TWI739857B - Method of fabricating semiconductor device and semiconductor device fabricating equipment - Google Patents

Method of fabricating semiconductor device and semiconductor device fabricating equipment Download PDF

Info

Publication number
TWI739857B
TWI739857B TW106122192A TW106122192A TWI739857B TW I739857 B TWI739857 B TW I739857B TW 106122192 A TW106122192 A TW 106122192A TW 106122192 A TW106122192 A TW 106122192A TW I739857 B TWI739857 B TW I739857B
Authority
TW
Taiwan
Prior art keywords
gas
feeding
halide
semiconductor device
substrate
Prior art date
Application number
TW106122192A
Other languages
Chinese (zh)
Other versions
TW201802886A (en
Inventor
林載順
朴圭熙
曺侖廷
李炫錫
趙基熙
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201802886A publication Critical patent/TW201802886A/en
Application granted granted Critical
Publication of TWI739857B publication Critical patent/TWI739857B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01111Halogens

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method of fabricating a semiconductor device includes feeding a suppression gas, a source gas, a reactive gas, and a purge gas including an inert gas, into a process chamber in which a substrate is disposed. The suppression gas suppresses the physical adsorption of the source gas onto the substrate. As a result, a thin film is formed on the substrate.

Description

製造半導體裝置的方法及半導體裝置製造設備Method for manufacturing semiconductor device and semiconductor device manufacturing equipment

本發明是有關於一種製造半導體裝置的方法,且特別是有關於一種在具有高縱橫比的開口中製造半導體裝置的薄膜的方法。The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a thin film of a semiconductor device in an opening having a high aspect ratio.

隨著半導體裝置變得高度一體化及微型化,越來越需要用於增加動態隨機存取記憶體(dynamic random access memory,DRAM)裝置的電容(capacitance)的技術。為了增加有限面積中的電容,可以使用各種方法,如使用高k介電材料作為介電層,減小介電層的厚度及增加下部電極的有效面積。As semiconductor devices become highly integrated and miniaturized, there is an increasing need for technologies for increasing the capacitance of dynamic random access memory (DRAM) devices. In order to increase the capacitance in a limited area, various methods can be used, such as using a high-k dielectric material as the dielectric layer, reducing the thickness of the dielectric layer and increasing the effective area of the lower electrode.

為了增加下部電極的有效面積,可以整體地形成下部電極,並且可以增加下部電極的高度。也就是說,可以形成圓柱形、疊層型或凹型下部電極。在這些情況下,下部電極可以在全部三個維度具有相當大的尺寸並且具有縱橫比(高寬比)相對較高的內部。然而,難以在內部具有高縱橫比的三維(three-dimensional,3D)下部電極上形成具有均一厚度的薄膜。In order to increase the effective area of the lower electrode, the lower electrode may be integrally formed, and the height of the lower electrode may be increased. That is, a cylindrical, laminated, or concave lower electrode can be formed. In these cases, the lower electrode may have a relatively large size in all three dimensions and have an interior with a relatively high aspect ratio (height-to-width ratio). However, it is difficult to form a thin film with a uniform thickness on a three-dimensional (3D) lower electrode with a high aspect ratio inside.

根據本發明概念的一個方面,提供一種製造半導體裝置的方法,所述方法包括:提供基底,及利用以下製程在所述基底上形成薄膜,所述製程包含將抑制氣體饋送至所述基底上,饋送源氣體,饋送反應氣體及饋送包括惰性氣體的吹掃氣體,並且其中所述抑制氣體抑制所述源氣體被所述基底物理吸附。According to an aspect of the inventive concept, there is provided a method of manufacturing a semiconductor device, the method comprising: providing a substrate, and forming a thin film on the substrate using the following process, the process including feeding a suppressing gas onto the substrate, A source gas is fed, a reaction gas is fed, and a purge gas including an inert gas is fed, and wherein the suppression gas suppresses the source gas from being physically adsorbed by the substrate.

根據本發明概念的另一方面,提供一種製造半導體裝置的方法,所述方法包括在基底上形成具有三維(3D)圓柱形結構的下部電極層,在所述下部電極層上共形地形成介電層,及在所述介電層上共形地形成上部電極層,並且其中所述形成上部電極層包括將含鹵素的抑制氣體饋送於所述基底上,饋送含鈦的源氣體,饋送含氮的反應氣體及饋送含惰性氣體的吹掃氣體。According to another aspect of the inventive concept, there is provided a method of manufacturing a semiconductor device, the method comprising forming a lower electrode layer having a three-dimensional (3D) cylindrical structure on a substrate, and forming a dielectric conformally on the lower electrode layer. An electrical layer, and an upper electrode layer is conformally formed on the dielectric layer, and wherein the forming the upper electrode layer includes feeding a halogen-containing suppressing gas on the substrate, feeding a source gas containing titanium, and feeding a source gas containing titanium The reaction gas of nitrogen and the purge gas containing inert gas are fed.

根據本發明概念的另一方面,提供一種製造半導體裝置的方法,所述方法包括將其中界定具有一定縱橫比的開口的結構支撐於處理腔室中,及在所述結構上,包含在所述開口內形成膜的膜形成製程。所述結構具有上表面並且所述開口在所述結構中從上表面延伸,使得所述結構的內部底表面界定所述開口的底部並且所述結構的內部側表面界定所述開口的側面。所述膜形成製程在所述結構上,包含在所述結構的頂表面上及內部底表面上共形地形成膜,並且包括將源氣體饋送至處理腔室中,並且其中所述源氣體是膜的前驅物並且所述源氣體中至少一部分在所述結構的頂表面及內部底表面處被所述結構吸附;將反應氣體饋送至處理腔室中,並且其中所述反應氣體是膜的前驅物並與源氣體發生化學反應;及將抑制氣體饋送至處理腔室中,並且其中所述抑制氣體不是膜的前驅物,不與源氣體反應,並且所述抑制氣體中至少一部分被所述結構的頂表面和內部底表面吸附;以及將惰性氣體饋送至處理腔室中以吹掃所述腔室的在所述處理腔室中的氣體的至少一部分,並且其中所述饋送惰性氣體是在膜形成製程中在源氣體已饋送到處理腔室中之後的一個或多個點進行。According to another aspect of the inventive concept, there is provided a method of manufacturing a semiconductor device, the method comprising supporting a structure in which an opening having a certain aspect ratio is defined in a processing chamber, and on the structure, included in the A film formation process for forming a film in the opening. The structure has an upper surface and the opening extends from the upper surface in the structure such that the inner bottom surface of the structure defines the bottom of the opening and the inner side surface of the structure defines the sides of the opening. The film forming process includes forming a film conformally on the top surface and the inner bottom surface of the structure on the structure, and includes feeding a source gas into a processing chamber, and wherein the source gas is The precursor of the film and at least a part of the source gas is adsorbed by the structure at the top surface and the inner bottom surface of the structure; the reaction gas is fed into the processing chamber, and wherein the reaction gas is the precursor of the film And feed the suppressed gas into the processing chamber, and wherein the suppressed gas is not a precursor of the film, does not react with the source gas, and at least a part of the suppressed gas is affected by the structure The top surface and the inner bottom surface of the adsorption; and the inert gas is fed into the processing chamber to purge at least a part of the gas in the processing chamber of the chamber, and wherein the fed inert gas is in the film The forming process is performed at one or more points after the source gas has been fed into the processing chamber.

根據本發明概念的另一方面,提供一種半導體裝置製造設備,所述半導體裝置製造設備包括:腔室;安置於所述腔室中並在上面安放有基底的基底支撐件;將源氣體供應至所述腔室中的源氣體供應器;將反應氣體供應至所述腔室中的反應氣體供應器;將抑制氣體供應至所述腔室中的抑制氣體供應器,所述抑制氣體抑制源氣體物理吸附至基底上;及將第一吹掃氣體供應至所述腔室中的第一吹掃氣體供應器。According to another aspect of the inventive concept, there is provided a semiconductor device manufacturing equipment including: a chamber; a substrate support disposed in the chamber and on which a substrate is mounted; and a source gas is supplied to A source gas supplier in the chamber; a reaction gas supplier that supplies reaction gas to the chamber; a suppression gas supply to a suppression gas supplier in the chamber, the suppression gas suppresses the source gas Physical adsorption onto the substrate; and supplying the first purge gas to the first purge gas supplier in the chamber.

在下文中將參照附圖描述本發明概念的實例。Hereinafter, examples of the inventive concept will be described with reference to the drawings.

圖1是說明根據本發明概念的一些實例的製造半導體裝置的方法的流程圖。圖2是說明根據本發明概念的一些實例的製造半導體裝置的方法的原理的圖。圖3A及圖3B是說明根據本發明概念的一些實例的製造半導體裝置的方法的截面圖。圖4A及圖4B是說明由根據本發明概念的一些實例的製造半導體裝置的方法形成的薄膜的截面圖。FIG. 1 is a flowchart illustrating a method of manufacturing a semiconductor device according to some examples of the inventive concept. FIG. 2 is a diagram illustrating the principle of a method of manufacturing a semiconductor device according to some examples of the inventive concept. 3A and 3B are cross-sectional views illustrating a method of manufacturing a semiconductor device according to some examples of the inventive concept. 4A and 4B are cross-sectional views illustrating a thin film formed by a method of manufacturing a semiconductor device according to some examples of the inventive concept.

參看圖1,根據本發明概念的製造半導體裝置的方法的一個實例包含饋送抑制氣體(步驟S11),饋送源氣體(步驟S15)及饋送反應氣體(步驟S19)至處理腔室中。根據本發明概念的製造半導體裝置的方法還可以包含饋送第一吹掃氣體(步驟S13),饋送第二吹掃氣體(步驟S17)及饋送第三吹掃氣體(步驟S20)至處理腔室中。1, an example of a method of manufacturing a semiconductor device according to the inventive concept includes feeding a suppressing gas (step S11), feeding a source gas (step S15), and feeding a reaction gas (step S19) into a processing chamber. The method of manufacturing a semiconductor device according to the concept of the present invention may further include feeding a first purge gas (step S13), feeding a second purge gas (step S17), and feeding a third purge gas (step S20) into the processing chamber .

更確切地說,根據本發明概念的製造半導體裝置的方法可以包含將抑制氣體饋送至安置於腔室中的基底上(步驟S11),使用第一吹掃氣體吹掃吸附至基底上的抑制氣體(步驟S13),將源氣體饋送至腔室中(步驟S15),通過饋送第二吹掃氣體吹掃未吸附至基底上的源氣體(步驟S17),及饋送反應氣體(步驟S19)以使所述反應氣體與吸附至基底上的源氣體反應,以及饋送第三吹掃氣體(步驟S20)以便吹掃不反應的源氣體及反應氣體,並由此在基底上形成包含電極層的薄膜。根據本發明概念的製造半導體裝置的方法可以通過但不限於原子層沉積法(atomic layer deposition,ALD)進行。More specifically, the method of manufacturing a semiconductor device according to the concept of the present invention may include feeding a suppressing gas onto a substrate disposed in a chamber (step S11), and purging the suppressing gas adsorbed on the substrate with a first purge gas (Step S13), feed the source gas into the chamber (Step S15), purge the source gas not adsorbed on the substrate by feeding the second purge gas (Step S17), and feed the reaction gas (Step S19) to make The reaction gas reacts with the source gas adsorbed on the substrate, and a third purge gas is fed (step S20) to purge the unreacted source gas and the reaction gas, and thereby form a thin film including an electrode layer on the substrate. The method of manufacturing a semiconductor device according to the concept of the present invention may be performed by, but not limited to, atomic layer deposition (ALD).

也就是說,根據本發明概念的製造半導體裝置的方法可以包含形成薄膜。舉例來說,根據本發明概念的製造半導體裝置的方法可以在基底或介電層上形成電極層。所述電極層可以包括含Ti及N的化合物,如例如TiN、TiSiN、TiAlN、TiBN、TiON、TiAlON、TiCN、TiAlCN、TiOCN或TiSiCN。That is, the method of manufacturing a semiconductor device according to the inventive concept may include forming a thin film. For example, the method of manufacturing a semiconductor device according to the inventive concept may form an electrode layer on a substrate or a dielectric layer. The electrode layer may include a compound containing Ti and N, such as, for example, TiN, TiSiN, TiAlN, TiBN, TiON, TiAlON, TiCN, TiAlCN, TiOCN, or TiSiCN.

在下文中將以形成TiN層為例描述根據本發明概念的製造半導體裝置的方法。然而,本發明概念不局限於形成TiN層。Hereinafter, the method of manufacturing a semiconductor device according to the concept of the present invention will be described by taking the formation of a TiN layer as an example. However, the inventive concept is not limited to forming TiN layers.

源氣體及反應氣體是有待形成的TiN膜的前驅物。因此,饋送源氣體(即步驟S15)可以包含饋送含鈦類化合物的源氣體。舉例來說,鈦類化合物可以是但不限於TiCl4 。饋送反應氣體(即步驟S19)可以包含饋送含氮化物類化合物的反應氣體。舉例來說,氮化物類化合物可以是但不限於NH3The source gas and the reaction gas are precursors of the TiN film to be formed. Therefore, feeding the source gas (ie, step S15) may include feeding a source gas containing a titanium-based compound. For example, the titanium-based compound may be, but is not limited to, TiCl 4 . Feeding the reaction gas (that is, step S19) may include feeding a reaction gas containing a nitride-based compound. For example, the nitride-based compound may be, but is not limited to, NH 3 .

抑制氣體具有不同於源氣體的組成並且可能不是膜的前驅物。抑制氣體可能也不與反應氣體發生化學反應。確切地說,抑制氣體可以包括含有鹵素原子的化合物或含有不飽和鍵的化合物。舉例來說,抑制氣體可以包括烷基鹵化物、烯基鹵化物、炔基鹵化物、烯烴、炔烴中的至少一種及其組合。舉例來說,抑制氣體可以包括四氯丙烷或二氯乙烯。The suppression gas has a different composition from the source gas and may not be a precursor of the film. The suppression gas may not react chemically with the reaction gas either. Specifically, the suppressing gas may include a compound containing a halogen atom or a compound containing an unsaturated bond. For example, the suppressing gas may include at least one of alkyl halides, alkenyl halides, alkynyl halides, alkenes, alkynes, and combinations thereof. For example, the suppression gas may include tetrachloropropane or dichloroethylene.

在一些實例中,烷基鹵化物、烯基鹵化物及炔基鹵化物各自可以包括含有1至10個碳原子的直鏈、分支鏈或環狀鹵代烴基。另外,烯烴及炔烴各自可以包括含有1至10個碳原子的直鏈、分支鏈或環狀烴基。In some examples, each of the alkyl halide, alkenyl halide, and alkynyl halide may include a linear, branched, or cyclic halogenated hydrocarbon group containing 1 to 10 carbon atoms. In addition, each of the alkene and the alkyne may include a linear, branched, or cyclic hydrocarbon group containing 1 to 10 carbon atoms.

