TWI740619B - Control circuit and control method for power converter - Google Patents
Control circuit and control method for power converter Download PDFInfo
- Publication number
- TWI740619B TWI740619B TW109128519A TW109128519A TWI740619B TW I740619 B TWI740619 B TW I740619B TW 109128519 A TW109128519 A TW 109128519A TW 109128519 A TW109128519 A TW 109128519A TW I740619 B TWI740619 B TW I740619B
- Authority
- TW
- Taiwan
- Prior art keywords
- switch
- rectifier switch
- modulation time
- signal
- resonant
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/083—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0095—Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1588—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
本發明涉及一種控制電路及控制方法,特別是涉及一種用於電源轉換器的控制電路及控制方法。The invention relates to a control circuit and a control method, in particular to a control circuit and a control method for a power converter.
在現有的開關諧振槽轉換器電路中,僅提出自動調整導通時間各別控制整流開關的關閉時機來達成效率之最佳化。然而在並聯應用下,並沒有針對多組轉換器彼此間的均流提出解決方案。In the existing switching resonant tank converter circuit, it is only proposed to automatically adjust the on-time to individually control the off timing of the rectifier switch to achieve the optimization of efficiency. However, in parallel applications, no solution is proposed for the current sharing of multiple sets of converters.
故,如何通過控制機制的改良,來保留舊有的自動調整導通時間控制,使得整體轉換器在效率上可達最佳化,同時可以調整輸出電壓與輸出阻抗,並使並聯輸出上具有可均流的功能,來克服上述的缺陷,已成為該項事業所欲解決的重要課題之一。Therefore, how to improve the control mechanism to retain the old automatic adjustment of the on-time control, so that the overall converter can be optimized in terms of efficiency, and at the same time, the output voltage and output impedance can be adjusted, and the parallel output can be balanced. The function of streaming to overcome the above-mentioned shortcomings has become one of the important issues to be solved by this business.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種用於電源轉換器的控制電路及控制方法。The technical problem to be solved by the present invention is to provide a control circuit and control method for a power converter in view of the shortcomings of the prior art.
為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種用於電源轉換器的控制方法,其中,電源轉換器包括設置在一輸入端及一輸出端之間的多個諧振槽及多個開關,其中該些開關係分別對應於一第一模式及一第二模式,且該輸入端係接收一輸入電壓,該控制方法包括:配置一第一開關控制電路在該第一模式下,控制對應該第一模式的多個開關導通,以通過該些諧振槽分別形成沿着一第一諧振路徑的一第一諧振電流及沿着一第二諧振路徑的一第二諧振電流,其中該些開關包括位在該第一諧振路徑上的一第一整流開關及位在該第二諧振路徑上的一第二整流開關;配置一第一零電流偵測電路偵測該第一整流開關上的該第一諧振電流,當偵測到該第一諧振電流到達電流零點時輸出一第一電流零點訊號以使該第一開關控制電路控制該第一整流開關關斷;配置一第二零電流偵測電路偵測該第二整流開關上的該第二諧振電流,當偵測到該第二諧振電流到達電流零點時輸出一第二電流零點訊號以使該第一開關控制電路控制該第二整流開關關斷;配置一第一開關關斷偵測器偵測該第一整流開關及該第二整流開關是否均關斷,並在該第一整流開關及該第二整流開關均關斷時,輸出一第一調變時間計算訊號;配置一調變時間計算模組,響應於接收到該第一調變時間計算訊號,依據來自該輸出端的一回授電壓計算一第一調變時間,並在該第一整流開關及該第二整流開關關斷後,經過該第一調變時間後輸出一第二模式啟動訊號;配置一第二開關控制電路,響應於接收到該第二模式啟動訊號,控制對應該第二模式的該些開關導通,以通過該些諧振槽分別形成沿着一第三諧振路徑的一第三諧振電流及沿着一第四諧振路徑的一第四諧振電流,其中該些開關包括位在該第三諧振路徑上的一第三整流開關及位在該第四諧振路徑上的一第四整流開關;配置一第三零電流偵測電路偵測該第三整流開關上的該第三諧振電流,當偵測到該第三諧振電流到達電流零點時輸出一第三電流零點訊號以使該第二開關控制電路控制該第一整流開關關斷;配置一第四零電流偵測電路偵測該第四整流開關上的該第四諧振電流,當偵測到該第二諧振電流到達電流零點時輸出一第四電流零點訊號以使該第二開關控制電路控制該第四整流開關關斷;配置一第二開關關斷偵測器偵測該第三整流開關及該第四整流開關是否均關斷,並在該第三整流開關及該第四整流開關均關斷時,輸出一第二調變時間計算訊號;以及配置該調變時間計算模組,響應於接收到該第二調變時間計算訊號,依據該回授電壓計算一第二調變時間,並在該第三整流開關及該第四整流開關關斷後,且經過該第二調變時間後輸出一第一模式啟動訊號。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a control method for a power converter, wherein the power converter includes a plurality of resonance tanks arranged between an input terminal and an output terminal And a plurality of switches, wherein the open relations respectively correspond to a first mode and a second mode, and the input terminal receives an input voltage, the control method includes: configuring a first switch control circuit in the first mode Next, controlling the conduction of a plurality of switches corresponding to the first mode to respectively form a first resonant current along a first resonant path and a second resonant current along a second resonant path through the resonant slots, The switches include a first rectifier switch located on the first resonant path and a second rectifier switch located on the second resonant path; a first zero current detection circuit is configured to detect the first rectifier The first resonant current on the switch outputs a first current zero signal when it is detected that the first resonant current reaches the current zero point so that the first switch control circuit controls the first rectifier switch to turn off; configure a second The zero current detection circuit detects the second resonant current on the second rectifier switch, and when it is detected that the second resonant current reaches the current zero point, it outputs a second current zero point signal so that the first switch control circuit controls the The second rectifier switch is turned off; a first switch off detector is configured to detect whether the first rectifier switch and the second rectifier switch are both turned off, and the first rectifier switch and the second rectifier switch are both turned off When off, output a first modulation time calculation signal; configure a modulation time calculation module, in response to receiving the first modulation time calculation signal, calculate a first modulation based on a feedback voltage from the output terminal Time, and after the first rectifier switch and the second rectifier switch are turned off, a second mode activation signal is output after the first modulation time has elapsed; a second switch control circuit is configured to respond to receiving the second The mode activation signal controls the conduction of the switches corresponding to the second mode to respectively form a third resonance current along a third resonance path and a fourth resonance along a fourth resonance path through the resonance tanks Current, wherein the switches include a third rectifier switch located on the third resonance path and a fourth rectifier switch located on the fourth resonance path; a third zero current detection circuit is configured to detect the first The third resonant current on the three rectifier switch outputs a third current zero point signal when it is detected that the third resonant current reaches the current zero point so that the second switch control circuit controls the first rectifier switch to turn off; configuration one The fourth zero current detection circuit detects the fourth resonant current on the fourth rectifier switch, and when it is detected that the second resonant current reaches the current zero point, it outputs a fourth current zero point signal to enable the second switch control circuit Control the fourth rectifier switch to turn off; configure a second switch turn-off detector to detect whether the third rectifier switch and the fourth rectifier switch are both turned off, and switch between the third rectifier switch and the fourth rectifier switch When both are turned off, output a second modulation time calculation signal; and configure the modulation time calculation module to respond to receiving the second modulation time calculation signal according to The feedback voltage calculates a second modulation time, and after the third rectifier switch and the fourth rectifier switch are turned off, and after the second modulation time has elapsed, a first mode activation signal is output.
在一些實施例中,用於電源轉換器的控制方法更包括配置該第一開關控制電路,響應於接收到該第一調變時間計算訊號,控制對應該第一模式的該些開關中,該第一整流開關及該第二整流開關以外的該些開關在該第一整流開關及該第二整流開關關斷後的該第一調變時間內關斷。In some embodiments, the control method for the power converter further includes configuring the first switch control circuit, and in response to receiving the first modulation time calculation signal, controlling the switches corresponding to the first mode, the The switches other than the first rectifier switch and the second rectifier switch are turned off during the first modulation time after the first rectifier switch and the second rectifier switch are turned off.
在一些實施例中,用於電源轉換器的控制方法更包括配置該第二開關控制電路,響應於接收到該第二調變時間計算訊號,控制對應該第二模式的該些開關中,該第三整流開關及該第四整流開關以外的該些開關在該第三整流開關及該第四整流開關關斷後的該第二調變時間內關斷。In some embodiments, the control method for the power converter further includes configuring the second switch control circuit, in response to receiving the second modulation time calculation signal, controlling the switches corresponding to the second mode, the The switches other than the third rectifier switch and the fourth rectifier switch are turned off during the second modulation time after the third rectifier switch and the fourth rectifier switch are turned off.
