每一個,分別控制刷新操作的間隔。Hereinafter, a modification of the above-mentioned third embodiment will be described. In the above-mentioned third embodiment, one example is used to illustrate the case where the refresh address counters 161 to 164 are respectively set in a plurality of blocks 0 to 3; however, the present invention is not limited to this. For example, the control unit 10 may also control the refresh operation interval for each of the plurality of blocks without using the refresh address counters 161 to 164.

第8圖表示關於變形例的半導體記憶裝置當中的控制部10的構成例。本變形例中,控制部10包含:振盪器100、計數器110、對照表120、比較器130、計時產生器140、定序器150、刷新位址計數器160、刷新跳過控制部180、以及刷新跳過部190。此處,振盪器100、計數器110、對照表120、比較器130、計時產生器140以及定序器150的構成,與上述的第1實施例相同。FIG. 8 shows a configuration example of the control unit 10 in the semiconductor memory device of the modification. In this modification, the control unit 10 includes an oscillator 100, a counter 110, a look-up table 120, a comparator 130, a timing generator 140, a sequencer 150, a refresh address counter 160, a refresh skip control unit 180, and refresh Skip section 190. Here, the configurations of the oscillator 100, the counter 110, the look-up table 120, the comparator 130, the timing generator 140, and the sequencer 150 are the same as those of the first embodiment described above.

本變形例中,刷新位址計數器160與上述的第1實施例一樣,將訊號RFA輸出至列控制部22。另外,本變形例中,刷新位址計數器160也將訊號RFA輸出至刷新跳過控制部180。另外,當每一次執行刷新操作時、以及當每一次用來遞增成為刷新操作的對象的列位址的訊號RFAINC從刷新跳過部190輸入時,刷新位址計數器160遞增成為刷新操作的對象的列位址。另外,本變形例中,舉例來說,列位址也可以遞增,使得在既定範圍(例如0~3)內循環。In this modified example, the refresh address counter 160 outputs the signal RFA to the column control unit 22 as in the first embodiment described above. In addition, in this modification, the refresh address counter 160 also outputs the signal RFA to the refresh skip control unit 180. In addition, every time a refresh operation is performed, and every time the signal RFAINC used to increment the column address that becomes the target of the refresh operation is input from the refresh skip section 190, the refresh address counter 160 is incremented to become the target of the refresh operation. Column address. In addition, in this modified example, for example, the column address may also be incremented so as to circulate within a predetermined range (for example, 0~3).

另外,每當記憶單元陣列24內的列位址完整計數一次時,刷新位址計數器160就遞增所有的列位址的繞行次數,並將表示繞行次數的訊號CNT輸出至刷新跳過部180。此處,舉例來說,繞行次數也可以遞增,使得在既定範圍(例如0~3)內循環。另外,雖然並未在第8圖當中示意,但是刷新位址計數器160也可以與上述的第2實施例一樣,把用來指定區塊作為刷新操作的對象的訊號RFA(BLOCK),輸出至刷新跳過控制部180。In addition, every time the column address in the memory cell array 24 is fully counted once, the refresh address counter 160 increments the number of bypasses of all the column addresses, and outputs a signal CNT indicating the number of bypasses to the refresh skip section 180. Here, for example, the number of detours can also be increased so as to circulate within a predetermined range (for example, 0~3). In addition, although it is not shown in Figure 8, the refresh address counter 160 can also output the signal RFA (BLOCK) used to specify the block as the target of the refresh operation to the refresh as in the second embodiment described above. The control unit 180 is skipped.

本變形例中,刷新跳過控制部180基於從刷新位址計數器160輸入的訊號RFA(BLOCK)所示的區塊所對應的存取頻率(從列控制部22輸入的訊號ACCFREQ(BLOCK))、以及從刷新位址計數器160輸入的訊號RFA以及訊號CNT,將表示是否針對訊號RFA所示的列位址執行刷新的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。In this modification, the refresh skip control unit 180 is based on the access frequency corresponding to the block indicated by the signal RFA (BLOCK) input from the refresh address counter 160 (the signal ACCFREQ (BLOCK) input from the column control unit 22) , And the signal RFA and the signal CNT input from the refresh address counter 160 will output the refresh skip signal REFSKIP indicating whether to perform refresh for the column address indicated by the signal RFA, and output to the refresh skip unit 190.

此處,舉例來說,刷新跳過控制部180也可以使用第9圖所示的對照表,判別是否針對訊號RFA所示的列位址執行刷新。第9圖(a)~(c)表示對照表的構成例。如第9圖(a)~(c)所示,對照表也可以針對每個訊號RFA的值(圖例中為0~3)以及每個訊號CNT的值(圖例中為0~3),分別去對應表示刷新操作執行與否(刷新操作跳過)的資訊。Here, for example, the refresh skip control unit 180 may also use the look-up table shown in FIG. 9 to determine whether to perform refresh for the column address indicated by the signal RFA. Figure 9 (a) ~ (c) shows an example of the structure of the comparison table. As shown in Figure 9(a)~(c), the comparison table can also be based on the value of each signal RFA (0~3 in the figure) and the value of each signal CNT (0~3 in the figure), respectively To correspond to the information indicating whether the refresh operation is performed or not (refresh operation skipped).