在鹵代烴基或烴基的碳原子數量超過10個的情況下,抑制氣體可能不易於抑制源氣體物理吸附於基底上。In the case where the number of carbon atoms of the halogenated hydrocarbon group or the hydrocarbon group exceeds 10, the suppressing gas may not easily suppress the source gas from being physically adsorbed on the substrate.

在一些實例中,烷基鹵化物、烯基鹵化物及炔基鹵化物各自可以包含1至10個鹵素原子。In some examples, the alkyl halide, alkenyl halide, and alkynyl halide may each contain 1 to 10 halogen atoms.

在烷基鹵化物、烯基鹵化物及炔基鹵化物各自的鹵素原子數量超過10個的情況下,抑制氣體可能不易於抑制源氣體物理吸附於基底上。In the case where the number of halogen atoms of each of the alkyl halide, alkenyl halide, and alkynyl halide exceeds 10, the suppressing gas may not easily suppress the physical adsorption of the source gas on the substrate.

抑制氣體可以抑制源氣體物理吸附至基底上。因此,在源氣體是TiCl4的情況下,抑制氣體可能不含氧及氮並且可以是不與源氣體反應的氣體。The suppression gas can suppress the physical adsorption of the source gas onto the substrate. Therefore, in the case where the source gas is TiCl4, the suppression gas may not contain oxygen and nitrogen and may be a gas that does not react with the source gas.

因此,步驟S11可以降低源氣體吸附至有待形成薄膜的基底上的速度。Therefore, step S11 can reduce the rate at which the source gas is adsorbed onto the substrate on which the thin film is to be formed.

圖2顯示在饋送抑制氣體之後,沉積速度與吹掃時間之間的關係。參看圖2,參考字元“a”表示當使用TiCl4 源氣體及NH3 反應氣體,但不使用抑制氣體來進行ALD時的沉積速度,參考字元“b”表示當使用TiCl4 源氣體、NH3 反應氣體及四氯丙烷抑制氣體進行ALD時的沉積速度,及參考字元“c”表示當使用TiCl4 源氣體、NH3 反應氣體及二氯乙烯抑制氣體進行ALD時的沉積速度。Figure 2 shows the relationship between the deposition rate and the purge time after the suppression gas is fed. Referring to Figure 2, the reference character "a" indicates the deposition rate when TiCl 4 source gas and NH 3 reaction gas are used, but the suppressor gas is not used for ALD, and the reference character "b" indicates when TiCl 4 source gas, The deposition rate when the NH 3 reaction gas and the tetrachloropropane suppression gas are used for ALD, and the reference character "c" represents the deposition rate when the TiCl 4 source gas, the NH 3 reaction gas, and the ethylene dichloride suppression gas are used for ALD.

使用抑制氣體時薄膜的生長速度低於不使用抑制氣體時的情形。也就是說,根據本發明概念,抑制氣體被吸附至基底上並由此可以抑制源氣體的過度吸附(over-adsorption)。因此,可以抑制薄膜的生長速度,並且可以形成共形薄膜。圖2顯示,在饋送抑制氣體之後,沉積速度不會隨吹掃時間而增加,並且這意味著抑制氣體不容易“解吸”並因此其作用不會隨時間大幅降低。The growth rate of the film when the suppressed gas is used is lower than that when the suppressed gas is not used. That is, according to the concept of the present invention, the gas is suppressed from being adsorbed onto the substrate and thus over-adsorption of the source gas can be suppressed. Therefore, the growth rate of the thin film can be suppressed, and a conformal thin film can be formed. Figure 2 shows that after feeding the suppressing gas, the deposition rate does not increase with the purge time, and this means that the suppressing gas is not easily "desorbed" and therefore its effect will not be greatly reduced over time.

在下文中將參照圖3A及圖3B描述使用根據本發明概念的製造半導體裝置的方法形成共形薄膜。Hereinafter, the formation of a conformal thin film using the method of manufacturing a semiconductor device according to the inventive concept will be described with reference to FIGS. 3A and 3B.

圖3A的截面圖顯示在使用源氣體及反應氣體但不使用抑制氣體形成薄膜期間,源氣體的吸附程度,並且圖3B的截面圖顯示在使用源氣體、反應氣體及抑制氣體形成薄膜期間,源氣體的吸附程度。The cross-sectional view of FIG. 3A shows the degree of adsorption of the source gas during the film formation period using the source gas and the reaction gas but the suppressing gas is not used, and the cross-sectional view of FIG. The degree of gas adsorption.

參看圖3A及圖3B,基底10具有縱橫比較高的孔11,並暴露出上表面A、下表面C及側壁B。圖3A及圖3B各自示出的箭頭的長度表示源氣體的吸附程度。3A and 3B, the substrate 10 has a hole 11 with a high aspect ratio, and the upper surface A, the lower surface C and the side wall B are exposed. The length of the arrow shown in each of FIGS. 3A and 3B indicates the degree of adsorption of the source gas.

也就是說,如圖3A中所圖示,當在不使用抑制氣體情況下形成薄膜時,在上表面A處源氣體的吸附程度a1隨時間變得高於在下表面C處源氣體的吸附程度c1。That is, as illustrated in FIG. 3A, when a thin film is formed without using a suppressing gas, the degree of adsorption a1 of the source gas at the upper surface A becomes higher with time than the degree of adsorption of the source gas at the lower surface C c1.

然而,如圖3B中所圖示,當根據本發明概念,在使用抑制氣體情況下形成薄膜時,在上表面A處源氣體的吸附程度a2隨時間變得類似於在下表面C處源氣體的吸附程度c2。這是因為在上表面A處源氣體的過度吸附受抑制氣體抑制。更確切地說,可能由於源氣體以物理方式吸附至上表面A上而發生的源氣體的過度吸附可以被抑制氣體所抑制。However, as illustrated in FIG. 3B, when a thin film is formed using suppressed gas according to the concept of the present invention, the degree of adsorption a2 of the source gas at the upper surface A becomes similar to that of the source gas at the lower surface C over time. The degree of adsorption c2. This is because the excessive adsorption of the source gas at the upper surface A is suppressed by the suppressed gas. More specifically, the excessive adsorption of the source gas, which may occur due to the source gas being physically adsorbed on the upper surface A, can be suppressed by the suppressing gas.

圖4A及圖4B分別顯示在圖3A中示出的情況下形成的薄膜21的均一性及在圖3B中示出的情況下形成的薄膜21的均一性。參看圖4A及圖4B,通過使用抑制氣體抑制在基底10的上表面A處源氣體的過度吸附而形成的薄膜21的厚度(參見圖4B)比不使用抑制氣體而形成的薄膜21的厚度(參見圖4A)均一。確切地說,如圖4A所示,在上表面A上形成的薄膜21的厚度ta1明顯大於在底表面C上形成的薄膜21的厚度tc1及在側壁表面B上的薄膜的厚度tb1。另一方面,如圖4B所示,在上表面A上形成的薄膜21的厚度ta2與在底表面C上形成的薄膜21的厚度tc2基本上相同。另外,在上表面A上形成的薄膜21的厚度ta2與在側壁表面B上的薄膜的厚度tb2基本上相同。4A and 4B respectively show the uniformity of the thin film 21 formed in the case shown in FIG. 3A and the uniformity of the thin film 21 formed in the case shown in FIG. 3B. 4A and 4B, the thickness of the thin film 21 formed by suppressing excessive adsorption of the source gas at the upper surface A of the substrate 10 by using the suppressing gas (see FIG. 4B) is greater than the thickness of the film 21 formed without using the suppressing gas ( See Figure 4A) Uniformity. Specifically, as shown in FIG. 4A, the thickness ta1 of the film 21 formed on the upper surface A is significantly larger than the thickness tc1 of the film 21 formed on the bottom surface C and the thickness tb1 of the film on the side wall surface B. On the other hand, as shown in FIG. 4B, the thickness ta2 of the film 21 formed on the upper surface A and the thickness tc2 of the film 21 formed on the bottom surface C are substantially the same. In addition, the thickness ta2 of the film 21 formed on the upper surface A is substantially the same as the thickness tb2 of the film on the side wall surface B.

圖5A及圖5B提供的照片顯示如圖4A及圖4B中所示形成的薄膜的厚度。更確切地說,圖5A是通過使用源氣體及反應氣體但不使用抑制氣體進行ALD形成的薄膜L1的照片,並且圖5B是通過使用抑制氣體、源氣體及反應氣體進行ALD形成的薄膜L2的照片。The photos provided in FIGS. 5A and 5B show the thickness of the film formed as shown in FIGS. 4A and 4B. More specifically, FIG. 5A is a photograph of a thin film L1 formed by performing ALD using a source gas and a reaction gas but not using a suppressor gas, and FIG. 5B is a photograph of a thin film L2 formed by performing ALD using a suppressor gas, source gas, and reactive gas Photo.

參看圖5A,薄膜L1在溝槽H1的內部相對較薄並在溝槽H1的外部相對較厚。另一方面,如圖5B中所示,薄膜L2在溝槽H2內部及外部上具有相對均一的厚度。Referring to FIG. 5A, the film L1 is relatively thin inside the trench H1 and relatively thick outside the trench H1. On the other hand, as shown in FIG. 5B, the thin film L2 has a relatively uniform thickness on the inside and outside of the trench H2.

也就是說,根據本發明概念的一些實例的製造半導體裝置的方法可以在具有高縱橫比的溝槽區域中形成具有均一厚度的薄膜。所述薄膜可以是在界定具有一定縱橫比的開口,尤其是具有高縱橫比的開口的任何中間結構的區域中形成的薄膜。因此,根據本發明概念的製造半導體裝置的方法適用於結合具有例如淺溝槽隔離(shallow trench isolation,STI)、層間介電層(interlayer dielectric layer,ILD)、金屬間介電層(inter-metal dielectric layer,IMD)或圓柱形電容器區域的結構形成薄膜。That is, the method of manufacturing a semiconductor device according to some examples of the inventive concept can form a thin film having a uniform thickness in a trench region having a high aspect ratio. The thin film may be a thin film formed in a region defining any intermediate structure of openings having a certain aspect ratio, especially openings having a high aspect ratio. Therefore, the method for manufacturing a semiconductor device according to the concept of the present invention is suitable for the combination of shallow trench isolation (STI), interlayer dielectric layer (ILD), and inter-metal dielectric layer (inter-metal dielectric layer). The dielectric layer (IMD) or the structure of the cylindrical capacitor area forms a thin film.

在下文中將以製造圓柱形電容器為例描述根據本發明概念的製造半導體裝置的方法的一些實例。然而,正如上文已經提到的,本發明概念不限於製造包含圓柱形電容器的半導體裝置。也就是說,根據本發明概念的製造半導體裝置的方法適用於在界定具有高縱橫比的開口的多種不同種類的區域中形成薄膜。Hereinafter, some examples of the method of manufacturing a semiconductor device according to the concept of the present invention will be described by taking the manufacturing of a cylindrical capacitor as an example. However, as already mentioned above, the inventive concept is not limited to the manufacture of semiconductor devices including cylindrical capacitors. That is, the method of manufacturing a semiconductor device according to the concept of the present invention is suitable for forming a thin film in a plurality of different kinds of regions that define an opening having a high aspect ratio.

在下文中將參照圖1及圖6至圖18更詳細地描述根據本發明概念的製造半導體裝置的方法的實例。Hereinafter, an example of a method of manufacturing a semiconductor device according to the inventive concept will be described in more detail with reference to FIGS. 1 and 6 to 18.

圖6至圖18是說明根據本發明概念的製造半導體裝置的方法的實例的截面圖。6 to 18 are cross-sectional views illustrating an example of a method of manufacturing a semiconductor device according to the inventive concept.

參看圖6,由根據本發明概念的製造半導體裝置的方法獲得的半導體裝置可以包含基底100、第一ILD 135、第二層間介電層(第二ILD)137、蝕刻中止層140、導電金屬層150、電容器CP1及罩蓋層220。Referring to FIG. 6, a semiconductor device obtained by a method of manufacturing a semiconductor device according to the concept of the present invention may include a substrate 100, a first ILD 135, a second interlayer dielectric layer (second ILD) 137, an etching stop layer 140, and a conductive metal layer. 150. The capacitor CP1 and the cover layer 220.

舉例來說,基底100可以具有記憶體單元陣列區域及周圍區域。在基底100上可以形成場氧化物層130以分離各元件,並且還可以在基底100上形成具有間隙壁125的閘電極120。For example, the substrate 100 may have a memory cell array area and a surrounding area. A field oxide layer 130 may be formed on the substrate 100 to separate each element, and a gate electrode 120 having a spacer 125 may also be formed on the substrate 100.

基底100可以由至少一種選自以下的半導體材料形成:Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs及InP,並且可以使用絕緣體上矽(silicon-on-insulator,SOI)基底作為基底100。The substrate 100 may be formed of at least one semiconductor material selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP, and a silicon-on-insulator (SOI) substrate may be used as the substrate 100.

第一層間介電層(第一ILD)135可以形成於形成了閘電極120的基底100的整個表面上。可以形成位線接觸窗(bitline contact)162插入閘電極120之間以穿透第一ILD 135。位線接觸窗162連接基底100與位線164,並且經由位線接觸窗162連接至基底100的位線164可以形成於第一ILD 135上。The first interlayer dielectric layer (first ILD) 135 may be formed on the entire surface of the substrate 100 where the gate electrode 120 is formed. A bitline contact 162 may be formed to be inserted between the gate electrodes 120 to penetrate the first ILD 135. The bit line contact window 162 connects the substrate 100 and the bit line 164, and the bit line 164 connected to the substrate 100 through the bit line contact window 162 may be formed on the first ILD 135.

在第一ILD 135上可以形成第二ILD 137。可以形成存儲節點接觸窗172,所述存儲節點接觸窗172經由第一ILD 135及第二ILD 137連接至基底100。舉例來說,存儲節點接觸窗172可以包含由多晶矽插塞、TiN及Ti阻擋層構成的疊層,但本發明概念不限於此實例。A second ILD 137 may be formed on the first ILD 135. A storage node contact window 172 may be formed, and the storage node contact window 172 is connected to the substrate 100 via the first ILD 135 and the second ILD 137. For example, the storage node contact window 172 may include a stack of polysilicon plugs, TiN and Ti barrier layers, but the concept of the present invention is not limited to this example.

在第二ILD 137及存儲節點接觸窗172上可以形成蝕刻中止層140。更確切地說,蝕刻中止層140可以防止對蝕刻中止層140上形成的模製層(圖9的模製層145)的蝕刻進行至蝕刻中止層140下方。An etch stop layer 140 may be formed on the second ILD 137 and the storage node contact window 172. More specifically, the etching stop layer 140 can prevent the etching of the mold layer (the mold layer 145 of FIG. 9) formed on the etching stop layer 140 from proceeding to below the etching stop layer 140.