在一些實施例中,調變時間計算模組包括一第一計算單元及一第二計算單元,且該控制方法更包括:配置該第一計算單元,響應於接收到該第一調變時間計算訊號時,依據該回授電壓計算該第一調變時間,並在該第一整流開關及該第二整流開關關斷後,經過該調變時間後輸出該第二模式啟動訊號;以及配置該第二計算單元,響應於接收到該第二調變時間計算訊號時,依據該回授電壓計算該第二調變時間,並在該第三整流開關及該第四整流開關關斷後,經過該第二調變時間後輸出該第一模式啟動訊號。In some embodiments, the modulation time calculation module includes a first calculation unit and a second calculation unit, and the control method further includes: configuring the first calculation unit, in response to receiving the first modulation time calculation Signal, calculate the first modulation time according to the feedback voltage, and output the second mode start signal after the modulation time has elapsed after the first rectifier switch and the second rectifier switch are turned off; and configure the The second calculation unit, in response to receiving the second modulation time calculation signal, calculates the second modulation time according to the feedback voltage, and after the third rectifier switch and the fourth rectifier switch are turned off, The first mode activation signal is output after the second modulation time.
在一些實施例中,調變時間計算模組包括一第三計算單元及一相移器,且該控制方法更包括:配置該第三計算單元,響應於接收到該第一調變時間計算訊號或該第二調變時間計算訊號時,依據該回授電壓計算一總調變時間,並對應產生一時間調變訊號;配置該相移器,響應於接收到該調變時間訊號,依據該總調變時間的二分之一對該調變時間訊號進行相移產生一相移後調變時間訊號,並分別以該調變時間訊號及該相移後調變時間訊號作爲該第二模式啟動訊號及該第一模式啟動訊號。In some embodiments, the modulation time calculation module includes a third calculation unit and a phase shifter, and the control method further includes: configuring the third calculation unit in response to receiving the first modulation time calculation signal Or when calculating the signal for the second modulation time, calculate a total modulation time according to the feedback voltage and generate a time modulation signal correspondingly; configure the phase shifter to respond to receiving the modulation time signal according to the One half of the total modulation time phase shifts the modulation time signal to generate a phase-shifted modulation time signal, and uses the modulation time signal and the phase-shifted modulation time signal as the second mode respectively The activation signal and the first mode activation signal.
為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種用於電源轉換器的控制電路,其中該電源轉換器包括設置在一輸入端及一輸出端之間的多個諧振槽及多個開關,其中該些開關係分別對應於一第一模式及一第二模式,且該輸入端係接收一輸入電壓,控制電路包括第一開關控制電路、第一零電流偵測電路、第二零電流偵測電路、第一開關關斷偵測器、調變時間計算模組第二開關控制電路、第三零電流偵測電路、第四零電流偵測電路及第二開關關斷偵測器。第一開關控制電路經配置以在該第一模式下,控制對應該第一模式的多個開關導通,以通過該些諧振槽分別形成沿着一第一諧振路徑的一第一諧振電流及沿着一第二諧振路徑的一第二諧振電流,其中該些開關包括位在該第一諧振路徑上的一第一整流開關及位在該第二諧振路徑上的一第二整流開關。第一零電流偵測電路經配置以偵測該第一整流開關上的該第一諧振電流,當偵測到該第一諧振電流到達電流零點時輸出一第一電流零點訊號以使該第一開關控制電路控制該第一整流開關關斷。第二零電流偵測電路經配置以偵測該第二整流開關上的該第二諧振電流,當偵測到該第二諧振電流到達電流零點時輸出一第二電流零點訊號以使該第一開關控制電路控制該第二整流開關關斷。第一開關關斷偵測器經配置以偵測該第一整流開關及該第二整流開關是否均關斷,並在該第一整流開關及該第二整流開關均關斷時,輸出一第一調變時間計算訊號。調變時間計算模組,經配置以響應於接收到該第一調變時間計算訊號,依據來自該輸出端的一回授電壓計算一第一調變時間,並在該第一整流開關及該第二整流開關關斷後,經過該第一調變時間後輸出一第二模式啟動訊號。第二開關控制電路,經配置以響應於接收到該第二模式啟動訊號,控制對應該第二模式的該些開關導通,以通過該些諧振槽分別形成沿着一第三諧振路徑的一第三諧振電流及沿着一第四諧振路徑的一第四諧振電流,其中該些開關包括位在該第三諧振路徑上的一第三整流開關及位在該第四諧振路徑上的一第四整流開關。第三零電流偵測電路,經配置以偵測該第三整流開關上的該第三諧振電流,當偵測到該第三諧振電流到達電流零點時輸出一第三電流零點訊號以使該第二開關控制電路控制該第一整流開關關斷。第四零電流偵測電路,經配置以偵測該第四整流開關上的該第四諧振電流,當偵測到該第二諧振電流到達電流零點時輸出一第四電流零點訊號以使該第二開關控制電路控制該第四整流開關關斷。第二開關關斷偵測器,經配置以偵測該第三整流開關及該第四整流開關是否均關斷,並在該第三整流開關及該第四整流開關均關斷時,輸出一第二調變時間計算訊號。其中,調變時間計算模組更經配置以響應於接收到該第二調變時間計算訊號,依據該回授電壓計算一第二調變時間,並在該第三整流開關及該第四整流開關關斷後,且經過該第二調變時間後輸出一第一模式啟動訊號。In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a control circuit for a power converter, wherein the power converter includes a plurality of resonance tanks arranged between an input terminal and an output terminal. And a plurality of switches, wherein the open relations respectively correspond to a first mode and a second mode, and the input terminal receives an input voltage. The control circuit includes a first switch control circuit, a first zero current detection circuit, The twentieth current detection circuit, the first switch off detector, the modulation time calculation module, the second switch control circuit, the third zero current detection circuit, the fourth zero current detection circuit, and the second switch off Detector. The first switch control circuit is configured to control the conduction of a plurality of switches corresponding to the first mode in the first mode, so as to respectively form a first resonant current along a first resonant path and along a first resonant path through the resonant tanks. A second resonant current along a second resonant path, wherein the switches include a first rectifier switch located on the first resonant path and a second rectifier switch located on the second resonant path. The first zero current detection circuit is configured to detect the first resonant current on the first rectifier switch, and when it is detected that the first resonant current reaches the current zero point, it outputs a first current zero point signal so that the first The switch control circuit controls the first rectifier switch to turn off. The twentieth current detection circuit is configured to detect the second resonant current on the second rectifier switch, and when detecting that the second resonant current reaches the current zero point, it outputs a second current zero point signal so that the first The switch control circuit controls the second rectifier switch to turn off. The first switch turn-off detector is configured to detect whether the first rectifier switch and the second rectifier switch are both turned off, and when the first rectifier switch and the second rectifier switch are both turned off, output a first 1. Calculate the signal for modulation time. The modulation time calculation module is configured to, in response to receiving the first modulation time calculation signal, calculate a first modulation time based on a feedback voltage from the output terminal, and set the first rectifier switch and the first rectifier switch to After the two rectifier switches are turned off, a second mode start signal is output after the first modulation time has elapsed. The second switch control circuit is configured to control the switches corresponding to the second mode to be turned on in response to receiving the second mode activation signal, so as to form a first along a third resonance path through the resonant tanks. Three resonant currents and a fourth resonant current along a fourth resonant path, wherein the switches include a third rectifier switch located on the third resonant path and a fourth resonant switch located on the fourth resonant path Rectifier switch. The third zero current detection circuit is configured to detect the third resonant current on the third rectifier switch, and when it is detected that the third resonant current reaches the current zero point, it outputs a third current zero point signal so that the first The second switch control circuit controls the first rectifier switch to turn off. The fourth zero current detection circuit is configured to detect the fourth resonant current on the fourth rectifier switch, and when it is detected that the second resonant current reaches the current zero point, it outputs a fourth current zero point signal to enable the first The second switch control circuit controls the fourth rectifier switch to turn off. The second switch turn-off detector is configured to detect whether the third rectifier switch and the fourth rectifier switch are both turned off, and when the third rectifier switch and the fourth rectifier switch are both turned off, output a The second modulation time calculation signal. Wherein, the modulation time calculation module is further configured to, in response to receiving the second modulation time calculation signal, calculate a second modulation time based on the feedback voltage, and perform the operation between the third rectifier switch and the fourth rectifier After the switch is turned off, and after the second modulation time has elapsed, a first mode activation signal is output.