第9圖(a)表示針對訊號RFA(BLOCK)所示的區塊的存取頻率為低頻率(Low)時的訊號CNT的值、以及訊號RFA的值之間的關係的一例。第9圖(a)所示的範例中,設定當訊號CNT的值為0時,針對第0號的列位址(RFA<1:0>的值為「0」)執行刷新操作;針對第1~3號的列位址(RFA<1:0>的值為「1」~「3」)不執行刷新操作(跳過刷新操作)。另外,設定當訊號CNT的值為1時,僅針對第1號的列位址執行刷新操作;當訊號CNT的值為2時,僅針對第2號的列位址執行刷新操作;當訊號CNT的值為3時,僅針對第3號的列位址執行刷新操作。亦即,針對區塊的存取頻率為低頻率(Low)時,每繞行一次記憶單元陣列24內的所有位址時,就對該區塊內的位址0~3之中的1個位址執行刷新操作,藉由繞行4次,來刷新該區塊內所有的位址0~3。Figure 9(a) shows an example of the relationship between the value of the signal CNT and the value of the signal RFA when the access frequency for the block indicated by the signal RFA (BLOCK) is low. In the example shown in Figure 9(a), when the value of the signal CNT is 0, the refresh operation is performed for the 0th column address (the value of RFA<1:0> is "0"); No. 1~3 column address (RFA<1:0> value is "1"~"3") do not perform refresh operation (skip refresh operation). In addition, set that when the value of the signal CNT is 1, the refresh operation is only performed on the first column address; when the value of the signal CNT is 2, the refresh operation is only performed on the second column address; when the signal CNT When the value of is 3, the refresh operation is performed only for the third column address. That is, when the access frequency for the block is Low, every time all the addresses in the memory cell array 24 are circumvented, one of the addresses 0~3 in the block will be used. The address performs a refresh operation, and all addresses 0~3 in the block are refreshed by bypassing 4 times.

第9圖(b)表示針對訊號RFA(BLOCK)所示的區塊的存取頻率為中頻率(Middle)時的訊號CNT的值、以及訊號RFA的值之間的關係的一例。第9圖(b)所示的範例中,設定當訊號CNT的值為0時,針對第0號以及第2號的列位址(RFA<1:0>的值為「0」以及「2」)執行刷新操作;針對第1號以及第3號的列位址(RFA<1:0>的值為「1」以及「3」)不執行刷新操作(跳過刷新操作)。另外,設定當訊號CNT的值為1時,僅針對第1號以及第3號的列位址執行刷新操作;當訊號CNT的值為2時,僅針對第0號以及第2號的列位址執行刷新操作;當訊號CNT的值為3時,僅針對第1號以及第3號的列位址執行刷新操作。亦即,針對區塊的存取頻率為中頻率(Middle)時,每繞行一次記憶單元陣列24內的所有位址時,就對該區塊內的位址0~3之中的2個位址執行刷新操作,藉由繞行2次,來刷新該區塊內所有的位址0~3。Figure 9(b) shows an example of the relationship between the value of the signal CNT and the value of the signal RFA when the access frequency for the block indicated by the signal RFA (BLOCK) is the middle frequency (Middle). In the example shown in Figure 9(b), when the value of the signal CNT is 0, the column addresses of No. 0 and No. 2 (RFA<1:0> are "0" and "2". ") Perform a refresh operation; for the first and third column addresses (RFA<1:0> are "1" and "3"), no refresh operation is performed (the refresh operation is skipped). In addition, set that when the value of the signal CNT is 1, the refresh operation is only performed on the column addresses of No. 1 and No. 3; when the value of the signal CNT is 2, only the column addresses of No. 0 and No. 2 are performed. When the value of the signal CNT is 3, the refresh operation is performed only for the column addresses of No. 1 and No. 3. That is, when the access frequency for the block is the middle frequency (Middle), every time all the addresses in the memory cell array 24 are circumvented, 2 of the addresses 0~3 in the block will be used. The address performs a refresh operation, and all addresses 0~3 in the block are refreshed by bypassing twice.