舉例來說,蝕刻中止層140可以包括但不限於,氮化矽。蝕刻中止層140可以包括與模製層(圖9的模製層145)不同的材料以防止對模製層(圖9的模製層145)進行的蝕刻處理進行至蝕刻中止層140下方。For example, the etch stop layer 140 may include, but is not limited to, silicon nitride. The etch stop layer 140 may include a different material from the mold layer (the mold layer 145 of FIG. 9) to prevent the etching process performed on the mold layer (the mold layer 145 of FIG. 9) from proceeding under the etch stop layer 140.

導電金屬層150可以安置在存儲節點孔(圖11的存儲節點孔153)的底部,所述存儲節點孔是在存儲節點接觸窗172上方形成。也就是說,導電金屬層150可以安置在存儲節點孔(圖11的存儲節點孔153)與下部電極層200a之間。導電金屬層150可以包括但不限於Ag、Au、Pt、Al及Cu之一。然而,在根據本發明概念形成的電容器的某些實例中,導電金屬層150可以省去。The conductive metal layer 150 may be disposed at the bottom of the storage node hole (the storage node hole 153 of FIG. 11 ), which is formed above the storage node contact window 172. That is, the conductive metal layer 150 may be disposed between the storage node hole (storage node hole 153 of FIG. 11) and the lower electrode layer 200a. The conductive metal layer 150 may include, but is not limited to, one of Ag, Au, Pt, Al, and Cu. However, in some examples of capacitors formed according to the concept of the present invention, the conductive metal layer 150 may be omitted.

在一個實例中,電容器CP1可以是單一圓柱狀記憶體(one-cylinder-storage,OCS)型電容器。更確切地說,可以在存儲節點孔(圖11的存儲節點孔153)的周圍形成電容器CP1,所述存儲節點孔在電容器CP1的頂部和底部處具有基本上均一的寬度,並因此,電容器CP1在電容器CP1的頂部和底部處也可以具有基本上均一的寬度。如本文所使用,元件或特徵具有“基本上均一的寬度”的表述意思指,在形成所述元件或特徵期間由於製造方法的固有特性而可能發生的誤差的預定範圍內,所述元件或特徵的寬度是基本上均一的。或者,電容器CP1的寬度從電容器CP1的頂部到底部可以是不同的。In one example, the capacitor CP1 may be a one-cylinder-storage (OCS) type capacitor. More specifically, the capacitor CP1 may be formed around the storage node hole (the storage node hole 153 of FIG. 11), which has a substantially uniform width at the top and bottom of the capacitor CP1, and therefore, the capacitor CP1 The capacitor CP1 may also have a substantially uniform width at the top and bottom. As used herein, the expression that an element or feature has a "substantially uniform width" means that within a predetermined range of errors that may occur due to the inherent characteristics of the manufacturing method during the formation of the element or feature, the element or feature The width is basically uniform. Alternatively, the width of the capacitor CP1 may be different from the top to the bottom of the capacitor CP1.

電容器CP1可以包含下部電極層200a、介電層205a及上部電極層210a。The capacitor CP1 may include a lower electrode layer 200a, a dielectric layer 205a, and an upper electrode layer 210a.

下部電極層200a可以包含圓柱形下部電極,其作為電容器CP1的下部電極。The lower electrode layer 200a may include a cylindrical lower electrode as the lower electrode of the capacitor CP1.

下部電極層200a可以包括導電氧化物。舉例來說,下部電極層200a可以包括Pt、Ru、Ir、PtO、RuO2 、IrO2 、SrRuO3 、BaRuO3 、CaRuO3 和/或(Ba, Sr)RuO3 並且可以形成為單層或者兩層或多於兩層的疊層形式。The lower electrode layer 200a may include a conductive oxide. For example, the lower electrode layer 200a may include Pt, Ru, Ir, PtO, RuO 2, IrO 2, SrRuO 3, BaRuO 3, CaRuO 3 , and / or (Ba, Sr) RuO 3 and may be formed as a single layer or two Layers or laminates of more than two layers.

下部電極層200a還可以包括有折射能力的金屬或耐火金屬氮化物。舉例來說,下部電極層200a可以包括Ti、TiN、W、WN、Ta、TaN、HfN、ZrN、TiAlN、TaSiN、TiSiN、TaAlN、TiBN、TiON、TiAlON、TiCN、TiAlCN和/或TiSiCN並且可以形成為單層或者兩層或多於兩層的疊層的形式。The lower electrode layer 200a may further include a metal having refractive power or a refractory metal nitride. For example, the lower electrode layer 200a may include Ti, TiN, W, WN, Ta, TaN, HfN, ZrN, TiAlN, TaSiN, TiSiN, TaAlN, TiBN, TiON, TiAlON, TiCN, TiAlCN and/or TiSiCN and may be formed It is in the form of a single layer or a stack of two or more layers.

在下部電極層200a形成於導電金屬層150上的情況下,下部電極層200a可以包括與導電金屬層150不同的材料。也就是說,下部電極層200a與導電金屬層150可以包括不同材料以使彼此完全不同,同時不會以物理方式及化學方式相互影響。In the case where the lower electrode layer 200 a is formed on the conductive metal layer 150, the lower electrode layer 200 a may include a different material from the conductive metal layer 150. In other words, the lower electrode layer 200a and the conductive metal layer 150 may include different materials so as to be completely different from each other, and at the same time, they will not affect each other physically or chemically.

在下部電極層200a上可以形成介電層205a。更確切地說,可以在下部電極層200a的外部側壁、內部側壁及內部底表面上及蝕刻中止層140上形成介電層205a。A dielectric layer 205a may be formed on the lower electrode layer 200a. More specifically, the dielectric layer 205a may be formed on the outer sidewall, inner sidewall, and inner bottom surface of the lower electrode layer 200a and on the etching stop layer 140.

介電層205a可以包括三種或超過三種組分的介電材料。舉例來說,介電層205a可以包含(Ba, Sr)TiO3 (BST)、SrTiO3 、BaTiO3 、PZT、PLZT、(Ba, Sr)(Zr, Ti)O3 (BSZTO)、Sr(Zr, Ti)O3 (SZTO)、Ba(Zr, Ti)O3 (BZTO)、(Ba, Sr)ZrO3 (BSZO)、SrZrO3 或BaZrO3 。或者,介電層205a可以包括兩組分介電材料,如ZrO2 、HfO2 、Al2 O3 、Ta2 O5 或TiO2 ,並且可以通過僅使用這些材料中的任一種或堆疊這些材料的兩種或超過兩種來形成。The dielectric layer 205a may include three or more than three component dielectric materials. For example, the dielectric layer 205a may include (Ba, Sr)TiO 3 (BST), SrTiO 3 , BaTiO 3 , PZT, PLZT, (Ba, Sr)(Zr, Ti)O 3 (BSZTO), Sr(Zr) , Ti)O 3 (SZTO), Ba(Zr, Ti)O 3 (BZTO), (Ba, Sr)ZrO 3 (BSZO), SrZrO 3 or BaZrO 3 . Alternatively, the dielectric layer 205a may include a two-component dielectric material, such as ZrO 2 , HfO 2 , Al 2 O 3 , Ta 2 O 5 or TiO 2 , and can be achieved by using only any one of these materials or stacking these materials Two types or more than two types are formed.

上部電極層210a可以包含電容器CP1的上部電極。The upper electrode layer 210a may include the upper electrode of the capacitor CP1.

更確切地說,上部電極層210a可以共形地覆蓋介電層205a並且可以具有與介電層205a相同的表面輪廓。More specifically, the upper electrode layer 210a may conformally cover the dielectric layer 205a and may have the same surface profile as the dielectric layer 205a.

上部電極層210a可以包括具有高功函數的材料,如Pt、Ru或Ir。在上部電極層210a包含具有高功函數的材料的實例中,上部電極層210a與介電層205a之間功函數的差異可以增加,並因此,可以控制電容器CP1的漏電流。The upper electrode layer 210a may include a material having a high work function, such as Pt, Ru, or Ir. In an example where the upper electrode layer 210a contains a material having a high work function, the difference in work function between the upper electrode layer 210a and the dielectric layer 205a may increase, and therefore, the leakage current of the capacitor CP1 may be controlled.

上部電極層210a可以包括導電氧化物。舉例來說,上部電極層210a可以包括Pt、Ru、Ir、PtO、RuO2 、IrO2 、SrRuO3 、BaRuO3 、CaRuO3 和/或(Ba, Sr)RuO3 並且可以形成為單層或者兩層或多於兩層的疊層形式。The upper electrode layer 210a may include a conductive oxide. For example, the upper electrode layer 210a may include Pt, Ru, Ir, PtO, RuO 2, IrO 2, SrRuO 3, BaRuO 3, CaRuO 3 , and / or (Ba, Sr) RuO 3 and may be formed as a single layer or two Layers or laminates of more than two layers.

在上部電極層210a上可以形成罩蓋層220以抑制上部電極層210a的晶粒生長及聚結。為此,罩蓋層220可以包括ZrO2 、Al2 O3 、HfO2 、LaAlO3 、BaZrO3 、SrZrO3 、BST、SrTiO3 、BaTiO3 、TiO2 和/或SiO2 ,並且可以形成為單層或者兩層或多於兩層的疊層的形式。A cap layer 220 may be formed on the upper electrode layer 210a to suppress the growth and coalescence of crystal grains of the upper electrode layer 210a. To this end, the capping layer 220 may include ZrO 2 , Al 2 O 3 , HfO 2 , LaAlO 3 , BaZrO 3 , SrZrO 3 , BST, SrTiO 3 , BaTiO 3 , TiO 2 and/or SiO 2 , and may be formed as a single unit The form of a layer or a stack of two or more layers.

以上已經參照圖6描述由根據本發明概念的製造半導體裝置的方法製造的半導體裝置的基本結構的實例。在下文中將參照圖7至圖18更詳細地描述下部電極層200a、介電層205a及上部電極層210a。The example of the basic structure of the semiconductor device manufactured by the method of manufacturing the semiconductor device according to the inventive concept has been described above with reference to FIG. 6. Hereinafter, the lower electrode layer 200a, the dielectric layer 205a, and the upper electrode layer 210a will be described in more detail with reference to FIGS. 7 to 18.

參看圖7,接觸孔是通過部分地蝕刻在基底100上形成的第二ILD 137而形成。隨後,通過用導電材料填充接觸孔並進行平面化以使第二ILD 137的頂表面暴露出來,由此形成存儲節點接觸窗172。Referring to FIG. 7, the contact hole is formed by partially etching the second ILD 137 formed on the substrate 100. Subsequently, the top surface of the second ILD 137 is exposed by filling the contact hole with a conductive material and performing planarization, thereby forming the storage node contact window 172.

儘管未示出,但圖7描繪的結構包含在圖6中所示的蝕刻中止層140下方的所有結構。也就是說,圖7是用於說明本身常用的製程,隨後形成蝕刻中止層140。Although not shown, the structure depicted in FIG. 7 includes all structures below the etching stop layer 140 shown in FIG. 6. That is to say, FIG. 7 is used to illustrate the commonly used process, and then the etching stop layer 140 is formed.

參看圖8,在第二ILD 137上形成蝕刻中止層140。Referring to FIG. 8, an etch stop layer 140 is formed on the second ILD 137.

舉例來說,蝕刻中止層140可以由但不限於氮化矽形成。蝕刻中止層140可以通過經化學氣相沉積法(chemical vapor deposition,CVD)沉積氮化矽來形成。For example, the etch stop layer 140 may be formed of, but not limited to, silicon nitride. The etch stop layer 140 may be formed by depositing silicon nitride through chemical vapor deposition (CVD).

參看圖9,在蝕刻中止層140上形成模製層145。Referring to FIG. 9, a mold layer 145 is formed on the etching stop layer 140.

模製層145被設置用於形成電容器CP1的下部電極。因此,形成的模製層145可以與電容器CP1的下部電極一樣高或高於所述下部電極。The mold layer 145 is provided to form the lower electrode of the capacitor CP1. Therefore, the molded layer 145 may be formed as high as or higher than the lower electrode of the capacitor CP1.

模製層145可以由對於蝕刻中止層140具有蝕刻選擇性,即在給定蝕刻劑存在下以較高速率蝕刻的材料形成。模製層145也可以由能夠利用濕式蝕刻方法(下文將描述)容易地去除的材料形成。舉例來說,模製層145可以由但不限於多晶矽形成。The mold layer 145 may be formed of a material that has etching selectivity to the etch stop layer 140, that is, etches at a higher rate in the presence of a given etchant. The mold layer 145 may also be formed of a material that can be easily removed using a wet etching method (described later). For example, the mold layer 145 may be formed of, but not limited to, polysilicon.

參看圖10,在模製層145上形成罩幕圖案147。Referring to FIG. 10, a mask pattern 147 is formed on the mold layer 145.

更確切地說,所形成的在模製層145蝕刻期間用作罩幕的罩幕圖案147可以具有寬度與存儲節點孔(圖13的存儲節點孔153)基本上相同的開口自其穿過。如本文所使用,兩個元件或特徵具有“基本上相同的寬度”的表述是用於描述在形成這兩個元件或特徵期間由於製造方法中固有的特性而可能發生的誤差的範圍內,這兩個元件或特徵的寬度基本上相等。More specifically, the formed mask pattern 147 used as a mask during the etching of the mold layer 145 may have an opening having substantially the same width as the storage node hole (storage node hole 153 of FIG. 13) passing therethrough. As used herein, the expression that two elements or features have "substantially the same width" is used to describe the range of errors that may occur due to inherent characteristics in the manufacturing method during the formation of these two elements or features. The widths of the two elements or features are substantially equal.

參看圖11和圖12,模製層145是使用罩幕圖案147作為蝕刻罩幕進行蝕刻。Referring to FIGS. 11 and 12, the mold layer 145 is etched using the mask pattern 147 as an etching mask.

更確切地說,通過使用罩幕圖案147作為蝕刻罩幕對模製層145進行濕式蝕刻,暴露出存儲節點接觸窗172的頂表面。隨後,可以在存儲節點接觸窗172的暴露的頂表面上形成導電金屬層150,但本發明概念不限於此實例。也就是說,導電金屬層150可以省去。More specifically, the mold layer 145 is wet-etched by using the mask pattern 147 as an etching mask to expose the top surface of the storage node contact window 172. Subsequently, a conductive metal layer 150 may be formed on the exposed top surface of the storage node contact window 172, but the inventive concept is not limited to this example. That is, the conductive metal layer 150 can be omitted.

在形成了存儲節點孔153之後,可以去除罩幕圖案147。After the storage node holes 153 are formed, the mask pattern 147 may be removed.

參看圖13,第一電極層200是沿存儲節點孔(圖12的存儲節點孔153)的側面和底部及模製層145的頂表面形成。Referring to FIG. 13, the first electrode layer 200 is formed along the side and bottom of the storage node hole (the storage node hole 153 of FIG. 12) and the top surface of the mold layer 145.

更確切地說,形成的第一電極層200可以與存儲節點孔153及模製層145的頂表面具有相同輪廓並且不填充存儲節點孔153。More specifically, the formed first electrode layer 200 may have the same contour as the top surfaces of the storage node holes 153 and the mold layer 145 and do not fill the storage node holes 153.