本發明的其中一有益效果在於,本發明所提供的用於電源轉換器的控制電路及控制方法,其能藉由零電流偵測電路,使具有多組整流路徑之電源轉換器的整流開關能各別決定導通時間。不僅可克服個別整流迴路的元件誤差所造成的整流開關導通時間不同外,亦可達到個整流元件可零電壓開啟與零電流截止的功能,使電源轉換器的整體效率最佳化。One of the beneficial effects of the present invention is that the control circuit and control method for a power converter provided by the present invention can enable the rectifier switch of a power converter with multiple sets of rectification paths through a zero current detection circuit. Determine the on-time individually. Not only can it overcome the different conduction time of the rectifier switch caused by the component error of the individual rectifier loop, but also can achieve the function of zero voltage turn-on and zero current cut-off of the rectifier component, so as to optimize the overall efficiency of the power converter.
此外,在確保電源轉換器的所有整流路徑均完成零電流截止後,調整電源轉換器之開關訊號觸發時機來達成轉換器輸出阻抗之調變,達成輸出可調壓,並聯輸出可均流的功能。In addition, after ensuring that all rectification paths of the power converter have completed zero current cutoff, adjust the trigger timing of the switching signal of the power converter to achieve the modulation of the converter output impedance, achieve the output adjustable voltage, and the parallel output can share the current function. .
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings about the present invention. However, the provided drawings are only for reference and description, and are not used to limit the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關“用於電源轉換器的控制電路及控制方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following is a specific embodiment to illustrate the implementation of the “control circuit and control method for power converter” disclosed in the present invention. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. . The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be based on different viewpoints and applications, and various modifications and changes can be made without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to actual dimensions, and are stated in advance. The following embodiments will further describe the related technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used in this document may include any one or a combination of more of the associated listed items depending on the actual situation.
[第一實施例][First Embodiment]
圖1為根據本發明第一實施例的用於電源轉換器的控制電路的功能方塊圖。參閱圖1所示,本發明第一實施例提供一種用於電源轉換器的控制電路,其中可進一步參考圖2,其爲根據本發明第一實施例的電源轉換器的電路佈局圖。如圖2所示,電源轉換器可爲一切換諧振槽轉換器(Switched Tank Converter, STC),其包括設置在一輸入端Vin及一輸出端Vout之間的諧振槽RS1、RS2及開關Q1至Q12,其中開關Q1至Q12可分別對應於第一模式Φ1及第二模式Φ2,且輸入端Vin係接收一輸入電壓。諧振槽RS1可包括諧振電容CR1及諧振電感LR1,諧振槽RS2可包括諧振電容CR2及諧振電感LR2,而非諧振電容CF1是與諧振槽RS1、RS2分開並且不促成諧振槽RS1、RS2自身的特性諧振頻率的電容。在本實施例中,僅一個非諧振電容CF1包含在電路中。然而,取決於STC電路的拓撲,可使用一個以上非諧振電容。在特定開關狀態中,取決於電路拓撲和應用,每一個諧振槽RS1、RS2可與特定非諧振電容器串聯或並聯連接。Fig. 1 is a functional block diagram of a control circuit for a power converter according to a first embodiment of the present invention. Referring to FIG. 1, the first embodiment of the present invention provides a control circuit for a power converter, in which further reference can be made to FIG. 2, which is a circuit layout diagram of the power converter according to the first embodiment of the present invention. As shown in FIG. 2, the power converter can be a switched tank converter (Switched Tank Converter, STC), which includes resonant tanks RS1, RS2 and switches Q1 to Vout provided between an input terminal Vin and an output terminal Vout. Q12, where the switches Q1 to Q12 can respectively correspond to the first mode Φ1 and the second mode Φ2, and the input terminal Vin receives an input voltage. The resonant tank RS1 may include a resonant capacitor CR1 and a resonant inductor LR1. The resonant tank RS2 may include a resonant capacitor CR2 and a resonant inductor LR2. The non-resonant capacitor CF1 is separated from the resonant tanks RS1 and RS2 and does not contribute to the characteristics of the resonant tanks RS1 and RS2. Capacitance at the resonant frequency. In this embodiment, only one non-resonant capacitor CF1 is included in the circuit. However, depending on the topology of the STC circuit, more than one non-resonant capacitor may be used. In a specific switching state, depending on the circuit topology and application, each resonant tank RS1, RS2 can be connected in series or in parallel with a specific non-resonant capacitor.
多個開關Q1至Q12各自具有第一端、第二端以及控制端,以及對應的本體二極體。控制端可接收控制訊號,以使開關處於關斷(off)狀態或導通(on)狀態。在圖1的實施例中,使用N通道MOSFET開關。然而,也可使用其它類型的開關。而開關Q1至Q12中,開關Q1、Q4、Q5、Q7、Q10及Q11對應於第一模式Φ1,開關Q2、Q3、Q6、Q8、Q9及Q12對應於第二模式Φ2,而在第一模式Φ1及第二模式Φ2下,開關Q1至Q12的關斷(off)狀態或導通(on)狀態為互斥的。Each of the plurality of switches Q1 to Q12 has a first terminal, a second terminal, a control terminal, and a corresponding body diode. The control terminal can receive a control signal to make the switch in an off state or an on state. In the embodiment of Figure 1, N-channel MOSFET switches are used. However, other types of switches can also be used. Among the switches Q1 to Q12, the switches Q1, Q4, Q5, Q7, Q10, and Q11 correspond to the first mode Φ1, the switches Q2, Q3, Q6, Q8, Q9, and Q12 correspond to the second mode Φ2, and in the first mode In Φ1 and the second mode Φ2, the off state or on state of the switches Q1 to Q12 are mutually exclusive.
進一步描述本發明的控制電路1。如圖1所示,控制電路1包括第一開關控制電路SW1、第一零電流偵測電路ZCD1、第二零電流偵測電路ZCD2、第一開關關斷偵測器OFFC1、調變時間計算模組TMC、第二開關控制電路SW2、第三零電流偵測電路ZCD3、第四零電流偵測電路ZCD4及第二開關關斷偵測器OFFC2。The
以下依據圖3一併說明控制電路1中各部分的細節。請參考圖3,其爲根據本發明第一實施例的開關時序圖。The details of each part of the
如圖3所示,由時間t0開始為第一模式Φ1,第一開關控制電路SW1經配置以在第一模式Φ1下,控制對應第一模式Φ1的多個開關導通。例如,開關Q1、Q4、Q5、Q7、Q10及Q11,分別由開關訊號VGS1、VGS4、VGS5、VGS7、VGS10及VGS11所控制,而對應於第二模式Φ2的開關Q2、Q3、Q6、Q8、Q9及Q12是由開關訊號VGS2、VGS3、VGS6、VGS8、VGS9及VGS12所控制。在此情況下,可通過諧振槽RS1、RS2分別形成沿着第一諧振路徑L1的第一諧振電流i1及沿着第二諧振路徑L2的第二諧振電流i2。As shown in FIG. 3, the first mode Φ1 starts from time t0, and the first switch control circuit SW1 is configured to control the plurality of switches corresponding to the first mode Φ1 to be turned on in the first mode Φ1. For example, the switches Q1, Q4, Q5, Q7, Q10, and Q11 are controlled by the switching signals VGS1, VGS4, VGS5, VGS7, VGS10, and VGS11, respectively, and correspond to the switches Q2, Q3, Q6, Q8, and Q8 of the second mode Φ2. Q9 and Q12 are controlled by switching signals VGS2, VGS3, VGS6, VGS8, VGS9 and VGS12. In this case, the first resonant current i1 along the first resonant path L1 and the second resonant current i2 along the second resonant path L2 can be formed by the resonant slots RS1 and RS2, respectively.
開關Q1、Q4、Q5、Q7、Q10及Q11包括位在第一諧振路徑L1上的第一整流開關,以及位在第二諧振路徑L2上的第二整流開關。舉例而言,由圖可知開關Q11與Q7的本體二極體是順著電流方向的,因此具有整流作用,可分別作爲前述的第一整流開關及第二整流開關。而在第一諧振路徑L1中,開關Q10亦可作爲第一整流開關,但本實施例於此使用開關Q11。The switches Q1, Q4, Q5, Q7, Q10, and Q11 include a first rectifier switch located on the first resonance path L1, and a second rectifier switch located on the second resonance path L2. For example, it can be seen from the figure that the body diodes of the switches Q11 and Q7 follow the direction of the current, and therefore have a rectifying function, which can be used as the aforementioned first rectifier switch and second rectifier switch, respectively. In the first resonance path L1, the switch Q10 can also be used as the first rectifier switch, but the switch Q11 is used in this embodiment.