第9圖(c)表示針對訊號RFA(BLOCK)所示的區塊的存取頻率為高頻率(High)時的訊號CNT的值、以及訊號RFA的值之間的關係的一例。第9圖(c)所示的範例中,設定當訊號CNT的值為0時,針對第0號~第3號的各個列位址(RFA<1:0>的值為「0」~「3」)執行刷新操作。另外,設定當訊號CNT的值為1~3時,也都針對第0號~第3號的各個列位址執行刷新操作。亦即,針對區塊的存取頻率為高頻率(High)時,每繞行一次記憶單元陣列24內的所有位址時,就對該區塊內所有的位址0~3執行刷新操作。Figure 9(c) shows an example of the relationship between the value of the signal CNT and the value of the signal RFA when the access frequency for the block indicated by the signal RFA (BLOCK) is high. In the example shown in Figure 9(c), when the value of the signal CNT is 0, it is set for each column address from No. 0 to No. 3 (RFA<1:0> has a value of "0"~" 3") Perform refresh operation. In addition, when the value of the signal CNT is set to 1~3, the refresh operation is also performed for each column address of No. 0~3. That is, when the access frequency for a block is High, every time all addresses in the memory cell array 24 are detoured, a refresh operation is performed on all addresses 0 to 3 in the block.

刷新跳過控制部180使用第9圖(a)~(c)所示的對照表,判別是否針對訊號RFA所示的列位址執行刷新操作。然後,當判別為執行刷新操作時,刷新跳過控制部180將高位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190;當判別為不執行(跳過)刷新操作時,刷新跳過控制部180將低位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。The refresh skip control unit 180 uses the look-up table shown in FIGS. 9(a) to (c) to determine whether to perform a refresh operation for the column address indicated by the signal RFA. Then, when it is determined that the refresh operation is performed, the refresh skip control unit 180 outputs the high-level refresh skip signal REFSKIP to the refresh skip unit 190; when it is determined that the refresh operation is not performed (skip), the refresh skip The control unit 180 outputs the low-level refresh skip signal REFSKIP to the refresh skip unit 190.

本變形例中,當高位準的刷新跳過訊號REFSKIP從刷新跳過控制部180輸入時,刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成高位準的刷新觸發訊號SRTRG,並輸出至定序器150。另外,當低位準的刷新跳過訊號REFSKIP從刷新跳過控制部180輸入時,刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成低位準的刷新觸發訊號SRTRG並輸出至定序器150;並將訊號RFAINC輸出至刷新位址計數器160。In this modification, when the high-level refresh skip signal REFSKIP is input from the refresh skip control unit 180, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into a high-level refresh trigger signal SRTRG, and output to the sequencer 150. In addition, when the low-level refresh skip signal REFSKIP is input from the refresh skip control unit 180, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into a low-level refresh trigger signal SRTRG and outputs it To the sequencer 150; and output the signal RFAINC to the refresh address counter 160.

第10圖~第12圖為一時序圖,表示本變形例的半導體記憶裝置內的各部訊號的電壓推移。另外,此處以其中一例,說明下列情況:針對區塊0以及區塊3的存取頻率(ACCFREQ(BLOCK))為低頻率(Low);針對區塊1的存取頻率為中頻率(Middle);針對區塊2的存取頻率(ACCFREQ(BLK2))為高頻率(High)。Figures 10 to 12 are timing charts showing the voltage transitions of the signals in the semiconductor memory device of this modification example. In addition, here is one example to illustrate the following situations: the access frequency (ACCFREQ (BLOCK)) for block 0 and block 3 is low frequency (Low); the access frequency for block 1 is middle frequency (Middle) ; The access frequency for block 2 (ACCFREQ (BLK2)) is high frequency (High).

第10圖表示針對區塊0的各列位址0~3執行刷新操作時的一例。首先,刷新位址計數器160將表示繞行第0次的訊號CNT、表示刷新操作的對象為第0號的列位址的訊號RFA、以及表示刷新操作的對象為區塊0的訊號RFA(BLOCK),輸出至刷新跳過控制部180。在這種情況下,刷新跳過控制部180使用從刷新位址計數器160輸入的各訊號、以及第9圖(a)所示的對照表,判別針對第0號的列位址執行刷新操作。然後,刷新跳過控制部180將高位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。此時,刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成高位準的刷新觸發訊號SRTRG,並輸出至定序器150。然後,藉由從定序器150輸出刷新訊號REF,而針對第0號的列位址執行刷新操作。Figure 10 shows an example of the refresh operation for each column address 0~3 of block 0. First, the refresh address counter 160 combines the signal CNT indicating the 0th detour, the signal RFA indicating that the object of the refresh operation is the 0th column address, and the signal RFA (BLOCK) indicating that the object of the refresh operation is the block 0 ), output to the refresh skip control unit 180. In this case, the refresh skip control unit 180 uses the signals input from the refresh address counter 160 and the look-up table shown in FIG. 9(a) to determine that the refresh operation is performed for the 0th column address. Then, the refresh skip control unit 180 outputs the high-level refresh skip signal REFSKIP to the refresh skip unit 190. At this time, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into a high-level refresh trigger signal SRTRG, and outputs it to the sequencer 150. Then, by outputting a refresh signal REF from the sequencer 150, a refresh operation is performed for the 0th column address.