第一電極層200可以包括但不限於,金屬和/或導電氧化物。也就是說,第一電極層200可以包括Pt、Ru、Ir、PtO、RuO2 、IrO2 、SrRuO3 、BaRuO3 、CaRuO3 和/或(Ba, Sr)RuO3 並且可以形成為單層或者兩層或多於兩層的疊層形式。The first electrode layer 200 may include, but is not limited to, metal and/or conductive oxide. That is, the first electrode layer 200 may include Pt, Ru, Ir, PtO, RuO 2, IrO 2, SrRuO 3, BaRuO 3, CaRuO 3 , and / or (Ba, Sr) RuO 3 and may be formed as a single layer or Two-layer or more than two-layer laminated form.

第一電極層200還可以包括金屬氮化物。舉例來說,第一電極層200可以包括Ti、TiN、W、WN、Ta、TaN、HfN、ZrN、TiAlN、TaSiN、TiSiN、TaAlN、TiBN、TiON、TiAlON、TiCN、TiAlCN和/或TiSiCN並且可以形成為單層或者兩層或多於兩層的疊層形式。The first electrode layer 200 may further include metal nitride. For example, the first electrode layer 200 may include Ti, TiN, W, WN, Ta, TaN, HfN, ZrN, TiAlN, TaSiN, TiSiN, TaAlN, TiBN, TiON, TiAlON, TiCN, TiAlCN and/or TiSiCN and may It is formed into a single layer or a laminated form of two or more layers.

第一電極層200可以通過ALD、CVD或物理氣相沉積法(physical vapor deposition,PVD)形成。第一電極層200優選是通過ALD形成,由此提供優良的步階覆蓋特性。The first electrode layer 200 may be formed by ALD, CVD, or physical vapor deposition (PVD). The first electrode layer 200 is preferably formed by ALD, thereby providing excellent step coverage characteristics.

也就是說,第一電極層200可以利用根據本發明概念的製造半導體裝置的方法形成。That is, the first electrode layer 200 may be formed using the method of manufacturing a semiconductor device according to the inventive concept.

更確切地說並且參看圖1及圖13,在存儲節點孔153的側面和底部上及模製層145的頂表面上形成第一電極層200可以包含將抑制氣體饋送至ALD裝置的腔室中並且在所述腔室中安置有基底100(步驟S11)。More specifically and referring to FIGS. 1 and 13, forming the first electrode layer 200 on the side and bottom of the storage node hole 153 and the top surface of the mold layer 145 may include feeding a suppressing gas into the chamber of the ALD device And a substrate 100 is placed in the chamber (step S11).

饋送抑制氣體(即步驟S11)可以包含饋送包括含鹵素原子的化合物或含不飽和鍵的化合物的抑制氣體。舉例來說,抑制氣體可以包括烷基鹵化物、烯基鹵化物、炔基鹵化物、烯烴、炔烴中的至少一種及其組合。抑制氣體不含氧及氮,並且可以是不與源氣體反應的氣體。Feeding the suppressing gas (ie, step S11) may include feeding a suppressing gas including a halogen atom-containing compound or an unsaturated bond-containing compound. For example, the suppressing gas may include at least one of alkyl halides, alkenyl halides, alkynyl halides, alkenes, alkynes, and combinations thereof. The suppression gas does not contain oxygen and nitrogen, and may be a gas that does not react with the source gas.

將抑制氣體饋送到腔室中,保持一段預定時間(a predetermined amount of time),所述時間足以使至少一部分抑制氣體以物理方式和/或以化學方式吸附至界定存儲節點孔153的側面和底部的表面及模製層145的頂表面上。饋送到腔室中的抑制氣體的一部分可以保持未吸附於腔室中,即,未以物理方式和/或以化學方式吸附至界定存儲節點孔153的側面和底部的表面及模製層145的頂表面上。The suppression gas is fed into the chamber for a predetermined amount of time, which is sufficient for at least a portion of the suppression gas to be physically and/or chemically adsorbed to the sides and bottom of the storage node hole 153的surface and the top surface of the molding layer 145. A portion of the inhibiting gas fed into the chamber may remain unadsorbed in the chamber, that is, not physically and/or chemically adsorbed to the surface of the side and bottom of the storage node hole 153 and the surface of the molding layer 145 On the top surface.

隨後,通過饋送第一吹掃氣體(步驟S13)吹掃未以物理方式和/或以化學方式吸附至界定存儲節點孔153的側面和底部的表面及模製層145的頂表面上的抑制氣體。惰性氣體可以用作第一吹掃氣體並且可以是Ar、He、Kr、Xe、N2 或其組合。或者,可以通過進行抽吸製程(例如,使用附接至處理腔室出口的真空泵在處理腔室中產生真空或負壓的真空抽吸製程)吹掃抑制氣體。作為又另一替代方案,可以通過同時進行第一吹掃氣體的饋送及抽吸製程來吹掃抑制氣體。Subsequently, the suppression gas that is not physically and/or chemically adsorbed to the surfaces of the side and bottom defining the storage node holes 153 and the top surface of the molding layer 145 is purged by feeding the first purge gas (step S13) . An inert gas can be used as the first purge gas and can be Ar, He, Kr, Xe, N 2 or a combination thereof. Alternatively, the suppression gas may be purged by performing a suction process (for example, a vacuum suction process in which a vacuum pump attached to an outlet of the processing chamber generates a vacuum or negative pressure in the processing chamber). As yet another alternative, the suppression gas may be purged by simultaneously performing the feeding and suction processes of the first purge gas.

隨後,將源氣體饋送到腔室中(步驟S15)。Subsequently, the source gas is fed into the chamber (step S15).

將源氣體饋送到腔室中,保持一段預定時間,所述時間足以使至少一部分源氣體與界定存儲節點孔153的側面和底部的表面及模製層145的頂表面反應,或以化學方式吸附至所述表面上。另一部分源氣體可以保持未吸附於腔室中。The source gas is fed into the chamber for a predetermined period of time, which is sufficient for at least a portion of the source gas to react with the side and bottom surfaces defining the storage node holes 153 and the top surface of the molding layer 145, or adsorb chemically To the surface. Another part of the source gas can remain unadsorbed in the chamber.

由於抑制氣體已經被吸附於界定存儲節點孔153的側面和底部的表面上及模製層145的頂表面上,故可以抑制源氣體的物理吸附。Since the suppression gas has been adsorbed on the surfaces defining the side and bottom of the storage node hole 153 and the top surface of the molding layer 145, the physical adsorption of the source gas can be suppressed.

饋送源氣體可以包含饋送含鈦類化合物的源氣體。舉例來說,鈦類化合物可以是但不限於TiCl4 。惰性氣體可以與源氣體一起饋送。舉例來說,惰性氣體可以是Ar、He、Kr、Xe、N2 或其組合。Feeding the source gas may include feeding a source gas containing a titanium-based compound. For example, the titanium-based compound may be, but is not limited to, TiCl 4 . The inert gas can be fed together with the source gas. For example, the inert gas may be Ar, He, Kr, Xe, N 2 or a combination thereof.

為了吹掃未與基底100反應的源氣體,可以饋送第二吹掃氣體(步驟S17)。In order to purge the source gas that has not reacted with the substrate 100, a second purge gas may be fed (step S17).

可以通過饋送第二吹掃氣體進行源氣體的吹掃。惰性氣體可以用作第二吹掃氣體。舉例來說,惰性氣體可以是Ar、He、Kr、Xe、N2 或其組合。或者,可以通過進行抽吸製程吹掃源氣體。作為另一替代方案,可以通過同時進行第二吹掃氣體的饋送及抽吸製程來吹掃源氣體。The purge of the source gas can be performed by feeding the second purge gas. Inert gas can be used as the second purge gas. For example, the inert gas may be Ar, He, Kr, Xe, N 2 or a combination thereof. Alternatively, the source gas can be purged by performing a suction process. As another alternative, the source gas may be purged by simultaneously performing the feeding and sucking process of the second purge gas.

隨後,通過對基底100施加偏壓,形成垂直於基底100的電場。對基底100施加偏壓可以通過各種方式進行。舉例來說,可以通過對安裝在處理腔室的頂部和底部處的電極施加偏壓,形成垂直於基底100的電場。或者,可以通過對上面載有基底100的夾盤的頂部及底部施加偏壓,形成垂直於基底100的電場。打算形成的電場的方向典型地將取決於打算饋送的反應氣體的類型。Subsequently, by applying a bias to the substrate 100, an electric field perpendicular to the substrate 100 is formed. The application of the bias voltage to the substrate 100 can be performed in various ways. For example, an electric field perpendicular to the substrate 100 can be formed by applying a bias voltage to electrodes installed at the top and bottom of the processing chamber. Alternatively, an electric field perpendicular to the substrate 100 can be formed by applying a bias to the top and bottom of the chuck on which the substrate 100 is carried. The direction of the electric field intended to be formed will typically depend on the type of reaction gas intended to be fed.

隨後,將反應氣體饋送到腔室中(步驟S19)。Subsequently, the reaction gas is fed into the chamber (step S19).

反應氣體可以被饋送到腔室中,並且接著可以在垂直於基底100形成的電場存在下轉化成等離子體。The reaction gas may be fed into the chamber, and then may be converted into plasma in the presence of an electric field formed perpendicular to the substrate 100.

轉化成等離子體的反應氣體可能具有不穩定的能態,但可以具有較高反應性。The reaction gas converted into plasma may have an unstable energy state, but may have higher reactivity.

轉化成等離子體的反應氣體與垂直於基底100形成的電場以及吸附於存儲節點孔153的側壁和底表面及模製層145的頂表面上的源氣體反應,並由此形成第一電極層200。The reaction gas converted into plasma reacts with the electric field formed perpendicular to the substrate 100 and the source gas adsorbed on the sidewall and bottom surface of the storage node hole 153 and the top surface of the mold layer 145, and thereby form the first electrode layer 200 .

吹掃不反應的一部分反應氣體。根據本發明概念的製造半導體裝置的方法的實例包含重複以上描述的步驟,即,進行超過一個循環,直至形成具有所希望的厚度的薄膜,所述循環各自包括以上描述的步驟。Purge the unreacted part of the reaction gas. An example of a method of manufacturing a semiconductor device according to the inventive concept includes repeating the steps described above, that is, performing more than one cycle until a thin film having a desired thickness is formed, each of the cycles including the steps described above.

已描述了通過形成垂直於基底100(非其上表面)的電場來形成薄膜,但為了更有效地沉積薄膜,也可以在相對於基底100(非其上表面)傾斜的方向上形成電場。It has been described that a thin film is formed by forming an electric field perpendicular to the substrate 100 (not the upper surface thereof), but in order to deposit the thin film more efficiently, the electric field may also be formed in a direction inclined with respect to the substrate 100 (not the upper surface thereof).

參看圖14及圖15,犧牲層203形成於第一電極層200上以填充存儲節點孔(圖12的存儲節點孔153)。14 and 15, the sacrificial layer 203 is formed on the first electrode layer 200 to fill the storage node hole (the storage node hole 153 of FIG. 12).

犧牲層203可以由與模製層145材料具有相同特性的材料形成。The sacrificial layer 203 may be formed of a material having the same characteristics as the material of the molding layer 145.

在形成了犧牲層203之後,使犧牲層203及第一電極層200平坦化,直至暴露出模製層145的頂表面。犧牲層203及第一電極層200的平坦化可以包含進行化學機械拋光(chemical mechanical polishing,CMP)製程。After the sacrificial layer 203 is formed, the sacrificial layer 203 and the first electrode layer 200 are planarized until the top surface of the mold layer 145 is exposed. The planarization of the sacrificial layer 203 and the first electrode layer 200 may include a chemical mechanical polishing (CMP) process.

在使犧牲層203及第一電極層200平坦化後,可以形成圓柱形下部電極層200a。下部電極層200a可以充當OCS型電容器的下部電極。After the sacrificial layer 203 and the first electrode layer 200 are planarized, the cylindrical lower electrode layer 200a may be formed. The lower electrode layer 200a may serve as a lower electrode of an OCS type capacitor.

在形成了下部電極層200a之後,可以對下部電極層200a進行熱處理製程。After the lower electrode layer 200a is formed, the lower electrode layer 200a may be subjected to a heat treatment process.

更確切地說,通過進行熱處理製程,可以使下部電極層200a的晶粒在形成介電層(圖17的介電層205a)之前充分生長。也就是說,在形成了介電層(圖17的介電層205a)之後,下部電極層200a的晶粒可能不再生長,而且介電層(圖17的介電層205a)的特性在後續製程中可能不變。More specifically, by performing a heat treatment process, the crystal grains of the lower electrode layer 200a can be fully grown before the dielectric layer (dielectric layer 205a in FIG. 17) is formed. In other words, after the dielectric layer (dielectric layer 205a in FIG. 17) is formed, the crystal grains of the lower electrode layer 200a may no longer grow, and the characteristics of the dielectric layer (dielectric layer 205a in FIG. 17) It may not change during the manufacturing process.

參看圖16,模製層145及犧牲層203被去除。Referring to FIG. 16, the mold layer 145 and the sacrificial layer 203 are removed.

模製層145及犧牲層203優選通過濕式蝕刻方法去除,由此不會引起等離子體誘導的侵襲,從而防止破壞下部電極層200a。The mold layer 145 and the sacrificial layer 203 are preferably removed by a wet etching method, thereby not causing plasma-induced attack, thereby preventing damage to the lower electrode layer 200a.

通過去除模製層145及犧牲層203,下部電極層200a的外部側壁及內部側壁都可以被暴露出來。By removing the mold layer 145 and the sacrificial layer 203, both the outer sidewall and the inner sidewall of the lower electrode layer 200a can be exposed.

參看圖17,介電層205a可以通過在下部電極層200a及蝕刻中止層140上沉積包括金屬氧化物的兩組分介電材料而形成。介電層205a可以包括高k介電材料(即,可以具有較高介電性)。Referring to FIG. 17, the dielectric layer 205a may be formed by depositing a two-component dielectric material including a metal oxide on the lower electrode layer 200a and the etching stop layer 140. The dielectric layer 205a may include a high-k dielectric material (that is, may have higher dielectric properties).

介電層205a可以通過ALD、CVD或PVD形成。介電層205a也可以利用根據本發明概念的薄膜形成方法形成。The dielectric layer 205a may be formed by ALD, CVD, or PVD. The dielectric layer 205a can also be formed using a thin film forming method according to the concept of the present invention.

在形成了介電層205a之後,可以通過在介電層205a上沉積包括金屬的材料來形成上部電極層210a。上部電極層210a也可以利用根據本發明概念的薄膜形成方法形成。After the dielectric layer 205a is formed, the upper electrode layer 210a may be formed by depositing a material including metal on the dielectric layer 205a. The upper electrode layer 210a may also be formed using a thin film forming method according to the concept of the present invention.

