TWI740738B - 複合材料的製備方法 - Google Patents

複合材料的製備方法 Download PDF

Info

Publication number
TWI740738B
TWI740738B TW109142232A TW109142232A TWI740738B TW I740738 B TWI740738 B TW I740738B TW 109142232 A TW109142232 A TW 109142232A TW 109142232 A TW109142232 A TW 109142232A TW I740738 B TWI740738 B TW I740738B
Authority
TW
Taiwan
Prior art keywords
metal
molten
solid
particles
semi
Prior art date
Application number
TW109142232A
Other languages
English (en)
Other versions
TW202223113A (zh
Inventor
許傳仁
陳盛勇
賴銀瀛
黃菀筠
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW109142232A priority Critical patent/TWI740738B/zh
Application granted granted Critical
Publication of TWI740738B publication Critical patent/TWI740738B/zh
Publication of TW202223113A publication Critical patent/TW202223113A/zh

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一種複合材料的製備方法,包含提供一半固態金屬熔湯、維持一工作溫度於該半固態金屬熔湯的半固態溫度區間,且將複數個金屬顆粒混入於該半固態金屬熔湯中,以形成一工作熔湯,以及將該工作熔湯與熔融的一金屬熔湯混合,使該工作熔湯熔融混合該金屬熔湯後,固化形成一複合材料,該複合材料內分佈有顆粒狀的該些金屬顆粒,藉由已混合有該些金屬顆粒的該工作熔湯與該金屬熔湯混合,以縮短混合時間及該些金屬顆粒被加溫的時間,以使該製備方法所製成的該複合材料可增加強度及耐磨性,並可防止該複合材料產生疲勞破壞或斷裂。