接著,第一零電流偵測電路ZCD1經配置以偵測第一整流開關(此時為開關Q11)上的第一諧振電流i1,換言之,對開關Q11上的開關電流ISD11進行偵測,當偵測到第一諧振電流i1(即是開關電流ISD11)到達電流零點時,輸出第一電流零點訊號以使第一開關控制電路SW1控制第一整流開關(開關Q11)關斷,此時為時間t1。Then, the first zero current detection circuit ZCD1 is configured to detect the first resonant current i1 on the first rectifier switch (the switch Q11 at this time), in other words, to detect the switch current ISD11 on the switch Q11, when the detection When the first resonant current i1 (ie, the switch current ISD11) is measured to reach the current zero point, the first current zero point signal is output so that the first switch control circuit SW1 controls the first rectifier switch (switch Q11) to turn off. This time is time t1 .
於此同時,在第二諧振路徑L2產生時,第二零電流偵測電路ZCD2亦經配置以偵測第二整流開關(此時為開關Q7)上的第二諧振電流i2,換言之,對開關Q7上的開關電流ISD7進行偵測,當偵測到第二諧振電流i2到達電流零點時,輸出第二電流零點訊號以使第一開關控制電路SW1控制第二整流開關(開關Q7)關斷,此時為時間t2。At the same time, when the second resonant path L2 is generated, the second zero current detection circuit ZCD2 is also configured to detect the second resonant current i2 on the second rectifier switch (in this case, the switch Q7), in other words, to the switch The switch current ISD7 on Q7 is detected. When the second resonant current i2 reaches the current zero point, the second current zero point signal is output so that the first switch control circuit SW1 controls the second rectifier switch (switch Q7) to turn off. This is time t2.
使用第一零電流偵測電路ZCD1及第二零電流偵測電路ZCD2進行偵測的原因在於,由於電源轉換器的諧振槽RS1、RS2可能彼此不匹配,造成諧振頻率不同,因此,為了使第一諧振路徑L1及第二諧振路徑L2能夠各自操作在諧振頻率上,配置第一零電流偵測電路ZCD1及第二零電流偵測電路ZCD2來偵測開關Q11、Q7個別需要的導通時間進而控制第一開關控制電路SW1將會是效率最高的作法。The reason for using the first zero current detection circuit ZCD1 and the second zero current detection circuit ZCD2 for detection is that the resonance tanks RS1 and RS2 of the power converter may not match each other, resulting in different resonance frequencies. Therefore, in order to make the first A resonant path L1 and a second resonant path L2 can each operate at the resonant frequency. The first zero current detection circuit ZCD1 and the second zero current detection circuit ZCD2 are configured to detect the turn-on time of the switches Q11 and Q7 and control them. The first switch control circuit SW1 will be the most efficient method.
進一步,第一開關關斷偵測器OFFC1經配置以偵測第一整流開關及第二整流開關是否均關斷。而在時間t2時,偵測到第一整流開關(開關Q11)及第二整流開關(開關Q7)均關斷時,輸出第一調變時間計算訊號。Further, the first switch off detector OFFC1 is configured to detect whether the first rectifier switch and the second rectifier switch are both off. At time t2, when it is detected that both the first rectifier switch (switch Q11) and the second rectifier switch (switch Q7) are turned off, the first modulation time calculation signal is output.
接著,調變時間計算模組TMC,經配置以響應於接收到第一調變時間計算訊號,依據來自輸出端Vout的回授電壓計算第一調變時間MT1。舉例而言,輸出端Vout可連接於一回授電路FB,以將輸出端Vout的回授電壓傳送給調變時間計算模組TMC,若輸出電壓過高,則會計算出較長的第一調變時間MT1,藉此使輸出電壓下降,而若輸出電壓過低,則會計算出較短的第一調變時間MT1,藉此使輸出電壓上升。在本實施例中,可將回授電壓與預定電壓進行比較,並將兩者之間誤差經過補償器後,轉換為第一調變時間MT1的時間長度。而在第一調變時間MT1中,第一整流開關(開關Q11)及第二整流開關(開關Q7)均爲關斷狀態。Then, the modulation time calculation module TMC is configured to calculate the first modulation time MT1 according to the feedback voltage from the output terminal Vout in response to receiving the first modulation time calculation signal. For example, the output terminal Vout can be connected to a feedback circuit FB to transmit the feedback voltage of the output terminal Vout to the modulation time calculation module TMC. If the output voltage is too high, the longer first modulation will be calculated. The time MT1 is changed to decrease the output voltage, and if the output voltage is too low, a shorter first modulation time MT1 is calculated to increase the output voltage. In this embodiment, the feedback voltage can be compared with a predetermined voltage, and the error between the two can be converted into the length of the first modulation time MT1 after passing through the compensator. In the first modulation time MT1, the first rectifier switch (switch Q11) and the second rectifier switch (switch Q7) are both in the off state.
而對於對應該第一模式Φ1的開關Q1、Q4、Q5、Q7、Q10及Q11中,第一整流開關(開關Q11)及第二整流開關(開關Q7)以外的開關Q1、Q4、Q5、Q10而言,第一開關控制電路SW1可採固定控制方式來進行控制。第一開關控制電路SW1可經配置以響應於接收到第一調變時間計算訊號,控制開關Q1、Q4、Q5、Q10在第一整流開關(開關Q11)及第二整流開關(開關Q7)關斷後的第一調變時間MT1內關斷。For the switches Q1, Q4, Q5, Q7, Q10, and Q11 corresponding to the first mode Φ1, the switches Q1, Q4, Q5, Q10 other than the first rectifier switch (switch Q11) and the second rectifier switch (switch Q7) In other words, the first switch control circuit SW1 can be controlled by a fixed control method. The first switch control circuit SW1 can be configured to control the switches Q1, Q4, Q5, and Q10 to turn off the first rectifier switch (switch Q11) and the second rectifier switch (switch Q7) in response to receiving the first modulation time calculation signal. Turn off in the first modulation time MT1 after turning off.
此外,在第一整流開關(開關Q11)及第二整流開關(開關Q7)關斷後,再經過第一調變時間MT後,調變時間計算模組TMC可輸出第二模式啟動訊號,此時為時間t3。In addition, after the first rectifier switch (switch Q11) and the second rectifier switch (switch Q7) are turned off, and after the first modulation time MT, the modulation time calculation module TMC can output the second mode start signal. Time is time t3.
在時間t3時,第二開關控制電路SW2,經配置以響應於接收到第二模式啟動訊號,控制對應於第二模式Φ2的開關Q2、Q3、Q6、Q8、Q9及Q12導通,以通過諧振槽RS1及RS2分別形成沿着第三諧振路徑L3的第三諧振電流i3及沿着第四諧振路徑L4的第四諧振電流i4。類似的,開關Q2、Q3、Q6、Q8、Q9及Q12包括位在第三諧振路徑L3上的第三整流開關(此時為開關Q9)及位在第四諧振路徑L4上的第四整流開關(此時為開關Q12)。At time t3, the second switch control circuit SW2 is configured to control the switches Q2, Q3, Q6, Q8, Q9, and Q12 corresponding to the second mode Φ2 to turn on in response to receiving the second mode activation signal to pass resonance The slots RS1 and RS2 respectively form a third resonance current i3 along the third resonance path L3 and a fourth resonance current i4 along the fourth resonance path L4. Similarly, the switches Q2, Q3, Q6, Q8, Q9, and Q12 include a third rectifier switch (in this case, switch Q9) located on the third resonant path L3 and a fourth rectifier switch located on the fourth resonant path L4 (At this time, switch Q12).
接著,第三零電流偵測電路ZCD3經配置以偵測第三整流開關(開關Q9)上的第三諧振電流i3,換言之,對開關Q9上的開關電流ISD9進行偵測,當偵測到第三諧振電流(即是開關電流ISD9)到達電流零點時,輸出第三電流零點訊號以使第二開關控制電路SW2控制第三整流開關(開關Q9)關斷,此時為時間t4。Then, the third zero current detection circuit ZCD3 is configured to detect the third resonant current i3 on the third rectifier switch (switch Q9), in other words, detect the switch current ISD9 on the switch Q9, when the first When the three-resonant current (that is, the switching current ISD9) reaches the current zero point, the third current zero point signal is output so that the second switch control circuit SW2 controls the third rectifier switch (switch Q9) to turn off. At this time, it is time t4.