上部電極層210a可以沿介電層205a的表面輪廓形成,由此不會完全填充下部電極層200a與另一下部電極層200a之間的間隙。The upper electrode layer 210a may be formed along the surface profile of the dielectric layer 205a, thereby not completely filling the gap between the lower electrode layer 200a and another lower electrode layer 200a.

上部電極層210a可以通過ALD、CVD或PVD形成。上部電極層210a也可以利用根據本發明概念的薄膜形成方法形成。The upper electrode layer 210a may be formed by ALD, CVD, or PVD. The upper electrode layer 210a may also be formed using a thin film forming method according to the concept of the present invention.

參看圖18,形成罩蓋層220,所述罩蓋層覆蓋上部電極層210a的整個頂表面。罩蓋層220可以被形成以用於抑制上部電極層210a的晶粒生長及聚結。為了使用罩蓋層220有效地抑制上部電極層210a的晶粒生長,罩蓋層220可以被形成以用於填充下部電極層200a與另一下部電極層200a之間的間隙。Referring to FIG. 18, a capping layer 220 is formed that covers the entire top surface of the upper electrode layer 210a. The capping layer 220 may be formed for suppressing grain growth and coalescence of the upper electrode layer 210a. In order to effectively suppress the grain growth of the upper electrode layer 210a using the capping layer 220, the capping layer 220 may be formed to fill a gap between the lower electrode layer 200a and another lower electrode layer 200a.

罩蓋層220可以通過ALD、CVD、PVD及旋塗法(在罩蓋層220是例如旋塗玻璃(spin on glass,SOG)的情況下)之一形成。The capping layer 220 may be formed by one of ALD, CVD, PVD, and spin coating methods (in the case where the capping layer 220 is, for example, spin on glass (SOG)).

通過用以上所提到的方式形成罩蓋層220,可以製造出圖6的半導體裝置。By forming the cap layer 220 in the above-mentioned manner, the semiconductor device of FIG. 6 can be manufactured.

簡單地說,可以利用根據本發明概念的方法形成下部電極層200a及上部電極層210a。因此,可以在具有高縱橫比的孔(即存儲節點孔153)中形成具有預定寬度的下部電極層200a及上部電極層210a。In short, the lower electrode layer 200a and the upper electrode layer 210a can be formed by the method according to the concept of the present invention. Therefore, the lower electrode layer 200a and the upper electrode layer 210a having a predetermined width may be formed in a hole having a high aspect ratio (ie, the storage node hole 153).

如上文所描述,本發明概念不限於在存儲節點孔153中形成共形薄膜。也就是說,本發明概念也適用於在具有高縱橫比的孔或溝槽中形成共形薄膜。因此,術語“開口”可以描述這些特徵(存儲節點孔或其它類型的孔或溝槽)或半導體裝置的特徵的其它實例中的任一種。As described above, the inventive concept is not limited to forming a conformal thin film in the storage node hole 153. That is, the concept of the present invention is also applicable to forming a conformal thin film in a hole or trench with a high aspect ratio. Therefore, the term "opening" can describe any of these features (storage node holes or other types of holes or trenches) or other examples of features of a semiconductor device.

在下文中將參照圖19描述根據本發明概念的製造半導體裝置的方法的實例。Hereinafter, an example of a method of manufacturing a semiconductor device according to the inventive concept will be described with reference to FIG. 19.

圖19的實例與圖1的實例基本上相同,不過抑制氣體是在饋送了源氣體之後饋送。因此,以下關於圖19的實例的說明將主要集中在本實例與圖1的實例之間的差異。The example of FIG. 19 is basically the same as the example of FIG. 1, except that the suppression gas is fed after the source gas is fed. Therefore, the following description of the example of FIG. 19 will mainly focus on the differences between this example and the example of FIG. 1.

參看圖19,根據本發明概念的製造半導體裝置的方法包含饋送源氣體(步驟S21),饋送第一吹掃氣體(步驟S23),饋送抑制氣體(步驟S25),饋送第二吹掃氣體(步驟S27)及饋送反應氣體(步驟S29)。19, the method of manufacturing a semiconductor device according to the concept of the present invention includes feeding a source gas (step S21), feeding a first purge gas (step S23), feeding a suppressing gas (step S25), and feeding a second purge gas (step S25). S27) and feeding reaction gas (step S29).

步驟S21、S23、S25、S27及S29分別與圖1的步驟S15、S13、S11、S17及S19基本上相同。Steps S21, S23, S25, S27, and S29 are basically the same as steps S15, S13, S11, S17, and S19 of FIG. 1, respectively.

然而,不同於圖1的實例,饋送抑制氣體,(即步驟S25)是在饋送源氣體(即步驟S21)之後進行。也就是說,在本發明概念的這一實例中,抑制氣體的饋送是在源氣體吸附至基底上之後進行,並因此,抑制氣體可以趕走已經吸附於基底上的源氣體而被吸附至基底上。在本發明概念的這一實例中,與圖1的實例中相同,吸附於基底上的抑制氣體可以防止特定區域中源氣體的過度吸附。However, unlike the example of FIG. 1, feeding the suppressing gas (ie, step S25) is performed after feeding the source gas (ie, step S21). That is, in this example of the inventive concept, the feeding of the suppressing gas is performed after the source gas is adsorbed to the substrate, and therefore, the suppressing gas can drive off the source gas that has been adsorbed on the substrate and be adsorbed to the substrate. superior. In this example of the inventive concept, as in the example of FIG. 1, the suppressing gas adsorbed on the substrate can prevent excessive adsorption of the source gas in a specific area.

因此,根據本發明概念的製造半導體裝置的方法的這一實例也可以在基底上形成具有基本上均一的厚度的共形薄膜。Therefore, this example of the method of manufacturing a semiconductor device according to the inventive concept can also form a conformal thin film having a substantially uniform thickness on the substrate.

在下文中將參照圖20描述根據本發明概念的製造半導體裝置的方法的實例。Hereinafter, an example of a method of manufacturing a semiconductor device according to the inventive concept will be described with reference to FIG. 20.

圖20的實例與圖1的實例基本上相同,不過抑制氣體是在饋送反應氣體之後饋送。因此,以下關於圖20的實例的說明將主要集中在本實例與圖1的實例之間的差異。The example of FIG. 20 is basically the same as the example of FIG. 1, except that the suppression gas is fed after the reaction gas is fed. Therefore, the following description of the example of FIG. 20 will mainly focus on the differences between this example and the example of FIG. 1.

參看圖20,根據本發明概念的製造半導體裝置的方法包含饋送源氣體(步驟S31),饋送第一吹掃氣體(步驟S33),饋送反應氣體(步驟S35),饋送第二吹掃氣體(步驟S37)及饋送抑制氣體(步驟S39)。20, the method of manufacturing a semiconductor device according to the concept of the present invention includes feeding a source gas (step S31), feeding a first purge gas (step S33), feeding a reaction gas (step S35), and feeding a second purge gas (step S35). S37) and feeding suppression gas (step S39).

步驟S31、S33、S35、S37及S39分別與圖1的步驟S15、S13、S19、S17及S11基本上相同。Steps S31, S33, S35, S37, and S39 are basically the same as steps S15, S13, S19, S17, and S11 of FIG. 1, respectively.

饋送抑制氣體(即步驟S39)是在饋送反應氣體(即步驟S35)之後進行。抑制氣體可以趕走基底上過度吸附的源氣體及反應氣體。因此,根據本發明概念的製造半導體裝置的方法的這一實例也可以在基底上形成具有基本上均一的厚度的共形薄膜。Feeding the suppressing gas (ie, step S39) is performed after feeding the reaction gas (ie, step S35). The suppression gas can drive off excessively adsorbed source gas and reaction gas on the substrate. Therefore, this example of the method of manufacturing a semiconductor device according to the inventive concept can also form a conformal thin film having a substantially uniform thickness on the substrate.

在下文中將參照圖21描述根據本發明概念的製造半導體裝置的方法的另一實例。Hereinafter, another example of a method of manufacturing a semiconductor device according to the inventive concept will be described with reference to FIG. 21.

圖21的實例與圖1的實例基本上相同,不過源氣體和抑制氣體是一起饋送的。因此,以下關於圖21的實例的說明將主要集中在本實例與圖1的實例之間的差異。The example of FIG. 21 is basically the same as the example of FIG. 1, except that the source gas and the suppression gas are fed together. Therefore, the following description of the example of FIG. 21 will mainly focus on the differences between this example and the example of FIG. 1.

參看圖21,根據本發明概念的製造半導體裝置的方法包含饋送源氣體及抑制氣體(步驟S41),饋送第一吹掃氣體(步驟S43)及饋送反應氣體(步驟S45)。Referring to FIG. 21, the method of manufacturing a semiconductor device according to the concept of the present invention includes feeding a source gas and a suppressing gas (step S41), feeding a first purge gas (step S43), and feeding a reaction gas (step S45).

步驟S41、S43及S45分別與圖1的步驟S15和S11、S13及S19基本上相同。Steps S41, S43, and S45 are basically the same as steps S15 and S11, S13 and S19 of FIG. 1, respectively.

在本發明概念的這一實例中,源氣體和抑制氣體可以一起饋送(步驟S41)。抑制氣體可以被吸附至基底上,同時抑制源氣體吸附至基底上。因此,根據本發明概念的製造半導體裝置的方法的這一實例可以在基底上形成具有基本上均一的厚度的共形薄膜。In this example of the inventive concept, the source gas and the suppression gas may be fed together (step S41). The suppression gas can be adsorbed to the substrate while suppressing the source gas to be adsorbed to the substrate. Therefore, this example of the method of manufacturing a semiconductor device according to the inventive concept can form a conformal thin film having a substantially uniform thickness on a substrate.

在下文中將參照圖22描述根據本發明概念的製造半導體裝置的方法的另一實例。Hereinafter, another example of a method of manufacturing a semiconductor device according to the inventive concept will be described with reference to FIG. 22.

圖22的實例與圖1的實例基本上相同,不過反應氣體和抑制氣體是一起饋送的。因此,以下關於圖22的實例的說明將主要集中在本實例與圖1的實例之間的差異。The example of FIG. 22 is basically the same as the example of FIG. 1, except that the reaction gas and the suppression gas are fed together. Therefore, the following description of the example of FIG. 22 will mainly focus on the differences between this example and the example of FIG. 1.

參看圖22,根據本發明概念的製造半導體裝置的方法包含饋送源氣體(步驟S51),饋送第一吹掃氣體(步驟S53)及饋送反應氣體和抑制氣體(步驟S55)。Referring to FIG. 22, the method of manufacturing a semiconductor device according to the inventive concept includes feeding a source gas (step S51), feeding a first purge gas (step S53), and feeding a reaction gas and a suppressing gas (step S55).

步驟S51、S53及S55分別與圖1的步驟S15、S13及S19和S11基本上相同。Steps S51, S53, and S55 are basically the same as steps S15, S13, and S19 and S11 of FIG. 1, respectively.

在本發明概念的這一實例中,反應氣體和抑制氣體可以一起饋送(步驟S55)。抑制氣體可以使已經吸附於基底上的源氣體解吸附並且吹掃基底上過度吸附的源氣體。因此,根據本發明概念的製造半導體裝置的方法的這一實例可以在基底上形成共形薄膜。In this example of the inventive concept, the reaction gas and the suppression gas may be fed together (step S55). The suppression gas can desorb the source gas already adsorbed on the substrate and purge the excessively adsorbed source gas on the substrate. Therefore, this example of the method of manufacturing a semiconductor device according to the inventive concept can form a conformal thin film on a substrate.

在下文中將參照圖23和圖24描述根據本發明概念的半導體裝置製造設備的實例。Hereinafter, an example of a semiconductor device manufacturing apparatus according to the inventive concept will be described with reference to FIGS. 23 and 24.

在下文中將以使用等離子體形成薄膜為例描述根據本發明概念的半導體裝置製造設備的一些實例。然而,本發明概念不限於使用等離子體形成薄膜。也就是說,根據本發明概念的半導體裝置製造設備也適用於不使用等離子體形成薄膜的半導體裝置製造設備,例如使用熱形成薄膜的半導體裝置製造設備。Hereinafter, some examples of semiconductor device manufacturing equipment according to the concept of the present invention will be described by using plasma to form a thin film as an example. However, the inventive concept is not limited to the use of plasma to form thin films. That is, the semiconductor device manufacturing equipment according to the concept of the present invention is also applicable to semiconductor device manufacturing equipment that does not use plasma to form a thin film, for example, semiconductor device manufacturing equipment that uses heat to form a thin film.

圖23是說明根據本發明概念的一些實例的半導體裝置製造設備的示意圖。FIG. 23 is a schematic diagram illustrating semiconductor device manufacturing equipment according to some examples of the inventive concept.

參看圖23,半導體裝置製造設備包含腔室310、基底支撐件320、氣體注入器330、抑制氣體供應器410、源氣體供應器420、反應氣體供應器430及吹掃氣體供應器440。23, the semiconductor device manufacturing equipment includes a chamber 310, a substrate support 320, a gas injector 330, a suppression gas supplier 410, a source gas supplier 420, a reaction gas supplier 430, and a purge gas supplier 440.

腔室310可以呈圓柱形並且可以包含反應空間。腔室310可以另外包含泵340、壓力控制器312及加熱器314。The chamber 310 may have a cylindrical shape and may contain a reaction space. The chamber 310 may additionally include a pump 340, a pressure controller 312, and a heater 314.

泵340可以連接至腔室310以抽出腔室310中的雜質及反應副產物。另外,泵340可以在腔室310內形成並維持真空。The pump 340 may be connected to the chamber 310 to pump out impurities and reaction byproducts in the chamber 310. In addition, the pump 340 may form and maintain a vacuum in the chamber 310.

壓力控制器312可以控制腔室310內部的壓力。另外,加熱器314可以加熱腔室310的內部以提高反應性。儘管未具體說明,但腔室310可以另外包含冷卻器,用於冷卻加熱的腔室310。The pressure controller 312 can control the pressure inside the chamber 310. In addition, the heater 314 may heat the inside of the chamber 310 to improve reactivity. Although not specifically illustrated, the chamber 310 may additionally include a cooler for cooling the heated chamber 310.

基底支撐件320可以安置於腔室310中以容納基底S。基底支撐件320可以固定至腔室310的下部,而且可以視需要在腔室310內升高和/或旋轉。The substrate support 320 may be disposed in the chamber 310 to accommodate the substrate S. The substrate support 320 may be fixed to the lower part of the chamber 310, and may be elevated and/or rotated within the chamber 310 as needed.

基底S可以是矽基底,但本發明概念不限於此。也就是說,可以形成薄膜的各種其它基底都可以用作基底S。The substrate S may be a silicon substrate, but the concept of the invention is not limited thereto. That is, various other substrates that can be formed into thin films can be used as the substrate S.