另外,當刷新訊號從定序器150輸入時,刷新位址計數器160將表示刷新操作的對象為第1~3號的列位址的訊號RFA,輸出至刷新跳過控制部180。此處,刷新跳過控制部180使用從刷新位址計數器160輸入的各訊號、以及第9圖(a)所示的對照表,判別針對第1~3號的列位址不執行刷新操作(跳過刷新操作)。然後,刷新跳過控制部180將低位準的刷新跳過訊號REFSKIP,輸出至刷新跳過部190。此時,刷新跳過部190把從計時產生器140輸出的刷新要求訊號SRREQ,轉換成低位準的刷新觸發訊號SRTRG,並輸出至定序器150。另外,刷新跳過部190把用來遞增成為刷新操作的對象的列位址的訊號RFAINC,輸出至刷新位址計數器160。然後,藉由從定序器150輸出低位準的刷新訊號REF,而跳過針對第1~3號的列位址的刷新操作。In addition, when the refresh signal is input from the sequencer 150, the refresh address counter 160 outputs the signal RFA indicating that the object of the refresh operation is the first to third column addresses to the refresh skip control unit 180. Here, the refresh skip control unit 180 uses the signals input from the refresh address counter 160 and the comparison table shown in Figure 9(a) to determine that the refresh operation is not performed for the column addresses 1 to 3 ( Skip refresh operation). Then, the refresh skip control unit 180 outputs the low-level refresh skip signal REFSKIP to the refresh skip unit 190. At this time, the refresh skip unit 190 converts the refresh request signal SRREQ output from the timing generator 140 into a low-level refresh trigger signal SRTRG, and outputs it to the sequencer 150. In addition, the refresh skip unit 190 outputs a signal RFAINC for incrementing the column address that is the target of the refresh operation to the refresh address counter 160. Then, by outputting the low-level refresh signal REF from the sequencer 150, the refresh operation for the first to third column addresses is skipped.

像這樣,如第10圖(a)所示,在第0次的繞行(訊號CNT的值為「0」)時,針對區塊0(訊號RFA(BLOCK)的值為0)的第0號的列位址(RFA[1:0]的值為「0」)執行刷新操作。另外,如第10圖(b)所示,在第1次的繞行(訊號CNT的值為「1」)時,針對區塊0的第1號的列位址(RFA[1:0]的值為「1」)執行刷新操作。另外,如第10圖(c)所示,在第2次的繞行(訊號CNT的值為「2」)時,針對區塊0的第2號的列位址(RFA[1:0]的值為「2」)執行刷新操作。然後,如第10圖(d)所示,在第3次的繞行(訊號CNT的值為「3」)時,針對區塊0的第3號的列位址(RFA[1:0]的值為「3」)執行刷新操作。In this way, as shown in Figure 10(a), when the 0th detour (the value of signal CNT is "0"), the 0th of block 0 (the value of signal RFA(BLOCK) is 0) The column address of the number (RFA[1:0] value is "0") to perform refresh operation. In addition, as shown in Figure 10(b), during the first detour (the value of signal CNT is "1"), the first column address of block 0 (RFA[1:0] The value is "1") to perform refresh operation. In addition, as shown in Figure 10(c), during the second detour (the value of the signal CNT is "2"), the second column address of block 0 (RFA[1:0] The value is "2") to perform refresh operation. Then, as shown in Figure 10(d), in the third detour (the value of signal CNT is "3"), the third column address of block 0 (RFA[1:0] The value is "3") to perform refresh operation.

因此,針對區塊0的存取頻率為低頻率(Low)時,每繞行一次記憶單元陣列24內的所有位址時,就對區塊0內的位址0~3之中的1個位址執行刷新操作,藉由繞行4次,來刷新區塊0內所有的位址0~3。Therefore, when the access frequency for block 0 is Low, every time all the addresses in the memory cell array 24 are detoured, one of the addresses 0 to 3 in block 0 The address performs a refresh operation, and all addresses 0~3 in block 0 are refreshed by bypassing 4 times.