於此同時,在第四諧振路徑L4產生時,第四零電流偵測電路ZCD4經配置以偵測第四整流開關(開關Q12)上的第四諧振電流i4(即是開關電流ISD12),當偵測到第四諧振電流i4(開關電流ISD12)到達電流零點時輸出第四電流零點訊號以使第二開關控制電路SW2控制第四整流開關(開關Q12)關斷,此時為時間t5。類似的,配置第三零電流偵測電路ZCD3及第四零電流偵測電路ZCD4來偵測開關Q9、Q12個別需要的導通時間進而控制第二開關控制電路SW2將會是效率最高的作法。At the same time, when the fourth resonant path L4 is generated, the fourth zero current detection circuit ZCD4 is configured to detect the fourth resonant current i4 (that is, the switch current ISD12) on the fourth rectifier switch (switch Q12). When the fourth resonant current i4 (switch current ISD12) is detected to reach the current zero point, a fourth current zero point signal is output so that the second switch control circuit SW2 controls the fourth rectifier switch (switch Q12) to turn off, which is time t5. Similarly, configuring the third zero current detection circuit ZCD3 and the fourth zero current detection circuit ZCD4 to detect the on-times of the switches Q9 and Q12 individually required to control the second switch control circuit SW2 will be the most efficient method.
進一步,第二開關關斷偵測器OFFC2經配置以偵測第三整流開關及該第四整流開關是否均關斷。並在該第三整流開關及該第四整流開關均關斷時,輸出一第二調變時間計算訊號。其中,在時間t5時,偵測到第三整流開關(開關Q9)及第四整流開關(開關Q12)均關斷時,輸出第一調變時間計算訊號。Furthermore, the second switch off detector OFFC2 is configured to detect whether the third rectifier switch and the fourth rectifier switch are both off. And when the third rectifier switch and the fourth rectifier switch are both turned off, a second modulation time calculation signal is output. Wherein, at time t5, when it is detected that both the third rectifier switch (switch Q9) and the fourth rectifier switch (switch Q12) are turned off, the first modulation time calculation signal is output.
接著,調變時間計算模組TMC更經配置以響應於接收到第二調變時間計算訊號,依據來自輸出端Vout的回授電壓計算第二調變時間MT2。舉例而言,輸出端Vout可連接於回授電路FB,以將輸出端Vout的回授電壓傳送給調變時間計算模組TMC,若輸出電壓過高,則會計算出較長的第二調變時間MT2,藉此使輸出電壓下降,而若輸出電壓過低,則會計算出較短的第二調變時間MT2,藉此使輸出電壓上升。在本實施例中,可將回授電壓與預定電壓進行比較,並將兩者之間誤差經過補償器後,轉換為第二調變時間MT2的時間長度。而在第二調變時間MT2中,第三整流開關(開關Q9)及第四整流開關(開關Q12)均爲關斷狀態。Then, the modulation time calculation module TMC is further configured to calculate the second modulation time MT2 according to the feedback voltage from the output terminal Vout in response to receiving the second modulation time calculation signal. For example, the output terminal Vout can be connected to the feedback circuit FB to transmit the feedback voltage of the output terminal Vout to the modulation time calculation module TMC. If the output voltage is too high, a longer second modulation will be calculated The time MT2 is used to decrease the output voltage, and if the output voltage is too low, a shorter second modulation time MT2 is calculated to increase the output voltage. In this embodiment, the feedback voltage can be compared with a predetermined voltage, and the error between the two can be converted into the time length of the second modulation time MT2 after passing through the compensator. In the second modulation time MT2, the third rectifier switch (switch Q9) and the fourth rectifier switch (switch Q12) are both in an off state.
此外,在第三整流開關(開關Q9)及第四整流開關(開關Q12)關斷後,再經過第一調變時間MT後,調變時間計算模組TMC可輸出第一模式啟動訊號,並以前述第一模式中的方式週期性的驅動電源轉換器電路。In addition, after the third rectifier switch (switch Q9) and the fourth rectifier switch (switch Q12) are turned off, and after the first modulation time MT, the modulation time calculation module TMC can output the first mode start signal, and The power converter circuit is periodically driven in the manner in the aforementioned first mode.
而對於對應第二模式Φ2的開關Q2、Q3、Q6、Q8、Q9及Q12中,第三整流開關(開關Q9)及第四整流開關(開關Q12)以外的開關Q2、Q3、Q6、Q8而言,第二開關控制電路SW2可採固定控制方式來進行控制。第二開關控制電路SW2可經配置以響應於接收到第一調變時間計算訊號,控制開關Q2、Q3、Q6、Q8在第三整流開關(開關Q9)及第四整流開關(開關Q12)關斷後的第二調變時間MT2內關斷。For the switches Q2, Q3, Q6, Q8, Q9, and Q12 corresponding to the second mode Φ2, the switches Q2, Q3, Q6, and Q8 other than the third rectifier switch (switch Q9) and the fourth rectifier switch (switch Q12) In other words, the second switch control circuit SW2 can be controlled by a fixed control method. The second switch control circuit SW2 can be configured to control the switches Q2, Q3, Q6, and Q8 to turn off the third rectifier switch (switch Q9) and the fourth rectifier switch (switch Q12) in response to receiving the first modulation time calculation signal. Turn off in the second modulation time MT2 after turning off.
在本實施例中,調變時間計算模組TMC可包括第一計算單元CU1及第二計算單元CU2來分別計算在第一模式Φ1及第二模式Φ2下所需的調變時間。其中,第一計算單元CU1經配置以響應於接收到第一調變時間計算訊號時,依據回授電壓計算第一調變時間MT1,並在第一整流開關(開關Q11)及第二整流開關(開關Q7)關斷後,經過第一調變時間MT1後輸出第二模式啟動訊號。In this embodiment, the modulation time calculation module TMC may include a first calculation unit CU1 and a second calculation unit CU2 to calculate the required modulation time in the first mode Φ1 and the second mode Φ2, respectively. Wherein, the first calculation unit CU1 is configured to calculate the first modulation time MT1 according to the feedback voltage when receiving the first modulation time calculation signal, and the first rectifier switch (switch Q11) and the second rectifier switch After the (switch Q7) is turned off, the second mode start signal is output after the first modulation time MT1 has elapsed.
類似的,第二計算單元CU2經配置以響應於接收到第二調變時間計算訊號時,依據回授電壓計算第二調變時間MT2,並在第三整流開關(開關Q9)及第四整流開關(開關Q12)關斷後,經過第二調變時間MT2後輸出第一模式啟動訊號。Similarly, the second calculation unit CU2 is configured to, in response to receiving the second modulation time calculation signal, calculate the second modulation time MT2 according to the feedback voltage, and perform the operation between the third rectifier switch (switch Q9) and the fourth rectifier After the switch (switch Q12) is turned off, the first mode start signal is output after the second modulation time MT2.
[第二實施例][Second Embodiment]
請進一步參考圖4所示,圖4為根據本發明第二實施例的用於電源轉換器的控制電路的功能方塊圖。如圖所示,本實施例的各單元基本上與圖1的類似,因此省略部分重複敘述。不同之處在於,本實施例的調變時間計算模組TMC包括第三計算單元CU3及相移器PS。以下一併參考圖5、圖6進行說明,圖5為根據本發明第二實施例的電源轉換器的電路佈局圖,圖6爲根據本發明第二實施例的開關時序圖。Please further refer to FIG. 4, which is a functional block diagram of a control circuit for a power converter according to a second embodiment of the present invention. As shown in the figure, each unit of this embodiment is basically similar to that of FIG. 1, so part of the repeated description is omitted. The difference is that the modulation time calculation module TMC of this embodiment includes a third calculation unit CU3 and a phase shifter PS. The following is a description with reference to FIGS. 5 and 6 together. FIG. 5 is a circuit layout diagram of a power converter according to a second embodiment of the present invention, and FIG. 6 is a switching timing diagram according to a second embodiment of the present invention.
如圖5所示,電源轉換器可爲一諧振切換電容轉換器(Resonant Switched Capacitor, ReSC),其包括設置在一輸入端Vin及一輸出端Vout之間的兩級諧振槽、開關Q1’至Q8’以及連接於輸出端Vout的輸出電容Cout及輸出電阻Rout,其中開關Q1’至Q8’可分別對應於第一模式Φ1及第二模式Φ2,且輸入端Vin係接收一輸入電壓。第一級諧振槽可包括諧振電容C1及諧振電感L01,第二級諧振槽可包括諧振電容C2及諧振電感L02,而非諧振電容Cm1是與兩級諧振槽分開並且不促成特性諧振頻率的電容。在本實施例中,僅一個非諧振電容Cm1包含在電路中。然而,取決於ReSC電路的拓撲,可使用一個以上非諧振電容。As shown in FIG. 5, the power converter may be a resonant switched capacitor converter (Resonant Switched Capacitor, ReSC), which includes a two-stage resonant tank arranged between an input terminal Vin and an output terminal Vout, and switches Q1' to Q8' and the output capacitor Cout and output resistance Rout connected to the output terminal Vout, wherein the switches Q1' to Q8' can respectively correspond to the first mode Φ1 and the second mode Φ2, and the input terminal Vin receives an input voltage. The first-level resonant tank may include a resonant capacitor C1 and a resonant inductor L01, the second-level resonant tank may include a resonant capacitor C2 and a resonant inductor L02, and the non-resonant capacitor Cm1 is a capacitor that is separated from the two-level resonant tank and does not contribute to the characteristic resonance frequency. . In this embodiment, only one non-resonant capacitor Cm1 is included in the circuit. However, depending on the topology of the ReSC circuit, more than one non-resonant capacitor may be used.