Description

複合材料的製備方法
本發明是關於一種複合材料的製備方法,尤其是一種鋁基複合材料的製備方法。
中華民國申請第099110098號「鋁基複合材料的製備方法」,其揭露將一鋁基金屬加熱至該鋁基金屬的液相線和固相線之間的溫度,以得到一半固態的鋁基金屬;接著,將複數個奈米陶瓷顆粒﹝包括奈米碳化矽(SiC)顆粒、奈米氧化鋁(Al2O3)顆粒及奈米碳化硼(B4C)顆粒中的一種或多種﹞加入至該半固態的鋁基金屬混合,以得到一鋁基半固態混合漿料;最後,再將該鋁基半固態混合漿料升溫至液態,以得到一鋁基液態混合漿料。
上述之該鋁基複合材料的製備方法,其係將碳化矽(SiC)等奈米顆粒混合於該半固態的鋁基金屬中,因此當混合有碳化矽(SiC)等奈米顆粒的該半固態的鋁基金屬在升溫成液態,並再降溫成固態後,會得到混合有碳化矽(SiC)等奈米顆粒的一固態鋁基複合材料。
然而,由於該固態鋁基複合材料含有該些碳化矽(SiC)等奈米顆粒,因此在該些碳化矽(SiC)、氧化鋁(Al2O3)及碳化硼(B4C)顆粒處容易產生裂縫,而使該固態鋁基複合材料產生疲勞破壞或斷裂,而這將影響該固態鋁基複合材料品質的可靠度,此外,由於該鋁基複合材料的製備方法是直接將混合有碳化矽(SiC)等奈米顆粒的該半固態的鋁基金屬升溫成液態,因此其加工時間較長,影響著製造效率。
本發明的主要目的是用以製造一種含有金屬顆粒的複合材料。
本發明之一種複合材料的製備方法包含提供一半固態金屬熔湯,維持一工作溫度於該半固態金屬熔湯的半固態溫度區間,且將複數個金屬顆粒混入於該半固態金屬熔湯中,以形成一工作熔湯,及將該工作熔湯與熔融的一金屬熔湯混合,使該工作熔湯熔融混合該金屬熔湯後,固化形成一複合材料,且該複合材料內分佈有顆粒狀的該些金屬顆粒。
本發明藉由預先形成該金屬熔湯,使得混合具有該些金屬顆粒的該工作熔湯與該金屬熔湯時,可縮短該工作熔湯與該金屬熔湯的混合時間及縮短該些金屬顆粒被加溫的時間,以降底該複合材料的製備時間,並使該些金屬顆粒仍維持為顆粒狀,以避免固化後的該複合材料產生裂縫,而發生疲勞破壞或斷裂,其可提升該複合材料品質的可靠度。
請參閱第1圖,一種複合材料的製備方法包含「提供半固態金屬熔湯」步驟S1、「混合金屬顆粒與半固態金屬熔湯以形成工作熔湯」步驟S3、及「混合工作熔湯與金屬熔湯」步驟S4,較佳地,在該步驟S3前先進行「預熱金屬顆粒」步驟S2。
請參閱第1及2A圖,在「提供半固態金屬熔湯」步驟S1中,是將一第一金屬加熱升溫至半固態溫度後形成一半固態金屬熔湯10,或者,在不同實施例中,是將該第一金屬加熱升溫至液態溫度後,再降溫至半固態溫度,形成該半固態金屬熔湯10,但本發明並不以此為限。
首先,請參閱第1及2A圖,在本實施例中,以該第一金屬的材質為鋁說明,其係將一固態鋁材經加熱後,形成為一半固態鋁熔湯,該固態鋁材的熔點約為660°C,本實施例是將該固態鋁材加熱至720°C至750°C,使該固態鋁材形成為一鋁熔湯,再將該鋁熔湯降溫至590°C至600°C之間以形成一半固態鋁熔湯(即為該半固態金屬熔湯10)。
請參閱第1及2A圖,在本實施例中,在將該鋁熔湯冷卻成該半固態鋁熔湯的過程中,是以一攪拌件40攪拌該鋁熔湯(即為該半固態金屬熔湯10),該攪拌件40的材質選自於不銹鋼或耐高溫材料製成,在本實施例中,該攪拌件40以轉速60rpm對該鋁熔湯進行攪拌,使該鋁熔湯形成為該半固態鋁熔湯。
接著,請參閱第1及2B圖,進行「混合金屬顆粒與半固態金屬熔湯以形成工作熔湯」步驟S3,在步驟S3中,是維持一工作溫度於該半固態金屬熔湯10的半固態溫度區間,且將複數個金屬顆粒20混入該半固態金屬熔湯10,並使該些金屬顆粒20與該半固態金屬熔湯10混合,以形成一工作熔湯,在本實施例中,藉由該攪拌件40攪拌該些金屬顆粒20與該半固態金屬熔湯10,使該些金屬顆粒20與該半固態金屬熔湯10混合,並使該半固態金屬熔湯10仍維持為半固態狀,且使該些金屬顆粒20仍維持為顆粒狀,較佳地,在步驟S3前,進行「預熱金屬顆粒」步驟S2,其係在混合該些金屬顆粒20與該半固態金屬熔湯10前,先預熱該些金屬顆粒20,並使該些金屬顆粒20仍維持為顆粒狀,以避免將該些金屬顆粒20加入於該半固態金屬熔湯10後,影響該半固態金屬熔湯10的溫度。
請參閱第1及2B圖,該些金屬顆粒20的粒徑界於40至80微米之間,較佳地,該些金屬顆粒20為不同材質,在本實施例中,該些金屬顆粒20至少包含複數個第一金屬顆粒20a及複數個第二金屬顆粒20b,較佳地,該些第一金屬顆粒20a的熔點與該半固態金屬熔湯10相同,該些第二金屬顆粒20b的熔點高於該半固態金屬熔湯10,在本實施例中,該些第一金屬顆粒20a選自於鋁顆粒,該些第二金屬顆粒20b選自於銅顆粒及鐵顆粒的至少其中之一。
接著,請參閱第1及2D圖,進行「混合工作熔湯與金屬熔湯」步驟S4,請參閱第2C圖,在步驟S4中,是將一第二金屬預先加熱升溫至液態溫度後形成一金屬熔湯30,在本實施例中,以該半固態金屬熔湯10與該金屬熔湯30為相同材質說明,該第一金屬、該第二金屬及該些第一金屬顆粒20a的材質為鋁,該些第一金屬顆粒20a的熔點與該金屬熔湯30相同,且該些第二金屬顆粒20b的熔點高於該金屬熔湯30,該金屬熔湯30係將一固態鋁材經加熱後,形成為一鋁熔湯。
請參閱第1及2D圖,在步驟S4中,將該工作熔湯與該鋁熔湯(即為該金屬熔湯30)混合時,在本實施例中,藉由該攪拌件40攪拌該工作熔湯及該鋁熔湯(即為該金屬熔湯30),使該工作熔湯熔融混合該金屬熔湯30後,固化成一複合材料50,在本實施例中,該複合材料50為一鋁基複合材料,且由於該金屬熔湯30已預先形成,因此當混合該工作熔湯與該鋁熔湯(即為該金屬熔湯30)時,可縮短該工作熔湯與該金屬熔湯30的混合時間及縮短該些金屬顆粒20被加溫的時間,使該些金屬顆粒20仍維持為顆粒狀,在本實施例中,由於縮短了該工作熔湯與該金屬熔湯30的混合時間,因此使得該些第一金屬顆粒20a(鋁顆粒)及該些第二金屬顆粒20b(銅顆粒及鐵顆粒的至少其中之一)仍可維持為顆粒狀。
在本實施例中,該複合材料50包含重量百分比為51%的該半固態鋁熔湯(即該半固態金屬熔湯10)、6-9%的該些金屬顆粒20及40-43%的鋁熔湯(即該金屬熔湯30)為佳,且該些金屬顆粒20包含重量百分比為64%的鋁顆粒、24%的銅顆粒及12%的鐵顆粒,因此當混合該些金屬顆粒20與該半固態鋁熔湯,或當混合具有該些金屬顆粒20的該工作熔湯及該鋁熔湯時,由於該銅顆粒及該鐵顆粒的熔點高於該半固態鋁熔湯及該鋁熔湯,因此使得該銅顆粒及該鐵顆粒仍可維持為顆粒狀,且由於該鋁熔湯已預先形成,因此可縮短該工作熔湯及熔融的該鋁熔湯的混合時間,使得該鋁顆粒僅為表層熔融,但仍可維持為顆粒狀,該複合材料50(如鋁基複合材料)可被運用於重力鑄造以製成一鑄件。
本發明是藉由預先形成該金屬熔湯30,以縮短具有該些金屬顆粒20的該工作熔湯與該金屬熔湯30的混合時間,以降底該複合材料50的製備時間及該些金屬顆粒20被加溫的時間,以使該些金屬顆粒20仍維持為顆粒狀,並可避免固化後的該複合材料50產生裂縫,而發生疲勞破壞或斷裂,其可有效地提升該複合材料50品質的可靠度。
本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。
S1:提供半固態金屬熔湯 S2:預熱金屬顆粒 S3:混合金屬顆粒與半固態金屬熔湯以形成工作熔湯 S4:混合工作熔湯與金屬熔湯 10:半固態金屬熔湯 20:金屬顆粒 20a:第一金屬顆粒 20b:第二金屬顆粒 30:金屬熔湯 40:攪拌件 50:複合材料
第1圖:本發明的複合材料的製備方法的流程圖。 第2A至2D圖:本發明的複合材料的製備方法的示意圖。
S1:提供半固態金屬熔湯
S2:預熱金屬顆粒
S3:混合金屬顆粒與半固態金屬熔湯以形成工作熔湯
S4:混合工作熔湯與金屬熔湯