第11圖表示針對區塊1的各列位址0~3執行刷新操作時的一例。如第11圖(a)所示,在第0次的繞行(訊號CNT的值為「0」)時,針對區塊1(訊號RFA(BLOCK)的值為1)的第0號的列位址(RFA[1:0]的值為「0」)以及第2號的列位址(RFA[1:0]的值為「2」)執行刷新操作。接著,如第11圖(b)所示,在第1次的繞行(訊號CNT的值為「1」)時,針對區塊1的第1號的列位址(RFA[1:0]的值為「1」)以及第3號的列位址(RFA[1:0]的值為「3」)執行刷新操作。接著,如第11圖(c)所示,在第2次的繞行(訊號CNT的值為「2」)時,針對區塊1的第0號的列位址以及第2號的列位址執行刷新操作。接著,如第11圖(d)所示,在第3次的繞行(訊號CNT的值為「3」)時,針對區塊1的第1號的列位址以及第3號的列位址執行刷新操作。Figure 11 shows an example of the refresh operation for each column address 0~3 of block 1. As shown in Figure 11(a), when the 0th detour (the value of signal CNT is "0"), it is for the 0th column of block 1 (the value of signal RFA(BLOCK) is 1) The address (the value of RFA[1:0] is "0") and the second column address (the value of RFA[1:0] is "2") perform the refresh operation. Then, as shown in Figure 11(b), during the first detour (the value of the signal CNT is "1"), the first column address of block 1 (RFA[1:0] The value of is "1") and the third column address (the value of RFA[1:0] is "3") to perform the refresh operation. Then, as shown in Figure 11(c), during the second detour (the value of the signal CNT is "2"), the address of the column No. 0 and the column position No. 2 of the block 1 The address performs a refresh operation. Then, as shown in Figure 11(d), during the third detour (the value of the signal CNT is "3"), the first column address and the third column address of block 1 The address performs a refresh operation.

像這樣,針對區塊1的存取頻率為中頻率(Middle)時,每繞行一次記憶單元陣列24內的所有位址時,就對區塊1內的位址0~3之中的2個位址執行刷新操作,藉由繞行2次,來刷新區塊1內所有的位址0~3。In this way, when the access frequency for block 1 is the middle frequency (Middle), every time all the addresses in the memory cell array 24 are circumvented, 2 of the addresses 0~3 in block 1 will be changed. Perform refresh operation on each address. By bypassing twice, all addresses 0~3 in block 1 are refreshed.

第12圖表示針對區塊2的各列位址0~3執行刷新操作時的一例。如第12圖(a)所示,在第0次的繞行(訊號CNT的值為「0」)時,針對區塊2(訊號RFA(BLOCK)的值為2)的第0號~第3號的列位址(RFA[1:0]的值為「0」~「3」)分別執行刷新操作。然後,如第12圖(b)~(d)所示,在第1次~第3次的繞行(訊號CNT的值為「1」~「3」)時,也同樣針對區塊2的第0號~第3號的列位址(RFA[1:0]的值為「0」~「3」)分別執行刷新操作。Figure 12 shows an example of a refresh operation for each column address 0~3 of block 2. As shown in Figure 12(a), in the 0th detour (the value of signal CNT is "0"), for block 2 (the value of signal RFA(BLOCK) is 2) the 0th to the first The column address of No. 3 (RFA[1:0] value is "0" ~ "3") perform refresh operation respectively. Then, as shown in Fig. 12(b)~(d), during the first to third detours (the value of signal CNT is "1" ~ "3"), the same applies to block 2 The column addresses of No. 0 to No. 3 (the value of RFA[1:0] is "0" to "3") are refreshed respectively.

像這樣,針對區塊2的存取頻率為高頻率(High)時,每繞行一次記憶單元陣列24內的所有位址時,就對區塊2內所有的位址0~3執行刷新操作。Like this, when the access frequency for block 2 is High, every time all addresses in the memory cell array 24 are detoured, all addresses 0~3 in block 2 are refreshed. .

另外,針對區塊3的刷新操作的相關處理,與上述的針對區塊0的刷新操作的相關處理相同。In addition, the related processing for the refresh operation of block 3 is the same as the related processing of the refresh operation for block 0 described above.

另外,本變形例中,以其中一例說明了每複數個區塊0~3就設定4個列位址0~3的情況;然而,本發明不限於此。舉例來說,也可以每複數個區塊0~3,設定4個以外的複數個列位址。如上所述,依照本變形例的半導體記憶裝置,具有與第3實施例相同的作用以及效果。In addition, in this modified example, one example is used to illustrate the case where four column addresses 0 to 3 are set for every plural number of blocks 0 to 3; however, the present invention is not limited to this. For example, it is also possible to set a plurality of column addresses other than 4 for every block 0~3. As described above, the semiconductor memory device according to this modification example has the same operations and effects as those of the third embodiment.

以上說明的各實施例以及變形例,是為了容易理解本發明而記載,而不是為了限定本發明而記載。因此,上述各實施例以及變形例揭露的各元件,意旨在包含本發明技術領域所屬的所有設計變更或是均等物。舉例來說,上述的第3實施例以及變形例中,以其中一例說明了控制部10對每4個區塊控制刷新操作的間隔的情況;然而,本發明不限於此。舉例來說,控制部10也可以對每4個以外的複數個區塊,控制刷新操作的間隔。The respective embodiments and modified examples described above are described in order to facilitate the understanding of the present invention, and are not described in order to limit the present invention. Therefore, the elements disclosed in the foregoing embodiments and modifications are intended to include all design changes or equivalents pertaining to the technical field of the present invention. For example, in the above-mentioned third embodiment and modification examples, one example is used to describe the case where the control unit 10 controls the refresh operation interval for every four blocks; however, the present invention is not limited to this. For example, the control unit 10 may also control the interval of refresh operations for every plural blocks other than four.