儘管未具體說明,但基底支撐件320可以包含用於將基底S裝載於基底支撐件320的頂表面上的裝置。舉例來說,基底支撐件320可以包含用於裝載及卸載基底S的多個升降銷(lift pin)部分。Although not specifically illustrated, the substrate support 320 may include a device for loading the substrate S on the top surface of the substrate support 320. For example, the substrate support 320 may include a plurality of lift pin parts for loading and unloading the substrate S.

基底支撐件320可以連接至下部電源325。下部電源325可以連接至基底支撐件320以向基底支撐件320提供電壓。下部電源325可以是交流電(alternating current,AC)電源,但本發明概念不限於此。也就是說,或者,下部電源325可以是直流電(direct current,DC)電源。The substrate support 320 may be connected to the lower power source 325. The lower power source 325 may be connected to the substrate support 320 to provide voltage to the substrate support 320. The lower power supply 325 may be an alternating current (AC) power supply, but the concept of the present invention is not limited to this. That is, alternatively, the lower power source 325 may be a direct current (DC) power source.

氣體注入器330可以安置於腔室310中並且可以將氣體注入腔室310中。更確切地說,氣體注入器330可以連接至源氣體供應器420、反應氣體供應器430、抑制氣體供應器410或吹掃氣體供應器440,以將各種氣體注入腔室310中。氣體注入器330可以固定至腔室310的上部,而且可以視需要在腔室310內升高和/或旋轉。The gas injector 330 may be disposed in the chamber 310 and may inject gas into the chamber 310. More specifically, the gas injector 330 may be connected to the source gas supplier 420, the reaction gas supplier 430, the suppression gas supplier 410, or the purge gas supplier 440 to inject various gases into the chamber 310. The gas injector 330 may be fixed to the upper part of the chamber 310, and may be raised and/or rotated within the chamber 310 as needed.

氣體注入器330可以連接至上部電源335。上部電源335可以連接至氣體注入器330以向氣體注入器330提供電壓。上部電源335可以是AC電源,但本發明概念不限於此。也就是說,或者,上部電源335可以是DC電源。The gas injector 330 may be connected to the upper power source 335. The upper power source 335 may be connected to the gas injector 330 to provide voltage to the gas injector 330. The upper power source 335 may be an AC power source, but the inventive concept is not limited thereto. That is, alternatively, the upper power source 335 may be a DC power source.

在一些實例中,下部電源325及上部電源335可以在腔室310內部形成電場。舉例來說,下部電源325及上部電源335可以在腔室310內部形成通過基底支撐件320及氣體注入器330的電場。In some examples, the lower power source 325 and the upper power source 335 may form an electric field inside the chamber 310. For example, the lower power source 325 and the upper power source 335 may form an electric field passing through the substrate support 320 and the gas injector 330 inside the chamber 310.

因此,注入腔室310中的氣體可以等離子化(plasmatized)。舉例來說,供應至腔室310中的反應氣體可以在由下部電源325及上部電源335形成的電場作用下等離子化。等離子化的氣體可能具有不穩定能態,但可以具有較高反應性。Therefore, the gas injected into the chamber 310 may be plasmatized. For example, the reaction gas supplied into the chamber 310 may be plasma-ized under the action of the electric field formed by the lower power source 325 and the upper power source 335. The plasmaized gas may have an unstable energy state, but may have higher reactivity.

抑制氣體供應器410可以連接至腔室310並且可以將抑制氣體供應至腔室310中。在一些實例中,抑制氣體供應器410可以通過第一閥410V控制並且可以連接至氣體注入器330以將抑制氣體供應至腔室310中。The suppression gas supplier 410 may be connected to the chamber 310 and may supply the suppression gas into the chamber 310. In some examples, the suppression gas supplier 410 may be controlled by the first valve 410V and may be connected to the gas injector 330 to supply the suppression gas into the chamber 310.

源氣體供應器420可以連接至腔室310並且可以將源氣體供應至腔室310中。在一些實例中,源氣體供應器420可以通過第二閥420V控制並且可以連接至氣體注入器330以將源氣體供應至腔室310中。The source gas supplier 420 may be connected to the chamber 310 and may supply source gas into the chamber 310. In some examples, the source gas supplier 420 may be controlled by the second valve 420V and may be connected to the gas injector 330 to supply the source gas into the chamber 310.

反應氣體供應器430可以連接至腔室310並且可以將反應氣體供應至腔室310中。在一些實例中,反應氣體供應器430可以通過第三閥430V控制並且可以連接至氣體注入器330以將反應氣體供應至腔室310中。The reaction gas supplier 430 may be connected to the chamber 310 and may supply the reaction gas into the chamber 310. In some examples, the reaction gas supplier 430 may be controlled by the third valve 430V and may be connected to the gas injector 330 to supply the reaction gas into the chamber 310.

吹掃氣體供應器440可以連接至腔室310並且可以將吹掃氣體供應至腔室310中。在一些實例中,吹掃氣體供應器440可以通過第一閥410V、第二閥420V及第三閥430V控制並且可以連接至氣體注入器330以將吹掃氣體供應至腔室310中。The purge gas supplier 440 may be connected to the chamber 310 and may supply the purge gas into the chamber 310. In some examples, the purge gas supplier 440 may be controlled by the first valve 410V, the second valve 420V, and the third valve 430V and may be connected to the gas injector 330 to supply the purge gas into the chamber 310.

半導體裝置製造設備可以包含抑制氣體控制器412,用於控制抑制氣體的蒸氣壓。抑制氣體控制器412可以連接至抑制氣體供應器410以控制抑制氣體的蒸氣壓。The semiconductor device manufacturing equipment may include a suppressed gas controller 412 for controlling the vapor pressure of the suppressed gas. The suppressed gas controller 412 may be connected to the suppressed gas supplier 410 to control the vapor pressure of the suppressed gas.

更確切地說,抑制氣體控制器412可以包含用於加熱或冷卻抑制氣體的裝置。在抑制氣體控制器412加熱抑制氣體的情況下,可以增加抑制氣體的蒸氣壓。在此情況下,抑制氣體可以在很大程度上抑制源氣體的過度吸附。另一方面,在抑制氣體控制器412冷卻抑制氣體的情況下,可以降低抑制氣體的蒸氣壓。在此情況下,抑制氣體可以在較低程度上抑制源氣體的過度吸附。也就是說,抑制氣體控制器412可以控制供應至腔室310中的抑制氣體並因此可以控制共形薄膜的形成。More specifically, the suppressed gas controller 412 may include a device for heating or cooling the suppressed gas. In the case where the suppressed gas controller 412 heats the suppressed gas, the vapor pressure of the suppressed gas can be increased. In this case, the suppression gas can suppress excessive adsorption of the source gas to a large extent. On the other hand, when the suppressed gas controller 412 cools the suppressed gas, the vapor pressure of the suppressed gas can be lowered. In this case, the suppression gas can suppress excessive adsorption of the source gas to a relatively low degree. That is, the suppression gas controller 412 can control the suppression gas supplied into the chamber 310 and thus can control the formation of the conformal thin film.

在下文中將參照圖24描述半導體裝置製造設備的操作。Hereinafter, the operation of the semiconductor device manufacturing equipment will be described with reference to FIG. 24.

圖24是說明操作圖23的半導體裝置製造設備的時序圖。更確切地說,圖24可以是例如顯示在原子層沉積期內將氣體供應至腔室310中的時序的時序圖。FIG. 24 is a timing chart explaining the operation of the semiconductor device manufacturing equipment of FIG. 23. More specifically, FIG. 24 may be, for example, a timing diagram showing the timing of supplying gas into the chamber 310 during the atomic layer deposition period.

參看圖24,第一閥410V可以為抑制氣體提供管道。也就是說,可以將抑制氣體從抑制氣體供應器410供應至腔室310中的基底S上。Referring to Fig. 24, the first valve 410V may provide a pipe for suppressing gas. That is, the suppression gas can be supplied from the suppression gas supplier 410 onto the substrate S in the chamber 310.

之後,第一閥410V、第二閥420V及第三閥430V可以阻止抑制氣體並且為第一吹掃氣體提供管道。也就是說,可以將第一吹掃氣體從吹掃氣體供應器440供應至腔室310中的基底S上。第一吹掃氣體可以吹掃未吸附於基底S上的抑制氣體。After that, the first valve 410V, the second valve 420V, and the third valve 430V can block the suppression gas and provide a pipe for the first purge gas. That is, the first purge gas may be supplied from the purge gas supplier 440 onto the substrate S in the chamber 310. The first purge gas can purge the suppression gas that is not adsorbed on the substrate S.

之後,第二閥420V可以阻止第一吹掃氣體並為源氣體提供管道。也就是說,可以將源氣體從源氣體供應器420供應至腔室310中的基底S上。After that, the second valve 420V can block the first purge gas and provide a pipe for the source gas. That is, the source gas may be supplied from the source gas supplier 420 onto the substrate S in the chamber 310.

之後,第一閥410V、第二閥420V及第三閥430V可以阻止源氣體並為第二吹掃氣體提供管道。也就是說,可以將第二吹掃氣體從吹掃氣體供應器440供應至腔室310中的基底S上。第二吹掃氣體可以吹掃未吸附於基底S上的源氣體。After that, the first valve 410V, the second valve 420V, and the third valve 430V can block the source gas and provide a pipe for the second purge gas. That is, the second purge gas may be supplied from the purge gas supplier 440 to the substrate S in the chamber 310. The second purge gas can purge the source gas that is not adsorbed on the substrate S.

之後,第三閥430V可以阻止第二吹掃氣體並為反應氣體提供管道。也就是說,可以將反應氣體從反應氣體供應器430供應至腔室310中的基底S上。因此,反應氣體可以與吸附於基底S上的源氣體反應。接著,反應氣體可以在腔室310中在下部電源325及上部電源335作用下等離子化。等離子化的反應氣體可以更好地與源氣體反應。然而,如上文所描述,使用等離子體形成薄膜只是示例性的。舉例來說,可以使用提供至腔室310的熱,使反應氣體與源氣體反應。After that, the third valve 430V can block the second purge gas and provide a pipe for the reaction gas. That is, the reaction gas may be supplied from the reaction gas supplier 430 onto the substrate S in the chamber 310. Therefore, the reaction gas can react with the source gas adsorbed on the substrate S. Then, the reaction gas can be plasmaized in the chamber 310 under the action of the lower power source 325 and the upper power source 335. The plasma reaction gas can better react with the source gas. However, as described above, the use of plasma to form a thin film is only exemplary. For example, the heat supplied to the chamber 310 may be used to react the reaction gas with the source gas.

之後,第一閥410V、第二閥420V及第三閥430V可以阻止反應氣體並為第三吹掃氣體提供管道。也就是說,可以將第三吹掃氣體從吹掃氣體供應器440供應至腔室310中的基底S上。因此,第三吹掃氣體可以吹掃未反應的源氣體及反應氣體。After that, the first valve 410V, the second valve 420V, and the third valve 430V can block the reaction gas and provide a pipe for the third purge gas. That is, the third purge gas may be supplied from the purge gas supplier 440 onto the substrate S in the chamber 310. Therefore, the third purge gas can purge unreacted source gas and reaction gas.

因此,半導體裝置製造設備可以提供可靠性改善的半導體裝置。Therefore, the semiconductor device manufacturing equipment can provide a semiconductor device with improved reliability.

在下文中將參照圖25描述根據本發明概念的半導體裝置製造設備的實例。Hereinafter, an example of semiconductor device manufacturing equipment according to the inventive concept will be described with reference to FIG. 25.

圖25是說明根據本發明概念的一些實例的半導體裝置製造設備的示意圖。FIG. 25 is a schematic diagram illustrating semiconductor device manufacturing equipment according to some examples of the inventive concept.

在下文中將主要集中在根據圖25的實例與圖23和圖24的實例的差異描述圖25的實例的半導體裝置製造設備。Hereinafter, the semiconductor device manufacturing equipment of the example of FIG. 25 will be mainly focused on describing the difference between the example of FIG. 25 and the examples of FIGS. 23 and 24.

參看圖25,半導體裝置製造設備包含第一吹掃氣體供應器440a、第二吹掃氣體供應器440b及第三吹掃氣體供應器440c。Referring to FIG. 25, the semiconductor device manufacturing equipment includes a first purge gas supplier 440a, a second purge gas supplier 440b, and a third purge gas supplier 440c.

第一吹掃氣體供應器440a、第二吹掃氣體供應器440b及第三吹掃氣體供應器440c可以分別連接至抑制氣體供應器410、源氣體供應器420及反應氣體供應器430。The first purge gas supplier 440a, the second purge gas supplier 440b, and the third purge gas supplier 440c may be connected to the suppression gas supplier 410, the source gas supplier 420, and the reaction gas supplier 430, respectively.

更確切地說,第一吹掃氣體供應器440a可以連接至腔室310及抑制氣體供應器410。因此,第一吹掃氣體供應器440a可以供應第一吹掃氣體以吹掃腔室310中的抑制氣體。More specifically, the first purge gas supplier 440a may be connected to the chamber 310 and the suppression gas supplier 410. Therefore, the first purge gas supplier 440a may supply the first purge gas to purge the suppression gas in the chamber 310.

第一閥410V'可以連接至第一吹掃氣體供應器440a及抑制氣體供應器410。也就是說,第一閥410V'可以為第一吹掃氣體或抑制氣體提供管道。舉例來說,第一閥410V'可以阻止第一吹掃氣體並為抑制氣體提供管道,或可以阻止抑制氣體並為第一吹掃氣體提供管道。The first valve 410V′ may be connected to the first purge gas supplier 440a and the suppression gas supplier 410. That is, the first valve 410V' can provide a pipe for the first purge gas or suppression gas. For example, the first valve 410V' can block the first purge gas and provide a pipe for the suppression gas, or can block the suppression gas and provide a pipe for the first purge gas.

第二吹掃氣體供應器440b可以連接至腔室310及源氣體供應器420。因此,第二吹掃氣體供應器440b可以供應第二吹掃氣體以吹掃腔室310中的源氣體。The second purge gas supplier 440b may be connected to the chamber 310 and the source gas supplier 420. Therefore, the second purge gas supplier 440b may supply the second purge gas to purge the source gas in the chamber 310.

第二閥420V'可以連接至第二吹掃氣體供應器440b及源氣體供應器420。也就是說,第二閥420V'可以為第二吹掃氣體或源氣體提供管道。舉例來說,第二閥420V'可以阻止第二吹掃氣體並為源氣體提供管道,或可以阻止源氣體並為第二吹掃氣體提供管道。The second valve 420V′ may be connected to the second purge gas supplier 440b and the source gas supplier 420. That is, the second valve 420V' can provide a pipe for the second purge gas or source gas. For example, the second valve 420V' may block the second purge gas and provide a pipe for the source gas, or may block the source gas and provide a pipe for the second purge gas.

第三吹掃氣體供應器440c可以連接至腔室310及反應氣體供應器430。因此,第三吹掃氣體供應器440c可以供應第三吹掃氣體以吹掃腔室310中的反應氣體。The third purge gas supplier 440c may be connected to the chamber 310 and the reaction gas supplier 430. Therefore, the third purge gas supplier 440c may supply the third purge gas to purge the reaction gas in the chamber 310.