開關Q1’至Q8’中,開關Q2’、Q3’、Q6’、Q7’對應於第一模式Φ1,開關Q1’、Q4’、Q5’、Q8’對應於第二模式Φ2,而在第一模式Φ1及第二模式Φ2下,開關Q1’至Q8’的關斷(off)狀態或導通(on)狀態為互斥的。Among the switches Q1' to Q8', the switches Q2', Q3', Q6', and Q7' correspond to the first mode Φ1, and the switches Q1', Q4', Q5', and Q8' correspond to the second mode Φ2. In the mode Φ1 and the second mode Φ2, the off state or the on state of the switches Q1' to Q8' are mutually exclusive.
如圖6所示,由時間t0開始為第一模式Φ1,第一開關控制電路SW1經配置以在第一模式Φ1下,控制對應第一模式Φ1的多個開關導通。例如,開關Q2’、Q3’、Q6’、Q7’,分別由開關訊號VGS2’、VGS3’、VGS6’、VGS7’所控制,而對應於第二模式Φ2的開關Q1’、Q4’、Q5’、Q8’是由開關訊號VGS1’、VGS4’、VGS5’、VGS8’所控制。在此情況下,可通過兩級諧振槽分別形成沿着第一諧振路徑L1的第一諧振電流i1及沿着第二諧振路徑L2的第二諧振電流i2。As shown in FIG. 6, the first mode Φ1 starts at time t0, and the first switch control circuit SW1 is configured to control the plurality of switches corresponding to the first mode Φ1 to turn on in the first mode Φ1. For example, the switches Q2', Q3', Q6', and Q7' are respectively controlled by the switch signals VGS2', VGS3', VGS6', and VGS7', and correspond to the switches Q1', Q4', Q5' of the second mode Φ2 , Q8' is controlled by switch signals VGS1', VGS4', VGS5', VGS8'. In this case, the first resonant current i1 along the first resonant path L1 and the second resonant current i2 along the second resonant path L2 can be respectively formed by the two-stage resonant tank.
開關Q2’、Q3’、Q6’、Q7’包括位在第一諧振路徑L1上的第一整流開關,以及位在第二諧振路徑L2上的第二整流開關。舉例而言,由圖可知開關Q7’與Q3’的本體二極體是順著電流方向的,因此具有整流作用,可分別作爲前述的第一整流開關及第二整流開關。The switches Q2', Q3', Q6', Q7' include a first rectifier switch located on the first resonance path L1, and a second rectifier switch located on the second resonance path L2. For example, it can be seen from the figure that the body diodes of the switches Q7' and Q3' follow the direction of the current, and therefore have a rectification function, which can be used as the aforementioned first rectifier switch and second rectifier switch, respectively.
接著,第一零電流偵測電路ZCD1經配置以偵測第一整流開關(此時為開關Q3’)上的第一諧振電流i2,換言之,對開關Q3’上的開關電流ISD3’進行偵測,當偵測到第一諧振電流i2(即是開關電流ISD3’)到達電流零點時,輸出第一電流零點訊號以使第一開關控制電路SW1控制第一整流開關(開關Q3’)關斷,此時為時間t1。Then, the first zero current detection circuit ZCD1 is configured to detect the first resonant current i2 on the first rectifier switch (the switch Q3' at this time), in other words, to detect the switch current ISD3' on the switch Q3' , When it is detected that the first resonant current i2 (that is, the switching current ISD3') reaches the current zero point, the first current zero point signal is output so that the first switch control circuit SW1 controls the first rectifier switch (switch Q3') to turn off, This is time t1.
於此同時,在第二諧振路徑L1產生時,第二零電流偵測電路ZCD2亦經配置以偵測第二整流開關(此時為開關Q7’)上的第二諧振電流i1,換言之,對開關Q7’上的開關電流ISD7’進行偵測,當偵測到第二諧振電流i1到達電流零點時,輸出第二電流零點訊號以使第一開關控制電路SW1控制第二整流開關(開關Q7’)關斷,此時為時間t2。At the same time, when the second resonant path L1 is generated, the second zero current detection circuit ZCD2 is also configured to detect the second resonant current i1 on the second rectifier switch (in this case, the switch Q7'), in other words, The switch current ISD7' on the switch Q7' is detected. When it is detected that the second resonant current i1 reaches the current zero point, the second current zero point signal is output so that the first switch control circuit SW1 controls the second rectifier switch (switch Q7' ) Turn off, this time is time t2.
進一步,第一開關關斷偵測器OFFC1經配置以偵測第一整流開關及第二整流開關是否均關斷。而在時間t2時,偵測到第一整流開關(開關Q7’)及第二整流開關(開關Q3’)均關斷時,輸出第一調變時間計算訊號。Further, the first switch off detector OFFC1 is configured to detect whether the first rectifier switch and the second rectifier switch are both off. At time t2, when it is detected that both the first rectifier switch (switch Q7') and the second rectifier switch (switch Q3') are turned off, the first modulation time calculation signal is output.
如圖4所示,第三計算單元CU3分別與第一開關控制電路SW1、回授電路FB、第一開關關斷偵測器OFFC1及第二開關關斷偵測器OFFC2連接,而相移器PS是連接在第三計算單元CU3及第二開關控制電路SW2之間。As shown in FIG. 4, the third calculation unit CU3 is respectively connected to the first switch control circuit SW1, the feedback circuit FB, the first switch off detector OFFC1 and the second switch off detector OFFC2, and the phase shifter PS is connected between the third calculation unit CU3 and the second switch control circuit SW2.
第三計算單元CU3可用於接收第一調變時間計算訊號及第二調變時間計算訊號。響應於接收到第一調變時間計算訊號或第二調變時間計算訊號時,第三計算單元CU3經配置以依據回授電壓計算總調變時間TMT,並對應產生時間調變訊號。The third calculation unit CU3 can be used to receive the first modulation time calculation signal and the second modulation time calculation signal. In response to receiving the first modulation time calculation signal or the second modulation time calculation signal, the third calculation unit CU3 is configured to calculate the total modulation time TMT according to the feedback voltage, and correspondingly generate a time modulation signal.
進一步,相移器PS經配置以響應於接收到調變時間訊號,依據總調變時間TMT的二分之一對調變時間訊號進行相移,例如,如圖所示的相移量Phase,以產生相移後調變時間訊號,並分別以調變時間訊號及相移後調變時間訊號作爲第二模式啟動訊號及第一模式啟動訊號而輸出。Further, the phase shifter PS is configured to, in response to receiving the modulation time signal, phase-shift the modulation time signal according to one-half of the total modulation time TMT, for example, the phase shift amount Phase as shown in the figure A post-phase shift modulated time signal is generated, and the modulated time signal and the post-phase shifted modulated time signal are respectively output as the second mode activation signal and the first mode activation signal.
換言之,與前述實施例不同的是,第二模式Φ2的起始時間實質上是由相移器PS來控制,也就是將第一模式Φ1的切換週期時間(亦即第一模式啟動訊號)相移180度,因此,在時間t3時,可藉由輸出第二模式啟動訊號來觸發對應於第二模式Φ2的開關Q1’、Q4’、Q5’、Q8’。In other words, unlike the previous embodiment, the start time of the second mode Φ2 is essentially controlled by the phase shifter PS, that is, the switching cycle time of the first mode Φ1 (that is, the first mode activation signal) is phased Shifted by 180 degrees, therefore, at time t3, the switches Q1', Q4', Q5', and Q8' corresponding to the second mode Φ2 can be triggered by outputting the second mode activation signal.
而在第二模式Φ2中,第二開關控制電路SW2,經配置以響應於接收到第二模式啟動訊號,控制對應於第二模式Φ2的開關Q1’、Q4’、Q5’、Q8’導通,以通過諧振槽分別形成沿着第三諧振路徑L3的第三諧振電流i3及沿着第四諧振路徑L4的第四諧振電流i4。類似的,開關Q1’、Q4’、Q5’、Q8’包括位在第三諧振路徑L3上的第三整流開關(此時為開關Q1’)及位在第四諧振路徑L4上的第四整流開關(此時為開關Q5’)。In the second mode Φ2, the second switch control circuit SW2 is configured to control the switches Q1', Q4', Q5', and Q8' corresponding to the second mode Φ2 to be turned on in response to receiving the second mode activation signal. A third resonant current i3 along the third resonant path L3 and a fourth resonant current i4 along the fourth resonant path L4 are respectively formed through the resonant slot. Similarly, the switches Q1', Q4', Q5', and Q8' include a third rectifier switch (in this case, switch Q1') located on the third resonant path L3 and a fourth rectifier located on the fourth resonant path L4 Switch (in this case, switch Q5').