另外,上述的各實施例中,以其中一例說明了將存取的頻率分類為3個(低頻率、中頻率、高頻率)的情況;然而,本發明不限於此。舉例來說,存取的頻率也可以分類為2個或4個以上。In addition, in each of the above-mentioned embodiments, one example is used to describe the case where the frequency of access is classified into three (low frequency, medium frequency, and high frequency); however, the present invention is not limited to this. For example, the frequency of access can also be classified into two or more than four.

10:控制部10: Control Department

20:記憶體20: memory

21:指令解碼器21: instruction decoder

22:列控制部22: Column control section

23:行控制部23: Row Control Department

24:記憶單元陣列24: Memory cell array

100:振盪器100: Oscillator

110:計數器110: counter

120:對照表120: comparison table

130:比較器130: Comparator

140:計時產生器140: Timing Generator

150:定序器150: Sequencer

160:刷新位址計數器160: refresh address counter

161:刷新位址計數器161: refresh address counter

162:刷新位址計數器162: refresh address counter

163:刷新位址計數器163: refresh address counter

164:刷新位址計數器164: refresh address counter

170:計數器170: counter

180:刷新跳過控制部180: refresh skip control section

190:刷新跳過部190: refresh skip

ACCESS:訊號ACCESS: Signal

ACCFREQ:訊號ACCFREQ: Signal

ACCFREQ(BLOCK):存取頻率(訊號)ACCFREQ (BLOCK): Access frequency (signal)

ACCFREQ(BLK0):存取頻率ACCFREQ (BLK0): Access frequency

ACCFREQ(BLK1):存取頻率ACCFREQ (BLK1): Access frequency

ACCFREQ(BLK2):存取頻率ACCFREQ (BLK2): Access frequency

ACCFREQ(BLK3):存取頻率ACCFREQ (BLK3): Access frequency

CLEN,SAEN:訊號CLEN, SAEN: signal

CMDRD:觸發訊號CMDRD: trigger signal

CMDWR:觸發訊號CMDWR: trigger signal

CNT:訊號CNT: Signal

REF:刷新訊號REF: refresh signal

REFSKIP:刷新跳過訊號REFSKIP: refresh skip signal

RFA:訊號RFA: Signal

RFA(BLOCK):訊號RFA (BLOCK): signal

RFA BLK0:訊號RFA BLK0: Signal

RFA BLK1:訊號RFA BLK1: Signal

RFA BLK2:訊號RFA BLK2: Signal

RFA BLK3:訊號RFA BLK3: Signal

RFAINC:訊號RFAINC: Signal

SRCNT:訊號SRCNT: Signal

SRDIV:訊號SRDIV: Signal

SROSC:振盪訊號SROSC: Oscillation signal

SRREQ:刷新要求訊號SRREQ: Refresh request signal

SRREQCNT:訊號SRREQCNT: Signal

SRRST:訊號SRRST: Signal

SRTRG:刷新觸發訊號SRTRG: refresh trigger signal

WLOFF:訊號WLOFF: Signal

WLON:訊號WLON: Signal

第1圖為一方塊圖,表示關於本發明的第1實施例的半導體記憶裝置的構成例。 第2圖表示控制部的構成例。 第3圖為一時序圖,表示第1實施例的半導體記憶裝置內的各部訊號的電壓推移。 第4圖為一方塊圖,表示關於本發明的第2實施例的半導體記憶裝置當中的控制部的構成例。 第5圖為一時序圖,表示第2實施例的半導體記憶裝置內的各部訊號的電壓推移。 第6圖為一方塊圖,表示關於本發明的第3實施例的半導體記憶裝置當中的控制部的構成例。 第7圖為一時序圖,表示第3實施例的半導體記憶裝置內的各部訊號的電壓推移。 第8圖為一方塊圖,表示關於本發明的變形例的半導體記憶裝置當中的控制部的構成例。 第9圖(a)~(c)表示對照表的構成例。 第10圖~第12圖為一時序圖,表示變形例的半導體記憶裝置內的各部訊號的電壓推移。 FIG. 1 is a block diagram showing a configuration example of the semiconductor memory device according to the first embodiment of the present invention. Fig. 2 shows an example of the configuration of the control unit. FIG. 3 is a timing chart showing the voltage transitions of various signals in the semiconductor memory device of the first embodiment. FIG. 4 is a block diagram showing a configuration example of the control unit in the semiconductor memory device according to the second embodiment of the present invention. FIG. 5 is a timing chart showing the voltage transitions of various signals in the semiconductor memory device of the second embodiment. FIG. 6 is a block diagram showing an example of the configuration of the control unit in the semiconductor memory device according to the third embodiment of the present invention. FIG. 7 is a timing chart showing the voltage transitions of various signals in the semiconductor memory device of the third embodiment. FIG. 8 is a block diagram showing a configuration example of a control unit in a semiconductor memory device according to a modification of the present invention. Figure 9 (a) ~ (c) shows an example of the structure of the comparison table. Figures 10 to 12 are timing diagrams showing the voltage transitions of various signals in the semiconductor memory device of the modified example.