第三閥430V'可以連接至第三吹掃氣體供應器440c及反應氣體供應器430。也就是說,第三閥430V'可以為第三吹掃氣體或反應氣體提供管道。舉例來說,第三閥430V'可以阻止第三吹掃氣體並為反應氣體提供管道,或可以阻止反應氣體並為第三吹掃氣體提供管道。The third valve 430V′ may be connected to the third purge gas supplier 440c and the reaction gas supplier 430. That is, the third valve 430V' can provide a pipe for the third purge gas or reaction gas. For example, the third valve 430V' may block the third purge gas and provide a pipe for the reaction gas, or may block the reaction gas and provide a pipe for the third purge gas.

在下文中將參照圖26描述根據本發明概念的一些實例的半導體裝置製造設備。Hereinafter, semiconductor device manufacturing equipment according to some examples of the inventive concept will be described with reference to FIG. 26.

圖26是說明根據本發明概念的一些實例的半導體裝置製造設備的示意圖。FIG. 26 is a schematic diagram illustrating semiconductor device manufacturing equipment according to some examples of the inventive concept.

在下文中將主要集中在與根據圖23至圖25的實例中的任一個的半導體裝置製造設備的差異描述根據圖26的實例的半導體裝置製造設備。Hereinafter, the semiconductor device manufacturing equipment according to the example of FIG. 26 will be described mainly focusing on differences from the semiconductor device manufacturing equipment according to any one of the examples of FIGS. 23 to 25.

參看圖26,半導體裝置製造設備包含氣體箱500。Referring to FIG. 26, the semiconductor device manufacturing equipment includes a gas box 500.

抑制氣體供應器410及源氣體供應器420被安置於氣體箱500中。也就是說,氣體箱500可以將抑制氣體及源氣體中的至少一種提供至腔室310。The suppression gas supplier 410 and the source gas supplier 420 are installed in the gas box 500. That is, the gas box 500 can provide at least one of the suppressed gas and the source gas to the chamber 310.

更確切地說,氣體箱500可以包含第四閥500V。第四閥500V可以連接至抑制氣體供應器410及源氣體供應器420。也就是說,第四閥500V可以為抑制氣體及源氣體中的至少一種提供管道。舉例來說,第四閥500V可以阻止源氣體並為抑制氣體提供管道,或可以阻止抑制氣體並為源氣體提供管道。或者,第四閥500V可以同時為抑制氣體及源氣體提供管道。另外, 半導體裝置製造設備包含第一閥410V'、第二閥420V'及第三閥430V'。More specifically, the gas tank 500 may include a fourth valve 500V. The fourth valve 500V may be connected to the suppression gas supplier 410 and the source gas supplier 420. In other words, the fourth valve 500V can provide a pipe for at least one of the suppressed gas and the source gas. For example, the fourth valve 500V may block the source gas and provide a pipe for the suppressed gas, or may block the suppressed gas and provide a pipe for the source gas. Alternatively, the fourth valve 500V can provide pipes for both the suppressed gas and the source gas at the same time. In addition, the semiconductor device manufacturing facility includes a first valve 410V', a second valve 420V', and a third valve 430V'.

第一吹掃氣體供應器440a'可以連接至腔室310及氣體箱500。更確切地說,第一吹掃氣體供應器440a'可以連接至抑制氣體供應器410及源氣體供應器420。因此,第一吹掃氣體供應器440a'可以吹掃供應至腔室310中的抑制氣體及源氣體中的至少一種。The first purge gas supplier 440a' may be connected to the chamber 310 and the gas box 500. More specifically, the first purge gas supplier 440a' may be connected to the suppression gas supplier 410 and the source gas supplier 420. Therefore, the first purge gas supplier 440a' can purge at least one of the suppression gas and the source gas supplied into the chamber 310.

儘管已經參照本發明概念的實例具體地顯示並描述本發明概念,但本領域普通技術人員應瞭解,在不脫離所附權利要求書所界定的本發明概念的精神和範圍的情況下,可以對所公開的實例的形式及細節作出各種修改。因此,預期所公開的實例在所有方面都被視為說明性和非限制性的,參考所附權利要求書而非前述說明指示本發明概念的範圍。Although the concept of the invention has been specifically shown and described with reference to the examples of the concept of the invention, those of ordinary skill in the art should understand that without departing from the spirit and scope of the concept of the invention as defined by the appended claims, they can Various modifications have been made to the form and details of the disclosed examples. Therefore, it is expected that the disclosed examples are to be regarded as illustrative and non-limiting in all aspects, and reference to the appended claims rather than the foregoing description indicates the scope of the inventive concept.

10‧‧‧基底 11‧‧‧孔 100‧‧‧基底 120‧‧‧閘電極 125‧‧‧間隙壁 130‧‧‧場氧化物層 135‧‧‧第一層間介電層 137‧‧‧第二層間介電層 140‧‧‧蝕刻中止層 145‧‧‧模製層 147‧‧‧罩幕圖案 150‧‧‧導電金屬層 153‧‧‧存儲節點孔 162‧‧‧位線接觸窗 164‧‧‧位線 172‧‧‧存儲節點接觸窗 200‧‧‧第一電極層 200a‧‧‧下部電極層 203‧‧‧犧牲層 205a‧‧‧介電層 210a‧‧‧上部電極層 220‧‧‧罩蓋層 310‧‧‧腔室 312‧‧‧壓力控制器 314‧‧‧加熱器 320‧‧‧基底支撐件 325‧‧‧下部電源 330‧‧‧氣體注入器 335‧‧‧上部電源 340‧‧‧泵 410‧‧‧抑制氣體供應器 410V‧‧‧第一閥 410V'‧‧‧第一閥 412‧‧‧抑制氣體控制器 420‧‧‧源氣體供應器 420V‧‧‧第二閥 420V'‧‧‧第二閥 430‧‧‧反應氣體供應器 430V‧‧‧第三閥 430V'‧‧‧第三閥 440‧‧‧吹掃氣體供應器 440a‧‧‧第一吹掃氣體供應器 440a'‧‧‧第一吹掃氣體供應器 440b‧‧‧第二吹掃氣體供應器 440c‧‧‧第三吹掃氣體供應器 500‧‧‧氣體箱 500V‧‧‧第四閥 A‧‧‧上表面 B‧‧‧側壁 C‧‧‧下表面 a1‧‧‧吸附程度 a2‧‧‧吸附程度 c1‧‧‧吸附程度 c2‧‧‧吸附程度 ta1‧‧‧厚度 ta2‧‧‧厚度 tb1‧‧‧厚度 tb2‧‧‧厚度 tc1‧‧‧厚度 tc2‧‧‧厚度 CP1‧‧‧電容器 H1‧‧‧溝槽 H2‧‧‧溝槽 L1‧‧‧薄膜 L2‧‧‧薄膜 S‧‧‧基底 S11、S13、S15、S17、S19、S20、S21、S23、S25、S27、S29、S31、S33、S35、S37、S39、S41、S43、S45、S51、S53、S55‧‧‧步驟 10‧‧‧Base 11‧‧‧Hole 100‧‧‧Base 120‧‧‧Gate electrode 125‧‧‧Interstitial Wall 130‧‧‧Field oxide layer 135‧‧‧The first interlayer dielectric layer 137‧‧‧Second interlayer dielectric layer 140‧‧‧Etching stop layer 145‧‧‧molded layer 147‧‧‧Mask pattern 150‧‧‧Conductive metal layer 153‧‧‧Storage node hole 162‧‧‧Bit line contact window 164‧‧‧Bit Line 172‧‧‧Storage Node Contact Window 200‧‧‧First electrode layer 200a‧‧‧Lower electrode layer 203‧‧‧Sacrifice layer 205a‧‧‧Dielectric layer 210a‧‧‧Upper electrode layer 220‧‧‧Cover layer 310‧‧‧ Chamber 312‧‧‧Pressure Controller 314‧‧‧Heater 320‧‧‧Base support 325‧‧‧Lower power supply 330‧‧‧Gas injector 335‧‧‧Upper power supply 340‧‧‧Pump 410‧‧‧Suppression gas supply 410V‧‧‧First valve 410V'‧‧‧First valve 412‧‧‧Suppressing Gas Controller 420‧‧‧Source Gas Supply 420V‧‧‧Second valve 420V'‧‧‧Second valve 430‧‧‧Reactive Gas Supply 430V‧‧‧Third valve 430V'‧‧‧Third valve 440‧‧‧Purge gas supply 440a‧‧‧First purge gas supply 440a'‧‧‧First purge gas supply 440b‧‧‧Second purge gas supply 440c‧‧‧Third purge gas supply 500‧‧‧Gas Box 500V‧‧‧Fourth valve A‧‧‧Upper surface B‧‧‧Sidewall C‧‧‧Lower surface a1‧‧‧Adsorption degree a2‧‧‧Adsorption degree c1‧‧‧Adsorption degree c2‧‧‧Adsorption degree ta1‧‧‧Thickness ta2‧‧‧Thickness tb1‧‧‧Thickness tb2‧‧‧Thickness tc1‧‧‧Thickness tc2‧‧‧Thickness CP1‧‧‧Capacitor H1‧‧‧Groove H2‧‧‧Groove L1‧‧‧Film L2‧‧‧Film S‧‧‧Base S11, S13, S15, S17, S19, S20, S21, S23, S25, S27, S29, S31, S33, S35, S37, S39, S41, S43, S45, S51, S53, S55‧‧‧Steps

圖1是說明根據本發明概念的一些實例的製造半導體裝置的方法的流程圖。 圖2是說明根據本發明概念的一些實例的製造半導體裝置的方法的原理的圖。 圖3A及圖3B是說明根據本發明概念的製造半導體裝置的方法的一個實例(圖3A)及供比較的製造半導體裝置的方法(圖3B)的截面圖。 圖4A及圖4B是說明由根據本發明概念的製造半導體裝置的方法形成的薄膜的一個實例(圖4B)及由供比較的方法形成的薄膜的一個實例(圖4A)的截面圖。 圖5A及圖5B提供的照片顯示由根據本發明概念的製造半導體裝置的方法的一個實例形成的薄膜(圖5B)及由用於與根據本發明概念的方法相比較的方法形成的薄膜(圖5A)。 圖6、圖7、圖8、圖9、圖10、圖11、圖12、圖13、圖14、圖15、圖16、圖17及圖18是在製造過程期間的半導體裝置的截面圖並且同時說明了根據本發明概念的製造所述半導體裝置的方法的實例。 圖19是說明根據本發明概念的一些實例的製造半導體裝置的方法的流程圖。 圖20是說明根據本發明概念的一些實例的製造半導體裝置的方法的流程圖。 圖21是說明根據本發明概念的一些實例的製造半導體裝置的方法的流程圖。 圖22是說明根據本發明概念的一些實例的製造半導體裝置的方法的流程圖。 圖23是說明根據本發明概念的一些實例的半導體裝置製造設備的示意圖。 圖24是說明操作圖23的半導體裝置製造設備的時序圖(timing diagram)。 圖25是說明根據本發明概念的一些實例的半導體裝置製造設備的示意圖。 圖26是說明根據本發明概念的一些實例的半導體裝置製造設備的示意圖。FIG. 1 is a flowchart illustrating a method of manufacturing a semiconductor device according to some examples of the inventive concept. FIG. 2 is a diagram illustrating the principle of a method of manufacturing a semiconductor device according to some examples of the inventive concept. 3A and 3B are cross-sectional views illustrating an example of a method of manufacturing a semiconductor device according to the concept of the present invention (FIG. 3A) and a method of manufacturing a semiconductor device (FIG. 3B) for comparison. 4A and 4B are cross-sectional views illustrating an example of a thin film formed by a method of manufacturing a semiconductor device according to the concept of the present invention (FIG. 4B) and an example of a thin film formed by a method for comparison (FIG. 4A ). 5A and 5B provide photos showing a thin film formed by an example of a method of manufacturing a semiconductor device according to the inventive concept (FIG. 5B) and a thin film formed by a method for comparison with the method according to the inventive concept (FIG. 5A). 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10, FIG. 11, FIG. 12, FIG. 13, FIG. 14, FIG. 15, FIG. 16, FIG. 17, and FIG. 18 are cross-sectional views of the semiconductor device during the manufacturing process and At the same time, an example of a method of manufacturing the semiconductor device according to the concept of the present invention is explained. FIG. 19 is a flowchart illustrating a method of manufacturing a semiconductor device according to some examples of the inventive concept. FIG. 20 is a flowchart illustrating a method of manufacturing a semiconductor device according to some examples of the inventive concept. FIG. 21 is a flowchart illustrating a method of manufacturing a semiconductor device according to some examples of the inventive concept. FIG. 22 is a flowchart illustrating a method of manufacturing a semiconductor device according to some examples of the inventive concept. FIG. 23 is a schematic diagram illustrating semiconductor device manufacturing equipment according to some examples of the inventive concept. FIG. 24 is a timing diagram illustrating the operation of the semiconductor device manufacturing equipment of FIG. 23. FIG. 25 is a schematic diagram illustrating semiconductor device manufacturing equipment according to some examples of the inventive concept. FIG. 26 is a schematic diagram illustrating semiconductor device manufacturing equipment according to some examples of the inventive concept.