Claims (10)

  1. 一種複合材料的製備方法,包含: 提供一半固態金屬熔湯; 維持一工作溫度於該半固態金屬熔湯的半固態溫度區間,且將複數個金屬顆粒混入於該半固態金屬熔湯中,以形成一工作熔湯;以及 將該工作熔湯與熔融的一金屬熔湯混合,使該工作熔湯熔融混合該金屬熔湯後,固化形成一複合材料,該複合材料內分佈有顆粒狀的該些金屬顆粒。
  2. 如請求項1之複合材料的製備方法,其中將混合有該些金屬顆粒的該工作熔湯與該金屬熔湯混合時,藉由一攪拌件攪拌該工作熔湯與該金屬熔湯。
  3. 如請求項1之複合材料的製備方法,其中該半固態金屬熔湯與該金屬熔湯為相同材質。
  4. 如請求項1之複合材料的製備方法,其中混合該些金屬顆粒與該半固態金屬熔湯前,先預熱該些金屬顆粒,並使該些金屬顆粒仍維持為顆粒狀。
  5. 如請求項1之複合材料的製備方法,其中該些金屬顆粒的粒徑界於40至80微米之間。
  6. 如請求項1或3之複合材料的製備方法,其中該些金屬顆粒為不同材質。
  7. 如請求項6之複合材料的製備方法,其中該些金屬顆粒至少包含複數個第一金屬顆粒及複數個第二金屬顆粒,該些第一金屬顆粒的熔點與該半固態金屬熔湯相同,該些第二金屬顆粒的熔點高於該半固態金屬熔湯。
  8. 如請求項7之複合材料的製備方法,其中該些第一金屬顆粒的熔點與該金屬熔湯相同,該些第二金屬顆粒的熔點高於該金屬熔湯。
  9. 如請求項8之複合材料的製備方法,其中該些第一金屬顆粒選自於鋁顆粒,該些第二金屬顆粒選自於銅顆粒及鐵顆粒的至少其中之一。
  10. 如請求項3之複合材料的製備方法,其中該半固態金屬熔湯的材質選自於鋁。
TW109142232A 2020-12-01 2020-12-01 複合材料的製備方法 TWI740738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109142232A TWI740738B (zh) 2020-12-01 2020-12-01 複合材料的製備方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109142232A TWI740738B (zh) 2020-12-01 2020-12-01 複合材料的製備方法