接著,第三零電流偵測電路ZCD3經配置以偵測第三整流開關(開關Q1’)上的第三諧振電流i3,換言之,對開關Q1’上的開關電流ISD1’進行偵測,當偵測到第三諧振電流(即是開關電流ISD1’)到達電流零點時,輸出第三電流零點訊號以使第二開關控制電路SW2控制第三整流開關(開關Q1’)關斷,此時為時間t4。Then, the third zero current detection circuit ZCD3 is configured to detect the third resonant current i3 on the third rectifier switch (switch Q1'), in other words, to detect the switch current ISD1' on the switch Q1', when the detection When the third resonant current (that is, the switch current ISD1') reaches the current zero point, the third current zero point signal is output so that the second switch control circuit SW2 controls the third rectifier switch (switch Q1') to turn off. This time is the time t4.
於此同時,在第四諧振路徑L4產生時,第四零電流偵測電路ZCD4經配置以偵測第四整流開關(開關Q5’)上的第四諧振電流i4(即是開關電流ISD5’),當偵測到第四諧振電流i4(開關電流ISD5’)到達電流零點時輸出第四電流零點訊號以使第二開關控制電路SW2控制第四整流開關(開關Q5’)關斷,此時為時間t5。At the same time, when the fourth resonant path L4 is generated, the fourth zero current detection circuit ZCD4 is configured to detect the fourth resonant current i4 (that is, the switch current ISD5') on the fourth rectifier switch (switch Q5') , When it is detected that the fourth resonant current i4 (switch current ISD5') reaches the current zero point, the fourth current zero point signal is output so that the second switch control circuit SW2 controls the fourth rectifier switch (switch Q5') to turn off. Time t5.
第二開關關斷偵測器OFFC2經配置以偵測第三整流開關及該第四整流開關是否均關斷。並在該第三整流開關及該第四整流開關均關斷時,輸出一第二調變時間計算訊號。其中,在時間t5時,偵測到第三整流開關(開關Q1’)及第四整流開關(開關Q5’;)均關斷時,輸出第一調變時間計算訊號。The second switch off detector OFFC2 is configured to detect whether the third rectifier switch and the fourth rectifier switch are both off. And when the third rectifier switch and the fourth rectifier switch are both turned off, a second modulation time calculation signal is output. Wherein, at time t5, when it is detected that both the third rectifier switch (switch Q1') and the fourth rectifier switch (switch Q5';) are turned off, the first modulation time calculation signal is output.
接著,第三計算單元CU3更經配置以響應於接收到第二調變時間計算訊號,依據來自輸出端Vout的回授電壓計算下一週期使用的總調變時間TMT,並同時產生下一週期使用的第一模式啟動訊號及第二模式啟動訊號。Then, the third calculation unit CU3 is further configured to, in response to receiving the second modulation time calculation signal, calculate the total modulation time TMT used in the next cycle according to the feedback voltage from the output terminal Vout, and generate the next cycle at the same time The first mode activation signal and the second mode activation signal are used.
[實施例的有益效果][Beneficial effects of the embodiment]
本發明的其中一有益效果在於,本發明所提供的用於電源轉換器的控制電路及控制方法,其能藉由零電流偵測電路,使具有多組整流路徑之電源轉換器的整流開關能各別決定導通時間。不僅可克服個別整流迴路的元件誤差所造成的整流開關導通時間不同外,亦可達到個整流元件可零電壓開啟與零電流截止的功能,使電源轉換器的整體效率最佳化。One of the beneficial effects of the present invention is that the control circuit and control method for a power converter provided by the present invention can enable the rectifier switch of a power converter with multiple sets of rectification paths through a zero current detection circuit. Determine the on-time individually. Not only can it overcome the different conduction time of the rectifier switch caused by the component error of the individual rectifier loop, but also can achieve the function of zero voltage turn-on and zero current cut-off of the rectifier component, so as to optimize the overall efficiency of the power converter.
此外,在確保電源轉換器的所有整流路徑均完成零電流截止後,調整電源轉換器之開關訊號觸發時機來達成轉換器輸出阻抗之調變,達成輸出可調壓,並聯輸出可均流的功能。In addition, after ensuring that all rectification paths of the power converter have completed zero current cutoff, adjust the trigger timing of the switching signal of the power converter to achieve the modulation of the converter output impedance, achieve the output adjustable voltage, and the parallel output can share the current function. .
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The content disclosed above is only the preferred and feasible embodiments of the present invention, and does not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made using the description and schematic content of the present invention are included in the application of the present invention. Within the scope of the patent.
Vin:輸入端 Vout:輸出端 RS1、RS2:諧振槽 Q1~Q12、Q1’ ~Q8’:開關 Φ1:第一模式 Φ2:第二模式 CR1、CR2、C1、C2:諧振電容 LR1、LR2、L01、L02:諧振電感 CF1、Cm1:非諧振電容 1:控制電路 SW1:第一開關控制電路 ZCD1:第一零電流偵測電路 ZCD2:第二零電流偵測電路 OFFC1:第一開關關斷偵測器 TMC:調變時間計算模組 SW2:第二開關控制電路 ZCD3:第三零電流偵測電路 ZCD4:第四零電流偵測電路 OFFC2:第二開關關斷偵測器 t、t0、t1、t2、t3、t4、t5、t6:時間 VGS1~VGS12、VGS1’ ~VGS8’:開關訊號 L1:第一諧振路徑 i1:第一諧振電流 L2:第二諧振路徑 i2:第二諧振電流 L3:第三諧振路徑 i3:第三諧振電流 L4:第四諧振路徑 i4:第四諧振電流 ISD7、ISD9、ISD11、ISD12、ISD3’、ISD7’、 ISD1’、 ISD5’:開關電流 MT1:第一調變時間 MT2:第二調變時間 FB:回授電路 CU1:第一計算單元 CU2:第二計算單元 CU3:第三計算單元 PS:相移器 Phase:相移量 Cout:輸出電容 Rout:輸出電阻 TMT:總調變時間Vin: input Vout: output RS1, RS2: Resonant tank Q1~Q12, Q1’ ~Q8’: switch Φ1: The first mode Φ2: The second mode CR1, CR2, C1, C2: resonant capacitor LR1, LR2, L01, L02: resonant inductor CF1, Cm1: Non-resonant capacitor 1: Control circuit SW1: The first switch control circuit ZCD1: The first zero current detection circuit ZCD2: The second zero current detection circuit OFFC1: The first switch turns off the detector TMC: Modulation time calculation module SW2: The second switch control circuit ZCD3: The third zero current detection circuit ZCD4: The fourth zero current detection circuit OFFC2: The second switch turns off the detector t, t0, t1, t2, t3, t4, t5, t6: time VGS1~VGS12, VGS1’ ~VGS8’: switch signal L1: first resonance path i1: first resonant current L2: second resonance path i2: second resonant current L3: Third resonance path i3: third resonant current L4: Fourth resonance path i4: fourth resonance current ISD7, ISD9, ISD11, ISD12, ISD3’, ISD7’, ISD1’, ISD5’: Switching current MT1: first modulation time MT2: Second modulation time FB: feedback circuit CU1: the first computing unit CU2: The second computing unit CU3: The third computing unit PS: Phase shifter Phase: The amount of phase shift Cout: output capacitance Rout: output resistance TMT: total modulation time
圖1為根據本發明第一實施例的用於電源轉換器的控制電路的功能方塊圖。Fig. 1 is a functional block diagram of a control circuit for a power converter according to a first embodiment of the present invention.
圖2爲根據本發明第一實施例的電源轉換器的電路佈局圖。Fig. 2 is a circuit layout diagram of the power converter according to the first embodiment of the present invention.
圖3爲根據本發明第一實施例的開關時序圖。Fig. 3 is a switch timing diagram according to the first embodiment of the present invention.
圖4為根據本發明第二實施例的用於電源轉換器的控制電路的功能方塊圖。Fig. 4 is a functional block diagram of a control circuit for a power converter according to a second embodiment of the present invention.
圖5爲根據本發明第二實施例的電源轉換器的電路佈局圖。Fig. 5 is a circuit layout diagram of a power converter according to a second embodiment of the present invention.
圖6爲根據本發明第二實施例的開關時序圖。Fig. 6 is a switch timing diagram according to the second embodiment of the present invention.