S11、S13、S15、S17、S19、S20‧‧‧步驟 S11, S13, S15, S17, S19, S20‧‧‧Step

Claims (8)

一種製造半導體裝置的方法,包括:提供基底;以及利用以下製程在所述基底上形成薄膜,所述製程包括:將抑制氣體饋送至所述基底上;饋送源氣體;饋送反應氣體;以及饋送包括惰性氣體的吹掃氣體,其中所述抑制氣體抑制所述源氣體被所述基底物理吸附,所述源氣體包括鈦類化合物,所述反應氣體包括氮化物類化合物,所述抑制氣體包括烷基鹵化物、烯基鹵化物、炔基鹵化物、烯烴及炔烴中的至少一種,所述烷基鹵化物、所述烯基鹵化物、所述炔基鹵化物、所述烯烴及所述炔烴各自包括含有1至10個碳原子的烴基,且所述烷基鹵化物、所述烯基鹵化物及所述炔基鹵化物各自更包含1至10個鹵素原子。 A method of manufacturing a semiconductor device includes: providing a substrate; and forming a thin film on the substrate using the following process, the process including: feeding a suppressing gas onto the substrate; feeding a source gas; feeding a reaction gas; and feeding includes A purge gas of an inert gas, wherein the suppression gas suppresses the source gas from being physically adsorbed by the substrate, the source gas includes a titanium compound, the reaction gas includes a nitride compound, and the suppression gas includes an alkyl group. At least one of halide, alkenyl halide, alkynyl halide, alkene and alkyne, said alkyl halide, said alkenyl halide, said alkynyl halide, said alkene and said alkyne The hydrocarbons each include a hydrocarbon group containing 1 to 10 carbon atoms, and the alkyl halide, the alkenyl halide, and the alkynyl halide each further contain 1 to 10 halogen atoms. 如申請專利範圍第1項所述的製造半導體裝置的方法,其中所述饋送所述抑制氣體包括在所述饋送所述反應氣體之後,饋送所述抑制氣體。 The method of manufacturing a semiconductor device as described in claim 1, wherein the feeding of the suppressing gas includes feeding the suppressing gas after the feeding of the reaction gas. 如申請專利範圍第1項所述的製造半導體裝置的方法,其中所述吹掃氣體包括第一吹掃氣體、第二吹掃氣體以及第三吹掃氣體,以及 所述饋送所述吹掃氣體包括在所述饋送所述抑制氣體之後饋送所述第一吹掃氣體,在所述饋送所述源氣體之後饋送所述第二吹掃氣體,以及在所述饋送所述反應氣體之後饋送所述第三吹掃氣體。 The method of manufacturing a semiconductor device according to the first item of the scope of patent application, wherein the purge gas includes a first purge gas, a second purge gas, and a third purge gas, and The feeding of the purge gas includes feeding the first purge gas after the feeding of the suppression gas, feeding the second purge gas after the feeding of the source gas, and after the feeding The reaction gas is then fed with the third purge gas. 如申請專利範圍第1項所述的製造半導體裝置的方法,其中所述抑制氣體是與所述源氣體一起饋送的。 The method of manufacturing a semiconductor device as described in claim 1, wherein the suppression gas is fed together with the source gas. 如申請專利範圍第1項所述的製造半導體裝置的方法,其中所述抑制氣體是與所述反應氣體一起饋送的。 The method of manufacturing a semiconductor device as described in the scope of patent application 1, wherein the suppression gas is fed together with the reaction gas. 一種製造半導體裝置的方法,包括:在基底上形成具有三維(3D)圓柱形結構的下部電極層;在所述下部電極層上共形地形成介電層;以及在所述介電層上共形地形成上部電極層,其中所述形成上部電極層包括將含鹵素的抑制氣體饋送於所述基底上,饋送含鈦的源氣體,饋送含氮的反應氣體及饋送含惰性氣體的吹掃氣體,所述源氣體包括鈦類化合物,所述反應氣體包括氮化物類化合物,所述抑制氣體包括烷基鹵化物、烯基鹵化物、炔基鹵化物、烯烴及炔烴中的至少一種,所述烷基鹵化物、所述烯基鹵化物、所述炔基鹵化物、所述烯烴及所述炔烴各自包括含有1至10個碳原子的烴基,且所述烷基鹵化物、所述烯基鹵化物及所述炔基鹵化物各自更包含1至10個鹵素原子。 A method of manufacturing a semiconductor device includes: forming a lower electrode layer having a three-dimensional (3D) cylindrical structure on a substrate; forming a dielectric layer conformally on the lower electrode layer; The upper electrode layer is formed in a manner, wherein the forming of the upper electrode layer includes feeding a halogen-containing suppressing gas on the substrate, feeding a source gas containing titanium, feeding a reaction gas containing nitrogen, and feeding a purge gas containing an inert gas The source gas includes a titanium compound, the reaction gas includes a nitride compound, and the suppression gas includes at least one of an alkyl halide, an alkenyl halide, an alkynyl halide, alkene, and an alkyne, so The alkyl halide, the alkenyl halide, the alkynyl halide, the alkene, and the alkyne each include a hydrocarbon group containing 1 to 10 carbon atoms, and the alkyl halide, the The alkenyl halide and the alkynyl halide each further contain 1 to 10 halogen atoms. 一種製造半導體裝置的方法,包括: 將半導體裝置的中間結構支撐於處理腔室中,所述中間結構具有上表面以及在其中從所述上表面延伸由此具有一定縱橫比的開口,其中所述中間結構包含界定所述開口的底部的內部底表面以及界定所述開口的側面的內部側表面;以及在所述中間結構上,包含在所述中間結構的頂表面上及所述內部底表面上共形地形成具有基本上均一的厚度的膜的膜形成製程,所述膜形成製程包括:將源氣體饋送至所述處理腔室中,所述源氣體是所述膜的前驅物以及所述源氣體的至少一部分在所述中間結構的所述頂表面及所述內部底表面處被所述中間結構吸附,將反應氣體饋送至所述處理腔室中,所述反應氣體是所述膜的前驅物及與所述源氣體發生化學反應,以及將抑制氣體饋送至所述處理腔室中,所述抑制氣體不是所述膜的前驅物,不與所述源氣體反應,以及所述抑制氣體的至少一部分被所述中間結構的所述頂表面及所述內部底表面吸附,以及將惰性氣體饋送至所述處理腔室中以吹掃所述處理腔室的在所述處理腔室中的氣體的至少一部分,其中所述惰性氣體的所述饋送是在所述膜形成製程中在所述源氣體已經饋送至所述處理腔室之後的一個或多個點進行,其中所述源氣體包括鈦類化合物,所述反應氣體包括氮化物類化合物,所述抑制氣體包括烷基鹵化物、烯基鹵化物、炔基鹵化物、烯烴及炔烴中的至少一種, 所述烷基鹵化物、所述烯基鹵化物、所述炔基鹵化物、所述烯烴及所述炔烴各自包括含有1至10個碳原子的烴基,且所述烷基鹵化物、所述烯基鹵化物及所述炔基鹵化物各自更包含1至10個鹵素原子。 A method of manufacturing a semiconductor device includes: An intermediate structure of the semiconductor device is supported in the processing chamber, the intermediate structure having an upper surface and an opening extending from the upper surface therein and thereby having a certain aspect ratio, wherein the intermediate structure includes a bottom defining the opening The inner bottom surface and the inner side surface defining the side surface of the opening; and on the intermediate structure, the top surface of the intermediate structure and the inner bottom surface are conformally formed with a substantially uniform A process for forming a film with a thickness of a film, the film forming process includes: feeding a source gas into the processing chamber, the source gas is a precursor of the film, and at least a part of the source gas is in the middle The top surface and the inner bottom surface of the structure are adsorbed by the intermediate structure, and the reaction gas is fed into the processing chamber. The reaction gas is the precursor of the film and interacts with the source gas. Chemical reaction, and the suppression gas is fed into the processing chamber, the suppression gas is not a precursor of the film, does not react with the source gas, and at least a part of the suppression gas is affected by the intermediate structure The top surface and the inner bottom surface adsorb, and feed an inert gas into the processing chamber to purge at least a part of the gas in the processing chamber of the processing chamber, wherein the inert gas The feeding of the gas is performed at one or more points after the source gas has been fed into the processing chamber in the film formation process, wherein the source gas includes a titanium compound, and the reaction gas includes Nitride compounds, the suppressing gas includes at least one of alkyl halides, alkenyl halides, alkynyl halides, alkenes and alkynes, The alkyl halide, the alkenyl halide, the alkynyl halide, the alkene, and the alkyne each include a hydrocarbon group containing 1 to 10 carbon atoms, and the alkyl halide, the alkyne The alkenyl halide and the alkynyl halide each further contain 1 to 10 halogen atoms. 一種半導體裝置製造設備,包括:腔室;安置於所述腔室中及在上面安放有基底的基底支撐件;將源氣體供應至所述腔室中的源氣體供應器;將反應氣體供應至所述腔室中的反應氣體供應器;將抑制氣體供應至所述腔室中的抑制氣體供應器,所述抑制氣體抑制所述源氣體物理吸附至所述基底上;以及將第一吹掃氣體供應至所述腔室中的第一吹掃氣體供應器,其中所述源氣體包括鈦類化合物,所述反應氣體包括氮化物類化合物,所述抑制氣體包括烷基鹵化物、烯基鹵化物、炔基鹵化物、烯烴及炔烴中的至少一種,所述烷基鹵化物、所述烯基鹵化物、所述炔基鹵化物、所述烯烴及所述炔烴各自包括含有1至10個碳原子的烴基,且所述烷基鹵化物、所述烯基鹵化物及所述炔基鹵化物各自更包含1至10個鹵素原子。A semiconductor device manufacturing equipment includes: a chamber; a substrate support arranged in the chamber and on which a substrate is placed; a source gas supplier in the chamber is supplied with a source gas; and a reaction gas is supplied to A reactive gas supplier in the chamber; supplying a suppressing gas to a suppressing gas supplier in the chamber, the suppressing gas suppressing the physical adsorption of the source gas onto the substrate; and purging the first The gas is supplied to the first purge gas supplier in the chamber, wherein the source gas includes a titanium-based compound, the reaction gas includes a nitride-based compound, and the suppression gas includes an alkyl halide, an alkenyl halide At least one of alkyne, alkynyl halide, alkene, and alkyne, and the alkyl halide, the alkenyl halide, the alkynyl halide, the alkene, and the alkyne each include 1 to A hydrocarbon group of 10 carbon atoms, and the alkyl halide, the alkenyl halide, and the alkynyl halide each further contain 1 to 10 halogen atoms.
TW106122192A 2016-07-04 2017-07-03 Method of fabricating semiconductor device and semiconductor device fabricating equipment TWI739857B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20160084321 2016-07-04
??10-2016-0084321 2016-07-04
KR10-2016-0084321 2016-07-04
KR10-2017-0027647 2017-03-03
??10-2017-0027647 2017-03-03
KR1020170027647A KR102375981B1 (en) 2016-07-04 2017-03-03 Method for fabricating semiconductor device, and fabricating equipment for semiconductor device

Publications (2)

Publication Number Publication Date
TW201802886A TW201802886A (en) 2018-01-16
TWI739857B true TWI739857B (en) 2021-09-21

Family

ID=61001149

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106122192A TWI739857B (en) 2016-07-04 2017-07-03 Method of fabricating semiconductor device and semiconductor device fabricating equipment

Country Status (3)

Country Link
KR (1) KR102375981B1 (en)
CN (1) CN107578995B (en)
TW (1) TWI739857B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900120B2 (en) 2017-07-14 2021-01-26 Asm Ip Holding B.V. Passivation against vapor deposition
TWI755607B (en) 2018-06-22 2022-02-21 美商應用材料股份有限公司 Catalyzed deposition of metal films
CN111834247B (en) * 2019-04-23 2023-09-08 北京北方华创微电子装备有限公司 Cooling device and semiconductor processing equipment
US10872763B2 (en) * 2019-05-03 2020-12-22 Applied Materials, Inc. Treatments to enhance material structures
KR102138149B1 (en) * 2019-08-29 2020-07-27 솔브레인 주식회사 Growth inhibitor for forming thin film, method for forming thin film and semiconductor substrate prepared therefrom
KR102156663B1 (en) * 2019-09-25 2020-09-21 솔브레인 주식회사 Method for forming thin film
KR102141547B1 (en) * 2019-09-25 2020-09-14 솔브레인 주식회사 Method for forming thin film
US11967502B2 (en) 2020-06-30 2024-04-23 Samsung Electronics Co., Ltd. Methods of forming material layer, semiconductor devices, and methods of manufacturing the same
KR102406174B1 (en) * 2020-09-08 2022-06-08 주식회사 이지티엠 Selectivity material and method of selective formation of thin film using selectivity material
CN116080220B (en) * 2022-09-23 2024-07-26 春语科技(广东)有限公司 Three-layer composite polyvinyl butyral sponge cleaning roller and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035466A1 (en) * 2006-02-28 2009-02-05 Tokyo Electron Limited Ruthenium film formation method and computer readable storage medium
US20120077322A1 (en) * 2010-09-27 2012-03-29 Tokyo Electron Limited Semiconductor device, method of manufacturing the same and adsorption site blocking atomic layer deposition method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003696A1 (en) 2001-06-29 2003-01-02 Avgerinos Gelatos Method and apparatus for tuning a plurality of processing chambers
KR20080089807A (en) * 2007-04-02 2008-10-08 삼성전자주식회사 Method for fabricating semiconductor device and semiconductor device fabricated thereby
JP4933399B2 (en) * 2007-10-25 2012-05-16 株式会社ニューフレアテクノロジー Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP5692842B2 (en) * 2010-06-04 2015-04-01 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
KR101895398B1 (en) * 2011-04-28 2018-10-25 삼성전자 주식회사 Method of forming an oxide layer and a method of fabricating a semiconductor device comprising the same
JP6249815B2 (en) * 2014-02-17 2017-12-20 株式会社Ihi Manufacturing method and manufacturing apparatus for heat-resistant composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035466A1 (en) * 2006-02-28 2009-02-05 Tokyo Electron Limited Ruthenium film formation method and computer readable storage medium
US20120077322A1 (en) * 2010-09-27 2012-03-29 Tokyo Electron Limited Semiconductor device, method of manufacturing the same and adsorption site blocking atomic layer deposition method

Also Published As

Publication number Publication date
CN107578995A (en) 2018-01-12
TW201802886A (en) 2018-01-16
KR102375981B1 (en) 2022-03-18
KR20180004650A (en) 2018-01-12
CN107578995B (en) 2023-07-11

Similar Documents

Publication Publication Date Title
TWI739857B (en) Method of fabricating semiconductor device and semiconductor device fabricating equipment
US10468264B2 (en) Method of fabricating semiconductor device
US20090065896A1 (en) CAPACITOR HAVING Ru ELECTRODE AND TiO2 DIELECTRIC LAYER FOR SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME
US20090148625A1 (en) Method for forming thin film
US20050156256A1 (en) Method of fabricating lanthanum oxide layer and method of fabricating MOSFET and capacitor using the same
JP4709115B2 (en) Capacitor for semiconductor device using ruthenium electrode and titanium dioxide dielectric film and method for manufacturing the same
KR100881730B1 (en) Capacitor and method for manufacturing the same
TW201702417A (en) Methods for selective deposition of metal silicides via atomic layer deposition (ALD) cycles
US20060216947A1 (en) Methods and batch type atomic layer deposition apparatus for forming dielectric films and methods of manufacturing metal-insulator-metal capacitors including the dielectric films
KR102656062B1 (en) Semiconductor device and a method for manufacturing the same
JP2018059173A (en) Film deposition method
US20080029031A1 (en) Methods and apparatus for forming thin films for semiconductor devices
US7041546B2 (en) Film forming method for depositing a plurality of high-k dielectric films
US7939872B2 (en) Multi-dielectric films for semiconductor devices and methods of fabricating multi-dielectric films
KR101713336B1 (en) Liner removal process
US7923343B2 (en) Capacitor of semiconductor device and method for forming the same
US20070264770A1 (en) Capacitor forming method
KR20100078496A (en) Method for fabricating capacitor of semiconductor device
KR101170261B1 (en) Phase memorization for low leakage dielectric films
US20240030277A1 (en) Semiconductor device and method of manufacturing the same
JP2009299101A (en) Method of manufacturing semiconductor device and substrate processing apparatus
KR20070093190A (en) Mim capacitor and method of fabricating the same
TW202405241A (en) Method of manufacturing semiconductor device
KR20100135097A (en) Capacitor of semiconductor and manufacturing method for the same
KR20090067368A (en) Capacitor and method for fabrication of the same