10:控制部 10: Control Department

100:振盪器 100: Oscillator

110:計數器 110: counter

120:對照表 120: comparison table

130:比較器 130: Comparator

140:計時產生器 140: Timing Generator

150:定序器 150: Sequencer

160:刷新位址計數器 160: refresh address counter

ACCESS:訊號 ACCESS: Signal

ACCFREQ:訊號 ACCFREQ: Signal

REF:刷新訊號 REF: refresh signal

RFA:訊號 RFA: Signal

SRCNT:訊號 SRCNT: Signal

SRDIV:訊號 SRDIV: Signal

SROSC:振盪訊號 SROSC: Oscillation signal

SRRST:訊號 SRRST: Signal

SRTRG:刷新觸發訊號 SRTRG: refresh trigger signal

Claims (8)

一種半導體記憶裝置,包含:控制部,控制記憶體的刷新操作的間隔;若既定期間內對該記憶體的讀取或寫入存取要求的頻率越高,則控制該記憶體的刷新操作的間隔變得越短;其中,該控制部針對連續的列位址的複數個區塊的每一個,分別控制刷新操作的間隔。 A semiconductor memory device includes: a control unit that controls the interval of refresh operations of the memory; if the frequency of read or write access requests to the memory within a predetermined period of time is higher, the refresh operation of the memory is controlled The interval becomes shorter; wherein, the control unit controls the interval of the refresh operation separately for each of the plurality of blocks of consecutive column addresses. 如請求項1之半導體記憶裝置,其中,若該既定期間內對該記憶體的讀取或寫入存取要求的頻率越高,則該控制部控制刷新要求的間隔變得越短,該刷新要求是為了執行該記憶體的刷新操作,而每隔一段時間所產生的。 For example, the semiconductor memory device of claim 1, wherein, if the frequency of read or write access requests to the memory within the predetermined period is higher, the interval at which the control unit controls the refresh request becomes shorter, and the refresh The request is generated at regular intervals in order to perform the refresh operation of the memory. 如請求項1之半導體記憶裝置,其中,若該既定期間內對該記憶體的讀取或寫入存取要求的頻率越高,則該控制部針對刷新要求,控制所執行的刷新操作的次數增加,該刷新要求是為了執行該記憶體的刷新操作,而每隔一段時間所產生的。 For example, the semiconductor memory device of claim 1, wherein, if the frequency of read or write access requests to the memory within the predetermined period is higher, the control unit controls the number of refresh operations performed in response to the refresh request Increasingly, the refresh request is generated at regular intervals in order to perform the refresh operation of the memory. 如請求項1之半導體記憶裝置,其中,該複數個區塊的每一個,都分別包含刷新位址計數器,該刷新位址計數器根據刷新要求,指定刷新操作執行的列位址;其中,該控制部針對該複數個區塊的每一個區塊,控制由該複數個區塊的每一個區塊所對應的刷新位址計數器指定的列位址所對應的刷新操作執行。 For example, the semiconductor memory device of claim 1, wherein each of the plurality of blocks respectively includes a refresh address counter, and the refresh address counter specifies the column address of the refresh operation according to the refresh request; wherein, the control The unit controls the execution of the refresh operation corresponding to the column address specified by the refresh address counter corresponding to each block of the plurality of blocks for each block of the plurality of blocks. 如請求項1之半導體記憶裝置,更包含:刷新位址計數器,根據刷新要求,指定刷新操作執行的列位址;其中,該控制部針對該複數個區塊的每一個區塊,控制該刷新位址計數器指定 的列位址所對應的刷新操作執行。 For example, the semiconductor memory device of claim 1, further comprising: a refresh address counter, which specifies the column address of the refresh operation according to the refresh request; wherein the control unit controls the refresh for each of the plurality of blocks Address counter designation The refresh operation corresponding to the column address is executed. 如請求項5之半導體記憶裝置,其中,若該刷新位址計數器指定的列位址,與設定為對應的區塊當中的讀取或寫入存取要求的頻率越高則越多的至少1個既定列位址當中的任何一者一致時,該控制部針對該指定的列位址所對應的刷新操作執行。 Such as the semiconductor memory device of claim 5, wherein if the column address specified by the refresh address counter is set to the corresponding block, the higher the frequency of the read or write access request, the more at least 1 When any one of the predetermined column addresses is consistent, the control unit executes the refresh operation corresponding to the designated column address. 如請求項1至3任何一項之半導體記憶裝置,其中,每經過該既定期間,該控制部就根據該既定期間內對該記憶體執行的讀取或寫入存取要求的頻率,控制該記憶體的刷新操作的間隔。 For example, the semiconductor memory device of any one of claims 1 to 3, wherein, every time the predetermined period passes, the control unit controls the frequency of read or write access requests to the memory within the predetermined period The interval between memory refresh operations. 如請求項1至3任何一項之半導體記憶裝置,其中,對該記憶體執行的讀取或寫入存取要求的頻率,分類為既定個數。For example, the semiconductor memory device of any one of request items 1 to 3, wherein the frequency of read or write access requests performed on the memory is classified into a predetermined number.
TW110103006A 2021-01-27 2021-01-27 Semiconductor memory device TWI740773B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110103006A TWI740773B (en) 2021-01-27 2021-01-27 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110103006A TWI740773B (en) 2021-01-27 2021-01-27 Semiconductor memory device