1:控制電路 1: Control circuit
SW1:第一開關控制電路 SW1: The first switch control circuit
SW2:第二開關控制電路 SW2: The second switch control circuit
ZCD1:第一零電流偵測電路 ZCD1: The first zero current detection circuit
ZCD2:第二零電流偵測電路 ZCD2: The second zero current detection circuit
TMC:調變時間計算模組 TMC: Modulation time calculation module
ZCD3:第三零電流偵測電路 ZCD3: The third zero current detection circuit
ZCD4:第四零電流偵測電路 ZCD4: The fourth zero current detection circuit
OFFC1:第一開關關斷偵測器 OFFC1: The first switch turns off the detector
OFFC2:第二開關關斷偵測器 OFFC2: The second switch turns off the detector
FB:回授電路 FB: feedback circuit
CU1:第一計算單元 CU1: the first computing unit
CU2:第二計算單元 CU2: The second computing unit
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109128519A TWI740619B (en) | 2020-08-21 | 2020-08-21 | Control circuit and control method for power converter |
US17/148,530 US11264886B1 (en) | 2020-08-21 | 2021-01-13 | Control circuit and control method for power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109128519A TWI740619B (en) | 2020-08-21 | 2020-08-21 | Control circuit and control method for power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI740619B true TWI740619B (en) | 2021-09-21 |
TW202209795A TW202209795A (en) | 2022-03-01 |
Family
ID=78778084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109128519A TWI740619B (en) | 2020-08-21 | 2020-08-21 | Control circuit and control method for power converter |
Country Status (2)
Country | Link |
---|---|
US (1) | US11264886B1 (en) |
TW (1) | TWI740619B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115296529A (en) * | 2021-05-03 | 2022-11-04 | 立锜科技股份有限公司 | DC-DC power conversion system and power conversion method thereof |
US11855536B2 (en) * | 2021-09-23 | 2023-12-26 | Psemi Corporation | Power converters, power systems, and switch topologies |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2479059A1 (en) * | 2011-01-19 | 2012-07-25 | Power Research Electronics B.v. | Battery charger for electric vehicles |
CN105917565A (en) * | 2013-10-17 | 2016-08-31 | 华为技术有限公司 | Apparatus and method for high efficiency resonant converters |
TW201916566A (en) * | 2017-10-11 | 2019-04-16 | 群光電能科技股份有限公司 | Resonant converter |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8008901B2 (en) * | 2006-02-28 | 2011-08-30 | Infineon Technologies Austria Ag | Regulated power supply with multiple regulators sharing the total current supplied to a load |
US8259477B2 (en) * | 2007-05-30 | 2012-09-04 | The Regents Of The University Of California | Multiphase resonant converter for DC-DC applications |
US9024478B2 (en) * | 2011-03-03 | 2015-05-05 | Massachusetts Institute Of Technology | Photovoltaic energy extraction with multilevel output DC-DC switched capacitor converters |
KR101315143B1 (en) * | 2012-08-22 | 2013-10-14 | 전북대학교산학협력단 | High efficiency dc/dc power converter with high conversion ratio |
WO2016032981A1 (en) * | 2014-08-25 | 2016-03-03 | NuVolta Technologies | Wireless power transfer system and method |
US10050522B2 (en) * | 2015-02-15 | 2018-08-14 | Skyworks Solutions, Inc. | Interleaved dual output charge pump |
WO2017049179A1 (en) * | 2015-09-18 | 2017-03-23 | Murata Manufacturing Co., Ltd. | Converters with hold-up operation |
US9831776B1 (en) * | 2016-06-16 | 2017-11-28 | Google Inc. | DC-DC converter |
US9917517B1 (en) * | 2016-10-26 | 2018-03-13 | Google Inc. | Switched tank converter |
US10122256B1 (en) * | 2017-07-13 | 2018-11-06 | Infineon Technologies Austria Ag | Method and apparatus for zero-current switching control in switched-capacitor converters |
US10224803B1 (en) * | 2017-12-20 | 2019-03-05 | Infineon Technologies Austria Ag | Switched capacitor converter with compensation inductor |
US10199928B1 (en) * | 2018-01-19 | 2019-02-05 | Infineon Technologies Austria Ag | Soft start of switched capacitor converters by reducing voltage provided by initial power switch |
US10658928B2 (en) * | 2018-04-26 | 2020-05-19 | Virginia Tech Intellectual Properties, Inc. | Switched capacitor converters with multi resonant frequencies |
KR102427408B1 (en) * | 2018-04-30 | 2022-08-02 | 한국전자통신연구원 | Receiver of wireless power transmission system being switched to increase voltage of resonance circuit |
US10868429B2 (en) * | 2018-05-21 | 2020-12-15 | Nuvolta Technologies (Hefei) Co., Ltd. | High efficiency power converting apparatus |
CN111181394B (en) * | 2018-11-12 | 2021-05-07 | 台达电子企业管理(上海)有限公司 | Switch resonant cavity direct current converter and transformation ratio switching method thereof |
CN111181403B (en) * | 2018-11-12 | 2021-03-09 | 台达电子企业管理(上海)有限公司 | Switch resonant cavity direct current converter and transformation ratio switching method thereof |
CN111181401B (en) * | 2018-11-12 | 2021-01-26 | 台达电子企业管理(上海)有限公司 | Switch resonant cavity converter |
CN109361314B (en) * | 2018-12-05 | 2020-10-30 | 成都芯源系统有限公司 | Resonant switched capacitor converter with low voltage stress and controller thereof |
CN109617394B (en) * | 2018-12-05 | 2021-08-17 | 成都芯源系统有限公司 | Resonant switch capacitor converter and controller and control method thereof |
US11811316B2 (en) * | 2018-12-20 | 2023-11-07 | Infineon Technologies Austria Ag | Adaptive control of a switched voltage converter |
TWI691156B (en) * | 2018-12-22 | 2020-04-11 | 緯穎科技服務股份有限公司 | Power supply system, switched-tank converter and power supply method thereof |
US10651731B1 (en) * | 2019-01-31 | 2020-05-12 | Infineon Technologies Austria Ag | Zero voltage switching of interleaved switched-capacitor converters |
US11011991B1 (en) * | 2019-12-05 | 2021-05-18 | Dialog Semiconductor (Uk) Limited | Regulation loop circuit |
US11165335B2 (en) * | 2019-12-13 | 2021-11-02 | Semiconductor Components Industries, Llc | Non-regulated power converter with current sharing control |
-
2020
- 2020-08-21 TW TW109128519A patent/TWI740619B/en active
-
2021
- 2021-01-13 US US17/148,530 patent/US11264886B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2479059A1 (en) * | 2011-01-19 | 2012-07-25 | Power Research Electronics B.v. | Battery charger for electric vehicles |
EP3002149A1 (en) * | 2011-01-19 | 2016-04-06 | Abb B.V. | Battery charger for electric vehicles |
US10166873B2 (en) * | 2011-01-19 | 2019-01-01 | Abb B.V. | Battery charger for electric vehicles |
CN105917565A (en) * | 2013-10-17 | 2016-08-31 | 华为技术有限公司 | Apparatus and method for high efficiency resonant converters |
TW201916566A (en) * | 2017-10-11 | 2019-04-16 | 群光電能科技股份有限公司 | Resonant converter |
Also Published As
Publication number | Publication date |
---|---|
US11264886B1 (en) | 2022-03-01 |
TW202209795A (en) | 2022-03-01 |
US20220060100A1 (en) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6942852B2 (en) | Insulated DC / DC converter for wide output voltage range and its control method | |
CN112928920B (en) | Multi-port bidirectional converter and control method thereof | |
US20200350815A1 (en) | Resonant converter and control method | |
US8542501B2 (en) | Switching power-supply apparatus | |
US9287788B2 (en) | Resonant converter using variably delayed output switching | |
EP3940943B1 (en) | Isolated resonant converter and control method thereof | |
TWI634729B (en) | Resonant converter | |
TWI740619B (en) | Control circuit and control method for power converter | |
US11496044B2 (en) | DC/DC converter and neutral-point voltage balance control method thereof | |
US6215683B1 (en) | Power converter with voltage dependent switchable modes | |
CN115765467A (en) | Control method and control circuit of bidirectional resonant DC converter | |
JP5822685B2 (en) | Switching power supply circuit | |
JP3013697B2 (en) | Switching power supply | |
JPH1132481A (en) | Switching regulator | |
Lemmon et al. | Ensuring volt-second balance in high-power-density phase-shifted full-bridge converter design | |
Oliveira et al. | A lossless commutation PWM two level forward converter | |
US10574129B2 (en) | System and method for adaptively controlling a reconfigurable power converter | |
DURGABHAVANI et al. | Simulation of Five-Level DC-DC Converter with Asymmetrical Control Strategy | |
KR20220163168A (en) | Ac-dc converter and method for power conversion using them |