Publications (2)

Publication Number Publication Date
TWI740738B true TWI740738B (zh) 2021-09-21
TW202223113A TW202223113A (zh) 2022-06-16

Family

ID=78777807

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109142232A TWI740738B (zh) 2020-12-01 2020-12-01 複合材料的製備方法

Country Status (1)

Country Link
TW (1) TWI740738B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008144935A1 (en) * 2007-05-31 2008-12-04 Alcan International Limited Aluminum alloy formulations for reduced hot tear susceptibility
TW201130991A (en) * 2009-11-20 2011-09-16 Korea Ind Tech Inst Aluminum alloy and manufacturing method thereof
CN103667758A (zh) * 2013-12-26 2014-03-26 昆明理工大学 一种颗粒增强铝基复合材料的制备方法
WO2019161137A1 (en) * 2018-02-14 2019-08-22 Arconic Inc. Aluminum alloy products and methods for producing the same
CN110724860A (zh) * 2019-11-18 2020-01-24 珠海市润星泰电器有限公司 一种高导热颗粒增强铝基复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008144935A1 (en) * 2007-05-31 2008-12-04 Alcan International Limited Aluminum alloy formulations for reduced hot tear susceptibility
TW201130991A (en) * 2009-11-20 2011-09-16 Korea Ind Tech Inst Aluminum alloy and manufacturing method thereof
CN103667758A (zh) * 2013-12-26 2014-03-26 昆明理工大学 一种颗粒增强铝基复合材料的制备方法
WO2019161137A1 (en) * 2018-02-14 2019-08-22 Arconic Inc. Aluminum alloy products and methods for producing the same
CN110724860A (zh) * 2019-11-18 2020-01-24 珠海市润星泰电器有限公司 一种高导热颗粒增强铝基复合材料及其制备方法

Also Published As

Publication number Publication date
TW202223113A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
Sahu et al. Fabrication of aluminum matrix composites by stir casting technique and stirring process parameters optimization
Moses et al. Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting
Saheb Aluminum silicon carbide and aluminum graphite particulate composites
Bhandare et al. Preparation of aluminium matrix composite by using stir casting method
Sharma et al. Production of AMC by stir casting–an overview
Nallusamy et al. Analysis of Wear Resistance, Cracks and Hardness of Metal Matrix Composites with SiC Additives and Al
Singh et al. Enhancement of wettability of aluminum based silicon carbide reinforced particulate metal matrix composite
Dwivedi et al. Mechanical and metallurgical characterizations of AA2014/eggshells waste particulate metal matrix composite
CN112143921B (zh) 一种用于制备铝基复合材料制动盘的制备方法
CN104357691A (zh) 一种铝基复合材料的制备方法
Baisane et al. Recent development and challenges in processing of ceramics reinforced Al matrix composite through stir casting process: A Review
Manivannan et al. Fabrication and characterization of aluminium boron nitride composite for fins
Upadhyay et al. Role of stir casting in development of aluminium metal matrix composite (AMC): an overview
CN106244866A (zh) 一种纳米TiN增强铝基复合材料的制备方法
WO2011089626A2 (en) Particulate aluminium matrix nano-composites and a process for producing the same
TWI740738B (zh) 複合材料的製備方法
Peddavarapu et al. Dry sliding wear behaviour of AA6082-5% sic and AA6082-5% tib2 metal matrix composites
Birsen et al. Microstructure and wear characteristics of hybrid reinforced (ex-situ SiC–in-situ Mg2Si) Al matrix composites produced by vacuum infiltration method
Abhijith et al. Fabrication & analysis of aluminum 2024 & tungsten carbide (WC) metal matric composite by in-situ method
Abdulsalam et al. The influence of silicon carbide particulate loading on tensile, compressive and impact strengths of Al-Sicp composite for sustainable development
Rino et al. Comparison of thermal and mechanical properties of Al-5wt.% TiB2 and Al-5wt.% ZrB2 composites processed through salt-melt reaction route
Charan et al. Evaluation of convective heat transfer coefficient and heat transfer rate through aluminium metal matrix composite fin made by stir casting
Dwivedi et al. RETRACTED: Mechanical and metallurgical characterizations of AA2014/eggshells/SiC hybrid green metal matrix composite produced at optimum reinforcement parameters
CN106011545B (zh) 一种铝‑锑中间合金及其制备方法和应用
JP4167317B2 (ja) 鋳造用金属−セラミックス複合材料の製造方法