Publications (2)

Publication Number Publication Date
TWI740773B true TWI740773B (en) 2021-09-21
TW202230356A TW202230356A (en) 2022-08-01

Family

ID=78778090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110103006A TWI740773B (en) 2021-01-27 2021-01-27 Semiconductor memory device

Country Status (1)

Country Link
TW (1) TWI740773B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077975A1 (en) * 2003-10-14 2005-04-14 Micron Technology, Inc. Circuits and methods of temperature compensation for refresh oscillator
CN102081964A (en) * 2009-11-30 2011-06-01 国际商业机器公司 Method and system for refreshing dynamic random access memory
US8996703B2 (en) * 2008-11-25 2015-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Refresh requests in soft-state signalling
US9875785B2 (en) * 2015-10-01 2018-01-23 Qualcomm Incorporated Refresh timer synchronization between memory controller and memory
US10665273B2 (en) * 2017-12-20 2020-05-26 Samsung Electronics Co., Ltd. Semiconductor memory devices, memory systems and refresh methods of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077975A1 (en) * 2003-10-14 2005-04-14 Micron Technology, Inc. Circuits and methods of temperature compensation for refresh oscillator
US8996703B2 (en) * 2008-11-25 2015-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Refresh requests in soft-state signalling
CN102081964A (en) * 2009-11-30 2011-06-01 国际商业机器公司 Method and system for refreshing dynamic random access memory
US9875785B2 (en) * 2015-10-01 2018-01-23 Qualcomm Incorporated Refresh timer synchronization between memory controller and memory
US10665273B2 (en) * 2017-12-20 2020-05-26 Samsung Electronics Co., Ltd. Semiconductor memory devices, memory systems and refresh methods of the same

Also Published As

Publication number Publication date
TW202230356A (en) 2022-08-01

Similar Documents

Publication Publication Date Title
CN112185443B (en) Apparatus and method for adjusting victim data
US11984148B2 (en) Apparatuses and methods for tracking victim rows
KR102469065B1 (en) Memory device
US10957377B2 (en) Apparatuses and methods for distributed targeted refresh operations
CN112242160B (en) Apparatus and method for tracking row accesses
US10134461B2 (en) Apparatuses and methods for selective row refreshes
CN112669889A (en) Apparatus and method for dynamic targeted refresh stealing
TW201903767A (en) Semiconductor memory device
CN112997251A (en) Apparatus with row hammer address latching mechanism
CN114121077A (en) Apparatus and method for providing refresh address
US6862205B2 (en) Semiconductor memory device
KR102308778B1 (en) Memory Device performing care operation for disturbed row and Operating Method thereof
KR20150064953A (en) Semiconductor memory device
KR0142795B1 (en) Dram refresh circuit
US11798609B2 (en) Semiconductor memory device including control unit controlling time interval of refresh operation on memory to shorten interval between memory refresh operations corresponding to read/write access requirement
TWI740773B (en) Semiconductor memory device
US7020038B2 (en) Efficient refresh operation for semiconductor memory devices
US7145814B2 (en) RAS time control circuit and method for use in DRAM using external clock
JP2016212934A (en) Semiconductor device and its control method
KR102453523B1 (en) Semiconductor memory device
JP7069369B1 (en) Semiconductor storage device
JP2004185686A (en) Semiconductor storage device
CN114974343A (en) Semiconductor memory device with a plurality of memory cells
JPH0536274A (en) Semiconductor memory device
TWI731783B (en) Semiconductor memory device